Created
June 26, 2017 12:45
-
-
Save tudor-berariu/e3f99ba956322e41e561872876923735 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"import torch.nn.functional as F\n", | |
"import torch.optim as optim\n", | |
"from torchvision import datasets, transforms\n", | |
"from torch.autograd import Variable\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"batch_size = 64\n", | |
"epochs = 10\n", | |
"lr = 0.01\n", | |
"momentum = 0.\n", | |
"seed = 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"torch.manual_seed(seed)\n", | |
"torch.cuda.manual_seed(seed)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n" | |
] | |
} | |
], | |
"source": [ | |
"kwargs = {'num_workers': 1, 'pin_memory': True}\n", | |
"train_loader = torch.utils.data.DataLoader(\n", | |
" datasets.MNIST('../data', train=True, download=True,\n", | |
" transform=transforms.Compose([\n", | |
" transforms.ToTensor(),\n", | |
" #transforms.Normalize((0.1307,), (0.3081,))\n", | |
" ])),\n", | |
" batch_size=batch_size, shuffle=True, **kwargs)\n", | |
"test_loader = torch.utils.data.DataLoader(\n", | |
" datasets.MNIST('../data', train=False, transform=transforms.Compose([\n", | |
" transforms.ToTensor(),\n", | |
" #transforms.Normalize((0.1307,), (0.3081,))\n", | |
" ])),\n", | |
" batch_size=batch_size, shuffle=True, **kwargs)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "NameError", | |
"evalue": "name 'train_loader' is not defined", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-4-4603cdf30650>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mepoch\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 71\u001b[0m \u001b[0mtest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-4-4603cdf30650>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 37\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mbatch_idx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_loader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 38\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mVariable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mVariable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mNameError\u001b[0m: name 'train_loader' is not defined" | |
] | |
} | |
], | |
"source": [ | |
"class Net(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(Net, self).__init__()\n", | |
" self.fc1 = nn.Linear(784, 50)\n", | |
" self.fc2 = nn.Linear(50, 10)\n", | |
" \n", | |
" def forward(self, x):\n", | |
" bs = x.size(0)\n", | |
" return F.log_softmax(self.fc2(F.tanh(self.fc1(x.view(bs, -1)))))\n", | |
" \n", | |
"\n", | |
"class Net2(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(Net2, self).__init__()\n", | |
" self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n", | |
" self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n", | |
" self.conv2_drop = nn.Dropout2d()\n", | |
" self.fc1 = nn.Linear(320, 50)\n", | |
" self.fc2 = nn.Linear(50, 10)\n", | |
"\n", | |
" def forward(self, x):\n", | |
" x = F.relu(F.max_pool2d(self.conv1(x), 2))\n", | |
" x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))\n", | |
" x = x.view(-1, 320)\n", | |
" x = F.relu(self.fc1(x))\n", | |
" x = F.dropout(x, training=self.training)\n", | |
" x = self.fc2(x)\n", | |
" return F.log_softmax(x)\n", | |
"\n", | |
"model = Net()\n", | |
"model.cuda()\n", | |
"\n", | |
"optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)\n", | |
"\n", | |
"def train(epoch):\n", | |
" model.train()\n", | |
" for batch_idx, (data, target) in enumerate(train_loader):\n", | |
" data, target = data.cuda(), target.cuda()\n", | |
" data, target = Variable(data), Variable(target)\n", | |
" optimizer.zero_grad()\n", | |
" output = model(data)\n", | |
" loss = F.nll_loss(output, target)\n", | |
" loss.backward()\n", | |
" optimizer.step()\n", | |
" \"\"\"\n", | |
" print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", | |
" epoch, batch_idx * len(data), len(train_loader.dataset),\n", | |
" 100. * batch_idx / len(train_loader), loss.data[0]))\n", | |
" \"\"\"\n", | |
"def test(epoch):\n", | |
" model.eval()\n", | |
" test_loss = 0\n", | |
" correct = 0\n", | |
" for data, target in test_loader:\n", | |
" data, target = data.cuda(), target.cuda()\n", | |
" data, target = Variable(data, volatile=True), Variable(target)\n", | |
" output = model(data)\n", | |
" test_loss += F.nll_loss(output, target).data[0]\n", | |
" pred = output.data.max(1)[1]\n", | |
" correct += pred.eq(target.data).cpu().sum()\n", | |
"\n", | |
" test_loss = test_loss\n", | |
" test_loss /= len(test_loader) # loss function already averages over batch size\n", | |
" print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n", | |
" test_loss, correct, len(test_loader.dataset),\n", | |
" 100. * correct / len(test_loader.dataset)))\n", | |
"\n", | |
"\n", | |
"for epoch in range(1, epochs + 1):\n", | |
" train(epoch)\n", | |
" test(epoch)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment