#Non-mathematical Introductions
- http://gcn.com/articles/2014/01/09/topographical-data-analysis.aspx
- https://www.simonsfoundation.org/quanta/20131004-the-mathematical-shape-of-things-to-come/
#Videos
| from __future__ import absolute_import | |
| """ | |
| This will configure and run the nosetests for graph against remove ec2 servers. | |
| Running this makes a few assumptions. | |
| 1) You must have access to graph on github. This will checkout the repo to run the tests | |
| 2) You must have an account on EC2 and be able to create instances. | |
| In order to configure, you need to create a file in your home called ~/.boto that looks like: |
| import pycurl | |
| import cStringIO | |
| import json | |
| import urllib | |
| from collections import defaultdict | |
| from time import sleep | |
| import glob as g | |
| base_api_url = "http://localhost:8090/" |
| let x = [1;3;4;5;1;2;10;7];; | |
| let y = List.sort compare x;; | |
| let convert_pos list n = | |
| let rec aux i r = function | |
| | [] -> r | |
| | e::t -> aux (i+1) (r @ [e*n+i]) t | |
| in aux 0 [] list;; |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <meta charset="utf-8" /> | |
| <title>My First Canvas Example</title> | |
| </head> | |
| <body style="margin:0px"> | |
| <Canvas id="my_canvas"> </Canvas> | |
| <script type="application/dart" src="dots.dart"></script> |
| import 'dart:html'; | |
| import 'dart:math'; | |
| void main() { | |
| init_palau_flag(); | |
| } | |
| void init_palau_flag() { | |
| palau_flag(); | |
| } |
#Non-mathematical Introductions
#Videos
| Uniregistry, Corp. 9 ['COUNTRY', 'CHRISTMAS', 'PICS', 'PHOTO', 'GIFT', 'LINK', 'GUITARS', 'SEXY', 'TATTOO'] | |
| Afilias Limited 8 ['BLACK', 'MEET', '\xe7\xa7\xbb\xe5\x8a\xa8 (xn--6frz82g) \xe2\x80\x93 Chinese for "mobile"', 'BLUE', 'KIM', 'PINK', 'RED', 'SHIKSHA'] | |
| United TLD Holdco Ltd. 7 ['DEMOCRAT', 'SOCIAL', 'MODA', 'DANCE', 'IMMOBILIEN', 'KAUFEN', 'NINJA'] | |
| United TLD Holdco, Ltd. 7 ['ROCKS', 'CONSULTING', 'HAUS', 'PUB', 'ACTOR', 'REVIEWS', 'FUTBOL'] | |
| Top Level Domain Holdings Limited 6 ['VODKA', 'COOKING', 'RODEO', 'HORSE', 'FISHING', 'MIAMI'] |
| import math | |
| import numpy as np | |
| # Another example at http://stackoverflow.com/questions/10658866/calculating-pdf-of-dirichlet-distribution-in-python | |
| def gamma(x): | |
| return math.gamma(x) |
| class RunningStat(object): | |
| """ | |
| Based on ideas presented in | |
| 1. Numerically Stable, Single-Pass, Parallel Statistics Algorithms - http://www.janinebennett.org/index_files/ParallelStatisticsAlgorithms.pdf | |
| 2. Accurately computing running variance - http://www.johndcook.com/standard_deviation.html | |
| """ | |
| def __init__(self): | |
| self.m_n = 0 | |
| self.m_oldM = 0 |
| import numpy as np | |
| def projection_on_to_simplex(sphere_point): | |
| # References | |
| # Same implmentation as the one used here at https://gist.github.com/daien/1272551 | |
| # Efficient Projections onto the .1-Ball for Learning in High Dimensions - http://machinelearning.org/archive/icml2008/papers/361.pdf | |
| mu = np.sort(sphere_point)[::-1] | |
| mu_sums = np.cumsum(mu) | |
| rho = np.nonzero(mu * np.arange(1, sphere_point.shape[0] + 1) > (mu_sums - 1))[0][-1] |