Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save twolodzko/aa4f4ad52f16c293df40342929b025a4 to your computer and use it in GitHub Desktop.

Select an option

Save twolodzko/aa4f4ad52f16c293df40342929b025a4 to your computer and use it in GitHub Desktop.
Denoising autoencoder with data generator in Keras.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Denoising autoencoder with data generator in Keras.ipynb",
"version": "0.3.2",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"[View in Colaboratory](https://colab.research.google.com/gist/twolodzko/aa4f4ad52f16c293df40342929b025a4/denoising-autoencoder-with-data-generator-in-keras.ipynb)"
]
},
{
"metadata": {
"id": "5MKBs5dLI2DJ",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "e36d24bb-a7c6-47a0-bf24-953044c15f2f"
},
"cell_type": "code",
"source": [
"import tensorflow as tf\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from keras.layers import Lambda, Input, Dense\n",
"from keras.models import Model\n",
"from keras import regularizers\n",
"from keras.datasets import mnist\n",
"from keras import backend as K\n",
"\n",
"tf.test.gpu_device_name()"
],
"execution_count": 106,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'/device:GPU:0'"
]
},
"metadata": {
"tags": []
},
"execution_count": 106
}
]
},
{
"metadata": {
"id": "E1T_DtUvI3M-",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"(x_train, _), (x_test, _) = mnist.load_data()\n",
"\n",
"x_train = x_train.astype('float32') / 255\n",
"x_test = x_test.astype('float32') / 255\n",
"\n",
"x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))\n",
"x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "12lssVzVQHM-",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
""
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "oF4qjyBoI3P0",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"from keras.utils import Sequence\n",
"\n",
"class DataGenerator(Sequence):\n",
"\n",
" def __init__(self, data, batch_size=32, noisy=False, noise_factor=0.5, shuffle=True):\n",
" \n",
" self.data = data\n",
" self.data_noisy = None\n",
" self.index = [i for i in range(self.data.shape[0])]\n",
" \n",
" self.batch_size = batch_size\n",
" self.noisy = noisy\n",
" self.noise_factor = noise_factor\n",
" self.shuffle = shuffle\n",
" self.on_epoch_end()\n",
"\n",
" def __len__(self):\n",
" return int(len(self.data) / self.batch_size)\n",
"\n",
" def __getitem__(self, index):\n",
" train, test = [], []\n",
" for i in range(index, index+self.batch_size):\n",
" train.append(self.data_noisy[self.index[i]])\n",
" test.append(self.data[self.index[i]])\n",
" return np.array(train), np.array(test)\n",
"\n",
" def on_epoch_end(self):\n",
" np.random.shuffle(self.index)\n",
" if self.noisy:\n",
" noise = np.random.normal(loc=0.0, scale=self.noise_factor, size=self.data.shape) \n",
" self.data_noisy = self.data + noise\n",
" np.clip(self.data_noisy, 0., 1.)\n",
" else:\n",
" self.data_noisy = self.data"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "uTx-wCwNI3S5",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"train_gen = DataGenerator(x_train, noisy=True)\n",
"test_gen = DataGenerator(x_test, noisy=True)"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "bbX4PZaERPzl",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
""
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "wtBuBPp4NlrZ",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 243
},
"outputId": "e738acf7-fef5-4eba-c0e7-371ea93de1de"
},
"cell_type": "code",
"source": [
"encoding_dim = 32 \n",
"\n",
"input_img = Input(shape=(784,))\n",
"encoded = Dense(encoding_dim, activation='relu',\n",
" activity_regularizer=regularizers.l1(1e-4))(input_img)\n",
"decoded = Dense(784, activation='sigmoid')(encoded)\n",
"autoencoder = Model(input_img, decoded)\n",
"\n",
"encoder = Model(input_img, encoded)\n",
"\n",
"encoded_input = Input(shape=(encoding_dim,))\n",
"decoder_layer = autoencoder.layers[-1]\n",
"decoder = Model(encoded_input, decoder_layer(encoded_input))\n",
"\n",
"autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')\n",
"\n",
"autoencoder.summary()"
],
"execution_count": 118,
"outputs": [
{
"output_type": "stream",
"text": [
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"input_18 (InputLayer) (None, 784) 0 \n",
"_________________________________________________________________\n",
"dense_17 (Dense) (None, 32) 25120 \n",
"_________________________________________________________________\n",
"dense_18 (Dense) (None, 784) 25872 \n",
"=================================================================\n",
"Total params: 50,992\n",
"Trainable params: 50,992\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
],
"name": "stdout"
}
]
},
{
"metadata": {
"id": "3dX1Ovp4NBfj",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 712
},
"outputId": "efbf8d07-6f63-4774-df84-9233813ba353"
},
"cell_type": "code",
"source": [
"history = autoencoder.fit_generator(generator=train_gen,\n",
" validation_data=test_gen,\n",
" epochs=20)"
],
"execution_count": 119,
"outputs": [
{
"output_type": "stream",
"text": [
"Epoch 1/20\n",
"1875/1875 [==============================] - 14s 7ms/step - loss: 0.2341 - val_loss: 0.1823\n",
"Epoch 2/20\n",
"1875/1875 [==============================] - 16s 9ms/step - loss: 0.1675 - val_loss: 0.1573\n",
"Epoch 3/20\n",
"1030/1875 [===============>..............] - ETA: 7s - loss: 0.1543"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 9ms/step - loss: 0.1486 - val_loss: 0.1449\n",
"Epoch 4/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1369 - val_loss: 0.1384\n",
"Epoch 5/20\n",
"1490/1875 [======================>.......] - ETA: 3s - loss: 0.1325"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1311 - val_loss: 0.1342\n",
"Epoch 6/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1284 - val_loss: 0.1320\n",
"Epoch 7/20\n",
"1609/1875 [========================>.....] - ETA: 2s - loss: 0.1271"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1264 - val_loss: 0.1300\n",
"Epoch 8/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1249 - val_loss: 0.1286\n",
"Epoch 9/20\n",
"1634/1875 [=========================>....] - ETA: 1s - loss: 0.1242"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1236 - val_loss: 0.1272\n",
"Epoch 10/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1229 - val_loss: 0.1266\n",
"Epoch 11/20\n",
"1622/1875 [========================>.....] - ETA: 2s - loss: 0.1224"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1216 - val_loss: 0.1258\n",
"Epoch 12/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1239 - val_loss: 0.1263\n",
"Epoch 13/20\n",
"1641/1875 [=========================>....] - ETA: 1s - loss: 0.1218"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1212 - val_loss: 0.1264\n",
"Epoch 14/20\n",
"1875/1875 [==============================] - 15s 8ms/step - loss: 0.1204 - val_loss: 0.1265\n",
"Epoch 15/20\n",
"1647/1875 [=========================>....] - ETA: 1s - loss: 0.1218"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1211 - val_loss: 0.1268\n",
"Epoch 16/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1207 - val_loss: 0.1257\n",
"Epoch 17/20\n",
"1615/1875 [========================>.....] - ETA: 2s - loss: 0.1221"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1215 - val_loss: 0.1261\n",
"Epoch 18/20\n",
"1875/1875 [==============================] - 16s 9ms/step - loss: 0.1211 - val_loss: 0.1260\n",
"Epoch 19/20\n",
"1593/1875 [========================>.....] - ETA: 2s - loss: 0.1209"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1202 - val_loss: 0.1259\n",
"Epoch 20/20\n",
"1875/1875 [==============================] - 16s 8ms/step - loss: 0.1207 - val_loss: 0.1260\n"
],
"name": "stdout"
}
]
},
{
"metadata": {
"id": "yOaxlqjKNCQe",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 347
},
"outputId": "3a079456-1585-442e-c753-337ad4de7465"
},
"cell_type": "code",
"source": [
"plt.plot(history.history['loss'])\n",
"plt.plot(history.history['val_loss'])\n",
"plt.show()"
],
"execution_count": 120,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFKCAYAAAAnj5dkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9P/7XmX3fkpkshIQQloQI\nsqosggto1WKr93ch9gvafr292la58q1XLY9W/D76BRWtv1rbb7Va22qv99LS1KKtF+tCSzHsCBLW\nhBACIclMMpNkMsms5/vHTA4J2SFkttfzYR6znHOGz9uZ5DWfc87nfARRFEUQERFRwpDFuwFERETU\nG8OZiIgowTCciYiIEgzDmYiIKMEwnImIiBIMw5mIiCjBKOLdgG5OZ/uovp7VqoPb7RvV10wEqVgX\na0oeqVgXa0oeqVaX3W4ccFnK9pwVCnm8m3BVpGJdrCl5pGJdrCl5pGpd/UnZcCYiIkpWDGciIqIE\nw3AmIiJKMAxnIiKiBMNwJiIiSjAMZyIiogTDcCYiIkowDGciIqIEw3AmIiJKMAxnIiKiBJMw19Ye\nTeecXpx3d2KcVRvvphAREY1YSvac/7C9Gv/7jd0IhSPxbgoREdGIpWQ4G3RKhMIRNLd2xbspRERE\nI5aS4Wy3RHdnN3k649wSIiKikUvJcHbEwtnJcCYioiSUkuFsZzgTEVESS+lwbnIznImIKPmkZDgb\ndUpo1XI4PTwhjIiIkk9KhrMgCMiy6eH0dEIUxXg3h4iIaERSMpwBICdTD38wjHZfMN5NISIiGpGU\nDecsmw4ATwojIqLkk7LhnJ2hB8CxzkRElHxSNpxzYuHMnjMRESWblA3n7IzYbm0OpyIioiSTsuFs\nt+ogCOw5ExFR8knZcFYqZLAZNXBy8gsiIkoyKRvOAGC3aOBu9yMQDMe7KURERMOW0uHssEYv4+li\n75mIiJJISoczp44kIqJklBbhzJPCiIgomTCciYiIEkx6hDPHOhMRURJJ6XA2aJXQqRUcTkVEREkl\npcMZiPaenZ5ORDh1JBERJYnUD2erFsFQBK3eQLybQkRENCypH84WDQCeFEZERMkjDcKZZ2wTEVFy\nSflwdjCciYgoyaR8OPMqYURElGxSPpxtJjXkMoE9ZyIiShopH85ymQwZJg2cHo51JiKi5KAYzkob\nN27EoUOHIAgC1q1bhxkzZkjLdu3ahZdeegkymQyFhYXYsGEDZDIZNm3ahP379yMUCuGhhx7Cbbfd\ndtWKGIrdokHlGTe6AiFoVMMqmYiIKG6GTKo9e/agtrYWmzdvRnV1NdatW4fNmzdLy59++mm89dZb\nyM7Oxpo1a7Bjxw6o1WqcOnUKmzdvhtvtxj333BPfcLbqgDNuuDxdyHMY4tYOIiKi4RgynCsqKrB0\n6VIAQFFREVpbW+H1emEwREOuvLxcum+z2eB2u7F8+XKpd20ymdDZ2YlwOAy5XH616hhU91jnJk8n\nw5mIiBLekMecXS4XrFar9Nhms8HpdEqPu4O5qakJO3fuxJIlSyCXy6HT6QAAW7ZsweLFi+MWzACH\nUxERUXIZ8QFYsZ9rVDc3N+Phhx/G+vXrewX5Rx99hC1btuDNN98c8nWtVh0UitENcLvdCACYEogA\nALz+sPRcMkuFGi7FmpJHKtbFmpJHqtZ1qSHD2eFwwOVySY+bmppgt9ulx16vF9/85jfx2GOPYdGi\nRdLzO3bswKuvvoo33ngDRuPQ/zPdbt9I2z4ou90Ip7MdAKAQo+Fce6FVei5Z9awrVbCm5JGKdbGm\n5JFqdQ32RWPI3doLFy7Etm3bAACVlZVwOBzSrmwAeO655/DAAw9g8eLF0nPt7e3YtGkTXnvtNVgs\nlitp+6jQqhUwaJUcTkVERElhyJ7z7NmzUVpairKyMgiCgPXr16O8vBxGoxGLFi3Cu+++i9raWmzZ\nsgUA8OUvfxkA4Ha78dhjj0mv8/zzzyM3N/cqlTE0u0WLs43tiEREyGRC3NpBREQ0lGEdc3788cd7\nPS4uLpbuHzlypN9tVq5ceQXNGn0OqxY1F9rgbvcjw6yJd3OIiIgGlPJXCOvGqSOJiChZpE84mzkB\nBhERJYe0CWeHlWOdiYgoOaRNONt5IRIiIkoSaRPOFqMaCjmnjiQiosSXNuEsEwRkmrUc60xERAkv\nbcIZiO7a9nYG4esKxbspREREA0qrcOYEGERElAzSKpw51pmIiJJBeoUzh1MREVESSK9w5m5tIiJK\nAukVzrxKGBERJYG0Cme1Sg6zXsWeMxERJbS0Cmcgumu7udWPUDgS76YQERH1Ky3DOSKKaGn3x7sp\nRERE/UrDcOZwKiIiSmxpGM6xM7bdDGciIkpMaRfOnDqSiIgSXdqFc3fPmcOpiIgoUaVdOJv1KqgU\nMvaciYgoYaVdOAuCALtFC6enE6Ioxrs5REREfaRdOAPRXdud/jA6OHUkEREloLQNZ4AnhRERUWJK\n03COjnVu4nAqIiJKQGkZzhxORUREiSwtw5m7tYmIKJGlZThnmjUQwHAmIqLElJbhrFTIYTGqGc5E\nRJSQ0jKcgeiu7ZY2P4IhTh1JRESJJW3D2WHRQgTQ3NYV76YQERH1krbhzKkjiYgoUaVxOMcmwOBY\nZyIiSjDpG84c60xERAkqfcOZY52JiChBpW04G7VKaFRyhjMRESWctA3ni1NHdnHqSCIiSihpG85A\ndNe2PxhGmy8Y76YQERFJ0jqcHTzuTERECSitw1ka68zhVERElEAUw1lp48aNOHToEARBwLp16zBj\nxgxp2a5du/DSSy9BJpOhsLAQGzZsgEwmG3SbRMHhVERElIiGDOc9e/agtrYWmzdvRnV1NdatW4fN\nmzdLy59++mm89dZbyM7Oxpo1a7Bjxw5otdpBt0kUHE5FRESJaMjd2hUVFVi6dCkAoKioCK2trfB6\nvdLy8vJyZGdnAwBsNhvcbveQ2ySKDJMGggA0MZyJiCiBDBnOLpcLVqtVemyz2eB0OqXHBoMBANDU\n1ISdO3diyZIlQ26TKBRyGTJMGvaciYgooQzrmHNP/Y0Jbm5uxsMPP4z169f3CuXBtrmU1aqDQiEf\naXMGZbcbh1wn127A4SoXTBYd1MrR/fevluHUlWxYU/JIxbpYU/JI1bouNWQ4OxwOuFwu6XFTUxPs\ndrv02Ov14pvf/CYee+wxLFq0aFjb9Mft9o248YOx241wOtuHXM+iVwEAjlU5MS5TP6ptuBqGW1cy\nYU3JIxXrYk3JI9XqGuyLxpC7tRcuXIht27YBACorK+FwOKRd2QDw3HPP4YEHHsDixYuHvU0i4dSR\nRESUaIbsOc+ePRulpaUoKyuDIAhYv349ysvLYTQasWjRIrz77ruora3Fli1bAABf/vKXsXLlyj7b\nJCqHVQeAY52JiChxDOuY8+OPP97rcXFxsXT/yJEjw9omUbHnTEREiSatrxAGXBzrzOFURESUKNI+\nnPUaJfQaBXvORESUMNI+nAEg06KFq7ULEU4dSURECYDhjOjsVMFQBK3eQLybQkRExHAGeI1tIiJK\nLAxnXDxju4nDqYiIKAEwnBHdrQ2w50xERImB4Yweu7VbGc5ERBR/DGcANpMGcpnAq4QREVFCYDgD\nkMkEZJg5dSQRESUGhnOM3aJFmy+ITn8o3k0hIqI0x3CO6T4pzNXaFeeWEBFRumM4x3CsMxERJQqG\nc4w0AQZPCiMiojhjOMdIU0dyOBUREcUZwzlG2q3NnjMREcUZwzlGq1bAqFPymDMREcUdw7kHe/fU\nkRFOHUlERPHDcO7BYdEiHBHR0s7hVEREFD8M5x4ypeFUDGciIoofhnMP0hnbPO5MRERxxHDugVNH\nEhFRImA498CrhBERUSJgOPdgMaqhkMt4lTAiIoorhnMPMkGA3cKpI4mIKL4YzpewW7To6ArB1xWM\nd1OIiChNMZwvYedwKiIiijOG8yV4UhgREcUbw/kS3cOpmhjOREQUJwznS/BCJEREFG8M50t0X8KT\nw6mIiCheGM6XUCvlMBtU7DkTEVHcMJz7Ybdo0dLmRygciXdTiIgoDTGc++GwaBERRbS0cTgVERGN\nPYZzPzjWmYiI4onh3I/uM7Y5nIqIiOIhJcP547N/x8sVv4Qoipe1vcOiA8DhVEREFB8pGc713gbs\nPLsPNW1nL2t7jnUmIqJ4SslwnpN1LQBgb8OBy9repFdBpZTBybHOREQUB8MK540bN2LlypUoKyvD\n4cOHey3z+/148sknce+990rPdXR04JFHHsHq1atRVlaGHTt2jG6rhzDVOglmtRH7mw4hFAmNeHtB\nEGC3aOFs7bzsXeNERESXa8hw3rNnD2pra7F582Zs2LABGzZs6LV806ZNKCkp6fXcH//4RxQWFuLt\nt9/Gyy+/3Gebq00uk2Nh/lx0BH041nLysl7Dbtai0x+Gt5NTRxIR0dgaMpwrKiqwdOlSAEBRURFa\nW1vh9Xql5WvXrpWWd7NarfB4PACAtrY2WK3W0WzzsNw44XoAwN6Gg5e1vcPK4VRERBQfiqFWcLlc\nKC0tlR7bbDY4nU4YDAYAgMFgkIK421133YXy8nIsW7YMbW1teO2114ZsiNWqg0IhH2n7B5QpGpBr\nzMLh5qPQWxTQKbUj2r4wzwLsrYM/IsJuN45au0ZDorVnNLCm5JGKdbGm5JGqdV1qyHC+1HCOwf7p\nT39Cbm4ufvnLX+L48eNYt24dysvLB93G7faNtCmDstuNmJ05E+/XbMNHx3Zhfs7cEW2vVUR3KlSd\ndaMkzzyqbbsSdrsRTmd7vJsxqlhT8kjFulhT8ki1ugb7ojHkbm2HwwGXyyU9bmpqgt1uH3SbAwcO\nYNGiRQCA4uJiNDU1IRwOD7e9o2Ze9kwAl3fWNodTERFRvAwZzgsXLsS2bdsAAJWVlXA4HNIu7YEU\nFBTg0KFDAIDz589Dr9dDLh+9XdbDlanNwERzAU66q+Hxt45sW7MWAsDhVERENOaG3K09e/ZslJaW\noqysDIIgYP369SgvL4fRaMSyZcuwZs0aNDQ0oKamBqtXr8aKFSuwcuVKrFu3DqtWrUIoFMIzzzwz\nBqX0b17WbJxurcW+xs+xNH/JsLdTKmSwmtRwtjKciYhobA3rmPPjjz/e63FxcbF0/yc/+Um/27z8\n8stX0KzRMztrBn5/6k/Y23BwROEMRIdTnazzIBiKQKlIyeu1EBFRAkr5xDEo9SjNKMY5bz3qvQ0j\n2tZu1UIE4GLvmYiIxlDKhzMAXJc9GwCwt3FkY545dSQREcVDWoTzNRkl0MjV2NtwEBExMuzteMY2\nERHFQ1qEs0quxEzHdLj9HlR7aoa9HaeOJCKieEiLcAaA67JGvmubPWciIoqHtAnnydaJsKjNONB0\nGMHw8CazMGiV0KrlaGI4ExHRGEqbcJYJMszNmonOUBcqm48PaxtBEGA3a+H0cOpIIiIaO2kTzsDF\ns7b3jGjXthaBYARtHYGr1SwiIqJe0iqcxxlykKvPRqXrGHzB4U20YefUkURENMbSKpwBYF72LITE\nMA42fTGs9S+OdeZxZyIiGhvpF85ZswAAexqHN1OVIxbOPCmMiIjGStqFs1VjwWTLRFR5atDc6R5y\nfQ6nIiKisZZ24QxcPDFs3zBODLOZNJAJAnvOREQ0ZtIynGfap0MhU2BPw4Ehh0gp5DLYTGr2nImI\naMykZTjrlFpck1GCBl8Tznnrh1zfbtGi1RuAPxgeg9YREVG6S8twBoDrsqMnhu1tGHrXtiM2nMrF\n3jMREY2BtA3naRnF0Cm02Nc49ExVnDqSiIjGUtqGs1KmwGzHDLQG2nHSXT3ounYOpyIiojGUtuEM\nAPO6L+fZMPiYZwcvREJERGMorcN5orkAGRorPnd+gUB44Gtnc6wzERGNpbQO5+hMVbPgDwdw2HV0\nwPV0GiX0GgXDmYiIxkRahzMQvdY2MPRZ23aLFk5PFyKcOpKIiK6ytA/nHH0WxhvH4WjLCbQHvAOu\nZ7doEQpH4Gn3j2HriIgoHaV9OAPAdVmzEBEjONB0eMB1HFaeFEZERGOD4QxgTtZMCBCwd5CztnMy\ndACAyjMtY9UsIiJKUwxnAGa1CVOtk1DTdhZNPle/68yZ6oBBq8Qn+8+j0x8a4xYSEVE6YTjHDDVT\nlVopx7K5efD5Q9j++fmxbBoREaUZhnPMtfZSKGVK7G04OOBMVbfMyYNGJceHe+oQDHESDCIiujoY\nzjEahQbX2kvR1OlCbXtdv+voNUrcPGscWjsC+McXDWPcQiIiShcM5x7mZUXHPO8ZZMzzbfPGQyGX\n4YNdtQhHBp8wg4iI6HIwnHsosU2BQanH/sbPEY70v9vabFBj0YwcuFq7sPdY0xi3kIiI0gHDuQe5\nTI45WdfCG+zAsZaTA673pevzIQjAX3bVDnh8moiI6HIxnC8xLyt61vbeAc7aBqKzVF1fkoVzzg4c\nqm4eq6YREVGaYDhfYoJpPOzaDBxyVqIr1DXgenfeUAAA+HPFGfaeiYhoVDGcLyEIAuZlz0YwEsQh\nZ+WA6+U5DJg5KRPV59twss4zhi0kIqJUx3DuR/dZ24Pt2gaAO+d3955rr3qbiIgofTCc++HQZaLQ\nlI/jLafQ6m8bcL1J48yYOt6CIzUtqG1oH8MWEhFRKmM4D2Bu9iyIELG/8fNB17uru/e8i71nIiIa\nHQznAcxxXAuZIBty13ZpoQ35WQbsP96EhhbfGLWOiIhS2bDCeePGjVi5ciXKyspw+HDvOY/9fj+e\nfPJJ3Hvvvb2e37p1K+6++27ce++92L59+6g1eKwYVQZMs03B2fbzaOhoHHA9QRBw1/wJEAF8wN4z\nERGNgiHDec+ePaitrcXmzZuxYcMGbNiwodfyTZs2oaSkpNdzbrcbP/vZz/DOO+/g1Vdfxccffzy6\nrR4j82IzVe0d5HKeADBnih1ZNh0+O9KAlraBh18RERENx5DhXFFRgaVLlwIAioqK0NraCq/XKy1f\nu3attLznNvPnz4fBYIDD4cAPf/jDUW722JiROQ1quQp7Gw8iIg58HW2ZTMCd1+cjHBGxbU//k2YQ\nERENl2KoFVwuF0pLS6XHNpsNTqcTBoMBAGAwGODx9B7ne+7cOXR1deHhhx9GW1sbHn30UcyfP3/Q\nf8dq1UGhkF9ODQOy241X/Bo3jJ+Nv53ZBbfgRLF90oDrLb9pMt777Az+frgeDywvhdmgvuJ/eyCj\nUVeiYU3JIxXrYk3JI1XrutSQ4Xyp4V4Ny+Px4Kc//Snq6+tx//3349NPP4UgCAOu73aP7slUdrsR\nTueVD2+abrkGf8MufHhiJzKQNei6S+eOx399fAq/+/A4vnrjxCv+t/szWnUlEtaUPFKxLtaUPFKt\nrsG+aAy5W9vhcMDlckmPm5qaYLfbB90mIyMDs2bNgkKhQH5+PvR6PVpaWkbQ5MQx1ToJJpURBxoP\nIRQJDbrukmtzYdAq8fH+c+j0D74uERHRQIYM54ULF2Lbtm0AgMrKSjgcDmmX9kAWLVqEXbt2IRKJ\nwO12w+fzwWq1jk6Lx5hMkGFu1kz4Qp2obD4x6LpqlRxL5+ShoyuEv31eP0YtJCKiVDPkbu3Zs2ej\ntLQUZWVlEAQB69evR3l5OYxGI5YtW4Y1a9agoaEBNTU1WL16NVasWIHly5fj9ttvx4oVKwAA3//+\n9yGTJe+Q6uuyZ+OTuh3Y23AA19pLB133ljl5+GDPWWzbexa3zsmDUpG8dRMRUXwM65jz448/3utx\ncXGxdP8nP/lJv9uUlZWhrKzsCpqWOPIMucjWZ+GL5mPwBTuhU2oHXNegVeLmmePw33vOYueRC7hp\n5rgxbCkREaUCduuGQRAEXJc1C6FICB+d/duQ6y+bNx4KuYD/3nUW4cjAQ7CIiIj6w3AepsV5C5Ch\nseHD2k9xyl096LpWoxoLp+egydOJfcedY9RCIiJKFQznYdIqNPh66X0QBAG/Pvpf8AUHH/p1x/X5\nEATgL7tqhz38jIiICGA4j8hEcwHunLAUHn8r3jn+h0FD12HVYV6xA3VNXnxxunkMW0lERMmO4TxC\nt0+4BUXmQhx0foGKC/sGXffOG2LTSVZwQgwiIho+hvMIyQQZvl5aBq1Cg9+ffBeNHU0DrpufZcSM\nogycOteKk3WeAdcjIiLqieF8GWwaK+6b+k8IRIL49dH/HPTKYXfNZ++ZiIhGhuF8meZkXYsbcubi\nbPt5vH/6wwHXm5xnwZQ8M7443YyzjalzTVgiIrp6GM5X4J8nfwV2bQb+enY7jrecGnC9O+dPABA9\nc5uIiGgoDOcroFGo8Y3Sr0EmyPDW0f+CN9DR73rTJ9qQ7zBg7/EmNI7y7FtERJR6GM5XqMA0Hssn\n3o7WQDv+4/iWfodXCYKAO+cXQBSBD3adjUMriYgomTCcR8HS/CWYYinCYVcl/lG/q9915k51wGHV\n4rMjF+Bu949xC4mIKJkwnEeBTJDh/mkroVfo8IdT7+FCR2PfdWQC7ryhAKGwiA/3svdMREQDYziP\nEqvGgq+V/H8IRkL4VeU7CIaDfdaZX5oNi0GF7Qfr4e3su5yIiAhgOI+qmfZrsDD3epz3XsCfTn/Q\nZ7lSIcPt1+XDHwzj4/3n4tBCIiJKBgznUfZPk5cjS+fAp3X/QGXziT7Ll8zMhV6jwEf76tAVGPji\nJURElL4YzqNMLVfhG6X3QSHI8fbRzWgL9L7wiEalwK1z8tDRFcLfP6+PUyuJiCiRMZyvgvHGcbi7\n6A60B714+9jv+gyvWjp3PNRKObbtrUMwFIlTK4mIKFExnK+Sm8cvQoltCo42n8D2czt7LTNolVgy\nMxfudj8qKhvi1EIiIkpUDOerRCbIsLpkJQxKPd6t/gvOey/0Wn77dfmQywR8sKsWkcjA80ITEVH6\nYThfRWa1EatK/hmhSAhvVr6DQI/hVVajGgunZ6PR3Yl9JwaedpKIiNIPw/kqm545DUvyFqChoxF/\nrHq/17I7ri+AIAC//7SK456JiEjCcB4DXy26C7n6bPz9fAW+cB2Vns+y6XD3wkI0t/nx+ntHEenn\nutxERJR+GM5jQCVX4hulX4NCpsDbx34Hj79VWrZ84QRcU2jDF6eb8efPzsSvkURElDAYzmMk15CN\neybdhY6gD28f/R0iYnQIlUwQ8M3l02AzqfHujhpUnmmJc0uJiCjeGM5jaMm4BbgmoxjH3afwSd0O\n6XmjToVvf3U6ZDIBr/2pEi1tXXFsJRERxRvDeQwJgoBVJStgVBmwtfq/cbb94vW1J+aaUHbrZHg7\ng/j5n44gFObFSYiI0hXDeYwZVQbcX7ISYTGMX1f+J/zhgLTsltnjcP20LFSfb8PvPq2KYyuJiCie\nGM5xMC1jKm4ZfyMafU784dRW6XlBEPDAl6YiJ0OHj/adw55jfeeFJiKi1MdwjpO7i+5AniEXO+v3\nYE/DAel5jUqB79wzHWqlHL/64DguNHfEsZVERBQPDOc4UcoU+EbpfVDJlPjN0f/CH069h2AkOoVk\nbqYe37izGP5AGP/3j0fgD4Tj3FoiIhpLDOc4ytZn4X/N+Q6ydHZ8UrcDP9r3UzT6nACA60qycOuc\nPJx3deA32473mdmKiIhSF8M5zsYbc/HkvH/Dgpx5qPPW47m9L6Piwj6IooiVt0xCUa4Juyobsf3g\n+Xg3lYiIxgjDOQGo5Sr8j5J/xv8s/RpkkOG3x36HXx/9TwRFP7711Wtg0Crxnx+fQs2Ftng3lYiI\nxgDDOYHMyZqJddc9hkJTAfY1fo5n97yMVrERD91dinBYxP/94xdo6wgM/UJERJTUGM4JJkNrw9rZ\nD+NLE25FS5cbLx34Oc4Jn+PuhQVobvPjpXf2c4IMIqIUx3BOQHKZHMsn3o41s/4VRqUBW0//N87o\nP0LxJA32H2/C+5wgg4gopTGcE9gUaxHWXbcW0zOn4aSnGk7Hh7DmefCnHTWorOEEGUREqWpY4bxx\n40asXLkSZWVlOHz4cK9lfr8fTz75JO69994+23V1dWHp0qUoLy8fndamIYNKj4emP4CVU76KQCSA\nrtxdUBYcw6vvHeYEGUREKWrIcN6zZw9qa2uxefNmbNiwARs2bOi1fNOmTSgpKel325///Ocwm82j\n09I0JggCFuctwBNzH0WeKQfyrFqEJu7AT97/jBNkEBGloCHDuaKiAkuXLgUAFBUVobW1FV6vV1q+\ndu1aaXlP1dXVqKqqwk033TR6rU1z4ww5eHbZU1iUewNkunY02T/ETz59nxcoISJKMUOGs8vlgtVq\nlR7bbDY4nU7pscFg6He7559/Hk899dQoNJF6UitUuK/4Xny9+H9ABjmqZf/ACxW/hC/YGe+mERHR\nKFGMdIPh9NLeffddzJw5E+PHjx/261qtOigU8pE2Z1B2u3FUXy9R2O1G3GlfhDxLPv7PR6+hFiex\ncc//j7UL/wXF9qJ4N++ypOJ7lYo1AalZF2tKHqla16WGDGeHwwGXyyU9bmpqgt1uH3Sb7du3o66u\nDtu3b0dDQwNUKhWys7OxYMGCAbdxu30jaPbQ7HYjnM72UX3NRNCzrhydFasnPYA3970H97gqrP/k\nR7ircBlun3ALZELynIifiu9VKtYEpGZdrCl5pFpdg33RGDKcFy5ciFdeeQVlZWWorKyEw+EYcFd2\ntx//+MfS/VdeeQXjxo0bNJjp8t0wLQenz9+ET45lwFB8BO/XfIjj7lP4+rT7YNVY4t08IiK6DEOG\n8+zZs1FaWoqysjIIgoD169ejvLwcRqMRy5Ytw5o1a9DQ0ICamhqsXr0aK1aswPLly8ei7RSz4pZJ\nqGloQ/VBAybdcAZVnmr8n90/wqJxN+Dm8YtgUfOMeSKiZCKICXKq72jvqki13R/dBqqrpa0Lz/xq\nLzr9Qdz1ZTl2t/wdbYF2yAU5rsuejaX5S5Ctd8ShxUNLxfcqFWsCUrMu1pQ8Uq2uwXZrJ8+BSRqU\nzaTBQ3eXIhIBdm5X4MlZj+Nrxf+EDK0VFRf24oe7X8Rrh3+D06218W4qERENYcRna1PiKi204Ss3\nFuLdHTV4473j+PZX52B+zjwcdh3FX2u347CrEoddlSgyF2JZwRKUZhQn1YljRETpguGcYr68YAJO\n17fhcHUzvv/GLqy+fSpmTb5XYKEWAAAeL0lEQVQG12aWospzGn89+zdUNh9H9eEa5OizsCz/JszN\nmgm5bHSHsRER0eWTP/PMM8/EuxEA4PON7jzFer161F8zEQxVlyAImFvsgFwu4IvTLdh1tBH1rg5M\nybci12THvOxZmGm/Bl2hAE55TuNz5xHsurAfgIgcfTYUsrH/vpaK71Uq1gSkZl2sKXmkWl16vXrA\nZQznJDOcumQyAVPzrZgz1YGzje04UtOCfxyuh1mvwniHASa1ETMd1+D67DkAgOrWGhxpPo5/nN8F\nf8iPXEM21HLVWJQDIDXfq1SsCUjNulhT8ki1uhjOKWQkdZl0KiyangODVonKGjf2Hm9CdX0bpuSZ\nodMooVNqMS1jKhaNuwFquQpn28/haMtJ/O3cTnj8bcjSOaBX6q5yRan5XqViTUBq1sWakkeq1cVw\nTiEjrUsQBEzMNeOG0ixcaPGhsqYFfztUD7VSjsIcEwRBgEquwmRrEZbkLYBZbUK99wKOu0/hb+c+\nw4WORmRqbDCrTQlTUzJIxZqA1KyLNSWPVKuL4ZxCLrcunUaJG6ZlIcuqw7FaNw6cdOJITQuKck0w\n6aO7sOUyOSaYxmPxuAXI1mfB2dmME+4q7KzfjWpPDUwqIzK0VgiCkBA1JbJUrAlIzbpYU/JItboG\nC2eerZ1GBEHA/GuyUVpowzsfncSeY0145ld7cdf8Atw1fwKUiuiwKrlMjrlZMzHHcS2Ou0/hr7Xb\nccJdhRPuKmjkGky0FGCyeSImWQuRb8yLy0lkRESpjH9V05BJr8LDX7kGN5S68Pa2E9i68wz2nXDi\nG3cUo2jcxUt9CoKAEtsUlNimoLatDjvrd+OU5zSONp/A0eYTAAClTIlCUz4mWQoxyTIRheZ8qMbw\nZDIiolTEcE5jMydlYup4C7Zsr8anB89j49v7cevcPNy7eCI0qt4fjQLTeBSYolOAtvrbUd1agyrP\naVR5anDKcxonPdUAALkgR74xLxbWhSiyTIBWoR3z2oiIkhnDOc1p1Qqsvn0qrp+WhV99cBwf7TuH\ngyddeOCOqbimMKPfbcxqI2Y7ZmC2YwYAoCPow+nWMzgVC+va9jrUtNXir2e3Q4CAPEMOJlkmxsK6\nEEbV4LOaERGlO058kWSuZl3BUBhbd57BB7vOIiKKWHBNNspunQyDVjmi1+kK+VHTVosqT7R3faat\nDqFISFqerXNIu8EnWQoxZfz4lHuv+PlLHqwpeaRaXVc0nzOlD6VCjn9aUoR5xQ786i/H8dmRBhw5\n3YyvLZuCecWOYZ+lrVGopWPVABAMB1Hbfk7aDV7degb/qN+Nf9TvBgDYdTYUGPMx0TwBE80FyNVn\n83KiRJTW2HNOMmNVVzgSwYd76/DujhoEQxHMnJSJ1bdPhdU48Kn/w3/tMM5566Xj1WfaatEe6JCW\nq+QqTDDlo8hcgELzBBSa8qFTJtdxa37+kgdrSh6pVhd7zjRicpkMd1xfgNlT7PjNB8fxeZULJ+rc\nuL4kCzMn21FSYJWGXo38teXSCWa35i9GZqYBlWdrcLq1Fqc9Z3C6rRYn3VU46a4CAAgQkK13SD3r\nieYC2LWZoz7emogoUTCcaVBZVh3+/b5Z+PuhepT//TS2f16P7Z/XQ62SY3qhDbMm2zFjUgb0mpEd\nl+5JEARk6ezI0tkxP2cuAMAX9KGm7Ww0rFtrcabtLC50NGJnbFe4QamXwrrQXIACYx6U8stvAxFR\nImE405AEQcCSmeOwaEYOqs614uApFz4/5cK+E07sO+GETBAwNd+CmZMzMWtyJjLNV74LWqfUoTSj\nGKUZxQCiu8LPey9Ee9et0cDunp8a6B7CNQ6F5gJMNE/ABNN4WNRm9q6JKCnxmHOSSZS6RFFEvasD\nB0+5cPCUEzUXLrZpvMOAWZMzMWuyHflZhiED8nJrcnd5cLq1FjWttahuPYNz3npExIi0XCNXI0vn\nQJbejiydA9k6O7L0Dti1GVf9qmaJ8j6NtlSsizUlj1Sri8ecadQJgoBxdgPG2Q348oIJcLf78XlV\nNKiP17pR1+TF1p1nkGFSY+YkO2ZOiV7wRCG/vOPU/bFqLJijsWBO1rUAAH84gLNtdTjdWouz7efQ\n6HPinLcete11vbaTCTJkamxSaGfpHMjW2+HQ2WFQ6ketfUREl4vhTKPCalTj5lnjcPOscej0h3Ck\npgUHTzpxqLoZHx84h48PnINWrcCMogzMmpyJ6RMzoFWP7sdPHZtda7K1SHouHAmjucuNRl8TGn1O\nNHY0oSF2+4XrGL7AsV6vYVDqY8e/oz3u7Fh4Z2itkAmj98WCiGgwDGcadVq1AvOKHZhX7EAoHMHJ\nOk/sOLUTu482YvfRRshlAkoKrJg1OROL5+ZDJopX5fiwXCaHQ5cJhy4T0y9Z5g10oMHXFA3uDmc0\nvH1NOB3bTd6TQqaAQ5sJh84u7R7P0kV721qFZtTbTUTpjceck0wy1yWKIuqavDhw0onPT7lwtskr\nLTNolZiYa0JRrgkTc80ozDFBp4nPd8dgJASnzyWFdUOHM9bzboI/3He6OrPKiCydA45YT9uhs2Pa\n+EKIHYqU620n8+dvIKwpeaRaXYMdc2Y4J5lUqsvV2olDVc2obfLiWE0Lmtu6pGUCgOwMXSywzZiY\na8I4ux5yWfzCThRFtAbaYr3s2G7y2E9Ll7vP+kqZAo7YEDFpV3mst61RXPnFXOIhlT5/3VhT8ki1\nunhCGCWkTLMWt87Jk37hWr1+nK5vw+kLbag+34qahnZc+KIBO79oAAColDJMyDb16mGPxhXLhksQ\nBFjUZljUZky1Teq1LBAOoMnniva0fU60ht0421KPRp8T570X+ryWRW2WQtuqsUCn0EKn1MVutdAp\novc1CnXK9b6JaGgMZ0oYZoMas6bYMWuKHQAQiUSHa52+0IbT9a2orm/DqToPTtZ5pG2sRjUm5pqk\nHnZBthFq5dhfl1slVyHPmIs8Yy6Ai9/wI2IErf42NPqcaPA1ocnnlI5vn3BX4UTsKmgDESBAq9D0\nDm2ltneYK7TQSs9F19ErddDI1RznPcbCkTCCkSCCkRAC4SCCkQACkSCC4RACkQCC4SCCkWBsWRCB\nSBByQQ6bxgKrxgKb2gq9Usf3jRjOlLhkMgF5DgPyHAYsvjYaep3+EM5caIsFdhuq69uw/4QT+084\no9sIAvIcehTmmDAuUx8d7pWph0mvik8NggzW2B/eYtvkXsv84QAafU1o87fDF+pER9AHX6gTncFO\n+EKd8IV88HXfD3biQkcjgj1m9xqKUqaESWWM/qhjtyoDTCojzGqTtMyoMlz1cd89iaKIYCSIrrAf\nXaEuBCMhRMSI9BMWIxBjtz2fj0CM3kbCiEAceD3pR4SI2G1se1GMvobY/VqiCE2tAh2d/kHX6b4f\nkkI3GAvd3mEbFsNX/P9HJVPCqrHCprFEQ1vd477GCovaNKbvF8UH32FKKlq1AiUTbCiZYAMQ/UPf\n3NYV3R0e+znT0I6zjd5e2xl1SozL1CO3R2DnZupHPB3maFLLVcg35gEDH3bqIxgOxoK7MxbcPQI8\n1AlfLOA7gj60B9rRFvCitr0OkbbIoK+rV+hgHCTApRDvjKCxw4WusB/+sB+doehtV8iPrnAX/CE/\nOsN++EN+KXz94e77fmm7nheLSUZKmRIquRJKmRIauRpGlQEqWfSxUq6M3o8tV13y3KXrBSMhuP0e\nuLs8aOnywN3lRovfg0ZfU7//tgABZrUJVrUlFtrWaK+7+77aAlGMzpkejoSjXyJiXyAC4cDF+5Eg\nguGA9CUjEIku7/9xAIFICKIYgUyQQYAAmSCDTBAgCAJkkEHofiwt615PiC27+Ljna0S3F3ps3+N1\nBZm0TBAEmDxadHQELlm/x+v0+DdERP8+iIh+ORNFUfryBUC6LyLSY73oOtH/en+pEyGixDYF443j\nxuQzxhPCkkwq1jXaNYXCEdS7OlDv6sB5VwfOOztw3uWFy9OFSz/sZoMq2sPONGCcPRbemforHoOd\nSO9TRIygI+hDW6A9+uNvv3g/FuBt/ja0BaI9+NEmE2TQyjXQKNRQy9XQKNTQyDVQK9TQyNVQypSQ\nx/549/4RIBPkkMf+8MoFeew2thzR2+jyvrcyKTR6BEmPP+TdIZBpM8Lt9vUbGt3rdD+vlCmgkCnG\nZLdzV8gPjz8a2C1dbri7PGju8sDtj953+1sH/JKjkisRjkRGpSdPF12TUYxvXfs/R+31eEIYpRWF\nXIb8LCPys3p/8P2BMOqbe4d2vcuLo2fcOHqm99nWNpMauZl65GUaYr1tPXIz9FCrkm+eaZkgg1Fl\ngFFlwDjkDLpuMBKK9bh7h3hroB3egBc6jRpCWB4NWbkaGoUGGrlaClqNQgO1XA1tdxDL1WMWZpfL\nbjZCHUiML1I9aRRqZCuykK3P6nd59/kMbr8HLZ3R3rY7FuS+iA9iWJB69yq5EiqZqs/jXj16uUrq\n1at6Pu7R2xcEoUcPtPehg56HAqKHBrqX9T400H2Yob/DBtHXjlxyaOFiD9ZoVKO11Scd4ui9fs/X\niUR72xBiX7IEqYce/a9nj13os17P2+4vdQBQYBo/Zu8/w5nShlolR2GOCYU5pl7Pd/pDfQL7vKsD\nR0634Mjpll7rZpjUyLLpkH3Jj82sgSyBA2i4lDIFbBorbBprv8sTaY9Auut5PsNE84Rey67q+yQA\n8fqKmk6fP4YzpT2tWoGicWYUjTP3er6jKxjbJd6B+tiu8YYWX789baVChiyrVgruKRNs0ClkyM7Q\nXdF0mkSUnhjORAPQa5SYMt6CKeMtvZ7v9IfQ5O7EhZYONDT70OjuREOzDw1uH845OwAAf66oldY3\n6pRSaOfYdNJ9h1U7qhOBJJvm1i4cP+tGOCLimkIbbCZeBpWoG8OZaIS0agUKso0oyO59TFsURXi8\nATS0+NARCKPqrBsNLT40tPhQfb4VVedae60vCIDdrEWGWQO9VgmDVgmDVgGDRgmDLvr44vNKaNWK\npN513tYRwPGzbhyrjf40uXuffDbeYcC1kzIwoygTE3NMkMmSt1aiK8VwJholgiDAalTDalRHj41N\nzpSWhcIRNLk70RgL6wstPun+sdq+l/7s//WjvXmDtu+PXqvo9dioU8Fu0UKpiF/P3NcVwom6aBAf\nr3VLexUAQKuWY+akTJQUWCEIwOHqZhw/G51q9P3PamHQKjF9og3XTsrENYU26HhogNIMw5loDCjk\nMuTGxlZfKhSOoKMzCK/0E0JHVxDtvgA6OkMXn+8KSus1un0YahCkIACZZk2/J7BZjaN/9TB/MIyq\n8604diYayGca2qQ2qhQylE6worjAipICGwqyDb2uk7507nh0BUI4dsaNQ9XNOFztQkVlIyoqGyET\nBEzKM0u96twMXkGLUh/DmSjOFHIZzAY1zIbhXyc8Ioro9F8M7o4ewe7tDMDjDaAp1jPv76xzlVKG\nbOvF49/ZGReDe7hjvEPhCGoutEV3U59xo7q+FaFwNI3lMgFF48yYVmBFSYEVE3PNQ/biNSqFdPlW\nURRxttGLw9UuHK5uli7b+vtPq5Fp1mBGUQaunZSJ4nwLlIrkG95GNBSGM1ESkgkC9Bol9Bolsvof\n9STxdQXR0NKJhpaO2O3FXeo9p+3sZtar+va2M3TIMGlQdc6Dis/P41itGyfrPPAHoxe5EADkZxlR\nUmBFyQQrJueZoVFd/p8XQRCk4/rLFxaizRfAF9XNOFzdjCM1zfjkwHl8cuA8VEoZphXYMGNSBmZM\nzOBJZZQyGM5EKU6nUWJibnS+7J4ioghPux8XWnzRs85jgd3Q4uszwUh/cjJ00TAusGJqvvWqXgrV\npFNh4fQcLJyeg1A4gqpzrThc3YxD1S58XhX9AaInlc0oysA1hTbYLVqY9Kq0PiN+uKQ9Mb4g2juD\nsdtAdG+ML4h2X3TPDBDd66JWyqFSymO30cc97/e/TA61UgaFXMbDEsMwrMt3bty4EYcOHYIgCFi3\nbh1mzJghLfP7/Xj66adx6tQplJeXS89v2rQJ+/fvRygUwkMPPYTbbrtt0H+Dl+8cnlSsizUlnmAo\njMYeJ7A1tPjg9HShIMeECVkGFOdbx3S6zsE0eTpxuMolnVTWvWu9m16jgEmvglmvih4+iN3vfm7C\neCvCgRCMWuWonCEeDEXg7YyeM9Du63Hb2f2497JgOCIFWHeIaVR9w02tkve6P+AypRzZWSacPe++\nGK6d3QEb6BXA3s6L9yNjdCVnQUA0qBUyqJRy6NQKmA1qWAwqWAxqWIw97hvUMOmV0vkJyf57dakr\nunznnj17UFtbi82bN6O6uhrr1q3D5s2bpeWbNm1CSUkJTp06JT23a9cunDp1Cps3b4bb7cY999wz\nZDgTUeJQKuTIsxuQZzf0ej4R/zg6LFosnTu+10llJ8950OoNoLUj9uP140Kzb9DXEQTAqFNJ4d0z\nwE0GFcw6FYLhSL8B294jjLsCQ1/PWgCg1yph0qugUsgRCIXhD4bh8frhD0YQCo/NxCB6jQIGnQoO\nizZ6pr9OCaP24lA+o1YFo+7iYwEC/MEwAsFw7DYCfyiMQCAcvQ1G4A+EpXoCwUiP9SN9tw1GvwT2\nd3hF+n8lACZ9NKyzbHroVLJ+Q9ygUw451DASEdEZCKHTH0KnPxy7jf0ELnl86TqBEBZck4OvLCoc\n7behX0OGc0VFBZYuXQoAKCoqQmtrK7xeLwyG6C/t2rVr4fF4sHXrVmmbefPmSb1rk8mEzs5OhMNh\nyOU8cYOIrp6eJ5VdKhSOoK3jYmB33w+GRTS4vNJzTk8n6gYJi/7IZQIMOiUyzVoYdcrYj+rirbb3\nc3rN4L30cCQCf6B3mPmDYfgDPe53B2EwjK7uwIstF+QyKATAoFVFA7c7dLVKGGLt0WsVvc6YHy6d\nZvSPhnb6Q/B4/fB4A7FbPzztPe57/ah3daC2YeAvhnKZAHMsrE2xL1KXBm33ORIjpVHJoVUrIB/D\nsfdD/l92uVwoLS2VHttsNjidTimcDQYDPJ7ex6bkcjl0Oh0AYMuWLVi8eDGDmYjiSiGXwWbS9Dlp\nrL+9Af5AGK2+ANq83UHuR2tHAEqFrEfYqqQg1qpHd3IPuUwGnUZ22UGYiHs4BqNVK6BVK5CT0Xeo\nYTdRFKEzaFB1pnnQEK9taEc4cnHUgFatgE4dPbShi/07GlX0OY1afvG5Hve1qtitWg6NShGXC+KM\n+J0fyQyTH330EbZs2YI333xzyHWtVh0UozwkYrD9+cksFetiTckjFevqr6a8OLRjNKXi+wQAM6cN\nPrNaJCLC1xWEKnb8PlkNGc4OhwMul0t63NTUBLu97y6jS+3YsQOvvvoq3njjDRiNQ39I3O7BjweN\nVLJ9cxyuVKyLNSWPVKyLNSWPkdQ1+jOTj77BvkANecBh4cKF2LZtGwCgsrISDodD2qU9kPb2dmza\ntAmvvfYaLBbLoOsSERFRb0P2nGfPno3S0lKUlZVBEASsX78e5eXlMBqNWLZsGdasWYOGhgbU1NRg\n9erVWLFiBXw+H9xuNx577DHpdZ5//nnk5uZe1WKIiIhSwbDGOY8FjnMenlSsizUlj1SsizUlj1Sr\n64p2axMREdHYYjgTERElGIYzERFRgmE4ExERJRiGMxERUYJhOBMRESUYhjMREVGCYTgTERElmIS5\nCAkRERFFsedMRESUYBjORERECYbhTERElGAYzkRERAmG4UxERJRgGM5EREQJRhHvBlypjRs34tCh\nQxAEAevWrcOMGTOkZZ999hleeuklyOVyLF68GN/5znfi2NKR2bRpE/bv349QKISHHnoIt912m7Ts\nlltuQXZ2NuRyOQDgxRdfRFZWVryaOiy7d+/Gv/3bv2Hy5MkAgClTpuAHP/iBtDxZ36vf//732Lp1\nq/T4yJEjOHjwoPS4tLQUs2fPlh7/+te/lt63RHTy5El8+9vfxte//nWsWrUKFy5cwBNPPIFwOAy7\n3Y4XXngBKpWq1zaD/Q4mgv5q+t73vodQKASFQoEXXngBdrtdWn+oz2oiuLSmp556CpWVlbBYLACA\nBx98EDfddFOvbRL9fQL61rVmzRq43W4AgMfjwcyZM/HDH/5QWr+8vBwvv/wy8vPzAQALFizAt771\nrbi0fdSJSWz37t3iv/7rv4qiKIpVVVXiihUrei2/4447xPr6ejEcDov33XefeOrUqXg0c8QqKirE\nf/mXfxFFURRbWlrEJUuW9Fp+8803i16vNw4tu3y7du0SH3300QGXJ+t71dPu3bvFZ555ptdz1113\nXZxaM3IdHR3iqlWrxO9///vi22+/LYqiKD711FPiX/7yF1EURfFHP/qR+B//8R+9thnqdzDe+qvp\niSeeEP/85z+LoiiKv/3tb8Xnn3++1zZDfVbjrb+annzySfGTTz4ZcJtEf59Esf+6enrqqafEQ4cO\n9XruD3/4g/jcc8+NVRPHVFLv1q6oqMDSpUsBAEVFRWhtbYXX6wUA1NXVwWw2IycnBzKZDEuWLEFF\nRUU8mzts8+bNw8svvwwAMJlM6OzsRDgcjnOrrp5kfq96+tnPfoZvf/vb8W7GZVOpVHj99dfhcDik\n53bv3o1bb70VAHDzzTf3eV8G+x1MBP3VtH79etx+++0AAKvVCo/HE6/mXZb+ahpKor9PwOB1nT59\nGu3t7QnZ279akjqcXS4XrFar9Nhms8HpdAIAnE4nbDZbv8sSnVwuh06nAwBs2bIFixcv7rMrdP36\n9bjvvvvw4osvQkySi7xVVVXh4Ycfxn333YedO3dKzyfze9Xt8OHDyMnJ6bV7FAACgQC++93voqys\nDL/61a/i1LrhUSgU0Gg0vZ7r7OyUdmNnZGT0eV8G+x1MBP3VpNPpIJfLEQ6H8c4772D58uV9thvo\ns5oI+qsJAH7729/i/vvvx9q1a9HS0tJrWaK/T8DAdQHAW2+9hVWrVvW7bM+ePXjwwQfxwAMP4OjR\no1eziWMq6Y8595QsITVcH330EbZs2YI333yz1/Nr1qzBjTfeCLPZjO985zvYtm0bvvSlL8WplcMz\nYcIEPPLII7jjjjtQV1eH+++/Hx9++GGf45fJasuWLbjnnnv6PP/EE0/g7rvvhiAIWLVqFebOnYvp\n06fHoYVXbji/X8nyOxgOh/HEE0/ghhtuwPz583stS8bP6le+8hVYLBaUlJTgF7/4BX7605/i6aef\nHnD9ZHmfgOgX3P379+OZZ57ps+zaa6+FzWbDTTfdhIMHD+LJJ5/Ee++9N/aNvAqSuufscDjgcrmk\nx01NTVLP5dJljY2NI9oNFG87duzAq6++itdffx1Go7HXsq9+9avIyMiAQqHA4sWLcfLkyTi1cviy\nsrJw5513QhAE5OfnIzMzE42NjQCS/70Cort/Z82a1ef5++67D3q9HjqdDjfccENSvFc96XQ6dHV1\nAej/fRnsdzCRfe9730NBQQEeeeSRPssG+6wmqvnz56OkpARA9ITRSz9nyfo+AcDevXsH3J1dVFQk\nnfg2a9YstLS0pMwhwKQO54ULF2Lbtm0AgMrKSjgcDhgMBgBAXl4evF4vzp07h1AohE8//RQLFy6M\nZ3OHrb29HZs2bcJrr70mnX3Zc9mDDz6IQCAAIPrB7T6rNJFt3boVv/zlLwFEd2M3NzdLZ5gn83sF\nRENLr9f36VmdPn0a3/3udyGKIkKhEA4cOJAU71VPCxYskH7HPvzwQ9x44429lg/2O5iotm7dCqVS\niTVr1gy4fKDPaqJ69NFHUVdXByD6RfHSz1kyvk/dvvjiCxQXF/e77PXXX8f7778PIHqmt81mS+jR\nECOR9LNSvfjii9i3bx8EQcD69etx9OhRGI1GLFu2DHv37sWLL74IALjtttvw4IMPxrm1w7N582a8\n8sorKCwslJ67/vrrMXXqVCxbtgy/+c1v8O6770KtVmPatGn4wQ9+AEEQ4tjioXm9Xjz++ONoa2tD\nMBjEI488gubm5qR/r4Do8Kkf//jHeOONNwAAv/jFLzBv3jzMmjULL7zwAnbt2gWZTIZbbrkloYd5\nHDlyBM8//zzOnz8PhUKBrKwsvPjii3jqqafg9/uRm5uLZ599FkqlEmvXrsWzzz4LjUbT53dwoD+k\n8dBfTc3NzVCr1VI4FRUV4ZlnnpFqCoVCfT6rS5YsiXMlF/VX06pVq/CLX/wCWq0WOp0Ozz77LDIy\nMpLmfQL6r+uVV17BK6+8gjlz5uDOO++U1v3Wt76Fn//852hoaMC///u/S1+AE3WI2OVI+nAmIiJK\nNUm9W5uIiCgVMZyJiIgSDMOZiIgowTCciYiIEgzDmYiIKMEwnImIiBIMw5mIiCjBMJyJiIgSzP8D\nfaBduJa5bMQAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8216dce630>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"metadata": {
"id": "cigiV9j0TpCE",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 244
},
"outputId": "0630d361-9f3c-45a1-de98-0b854498bbee"
},
"cell_type": "code",
"source": [
"noise_factor = 0.6\n",
"x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) \n",
"x_test_noisy = np.clip(x_test_noisy, 0., 1.)\n",
"\n",
"decoded_imgs = autoencoder.predict(x_test_noisy)\n",
"\n",
"n = 10 # how many digits we will display\n",
"plt.figure(figsize=(20, 4))\n",
"for i in range(n):\n",
" # display original\n",
" ax = plt.subplot(2, n, i + 1)\n",
" plt.imshow(x_test_noisy[i].reshape(28, 28))\n",
" plt.gray()\n",
" ax.get_xaxis().set_visible(False)\n",
" ax.get_yaxis().set_visible(False)\n",
"\n",
" # display reconstruction\n",
" ax = plt.subplot(2, n, i + 1 + n)\n",
" plt.imshow(decoded_imgs[i].reshape(28, 28))\n",
" plt.gray()\n",
" ax.get_xaxis().set_visible(False)\n",
" ax.get_yaxis().set_visible(False)\n",
"plt.show()"
],
"execution_count": 127,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAADjCAYAAADdR/IFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnWe8XVX1tacUaaH3XkPvEBDpCEEw\ngKKIFKWDgPWvqIAi0gQRFFFBOqigCIigAaRIC70mQOgt9CJSper74f1l+czB3Sv73ntuODeM59M8\nWfvus8/eq52TOeb4yH//+9//hjHGGGOMMcYYY4z5wJnsg74AY4wxxhhjjDHGGPP/8Q81xhhjjDHG\nGGOMMV2Cf6gxxhhjjDHGGGOM6RL8Q40xxhhjjDHGGGNMl+AfaowxxhhjjDHGGGO6BP9QY4wxxhhj\njDHGGNMlTFFrPOyww0q8//77p7YhQ4aU+LXXXms8x5gxY0q83HLLNR63wAILpNfHH398iffcc88S\n33zzzem4OeaYo8Q77rhjia+++up03AwzzFDiI444IrVtvPHGjdfVF4YPH17iv//9743HPfjgg+n1\nYostVuJOuqZ/5CMfKfHnPve51HbOOec0/h2v4brrrivxmmuu2e9ruuOOO9LrK664osT/93//1+M1\nROTPUuNLX/pSiX/1q1+lNvZd7ZN33XVXq/NvvvnmJb7gggtS2/nnn1/iLbbYotX5JgQ/9/PPP5/a\nHnrooRJ/7GMfazzHJptsUuKLLrqoI9fVxG9+85sS77HHHo3HTTFFnoLefffdEn/mM58p8Z///Od0\n3LLLLltifWZTTTVVid96660Scy6KyP1iyimnTG3HHntsiTs5Fn/729+WmH1Ur2GWWWZJbc8++2yP\n5+OcEZHnlH/84x+pbf311y/xhhtuWOLLLrssHbf11luX+I9//GOP7xsRsfvuu5f4hBNOaDyOaL9j\nn3z55ZdT24wzzlhijjf+TUTE5ZdfXmKdzxZZZJESc5z0B47FVVddNbXtvffeJT7jjDNSG+/rl7/8\n5cbz8z788Ic/TG1rr712ibfccsserykiYvrppy/xfvvtV+J999238X3bsvjii6fXXD85bnrDO++8\nU2KdE2aeeeYSv/TSS306f09wjOl511tvvRJfeeWVHXvPnrjkkktKrHuR8847r8Tsv/vss086bsUV\nVyzxXHPNldouvvjiHt/3xhtvTK9XWWWVEuszaELnxoUXXrjEDzzwQGrj/NapObXtfoB7w4iI0047\nrcQHH3xwiVdYYYV0HOedtsw555zpddPcfeedd6bXyy+/fIm///3vp7ZDDjmkxLXPvNBCC5X40Ucf\nTW3cY//gBz8o8W677dZ4PuUXv/hFib/61a+2/rsJse6665ZY9+7nnntuiXfeeefUpmvGeHTPwf2I\nwjWU6+eRRx6Zjrv77rtLfOqpp5Z4o402Ssfde++9JR43blxqa9tfyec///n0mvsb7ie22WabdNxZ\nZ53VeE72k0ceeaTX19QTfflsEc37iL/97W/puG9+85slvv/++/v0Xlyfav139dVXLzH3TRERX/zi\nF0u8zDLL9Ok6SG0urN1Trg3cK/cXvifveUTEz372s8a/497i97//fYkff/zxdBzH+kknnZTabrjh\nhhLzPivzzTdfiZ944okSL7nkkum4sWPHlnj06NGpTef6NvC7fUT+fj/vvPOW+Mknn0zHsQ/pvpw0\n9QVn1BhjjDHGGGOMMcZ0CR/5b+XnvAMPPLDEJ554Ymp76qmnSqy/Mj333HMl1syJJjRLY9SoUT0e\nt9Zaa6XX11xzTYn5v4ivvvpqOo6/tN13332pjb9Yn3322SXuza/yiy66aIlr/3P72c9+tsR6b/h3\nnfxf/Ommm67Eb7zxRmrj/7K88MILqY3/03LccceV+O23307H8V7zGfQVPuNrr702tfF/2fm/dxE5\nY2KmmWYq8YsvvpiO4/8w7rXXXqmNmWO77LJLifkLe0T+30j9NZu/QvN/wPsDf+WuZRnp/6qceeaZ\nPR6ncAzrNfN/39ZZZ50S6/98Ef5Srn2C4+pf//pX4zlqrLzyyiW+7bbbUtvkk09e4vfee6/EmvXB\n/8mpMVDZbTWYMRSRs4bYv/R/OPg/Zd/61rdSGz8v/2f0nnvuScdxjuD/XGi/+PSnP914/U30NUOO\n2Sn6Py21c8w///wl1v/Z6Ssf/ehHS7zrrrumNs6T7IcRuS8effTRJf7DH/6QjnvzzTdLzP+licgZ\nSZyD9H9umTk52WT/+/+YeeaZJx3HzBH+72xEXtMefvjhEuv95nGf+tSnUtvPf/7zEnMu5x4hIme3\n6P9gkg9iLNbg9fTmfMymY2aF9lH2X/5vv67jNZilyP/pZD+LyPOy/o+1ZlH1l4HIqNH9GfuUjkVm\no3Eu/NrXvpaOYyYOs3CU733veyU+/PDDU1vbjDBmHA0bNiy1cT/MTADdl/NzaTY35/8f//jHjdfB\nLHXNtjn00ENL3MmxOHTo0BJrpjn5+te/nl4fc8wxJWZmlGYWM+ulNi8fcMABJT7ooIPScZyLmTXN\nPVZEXpOnmWaa1Pbvf/87eoL7Vb0Ozcxs+k6l38OYncC9bETen73yyis9nq+3cCzq9zT2Z/08VGQw\nA5p7mYiIrbbaqsTMCI7ImYjM2Ljqqqsar/fCCy8s8YgRI1Ib10LdbzDLlX1k9tlnT8fx+4hmb3BO\n4Pxc6/ubbbZZ4/UP1Lqo52W/oUolImcM1zL72sLvGly3IvK6yH7xyU9+Mh2n/Z7UVBFtufTSS0vM\nPZL+dsDxXfvO44waY4wxxhhjjDHGmC7HP9QYY4wxxhhjjDHGdAn+ocYYY4wxxhhjjDGmS6jWqKnp\nRlmVnhXpI3LtAtYvoTuHok4FzzzzTIlZQ0Y1aKwCz4re1HhGZJ2hOpnQKYTaStWc/+Uvfylxzc2H\ndQu0qjUdh7SyP3XOH4QWX3WlWh9mPKecckp6zerj6vSg9YDGQ5eKiIiVVlqpxPzs1EtHRPzkJz/p\n8Xw11BmHTjBat4RaSL631qjhPa25mXXqObIej2o+WauCDmkR76/f0gbVvbO+U9uaO7UxQN12k2a7\nN+g9pk6fOu2nn346HUdXO50TeF1NfbgvdLouBh0mIiLWWGONEqsWlvUWqJ++9dZbG9+L9ZfUaebj\nH/94j9cUkZ3bOD889thjje9VgzpkdQg86qijSszaL3odA1EXQ2sJ8b7qs2aNC3Wh6QucQ7VuAesw\nUEevNSd0fiWstUGnxFqdDXXBuuWWW0rc5MbWGzq5Ltbq1rEfsQ9FRFx//fUlZn9WHT2fv2rgqVnn\nPPSnP/0pHUeHiJprH2tm1GpHsa6B1jxgf2INBb0OrjGsyRQRcfLJJ/cYR2TnyIEYi1q/ZNpppy1x\nrSZLjZ122qnHOCLXUOB+UGtwsK4eazipqw3nMa0vRujIpXU8WKtD6+2wXhSfm9ZY2XbbbRvfe/vt\nty+x1rTqD7V1kX2Re+SIiO9+97utzl+rX8k5i/OV1mXqq9NQX+AerDeuXKTJGUeZ2A5s/B4VkccE\n3RC1VhldOpdaaqnUxpqpnGd078l9BGv9ab3F2p6I39t+/etfl/if//xnOo71xnTPwn1pzamVdW/U\n7ZVMrO+LXLc4ViIifve735WY9bH4PCLyGNbvc/zez2esdUb5efmdpOk76wcN+/IOO+yQ2jiPqgPr\neJxRY4wxxhhjjDHGGNMl+IcaY4wxxhhjjDHGmC6hKn1ik9qEUkZw++23pzamxi644IIlVnkBoXxD\nz8mUqr6mNlHWo+nxq622Wp/O2UTN3mzWWWctsUoJPgjpE9N0aRkaEXHkkUeWmKl7tGHrK08++WR6\nTdtY9jU9jla2aovN1PollliixH1NWf3Od75T4t5Irmhb9/LLL/fpvRWmUW633XapjWNC079pJUi7\nUoVyNsoJI7IEgn1UU1NpmTd69OgSN9lJRrx/7qAEjqh8jVJMlQFQItBXaNlKO9T+wrGoqbJ8rvqZ\nCFNOVWrC+6T2rJTpUHpCe9KIPFe2nW9VAkRoLa5Wl5x/xo4dm9qWXnrpVu9Nav2kU3Mq06JpXR+R\n5cK08Y7I0qcXXnih8fyzzTZb43G0fmXqtn42pkzzHJTZRETst99+Jf7EJz6R2pqkypwXI/LcqH+j\n5xwPbS0j8n6Cc0dEHhcqme0PHIsqi6RsRPcH3/72t0tMS+V33nmn8fyrrLJKaqNEmPa4Kl1VaVFf\n4DxNCZNKEGpy7n333bfEbWVE2idr+6K+suaaa5ZYU+zZRnvrGr2Ru3CuoZxa511KzJjCr9dLVFZE\nGQDnfMr3IrIUVu8xnzflcSwZEFFf7yinGTduXONxvYWSLb1/lEqrRIV7k3PPPbfEaj3PveEyyyyT\n2h555JESU/Kssiruwc4666wePkXvoBRN1xHKsygNisiSOa4xtHmOyOP5z3/+c+N1DIT0ibLDiLyn\n0Odb23uSlVdeucRtJf1qmc3vfrSaV3v0/fffv8QqESWULVHOFJHLdFx88cWN1/Xcc8+VWPcMtFxX\nqSTnnIceeqjxGnvLzTffXGKVjmmpiCaeffbZEuv3XJWGEsocKTGrSUHZfyk9j4hYfvnlJ3yxEbH7\n7ruXuPYZOY9E5HmG/Z/7goj8fULXeGJ7bmOMMcYYY4wxxpguxz/UGGOMMcYYY4wxxnQJ/qHGGGOM\nMcYYY4wxpkuo1qhhrQ3qqCOyHkttYKn3o5UlrWMV6okjmjXFag29yy67lLiTdV16gvVRvvCFL6Q2\nvveGG25Y4poluUKtv+r6+kNfLYF5PQ8//HCJjz/++HQcNfs//elPUxtrtFCTrTbrhHV8VCfM95ps\nsvw7I/WDb7/9dom1bgVt7mo1ZPhMe3MP+fy1FkNfoV6TVqwREXfffXeJWUsgormegPYv1sVoa3nZ\nFj7PiKzT//znP5/aWMeqds/XW2+9EqslPO0sDzzwwBL3piYD6eS8QqtkjqmIiNNPP73x72pWzKTW\nZ9nGOiNqCcwaPyNHjiyx2sKzHgvrpURE7L333iWmhazO3xtssEGJ2/bd3kDNd18toRXWiKjZeNZg\nLaljjjmm8TitR8Xxse6665a4ts6wdgGtfSOy5TDrhEVkDf+PfvSjEmuNN9a40PoyrGPB+hl33nln\nOq5mJcs6LbRv7S+s96MW3DWoZ6fefq655krH0WpUa2Y0oXMN5zKtF9CEjnvWKWNNE9b0iMi1jFjL\nJiLXg2ONj0MOOaTxOt544430mrVGOgXrotUsiBXWv+J+QOt1aR0xwtoVK6ywQon1nrDmHvvy5ptv\n3njuTlhDa80vjr/JJ5+8xFqDg59FxzMZqDqKWndNbYCbaKrFFJHXAdbgiIj4xje+0fh3hHbsXNP0\nHnF9rt0jfmbWsIjINbJqtZ5qtN2/Tgx7bo59HWOsvbLRRhu1ei+tice9P/d12pc23XTTErMmp9YX\n60QNIn431dqRyy23XI9/M2zYsPSaff+ee+5JbZzDOjkWuTdknVJFaydxHHzuc58rMdfZiIivfOUr\nJf7lL3/ZeH5+T9Bz1NYdwr2tvhfrJXJfpd/ZWN9J66JyP7XNNtuUWGuMtcU1aowxxhhjjDHGGGO6\nHP9QY4wxxhhjjDHGGNMlVKVPbdMR9RS0cmaKmlrO7rrrriXWtN6+WCsyDYnpmxFZHqKWbUzP/s1v\nflPiPfbYIx3XVylME5TxROTULNoE9hemZOl76nMltGKmLaLaStI6TaVPhJZtKofhs+O91RR52uGx\n/0TklD2mRPeGqaeeusRMVz/44IPTcbRTZEpsRL5XEyOtlPdkxhlnTG20BazZozJ1dI455khtJ554\nYon7Yn19xRVXpNeUu6gU4+STTy7xDjvs0Or8aivP50ZpFdMxJwTTSjl39Bc+A9o1R0TsuOOOJdY5\niun5Q4YMKTElIxE5vb2vMBX+ggsuKPE555yTjuP9rKXl1vpdrV/TmpKWnirbo0ST6bIRuT+prXRf\n2XbbbUus0j2uVToXMq2b6bUqv9QxTC677LISU2JJaVJEli1RBqr3f8sttyxxzcKV9qrXXHNNamub\nVs9UY7Ua5TW+/vrrrc7XX7jnUBt02rOqBO+pp54qMWVrlKJFRFx11VWN7007Yq77lBMq7Bfa7zhH\nq3SVFsbcj+m8xr0ALYsj8riilfnZZ5+djtMU/yYmxrpYg5+Ve9kDDjggHUd5qkpwmqywdT2i7Ibz\nEe2eI3Kavtr5cr7YfvvtS/y73/0umtC90+qrr15iSp3VGpr73gUXXDC1sX92StYdEfHrX/+6xJTN\nRmRJJvekEVkiRHiPIur3iWORknyV8xKuizX7Zu2flLJyn6XSjtp3Ddr7cv2/66670nGU7V1yySWN\n19ipsch5h2uyvkdtzFKaqXuZT3ziEyVWqe/HP/7xEnMNVlk3500+X35njcj3mN8JIprv19Zbb51e\nc25UKSNLgvDvKFONiFh77bUb37e2r+oP/G6mNtPce6ol+Fe/+tUSc7+g96UG93aUXVFqGJFl+G37\nlkq228qda2UHmqTElAf3BkufjDHGGGOMMcYYY7oc/1BjjDHGGGOMMcYY0yVUpU9MpWuqUh2RUyoj\nIm688cYej6NbQkTECSecUGK6uETkNHGmIWuqraYAj4epwBERiy66aIkpvYjIaeL77bdfidWF5L77\n7iuxugEw9Z9SGHVWIJSsRETccMMNJe5kKhtTq2+66abURsccpnFFZGkG0641/VRfN0H3EU2pY4rt\nY4891ngO3hd10mCKIlPgNKX/05/+dIm1P1FCwOtV1wWm3mla3sorr1zivrrCKEzT0zTZtlBao7Ib\nVspXdyQy7bTTllglCk1OcJqKT3khJQ8RzU4zq6yySjqO91WdAuiQpXIEwjR0VuiPyNJDTX3tD0x3\n5/wXkT+7ssgii5SYsiJNK6Wc48orr0xtTamyK620Ujru9ttv7/Fv6AIYkeUQKtdh2n1NzkEphqZu\nN3HEEUek10xXV8kr6dScOv3005f4tdde68g5m9Br5jzJvqTH0WGR6wplsBF5vaut8W2vUV0RKOuq\nOapQbsH5ofZe/YV9m/uDiOzYRJeKiNz/6PqkTg99kYa0lQbSPS4i90M6+kRkydlSSy1VYroRReQ5\nb/nll09tnEt4TXQNi4i47bbbSky5ZkSWjA2E9Omzn/1sauM+T+U0hPMaJS0ReV/a9pr1mTW5p6rE\n+Lnnnms8J93yLrzwwhLX5Ip0mIpodkzrq3ysk2ORUiyVr1J6oM6x/IxNkt2I3NdVJkppds3tp+nz\nqhycsjXdV/C6dHwQ7i/5/Scif99qkn5FZLmT7vf4OTv1HLm/VAfLmjyf18n9DJ14IrLbKffwNSjV\niciSTsrLO3EP6DCqr3WMsb/X+gElgepqRykmpeH9pa1UnVK0iCxHq91P7vl23nnn1MbvOZSB6XrH\n+VDPQSif0++3ZKuttiqxOoBxzHIuisjrXVt0bqL7n6VPxhhjjDHGGGOMMV2Of6gxxhhjjDHGGGOM\n6RL8Q40xxhhjjDHGGGNMlzBFrZGadbUNY20Jta8k1JIdf/zxjcdpPQVqrnkOrUlDTRf1+3vttVc6\njrqzESNGpDZqQBmrTnv06NGN109Yy0ZrJrB2A2sHRLzfIq5T0DathmrWeW9531XP3xatS0NqdWma\nUOs92nWfd955Jda6CUT1/O+9916Px6m1s9alIX3RLU6IvtalIaxBoLUq1J6W0G6U2mPV3dLCnBbu\nrGsTkbXG2ic+9alPlZhactYhicjjSGtBNNWG0DpY1K+qvTTPUbPf7C20H1QNNu+n3jPWEuF92W23\n3dJxrNukz4cWltSFq+VgEw8++GB6TWv1P/zhD6lNLV/HQ1vciGyRSevSGhdddFF6rTWQBhrqlK+9\n9trUxv6rFtSE47lmA8vaURF5HGifJdTf8xxaF4n1dmo102rUavYce+yxJa7VqKnVpanV4egP7Iu0\nQY3Iz0fXGcK5ceaZZ05tXCNYcyKi2VJU62c0/Y3q8vkMOM9H5FpirGWgtXdY00XrDvIaaV2rdVBq\n1Pp5J+DYi6jXLiCsG6NrBO+Rzl2sEcH9Uds6Q7rfq9WoafosWqOENYPmnHPO1DbLLLOUuLamjRw5\nssTf+c53UlvbOmK9hXVptJYE16df/epXqY39j7UfanV3dM0kZ555Zol1j9QELdwjsu19zaaX95Z1\nciLq+8v555+/1XWtv/76JaYF+UDBvSHvQUTET3/60xJrvRF+Hn4P4D4xImLs2LEl1r797LPPlpjr\nndbD4RjmONWaOjvssEP0FtZjU3ROYB3F4cOHl7hW10zX51of6Q9zzz13ibmnVy677LL0mmOOc5nW\nUeTays8eEfGtb32rx/dijcaI93+/b4J9QccN96hf//rXS6w23uyHrL1ZQ9dP7qX0e/Zqq602wfM5\no8YYY4wxxhhjjDGmS/APNcYYY4wxxhhjjDFdQtWeu6+2faRm00VJk9rY8e+Yrjtq1Kh0HNPoKMnR\nNH2+XmyxxVIbPyfTsr7xjW80Hqf23EwrrUELSaaFR0TMM888Je6k9SHpzTOl1EtlYE2oBOILX/hC\niSkJ0pRptVMfj6ZxN1lwR2QrPqbga5ovLUo11Y6WmTy/yi1oyajWh7RnX3jhhaMT1J4bU7fVQpkW\nerTPo8VnRN/kPdrndUyMR+2++axVesYUaMpK1IKbY13t7mgDS3RM0a70g7AEVmrPkdCCm3K/iGZJ\nhcJ0yxtvvDG18V63tRjW/rPmmmuW+Hvf+17j33G+pTVjRE5bZqxzAtOImcKqDIQlsD4nPkO1EWeq\nO2Vvmhpce26cW6666qrG45jWe8ghhzQe1xf4GSOy7IaSq4i6pJJQLqyyP9rH16xMe0sn9jdkiSWW\nSK+59t10002pjeOWewKVT1EO+Mtf/rLEtG2NyGN2rrnmSm1cF3kv9XopVx03blxqo50vz6fjnnsr\n3YORgRiL0003XWrjfVXpLFPi+XdqYU25vtqvr7vuuiWuydb7Mp8qvF6up2pTTJngsGHDUhslOpR0\nqRSlBmXklJf3l9pYnGaaaUqsc39bfv/735dYJbacv9hnTj311FbnpvwxIu+zdC/CkhEf/ehHS6wS\nEEqYZ5ppptRGGRNLNagsg9InlR22sQTuLW1tnWttNVkl/45jLyJLlSj1rNmX8/vd0KFDUxulNdo3\neR1bbrlliSkdjWhfcoKyHpXRtWWg9qgqi+e+jve5N7Tdo1I+xe9l+pp9W+XglNxR0hXRXOZCy7xQ\njjxmzJjUxu/Fk032v7yX//znPz2eW4+LiNh7771L/Itf/KLnv2k8mzHGGGOMMcYYY4yZqPiHGmOM\nMcYYY4wxxpguwT/UGGOMMcYYY4wxxnQJVXtuQs1kRNaRqz3qYYcdVmJq0LQWglp5Eur9nn766RKz\nvkhE1rude+65JVa7Z2qsDzjggMZzkHfffbfxOK2nQCtW6k3VApO2wqqZGyj6qsVvqktTq29y+OGH\npzZqfldeeeVeXwNr0kyIpv6k18vXWieIGmjWLdE6EnyOWudmxx13LPFA1RoirJOx7LLLpjZaCR94\n4IElvvLKK1ufn7a6q6yySom1bgx1o6yjolaKtXtCK1xq7NWevK3Wn5aGOg5ooaeW6lqPoFOw77Em\nRER+jmpbzvpVWpeG8HlTDx+R7WTXWGONxnOo7eJ4zj777PT6/vvvL7GOMXLNNdeUmDVWInLtma22\n2iq18Zysh6S66Vpdmr7WhGiL1mtZa621SkzL3ojmeZi1TCLy+NDaSawtwJpQs846a+M1so6FWp7W\n+OIXv1jiM844o9XfaE2ao446qsScJzmPROT54sgjj0xtWvemU9CuXuvR8dlpfQedi8bDOjsRdatt\n1jxj7aKf/OQn6TjWpWHdIa3VwdowWluDz2DxxRcvMeskReR+p/VHuKdhHZdDDz00HceaGdr/df7o\nBPvss0+JOUdG5Oem/Zd7VM5JWuOgtlZxPLNmndaz4xzENVjr+bHWmu6VWWOFtR1px63XpLavrP/G\n49T2l/1H99sDZQnMeU3HP8cbawYpJ5xwQomffPLJ1DbbbLM1/h37Kech3U+yNhNh/aCIXMfn0Ucf\nTW1NtSxZh1Phmh6Ra1r8/Oc/L7HOYdy36R5sIGCtn+uvv77xuNr3Eb1fZIUVVigxv1dEZPt6zpk1\n2K/0mpZeeunGv+PejDUWaREeEbHgggs2XtOIESN6vA79Xsk6N/pdZWKgfY/re21M1eC91n0A12Su\n+7V5mGvASy+9lNo4z2tNmquvvrrEHEe69rFmjdbz4prTVBszol6Xh8/VNWqMMcYYY4wxxhhjuhz/\nUGOMMcYYY4wxxhjTJVTtuZmuVbMa0/QoTU1vg1pm16wdyd13311ipqs98sgj6TjKjNZee+3UxtR5\nplupjRZTK88555zU1ja9nGlamuJJJpYlMFNsKQVRmNKs6c6kZtlMG2vKg2rofWBqIFPzI5qlVSoH\neuedd0qs6eqU79AejmmkEdn6UGHqHNNg+8MTTzxRYsr4InLf1nvC+8dUzMcff7zxvdRukhId2s6p\nHTfTDmt97q233iqxWqpSbkjpgFrmUbq13nrrNb4X0fRfzm9TTJFVoLT1o014f+F9ufXWW1ObpoE2\nQctJptzra1pdRkTssssuPb6XpuUyDZ0pzCpb4hyrdplM51X5J9l3331LrHK8ZZZZpsQnn3xyj/8e\nkdcAykgispRkIGxIVbakcgZyzDHHlJjSXk3J5Xqq18xjf/zjH5eYspgalF5EZInAyy+/nNpUGtMG\nlYLRGnz06NElvuSSSxrPofeUNrann356r6+pDb2RB1MmSXmN2qV/4hOfKLHaaas19nhq1rXsW5qa\nP++885ZY12BKM7h+tp03B4JOjcWFF164xLqn4JpB+96IbDPLvY2uRzUpRlOfmWqqqdJr7i+59zj6\n6KPTcZwTdL9B6RllMqNGjUrH0Z6ba5jCMaUS2bY2swMl69b7yrGieznO95RsqUSK6yLlFRF57uRn\nogw74v3S3PGoLTPlU2oPzRIJNdpaGLeFEuOIPNd36jlyn6h7Bb4H162I/NzuvffexvPXrnO33XYr\nMfffv/vd79Jxm266aYk57vV7QM8jAAAgAElEQVR999hjjxJvv/32qY37FH6XpLQwIksZuc+JyLJE\n2rnrvpzfmfSznHjiiSXupCSxSdIZkfeNXNsVyoq0L5D5558/vaYMkfOXjgGucZwT9HsC5/1f/epX\nqW3JJZcs8U033VRi/U548MEHl/iKK65IbRz7lInW+rFCKWOTbM8ZNcYYY4wxxhhjjDFdgn+oMcYY\nY4wxxhhjjOkSqtInMtdcc6XXWuGa0KWJsgytbM50zoGGH1OdiZiWxlQvlSbUPjNTC+k+pTKhmtsO\n7zHvYX+ppU5OM800JVYnCab/qftIW5qkRJqmTLkc4zFjxqTjKBerOZEwHe6uu+5KbXQ5uOGGG1Lb\nq6++WmKm4LdNWVUGQm6h52RqJt0hFDoZqUSqBsfL9773vRKrvHDmmWcuMdPqVQrJivfqFkQJkkpC\n2tLkNFOjJjnoZIp3rcJ/DfZZuqxpajXHh8pVm6r01+ZlpodqSmjb9Oza/WPKKdP2I94/TzfB/q/p\nwW2vozfUPivXAe33dAVgOrA6q3C+0mtmSjFlN5pazTR9OlOokyE/i0oDm9Y7lUNwHqBsLiLLAGpO\nY0x5/utf/5ra3njjjRJPLElwDa6LlPxtu+22fTof09tVojN06NASUw4z33zzNZ5D19amz6myXI6/\nM888M7U1fTa+b0TEyJEjS1xzeerUc+T9qcnlNf2eKfJcg5ocvXqCcgP2A017pzyCzjV0qonIciyV\n0RHOmepOyOfBvUxElglRKqeueZTIUnIaMXByp7/85S8lZhmBiIiNN964xDXJJMcEpeKKfoYmqZeO\nm2222abEXFufeeaZdFxbuTvnQ92H8vmog1UTu+++e3rNUg21sT4Q66KOAe4jdIxR7jFu3LgS697t\n29/+dolV3sn3psx0r732arzemmMW96/6na3tvocyGZXHEfY5uvJFZKmkOhmzVIX2n/7Avq3uXdzT\n6P6czpOUgWlZAbrFcr2IyPean133qDVZZxO6LlJyx+eo37353pSpRWRHPzqR1ZzH9DmyJEXTWHRG\njTHGGGOMMcYYY0yX4B9qjDHGGGOMMcYYY7oE/1BjjDHGGGOMMcYY0yVMUWukzrBWn0V11bTovOyy\ny0q84YYbpuNo9aX1YJpYZJFF0mte1+uvv954HGs5/OIXv0htrLtBDZ7ajlPHxpoREfkzU4On0FpW\na6d0woavJ6g5VHtD2sSttNJKqY06WXLzzTc3nkM1dqxLQ1jHJyLfP+qu9XprdWn4d9SCL7/88uk4\n6jl33XXX1EadIesLaY0a1nhRnfhAwPpFahOpVvGEz0NrP7RFa9GMh9aovfl7avtVN8paFbQhVxs/\nWoNPPfXUqa2pLo32Tdru6dg79thjezxHf6HF7p133pnaaPmuVo9N+m+tUXPQQQeVuKZLp50lawBE\nZBtpPmO9f+eff36J1f6T17XffvuV+LDDDkvH7bPPPiXW+0Go41V71YlRl6YttD3V8UHbe+q7tfYP\n74n2S/Zt2kQ3Wcfqe+n5uI6pHp01D1jvQPnUpz5VYq1NwDoMTbWuIur1TD4IuIZrjQha/2p/Jrff\nfnuJdW0ltDnVueuFF14oca1uFudRneebapNpTSjavbatt8M9XESuSafPlPejU7BGgI63Wi0JWqfX\njmOb1liidTc/N2tfROQaOKxVwZoOEbk2TK2WIRk2bFh6zfou/IwReY5mfTSupRF571SrldNJeN26\n9tImu1ZLjvtVrVHDv9MaW011aXRO5X6EMcdNRK7V99JLL0UTtboi3A/XPjOZcsop02vuZT/5yU+m\nttGjRze+dyfQWmW1ejBN9sS6LnJO5toXkceY1tokxx13XIn33HPPxuNq42/VVVdtbCNt60WyRpLy\n9ttvl5jzTUT72kW9ZYEFFihxrdaKwj1rrd7qgQceWGKt18I9MGvraT0cfqfj/k+/6xGdbzmOWONP\n50Pu2xgr3/3udxvbuE/gXrYtzqgxxhhjjDHGGGOM6RL8Q40xxhhjjDHGGGNMl1C152aarKaasU2t\nQZsYMmRIes2UL5U20NKrlhJPW0SmaWqaLc+33HLLpTbaIl577bUlpu1rRD2Vjda3TFdWmFaqkjGm\now5Uyr4+A8rRaJE4EKiMiVASRnnIpptumo7jM/7jH/+Y2mhb/IMf/KDEaoP84x//uMSadtjWEpio\nDS+tzGkV2B9qNsmEMrSInP7MNEa17uQY5v2JiLjnnntKzNRttaVkei3H24033piOo6RsrbXWSm20\nKmZq4k9+8pN0HK1GB5pOjkXKLi+++OLUdtFFF5WY6acREY8//niP56ONZERO2a1dN1OTaUMfEbHd\ndts1/h2ZffbZS3zAAQekNrUGb3NNKmukhS7TflXqxxRvTStl+npfLB17guuHpiMz/VXTyykFYd9W\ny1lK0dS+vmmOo4xP4bjUPleDVuCUBzz00EPpOPY5lUqw3zJl/JZbbknHUTqiclnastJ+vr9Qfvu5\nz30utdFalfc5IssqNHW7LZQectyrZIP7Ct4HppZH5Pv3/e9/P7Vx71azrqUkQeU7TajkkRb00003\nXePfdWpO5XrEZxbRXkq+ySablFjl7nweNdk10TEw1VRTlZhr8DXXXJOO60tf0s/IvYeO0yOOOKLH\nv9M9AyVkusfi/KpzX3+oyfrYRmlERF4jWPpA5fm877o/55rM7w20742IWHrppUvMPdHYsWPTcdzD\ntJUt1VC5BedlPgMdi5Thct2IyDLX559/vtfX1BO1z9Zk3axwP6MyFn5fUsllEypvopyGfUItpN99\n993Gcy6xxBIl5l78gQceSMcNHTq0xDqfUkrMvqTwuelegPN8bf3vLW3HYg2OS0qdIvJeXvfx999/\nf4l5n7UMB+dl7pd0rT7ttNNKrLJsftdn3zr99NOjLRyL/C1CS69wf6zf+9dee+0S65owHmfUGGOM\nMcYYY4wxxnQJ/qHGGGOMMcYYY4wxpkuoSp+Y5qQpZJTwfPnLX05tw4cPLzHTUWvpZDXo8nHdddel\nNqbfMz1KnZ3WWWedErdNu9UqznRueOutt1IbXReY7q1pVEzNUikQXaA6Kbdom67GSvYREdtss02P\nx80999zpNat663UzvZppxeqCwVS5rbfeusTqClSD8iBW4mdq2YRgVXim7Knr2aKLLlpiTTEmnXqO\ntWfIPqZpdePGjSsxxxH/PSKnxKvkj6nzlKK98cYbjdfEKudMN43I40olM7yXNalhDaagMv1U4bOp\nyRwHaixqyvlNN93U+Hc77bRTiTUlm9CJacSIEantnXfeKfE000xTYqaHRuQ0Xcr6VCbIOVXlfw8/\n/HCJKW+7++67G6+9BtNla9X1VUY0zzzzlLgmvewrlF5ERPzjH/9o9XdM61aJVK2/USLK1GCm/Ufk\n+8A+p2s15zV1AeKzYoq9SkyOOuqoEuuawTWFEhBN9+Z8qlCWWXNZ6i10zPnmN7+Z2trK//h5df0k\nM8wwQ3pNV5e2UJr0s5/9rPG42lpRk5i1hXswdWCrQWfPlVdeuU/vrdQ+K9Pq1fGjNocQ7iPUIbIm\nu2q6Ru6jmSofkWVu6thE6HJCmXhElvOpGyIlXpTb1eQN3FNFZPnAB7FHVbgmqZtTE3SYishOa1yr\nag5gNXkI2XnnndPrU045pcTsWzPNNFM6ju6Xuvecc845G9+PLLbYYiV+8MEHG4+bGHvUGnx/yiX1\nOxxd0RTKiuk0rI5clKlxHFGOr9Tkx4QlNCJyeQGd/yk9o6ORPguu8ZQFRWRJM8dzf6EkSCX4lD7q\ntXJvUpNzcR82ZsyY1Pavf/2rxJSC8plGZKnyeeedV2Lu9yLyvkLduvh9u7Y35LqrLm7skywZoTKr\ntjLRprHojBpjjDHGGGOMMcaYLsE/1BhjjDHGGGOMMcZ0Cf6hxhhjjDHGGGOMMaZLqNao+dOf/lTi\nffbZJ7XVrASpGaOFWE23ppfx29/+tsTHH398ibVGDe0DaQlLLXZE+/ov1KDNMsssjcfV+Nvf/lbi\nT33qU6mNGlhqASOyjrpm8d0f1IpX7RcJdXusd6EW1tTCag0E1gvhc6zVdqDuev/990/H1erBkCY9\n8YSgTTzruGif4WdeY401Uhv1iWoT2Vf4GdSqjnaQWneA/Y/2jXofVcvbxD//+c8S18YH9fx67pq+\nm+OUNsi77757Oo7zg9aLolad90qtb3kd1PtGRGy00UYlVnv3/sD3rNXzUHjsm2++WWKtK0Jq8xyv\ngxr9iIijjz66x3NMP/306Tjq6lUDz7mMNaJGjhzZeE2HHHJIes21o61l5Mc+9rHUdsMNNzT+XV/h\n+/H8+v5taxDpcbSz1xpdrEdVq1tEvfyoUaN6fN+IrLHWOglt7cx5jRy/Edm+lO+ldqWcw1Tffeed\nd5ZYLVv7A5+j1qRhHTat08E6Zqy7otBKuG3tIqWpz6pWnvuFxRdfvPEc/MysUxWR68mx7lANrZGi\n+4smOjUWOTdz3orI9Uv0/WjHy9qJWmeiNnYIa8/85S9/SW20LOccyhoWEfnZaL0VWgmz3oXWpCNa\nG461MGrMN998Pb5XRN7DD1SNms985jOpjft63TdyvmVtyCeffLLxvY499tjG9/7KV77S+HcHHXRQ\nibW2XtP51KL+yiuvLDHXDn7GiFyj6PLLL298L8IaYBH5+9vmm2+e2vg9SvevfYX9Tftv7XsPa5qy\nbgzrj0bkWiFq8c39YG2/z7lc1xlSW1uPPPLIEvP7zfe+9710HC2aa3sWtmn9Idat0s/FGnKdHIuc\nJ9S2nP1Ux1HTnKq1LKeddtpW10GratbGjMg13trWb2xrNV7b79dqw/X1O2fTOYgzaowxxhhjjDHG\nGGO6BP9QY4wxxhhjjDHGGNMltLbnVmppPkzzpdxFZTYbb7xxiZlOFpHTuppsontzTU3HKfw7TR1l\nOpfKOZi2T8sxWkRGRPzmN79pfO+219hbbr/99hJrmiPTctXCkjRJgiYEz890cpWw0d6SFuZK22fH\nz6JpmEwb/9rXvpbaaAlI2RDlbBFZUqN9gWl6AyG3WGWVVVIbZQSaej7llFOWmBZxKmNhKmFt7NCq\nWy1W235Wnl8t8yhP4thRG1imqOv8sPrqq5dYU4rbwrTbvtrY9gT7isq5OFeqhPDSSy8tMVOaad8Y\nkdM2d9ttt9RGSQRtjmmJGBFx8MEHl5hjUdPCmda98MILpzZe/y233FJi7buURZ155pmpjfIzSmgU\nrjdq8zxkyJASzzzzzI3n6A218cH3m2uuuVIb++LXv/71Eqv0rCY54vNlv9S5m+/N9GxNDea8rnMH\nLdEJ1+2IiL///e+N51BpzHhUZsV5QK04KTXScdEf+pqe3Ak4j2644YYlprQ0ImLppZcuMfdEZ5xx\nRjqOaegqgaCUjnJmlQ+wb6ldeVPKu/Y7SrD6ugfrDW2fodpdU/rLdbETNup9ZYsttijx+eefn9o4\nTjkemqyCI95/jykbouyKEo2IbHWsUC6ia09/GDZsWIm5XkTk7w20rY7Iz5+yBO2/V199dYnXWWed\n1EaJLde+LbfcMh3Hkg6UqNCWNyKv8brfpkSO67FKTPhdo8ZCCy1U4tpeSvsT14dOjcUjjjiixCoD\nIvp+3KfwPrCfK7pvp3SW91jhs+Z3Nl0XufegFFDhXkzn5L/+9a8l1vmH/UIl3028/vrr6TXXSZW2\n9QeOKdpxR2Tpo36mCy64oMRaeoRssskmJdbvkt/97ndL/MUvfrHEWkJEv4/1dO6ILLVX627anXPv\nuccee6TjuA96+eWXUxu/A332s58tcVuZVUQuZaBr93icUWOMMcYYY4wxxhjTJfiHGmOMMcYYY4wx\nxpguwT/UGGOMMcYYY4wxxnQJfa5R8+9//7vEavNI2taNURvS0047rcdzULcWke3ciNrtHnrooSXW\n2hqEGu4FFlggtVG7Rju4iIhzzz23x/OpHpZaWb31xxxzTIlZw6C/8L5TDxeRNXGsZxKRdZu0VBs9\nenQ67kc/+lGJ9TOxzkhTzYOIiEceeaTEqpkmNdtC2vep/Suhvljr17Duw9Zbb11itZij/rSt9V5/\nYP0A1iqIyDUiFN7ziy66qMS9sYs95ZRTSsw6H6zno9dFW3LVuZIVVlghvaYVb1u037JGFGuiqMa3\nLZ2sF0Vq82HtvtAalJahil43/45afPbziFxXpGY1Wruffblnuo5wzmYdF+ryI3LdgtocMzHqYlCn\nfckll6S2X/3qV63Ov88++5RYrbupiWetEK3xttJKK5WYenHWQ5kQr732Wok5d2idCNZo2HfffVud\nW9fniy++uPHYgRp/Q4cOLTHr+ETkZ0zdfESuxcBr4/kismX9CSeckNp+/etfl5g1ifT5NH12tXpn\nXa5dd901tbEGBI+rsffee6fXvH7aJ7OGTkQef1r7SufpTsDnpHaxrKuz7rrrpjbWdNAaUU2wbkVE\nHs9qiU5YX4z7S9bsi8i11rQ/sm4LY61LwrVa65586UtfKjHraaidOPu31vzi3MvaPv3lmWeeKbHe\nlxqsR1KracKaRFonkn2WdeP0ONYS4T1Tu2HeM62fx2tkzRvl05/+dI/vpXCfoHsn1qFhTayI/D1K\na4L1FY5F7v8i8nh7+umnW51vu+22S6+5L+E6qK/5rFmfKyLv20eMGFFinTPvuOOOEmvNpCZ0fuD4\nUMvnvfbaq8Ssq8J1tjd0co1kvVCtNbPccsuVeOqpp05tnBtq1ue13wT4vNquVawv89Zbb6U2/V2B\n8L1ZW+/CCy9Mx9X2uZxHOb/+8Ic/TMdtv/32JV5sscVSG+db3WuMxxk1xhhjjDHGGGOMMV2Cf6gx\nxhhjjDHGGGOM6RKq0qf111+/xLPNNltqe/vtt0vMdO/ewJRDtbEmtOJSm66ma1JrWqYUvffee6mN\nKXC0o91///3Tcc8++2zjexOmBuvfqC11E51MZWOKl8q5aAmsEghaODIdTD8DU9/1uilDYdqcprzx\neTGdV63SaMun0pu2MKVVz8/0PfaFnXfeOR3He0CraGUg0vaHDx+eXjO1Wt+PtsltU5VpwReR09uZ\ntsfU/oicrj127NgSq3UgrXk1PX6HHXYoMa2bNTWVMrfJJ588tR111FHRW9SCkdaWnXyGTHOknWhE\nnit22mmn1Kb2kePR9FNeK8dvRE5HpfyPcW+gZSxlMhHZZphpvpR8ROS0a5UK1WyqyYorrlhilZhQ\nOtSp5/jSSy+VeJZZZmk8riZBobWtWlVzfKussSnVtia/XGuttUp87bXXNl6v0nS/9N9pyVyz5aT0\nRW0o+axrFtwDtS7qeKO899Zbb01t7MPs2yr7qsnDuWZyb6Vp9hzDlM0o/CwqAaE8hPOc2qvyGcw+\n++ypjfJm3o/e7P1oj/rkk0+2/rsaNRki3++pp55qPK5m3dxWlsD7o2sa5/la/63ZS3O8cN9z0kkn\npeMoG1JpOOXbNfkB98OUikTk/qPWuv1h3nnnLTHnq4hsK657CbXcnVhQUsEyDRFZEqcSQt53fma1\ns+b3Fc4jEVl6Sit1nVMpA1E5GdddlS/2ldpYpAxLv1dRoliD/UL3G5SMqgy4DfxuEpG/t+iehXM+\n4WeMyHK+++67L7UtueSSra6Le4FlllkmtVGSozK9TqESZd2jEZYD0RIlhHMI99kR2dqen0ll91dd\ndVWJOaZuuOGGdNzHPvaxEqvlPfcjbSWUbVGrdu7VVObNe9y0PjijxhhjjDHGGGOMMaZL8A81xhhj\njDHGGGOMMV1CVfo066yzlpip7BG5Ivfvf//71FarRE4oc3j88cdTG1OFmJrKqvYROR2YrjNf+cpX\n0nF0BGD19ogscWmLVuVXx4fx1NLmPv7xj6c2ymkGKsW7xp///Of0mulbbGMFa23TlES6OTGNX9Pb\nmf7Iyt+aIkiXJk1BXGONNXp8r4033jja0va+MzVZ/4Z9vjfuSjXoEKBphZReUQYVEfHYY4+VmO5L\nWlGfY5iOAxER559/fo/XpH2b6YNEK5nXnHkoVVFnkyY0Vfr+++8vMV28mGoc0T79vpNjkXKxpjmj\nJ1gBn+NDHUsoX1DnOKbx091C00opWyM6p9KdSJ296NBAFwx1R6ErRk1a0NY9sCb76NRz5FrINVLh\nuhXxfllFE0wNp/NVDZWBUiJaY7LJ/vd/NeqA13S/VBbz/PPPl5hSy4g8f9NpbNiwYek4OpKpKwjT\noT+IdVGh3ITyNpU5UALB8RaRJXp0OXz44YfTcZQj817efvvt6bizzjqrxDqeec8+97nPlVidkGp9\nhufkuD/wwAMb/6bGQLghqpT08MMPL7GmolPey/Vz1KhRHbmuJigb49ockSWc6vbGvSL3uSrz1bWb\nsP/UXFkok6k59HRyLFKSyVIHEfk51q6BTnd07YnI86iOMcpeKEFSh1TKjynLULkF31vXI+5VeG+1\npAMdhHSfwnmL877K+CkPV6c+SgG33Xbb6ASUoOtaQtT97Z133ikxJcEqJaVkhPuLGvq9ld8XOV98\n9rOfTcfxuem+Z6uttioxpXi6L+dz4ueKyFKoWjmBtnRyLPK+69ijTE5LJBA6lakDko5NwnvLcijc\np0RkN9faZ6/J6tgPde0gdBSbYYYZUtuWW25Z4r66yhJLn4wxxhhjjDHGGGO6HP9QY4wxxhhjjDHG\nGNMl+IcaY4wxxhhjjDHGmC6hWqOGGrua/ae21XTD5Nxzzy2xagSbGDlyZHpN3Sit6hTWpanVpGnS\nc0dE/PznPy8xrWkj8vWfc845JVZbTtZRueKKK1JbW7vy3sJnRevwiIiVV165xIcddlhqU1vANqjV\n7+mnn17iWq0Y2q3R3lKtr1mDQ/WTTX1SLU9PPvnkEtPWLyJrwdXSsOm9tE+y1kZfLcQVauxZ26k3\nsFbIQw891PrvqKFl3Q21Cf/+979fYtZWUI0vazdof2QtHupVOaYUtZds0s6q1SBtlln3Remk/pd2\ngdNPP31qo2Vmrd5FW3gvI/K9Zn2E66+/Ph33hS98ocR8xqz9E5F14mp/y5pj1MrrWGSb2k+ybtK0\n005bYrXEVutLwvoptEHuD+znWkOG16k1A1jL69FHH208/8wzz1xi9tGIXCuEmmhaY0bU7TEJ62Ko\ndpz9np+rN+tC05zMtTQiW8u+/PLLqY3PV2vU9Qdq1LXvvffeeyW+6667Uhv3NKz1MeOMM6bjuJ7r\nHEJtOy2QWa+hp78bj9aVYI0ahTbNtOSuzWtam4Q2yJzDdtlll3QcLehrdGpO5fxxzDHHpDY+D53j\nmiyJdd/FZ8g+EZFrcrStocWadeutt15q+/a3v11irR905plnlrhtfQ7uvSLyvoHziD4L2njXGKh6\nUbrvYl9UO3LWiGoL+6++5ryk+3/u1zmOWMOiN7CWJ2t0ReR1S+s5toV17Th/R+R+2KnnyLo6nN8i\nIp599tkS08o+In9H4j6X+7+IvA9dddVVU9sCCyxQ4iOOOKLEOhabPus111yTXq+//volVlvnJvS9\neP21PsJajFqbqi2dHIusPak1WViftG2Nty222CK9Zv0ahbUOr7zyyhJr7btx48aVmHbfCvsW68JF\n5Dq4bWEfj3h/TdA2DBkyJL1mXVfXqDHGGGOMMcYYY4zpcvxDjTHGGGOMMcYYY0yX0Fr6dNBBB6U2\n/pmm7TWdYyC48MILSzxixIhW16Efeeeddy4x5QGUIkRE3HbbbSXWVELaQTNtVW00aX2m9nOkG2xI\nm6ilBzMFMSJLLJhSe8kll6TjmCrJVEOmFytqz01ZlD6fJmivF5FlDbRF1FTOI488ssS0K1U69Rw7\n8QyZHk/5V8T7+3oTffk8mj756quvNh7LdF2OZ5UrMsWe9r19RWVRTFXVVMX+MMccc5SY6c0TguOK\nsiJKzCIi/vjHP5ZYnxWlS5SvMAW7htqg//KXvyyxSnQ22GCDEnOO1rRnSqG0n7zyyis9XsdOO+2U\nXlP+WmNijMW2EgjKQHUuZIo976NSs/Vkv2CfqMkhdP2kfIryI13v237meeedt8RqOUvZlUoO+Nk6\nuS4yFfqtt95KbZTKqKzogQceKPHQoUP7fR3f+ta3SqyyE8qiKIekjXBExEILLVRildXNNddcJebe\nRC1728rP+8qOO+5Y4rZjtjeoRI22y5TWReTnzT6l6fAqKWyiNgbajg8ep/sNyibbQglDRJaVqKV0\nW7hfqkkYegvlnpS+R0RMPfXUJaYsNyLitNNO6/F8lK5E1KU+fCa0yVabcMr/llpqqRJTWjghuFf8\n6Ec/WmKV0NLS+MADD0xtLC3Be9XXMdWpOZXycZWXtR0DRJ8hree322671EZZ89e+9rUSjx49Oh3H\nOU4l+YT24moNzXWSfYTfHSJyuQ324Yi8/zr++ONLvOeeezZek5YJYD/QvVl/6Ot3DcqC+Dxqsty2\n1PooLdivu+661LbZZps1nqPpc9bKDtQk5pREf/Ob30zHscTIrbfe2ngdlj4ZY4wxxhhjjDHGdDn+\nocYYY4wxxhhjjDGmS/APNcYYY4wxxhhjjDFdQrVGDW3DaJ8ckeuUaJ2PCy64oMQ13dYiiyxS4ocf\nfrjVBaudMu2xqPVS/SFrXKiFdBNqrV2zJaWts+rk2tJJ/X0TfdUf0haxN5aITfUWaL0WkbXz559/\nfompS1VefPHF9JoWll/96ldLrHp+2vcpBx98cImpOVV7ONYBUPtEak4Hoi6G1vKgJpe62Ihcn4I1\nCWr9YPHFF0+vqalkfQqtAzTTTDOVmP1F7ZNZF0NrZjTRVl9aY9ZZZ02vOW/V9N2dHJfsl6zxorSt\nqVC7D1pLhHVB1Oa0icMOO6zE++23X2qjJp21hWrXpfVHaLve9hlrvSKuAVqnoo31YW8ZNmxYidV2\nk3OQ3hPW3KFmmbU0Iuo1nAYSWqhG5HpKvCadf0gnxqlq8VmfY6Bqt6nlO23AWQsgIu9BWLdCa0lw\n/dB5mfUXWD+D9qcRWcHaA+0AACAASURBVBM/fPjwEqstKOsD1CxDeW8vvvji1NYb2/XxqM067bJV\nzz9y5MgSc5z0h1r/4n6T+9CIiO9+97sl5n5A95esccH6JRH9r42lfYJz4+uvv57auKdmvUg9N58v\n91G9oXbfyMSqo1ir4VCre9UXWG9G64M1XeM222yTXvO7ANd75d577y2xrsesgag0XceKK66YXrPu\nV42JUbttiSWWKLHWA9OaWuPR72n8O61j1IR+52R/5uc+5phj0nFf//rXS8zvJhH5eyHry3Vi7esr\nnRyL3Nez1kxEnrfXXnvtVufjuhWR67kqtL3n9xC1LWe9M87RWm+RNcdYo0vpSw2liFwb6Nprr+3x\nfL05p2vUGGOMMcYYY4wxxnQ5/qHGGGOMMcYYY4wxpkuoSp+eeOKJEs8///yp7Re/+EWJKb1QmlKD\nJgTTnZnOqZe75JJLlpjWfWoDS37zm9+k13vssUeP5/jDH/6QjqPERaU7Y8eOLTGt3ZZZZpl0HNMd\na3QylY12vgsuuGBq22WXXUqsFpC0PeMzqFlFauowZQJTTjlliVdZZZV03BZbbFHiWhoaLVV33333\n1MZ0clqu00Itom59uOaaa5a4JmGbe+65S/zUU0+lNn42tWLrK7XUuemnn77EbWUTTJ+OeL9MhlAO\nRtmJ9lGm2q600kqN52NaqaackqOPPrrEKj9oC8e2jnuiacNMmVXL1v5Qe45My9W0eJX5jaeWYnns\nscemtqY0bM7lEXn+Ymqv3gemfGuaMmU0nKPbzn8R2eKTdrIqD/nd735X4lqa7UCkeKstJm0421re\nK1xrdY7j+P7JT35S4k022SQdd/vtt5f4mWee6dN1UKpCaQ3ncUXvR9Oar8dxndRxOlCSYN4/SmEm\nxJ133llifj619WRf1HTvrbbaqsQcY5SDR+S1i3MlbX4j8ti+//77UxtTyOebb74Sc383IWgbS8vw\ncePGNf5NbyyS+8q3v/3tEh911FGpjeNUpSWUZXEvR8vkiIi333678b2b5GsK5QPPP/98id955510\nXG1cUabLc+jee9ttt208B+emN998s8Qnn3xyOo77GZWZkoGSPnHdj8hyC+6zI94vEesLTWNC+0yT\n5P/dd99Nr6eYYooS6z3aa6+9SnzccceVWGWClNTSUjoir8OUc+u6yL0yn3dP19UJ2u5tdC6kJIXr\njM5P7PdtpSSU40c0S6Z0jeS8u/HGG6e2N954o8Tc5/z+979Px62zzjolpnSxBqXmEXn8nXjiiamN\n33E6+TwpK9LSE5SWq3099wsqJW4L97mUnOn6zL7OMgGUIkdkWd2hhx6a2vbff/8Sc7/PfhaRxym/\na0VEfPKTnyyxSokJ16mf/vSnjcdZ+mSMMcYYY4wxxhjT5fiHGmOMMcYYY4wxxpguoSp9YnoZ09cj\ncgo702IjmlP6VILSFjoJqDMBHXaY7k1XjQlBdyumk6mDCFHJBuUhL7zwQonbyg+UiVVRn9e39dZb\npza6fvQVSsnOPffcEmvaL6ELg1bep2xGpUlMw6Z8QKUdNakeJTBtq+bXGAi5RU3uwnS+iOz8cPfd\ndzeef/LJJy+xpn8zzV4lU22YbLL8e/B7771XYu2bdBGhWxTnlIiIH//4xyVWFxq6LrSVYM0444yp\n7de//nWJNRWyP/BeaJo6JRBbbrllaqPcgmma2rc5JnS+pWSRKZvqTqSyiiY4njU9m7C/alr7t771\nrRLTwSOi2cVju+22S6815Ziw/1Ne2R+4LlDCEpHXRR2nQ4YMKTFT9mvOOZqqzVR3yi2YWhsR8fTT\nT5eYz0ZdXNqm7lL2q9IkpulrW5P8S2UxY8aMKbHKRSnX7eS6yLlh0UUXTW1Md1f5WRMXXnhher3Z\nZpuVWJ2szjvvvBJzDqQLWkR22zz88MNLrFK3q6++uvG6KNOlNFldMCgh7Oteje+l7i585vo5+wrn\nO+7BIiIWWmihEuvY5/1rklhGZInepptumtrogkeXUd1H0R2F8jidM3l/dF1s68REdKzQVYrjTaVy\nRN0HKf+puRb2ltoelX1RJUJ9obZ/qjm1EcoXdO4lDz74YHrN+ZHubPzuEpH3WSo/WX755UvMvqvy\ncO2HTQyEDIpzX0SWO6mckNK7s88+u8TcDynqGse9FD83XU8jsvyFe2Xd//HZ6/6vaQ+82267pdeU\nKtGZKCI/wxp0mlOpEeema665ptX52tBWVqZr5kMPPVRi/iagcvRaKRPCeU6dddVxti/weybXbpYK\nich9l65UEXmPWntWLBOw9NJLp7ZaOYnxOKPGGGOMMcYYY4wxpkvwDzXGGGOMMcYYY4wxXYJ/qDHG\nGGOMMcYYY4zpEqo1aqh5bKuLrbHTTjul16eeemrjsdS1sXbBKaecko47/fTTSzxixIgS0xIxImu/\nTjvttOp19RdaXqv1IeuEqCVwzQqyP8w888wl1poH1BzPNddcqa1Jo6s1ImjFpjV5mrpXTQfJug9q\nr8fPQnvVvqI24X2x09aaN7T7ZG2R/tBWN6r1YJqslrWmAet80NJOYb0GtXzkOViHRmGfoG4+Itc9\nYV0s1XrTTrxmLU6LeT2O18iaNxG5302selGdgNc6dOjQ1Kb3sA2co5dbbrnUtuqqq5aYNpURuTYM\ndf+q967ZBWvtofGwvkdErrtBnXBEthLuFHyGOgd95zvfKTHXpoiIHXbYocR8Tqw7E5H77AILLJDa\nWOOsVkuIWurLL7+8xGqxrnVKmqjV8WgL675o/QHWuVEL9zYa7r7A+iZrrrlmauO8qXNqX6jtffhM\ndf3kvot1Smp1NnTvw1pcrNlAK9SIXNeor9SeMenUc+QeVe1rf/jDH5ZYxwr3lLRX1v0R75fWCmHt\nAq3DQLhf4vNkLbWI+vzMuZZW9jrH1OA9Z39Ri3XW92t7vv7C58haFxHZ2pj7v4g8V77yyislfvjh\nh9Nx3GvX1uA555yzxFp7hn2IFua6hxk1alSr9yJap4xjVs/B9Y9Wylr7ou083annuNhii5VYn2Gt\nfgf3orS01u9O/F7F2moRuT4Maz898MAD6bjnnnuuxDrnN8F1OyJ/h2OtK62RxZpver2E+1xda1hr\nlTXElE6ORdaQ4T4uItfRYo08hXbn+r2Sdeu4d4vI4/a2224rsdbz4vc09gv9vsV7q/sKcuCBB5ZY\nv3OyZqDCGqysu8rvMUpt7XaNGmOMMcYYY4wxxpguxz/UGGOMMcYYY4wxxnQJre251YqLqdCackfb\nM55e7WjPOuusxgujZSxT/eaZZ550HFP/mAa67LLLpuOOOuqoEqsdYVvLbFKz3WY6uaaaE7X4Zrrj\nxJJb0E6T6Zz6d3/4wx9KzJTiiJw6q1KDI488ssQjR44sMeVSEREvvfRSidva/tbs4WiDqTaStH2e\nfvrpUxtTomvp7+yTaqVMBsKeu4Zaiqu8rgl+7iZb5Ig8jmitXEOtaWkT3Ra9j7QjZLpsRLaVX2GF\nFUqsqeY/+tGPGs9Pa9eaFKy38DmqfSbT7NVymvaBHIv77rtvOo5zWy39kqy77rrpNS2BO43aMtfS\nZ9um2TKlVdcijuGJMRb5/ir/W3jhhUvMVHem5yp6zVwzmdquNu38O861lApERFx77bUlpo1wRF5b\nr7/++hKrfI2SA5Uz01qXtpe0q4zIcoEaA7Uu0l45Iqfda3q22nA3XVutn/BYptbre9GGtmafTmpj\njLamalnNvqVWs+wbtT0N53p9ppQddOo57rzzziXWvsf7qnsFymApadpggw3ScdxHqm0rX3M9ou1y\nRLPkSFliiSVKPMUUU6Q2SrI4Lmk3HBHxl7/8pcT6fAnlcS+88EJq23777Us8seQWvC+cayIi1lhj\njca/o63yyy+/XOLjjz8+Haf2vv2F667KpvnsKKuLyP1Q5UFN8LtQRMSNN97Y6u/4fFQSQpnOOeec\n0+p8E4JzhNpF1/o91yT9XtBfdJ2pfeckHNsqP+aeeuqppy5xbyTB7LeU83Etjcg21yol5V6Pfb+/\n1J4Vv/dr3z7hhBNKTMlWjdrzqc0v3EtxH03L7Yj8/e7VV19tdU2dYPLJJ0+vuRfU3xv4W4KlT8YY\nY4wxxhhjjDFdjn+oMcYYY4wxxhhjjOkS/EONMcYYY4wxxhhjTJdQrVHDmjLUSkdE3HXXXSVebbXV\nUhtrxVADT310RK5ZMnr06FYXrLVnqHFjbRzlpz/9aYnVdq8JWiJGRNxyyy2NxzZZjqm+UXXOTXRS\n/0t7Ma2LQ1inJCLrKO+5554Sa80O6hZpyxaRrSSp7VR9Li3Ralp8Wv1S0x0Rcfjhh5eYFno11J6b\n10VduGp8qcVXK0jSqedI62K1z6SO9bjjjkttQ4YMKTHt61nnRFF9vGpRx6O1TDj+OO4V9kdamUfk\nGju09aN9Z0S2g2bdnIisB6We/7e//W06jn3ztddeS22drEtDqP/VOZXzrfYb9lPWQaF1ccT7x0QT\nNWtZ2smyzgHrvURknTAtEiMi9thjjxK3rQGm/Zp2wbTxVl0zawRona1HHnmkxFqjqBNwXYnIdYFq\nmvWbbrqpxGqRzWejdW7a1jUgnPNpSR2R6yJxvo/Iunfe4zfeeCMdx3oHer2sFcG6YTX6Yl/ZF2pa\n/JNOOqnE2rf322+/ErNfqj3rZpttVmK1OWWdH7ZNOeWU6bizzz67xDUrZo57XntEriXGuVdr7bA+\ngI4xWu/yc+p+hvU0FlxwwdTG8TAQ9aKmmmqq1MYaNayfoPDz6HzKWhtaw6lt7RnWAWS83HLLpeNY\n+49z64TOT1i/hHNwxPvr17VB69ywBk4nxyLrM2q9LfZtHUdLLbVUv9+7tn9qgna+n//851Mb63LR\nRriG7r1ZJ5DrcUTE5ptvXmI+gz/96U/pONaIoo10RF4HarbFvYF9tFaXsDa/8zq5dk/oOjfeeOMS\ns2akjoFOwH0p9yhq0962RiCfm56D94bfMSPy98yBWhc5LiPq3x8Ja+3MMMMMnbmwBlgPR2uRcf/B\ntTQi73e0fi7h9yat8cdxxPWN3x0jsj177XcF16gxxhhjjDHGGGOM6XL8Q40xxhhjjDHGGGNMl1CV\nPhljjDHGGGOMMcaYiYczaowxxhhjjDHGGGO6BP9QY4wxxhhjjDHGGNMl+IcaY4wxxhhjjDHGmC7B\nP9QYY4wxxhhjjDHGdAn+ocYYY4wxxhhjjDGmS/APNcYYY4wxxhhjjDFdgn+oMcYYY4wxxhhjjOkS\n/EONMcYYY4wxxhhjTJfgH2qMMcYYY4wxxhhjugT/UGOMMcYYY4wxxhjTJfiHGmOMMcYYY4wxxpgu\nwT/UGGOMMcYYY4wxxnQJ/qHGGGOMMcYYY4wxpkvwDzXGGGOMMcYYY4wxXYJ/qDHGGGOMMcYYY4zp\nEvxDjTHGGGOMMcYYY0yX4B9qjDHGGGOMMcYYY7oE/1BjjDHGGGOMMcYY0yX4hxpjjDHGGGOMMcaY\nLsE/1BhjjDHGGGOMMcZ0Cf6hxhhjjDHGGGOMMaZL8A81xhhjjDHGGGOMMV2Cf6gxxhhjjDHGGGOM\n6RKmqDV+5CMfmVjXYYT//ve/HTuXn+MHR6eeo5/hB4fH4qSBx+Lgx2Nx0sBjcfDjsThp4LE4+PFY\nnDRoeo7OqDHGGGOMMcYYY4zpEvxDjTHGGGOMMcYYY0yX4B9qjDHGGGOMMcYYY7oE/1BjjDHGGGOM\nMcYY0yX4hxpjjDHGGGOMMcaYLsE/1BhjjDHGGGOMMcZ0CVV7bmP6C63eGNfs5DppNWeMMcYYY4wx\nxgwmnFFjjDHGGGOMMcYY0yX4hxpjjDHGGGOMMcaYLsHSJ9NvJp988hJPP/30qW2KKf7XxT760Y/2\nGEdEvPnmmyV+5ZVXevz3iIj//Oc/jdfRJLNiHJGlVSqzsuzqg0WfVRN+Tr2n7b0lfb3PTe/l52aM\nmRTgHDfZZP/7P8/ansLznzGDm6Zxr3Cs1763mAmj+8kPWxkNZ9QYY4wxxhhjjDHGdAn+ocYYY4wx\nxhhjjDGmS/APNcYYY4wxxhhjjDFdwqCvUdOXugt9ZVLRu/UFajGnm2661Db//POXeIMNNkhtfL3g\ngguWWGvUvPDCCyW+6aabSnzhhRem4x566KESv/rqq6mtqS+888471ddNfJied62mT9NxfTl3RK5p\npG1Nmt9333238bXrDP0P3k/Wh4rI972mmeYz4PmmmmqqdBxfTznllI3n47N67bXXUtsbb7zR6po+\nTNTGWK0WRptz1MZKTQfe9hwf5rHXG5rqHNSeAcdHb8ZK29ptPKfn1P8P75HOcdNMM02J33vvvcZz\ncL/B4/Rv2t7jtutz29p8H9Zn21s68V2j6fnUap3oWK+N00mZ2t6Gr9v27bb1LrlvioiYdtppSzzz\nzDOX+O23307HvfjiiyWu1dr8MD3DCdE0xnR88Hnzb3RObbumdfszcEaNMcYYY4wxxhhjTJfgH2qM\nMcYYY4wxxhhjuoSJKn2qyRzapl0rbS3QaqlsvA62aRoVU1j1vbo9daov8J7NMMMMJV5yySXTcV/7\n2tdKvPbaa6e2OeaYo8RN6YkREffcc0+JKZVYZJFF0nErrrhiiYcMGZLaHnjggRLffffdJX7qqafS\ncXyutT4zqT3TWlo0+33b8dE2BVvTVGeaaaYSq537v//97xK/9NJLJVbJTC2l8cOUVlpLCa2lBzON\nvyaR4rPiWI6IWHbZZUvMFOCIPJ4fffTRHuOInBL8YZJb1MYin43KzQjvz9RTT53a2C84n+qa1tbm\nksfVpKR6fr6elJ9nT/AZ1GQzlAHreOZ8+NZbb5VY7yX7CcdsRB6bfB4qHX755ZdLrGn87EN83pPC\nM63Jm3jvVl111dS2/PLLl7h2X2+99dYSP/jggyWuySFqKfxN83hE7kvaxr5EyanKiicF2kqqI5r7\nsN4/zrGMOS71de051uZ5tuk52L9qEvDBju5Dec9139j03UKfIfs9/2auueZKx2244YYlXnnllVMb\nx9i//vWvEo8ZMyYdd9FFF5X4ueeeS23cz+pcO6lT2/vwmXBMaLkNjiPOazoGauOe8O9qe5gPCmfU\nGGOMMcYYY4wxxnQJ/qHGGGOMMcYYY4wxpksYEOkT042YJjbjjDOm45jaNMsss6Q2pvQxzemVV15J\nxzENsObm03RNETmljhW9GUfk9DXKMiJy+tqkkoLI50OZ0eabb56OW2mllUo833zzpTbeC6aE3nnn\nnem4o48+usSPP/544/nWXHPNEjP1OCLLLZ555pkSP/HEE9GEpsZ1Q5pbJ2lKM6ylTGsaLtMROSZ0\nHHGcsr/Q7Ssiy9lUvnb//feXmO5fTG+MqLvfNI2/SWVc8rNr/61JzjjPzTPPPCWeffbZG4/j+Ftj\njTXScbPNNluJVZrG188++2yJtc9MTNe+D5om+a2ORa6TmpLNFGA+G5WI0kWP69Zjjz2WjuOz0RRs\njhder66LXKspn4mY9GWINUk1+7qOMabuc5zqOOKayX6iqeCUIW6xxRapjWOdkuD77rsvHffkk0+W\nmOtnRMTTTz9dYj7TwSqbaUqxn3vuudNxn/zkJ0u8zz77pDbK1/75z3+WeOTIkek4Sp/4vpSTKyqn\noUyK/YxzcESeL7TPURrOeaCv7lPdRpNEW1/rmsnPy+8hw4cPT8exL/Decp8SEXHSSSeVWMcR59ja\n3MixXisL0Va6Olio7VE5Zy600EKN5+Bxut/gOFpttdVK/IUvfCEdt/DCC5e4tt49//zzJda1mtd/\n+eWXpzZKIJu+6w5mausi23Qd4z3kM9Z1kesRn2lNxq/Pkd89KBdWmRrHsP7GMLHGnDNqjDHGGGOM\nMcYYY7oE/1BjjDHGGGOMMcYY0yX4hxpjjDHGGGOMMcaYLqEjNWpUQ0mN/cc+9rESa40D6gBZlyQi\na/hef/31HuOIrDujXlfrbFCHqzo2agl57Wpzyc952mmnpbY77rijxJOi3Rq1nqrjnnXWWUus1pTU\nQp9//vklPvnkk9NxL774Yomp3V599dXTcR//+MdLrDWPxo0bV2LWXlAdfc2KuklDPClQq23C8aL3\nhDpMajT1HPPPP3+JV1lllRKzhlFExFJLLVVifTYcw6yhQC1wRB6LNQu+Ws2hwarprtkbcj7UOZD6\nX87F+nxY+4RafLXg5pygNbuo9ec4VUta2mVqHaLBbgNcqy3ANUitRqnNnnfeeVMbx9Viiy1WYn3W\nnP9Gjx5dYtYh0evQZ8N7Xqs1x36hNRk4Jw/259kTNS0+x6LuOQj19zqOeH6us2uttVY6bo899iix\n9pmmelH6Xqy5onsf9o2a/fBgea58HtzPaH2fvffeu8fjInJ/5n71vPPOS8exNgz3FKwFFlG3ZOax\nPE7rv7F+oNatuvLKK0t81llnlVjr4QyWZ6jU6pvo2CScfz/zmc+UeM8990zHLbrooj2eb4EFFkjH\nPfrooyXmnjcij7mmfVVEfia1Om6D9Vk1UZtPuTfU+Yn7lJpdM/eerDmkz5Bzt+5R+R2B86J+N2X9\nlaWXXjq1cR7W+iuDFe7Dm6zsI+r1Eeecc84S85lwHxGR+wZrzehcxn3o+uuvn9r42wT7lv4WQZv1\nSy+9NLWxng37SafHpTNqjDHGGGOMMcYYY7oE/1BjjDHGGGOMMcYY0yV0RPqkab1MX2LKl6Z/Me3p\noYceSm1Ml2L60uKLL56OYwo/U/tr0idNUWOqE1Px1W7tX//6V4k32GCD1DZ27NgST4rSJ6bs3nvv\nvaltiSWWKLFam51++uklvuKKK0qsz4Apj+w/KpebY445Sqz3mTaJtG/TtFKm6NVSZAcyle2DgJ9B\nU6uZLlqTbBCVwjRZg/KZReQUe507+HfscypD42f5MNhXNsnW1H6SshRN591oo41KzPmLkoqInPar\n46PpmjhHR+T5e5NNNimx2jGeeuqpJVbZDK2eaxK2bqKWps65heuT2kZyvCyzzDKpbbnllisx50mm\nUkdkm3vGKm/iHKoSQj57piurHJWfRddx2oTrPDwpUJtTmYat612TxFbT/TlXfuITnyixWkXX7Grv\nueeeEt92220l1mfF56Pp6qTWx7sV7dtNqfkqJaLEQtcgWnKfccYZJb799tvTcXzWfC+VPHIt1Ovl\nOTiHrrDCCuk47o913W1iMD7P8TRde22t1z0H969bbbVVifW7Bv+OY1v3oZwPaxLC2tzL8+tnGcz7\nmAlRk7RT4qJ9m2OC904l89wvURKs5+Peg3FE/o7z8MMPl/iRRx5Jx7FN1z7O84N5/BF+Jo4VlrKI\nyCUSdN9IuSa/C+geib8l1PbDLK8ydOjQ1KYS7vGoxJVjWNcHlvDgd87a95W+4IwaY4wxxhhjjDHG\nmC7BP9QYY4wxxhhjjDHGdAn+ocYYY4wxxhhjjDGmS+hIjRqFmr4nnniixLSti8g6rhtvvDG1Uf9L\nHa7WU2iqaaGWakQ1qtSkUUuudW7IpKIrrEENLXWZf/7znxuPo01lRMRVV11VYtrQqWaP2kLWQ9A6\nQbQ3/Mc//pHazjnnnBKrTRv5sNU3GU+tnkLNvrKpr6sOkzVGqP+t2RvqOVgviv1FNb78LJPCs5kQ\n/Iy8Z/rZabWtFr7Dhw8vMceYasF5Ts7l1OBG5OeqtWyadPqrrrpqOu6WW24psWr9WS+s9pm7CV5b\nzTaex+k6s+6665ZYddV8bqz/8ve//z0dx1okHJdqBcrnpppt6sVZ00hr1NRqCY0aNSomZWrzUNOY\njch9m2tf23p/WlOBfejVV19NbXfccUeJr7322hJrPTn2BdaD0HPW9laDBa4nr7zySol1juMY1r7N\nmni0cNW9B9dPPifdy7K/8Joico2GJZdcssS0G9b3vuuuu1IbaxWxVko3z6cTomn86bPi/dM6aZzb\nON/qfeEzYZ3G66+/Ph3HZ6w1hFiTg3sdrWHF/qmfha8H87PrCX4e3ZPSTptW6RERN998c4mffPLJ\nEqvV8mOPPVZifpe477770nF8b50nOXa4nuq8yzatncL1oLZPGEw0fa/S8cY6e1oLjeODa5/WqOEY\n4zOu1XpizSA9B9ddrZvD61httdVS29VXX11i1kOqfV/pC5NGDzHGGGOMMcYYY4yZBPAPNcYYY4wx\nxhhjjDFdQkekT5qax9QwppJqGvTf/va3Et99992N52RaoKaVMs2NqWaaKjXffPOVWFNOmepEy8Sa\nfEbT4Xi9k4pkhul5vBe85xE57ffFF19MbUzxrkmOKGFjuqimEzLd+Mwzz0xttKitSRCYbqdpebRg\n/zDI28ZTS8Vssg2lpXdETv1jWqnOD7zn+l5Mz27qO4o+J36WJinbhM7ZbTTZVqpUgvMcpU7axlRc\nfY4cw5QujhkzJh3HOUEtGDmGmZ6v8/KIESNKrHbv5557bomZStpp68OBQq+Lz5D3n3NfRJaK6VrF\n9N3rrruuxzgi4qmnniqxzqFN76XPZtllly0xrd1VjkqZMqU1EZOmJTeprfWUCLWVC+l8yLlS1yrC\nMaFrMPddfFa6v2maNyOaZYiDhdrcT8kX09wjsgRC+zJtuDmHqsyBkkJKa9S6mWNW58J55523xJtt\ntlmJF1hggXQcn71Kn8aNG1fibp0z+0Ntf0mZg1rZL7bYYiXmM6ZMJiLLHP74xz+WWMfDOuusU2KV\n+nKd5F5TxyL3TINlvesEHG+zzTZbaqNkhhbPEVlCzXIbuvZxjeNxauPN75IqS+M1MtY5nn1Q13jO\nOeybnZbMTEy4dnH+0ufIz65W2DyWkmqWUoiIeOCBB0rMNU0lu7qnIZynV1lllRKvt9566TjK7HTO\npjz8zjvv7PHaI/r/m4AzaowxxhhjjDHGGGO6BP9QY4wxxhhjjDHGGNMldET6VHM7YHoZU5T0tVa5\nJ6zqrOe48sorSzzNNNOUWJ00VlxxxRIzpTsiV31nqpSmsvG9H3roodQ2GNOBe0OTDCoip+zWUveY\n/qXVvpkSzBRHLyiV1wAAHR9JREFUrcZ+3nnnlVhdxJguyrQ29ouIZpeviEmnAntP1FKD+bk1dZtj\niWmL+qyZ/s3nS0laRJZDajp/k4NMzZlIaZI7DeYxys9BuZOmdi6++OIl1rRSPsealJGubnRSo5wt\nIvcFdWGgZIfp+SqboYOQppVec801JWaa+GB9juzDfG4qc+D4U9cKyi2Yiq9zIaUqTbLciJzirXMy\nxyblwdrnOP9rirI6eX2YYD/V+9CUMq/uadwX8fnoGsznrZIXpmRTll4bRyqH5DUORsc9/awcB5S7\n15yY9J7zWKbA696TczJT+3Xe5bNRCdanP/3pEq+88solVpdNjj91xaQsarA8t76i8xzXTL23PJb3\nj/KmiIgrrriixBzPlBRHZHmTrmkqpxpPTd40qUufuC7y3tH9MCKPI70HTSUwavJjvi/3FxF5rNQk\nTexXOu45X6tEnRIdfe/BCtcu7mE4N0Zk1zrdD1KCdvnll5dY9xX8XYHofeZ3v1qZALppqtMm9zv6\nnYeStppLtF2fjDHGGGOMMcYYYyYR/EONMcYYY4wxxhhjTJfgH2qMMcYYY4wxxhhjuoQBqVFDfTPt\n0VT3XNMSEmp39RzUnVH3RzvDiKzhVo099XQ8n9oKUyenGrlJTTdaQzWzfD6qDaYWn201mzPWKVHb\ndmpR9fnwufL82hf4d1rzqOk5DlZr5yabcv08HANqtUztKbXZqtmnlpfPvTbe9BlynHIs8nw9/R3h\n56xZzg4m+Bypk1XdLWvFaK0hfn7OyxdccEE67tRTTy1xk+V9RNbkqi3iCy+8UGKORdY60WvUeYW1\nqlgTrK3V8QeN3i/22ZrdeK0eD2uWUEev62LN3pWwRpfWqOF7cQ7Q+0/bX9afihg882QnqNXq02fA\n17X+zDHG56M1uzhOb7755tT23HPPlbg2b3I+r9XFGIzPtGadzjVNnwXHoq4fK620Uo/vpXsbznms\nwcD9b0R+psOHD09trNfBsci9V0SuR6S1Lwbjc+sNTbXpIvI6o3WI2NfPPvvsEl966aXpON5r1hVb\naqml0nF8jqzfFZH3s7XaVJzPJ/XnRlgvinVFI/JcqPWdmuq86P6I95l7f/173dsS7kV5Pt3n8rXW\nyWSfq+3LB9Oz59rCWOdUfr/Qe8b9CMfOM8880/hefB66h2Gf0VqAw4YNKzEtuWecccZ0XG0dZ/+q\n7en6izNqjDHGGGOMMcYYY7oE/1BjjDHGGGOMMcYY0yV0RPqkMFVIU8+IpuaTptQpTfnla6aXafop\n5S+0eYvI9rE8n1qj3nbbbSWmRCMip1/xHLVU48FEzdq59rz5umbZxnS4e+65p8S33HJLOo4poZou\nyue4zjrrlFgtEWlfqs+xKSWxZu85WNITec0qJWJaoErFmPLLdMSabSHTB9WCj6ngavlM+1KeQ6Ud\nTDOsjbHBnrI/nqZ+qTI1WirrM+bnHzt2bIkvueSSdBylEpQF6LivpeAvtNBCJaZNuEqk+FlodRiR\nU59VnjUY4f3nvWO6d0R9vWuSF+qzbmunzPlZny9T+nl+ytoiIq699toSU9rR0/tNyuj9q60fTeNZ\n5zLKNDiPqt03pdhjxoxJbTxnrS/wtV7HpPYcm9L0dZ1hyr3uKTnXLrvssiXWOZkSC+5n7rvvvnQc\nbWtVVsV+wGevdrHsVyoD4JwwqexLCceRfnbuK3R/Q9kg94p6Dq5Pa621VonXXHPNdBznQN17sg/x\n2el4pjRZ55XBuPdsC22SOR4i8vcHHad6/8aj9477fZ5D9y9E12D2C1o8q4yH6DiltGowS/IJ5x7u\nabj/i8jzo372Jjkg73NE3rfMMcccJZ5//vkb30u/91NeOuecc/b4OSLys6PcPCJLq1Te1kmcUWOM\nMcYYY4wxxhjTJfiHGmOMMcYYY4wxxpguYcClT4w1lZDpnJp6xrQ0VoJWmALFFDWt4k2JhaY+Mj2K\nad3XXXddOo6pqir7aJI+1dwTBiu1z1BLF2X6qaaLUnpDhxc6QEXk+67vxRQ4pqjdfvvt6ThKO/T5\nND1HTX8cjJIaphnW7h3jiDx2mOqnaYuUtdCxR6v38xlqdX0+D45LOtBE5PlBz8HrapIYRAyuZ9iU\nHqtSw1q1ed6zUaNGlfiBBx5IxzEtvuZIoPeTsJ8QlejwHCpl5HzB47r9WTXR9Bn0XjFtWO8JZYOU\nXug5mqQNeu+YTk7HsIhm6dOjjz6ajqOc48PsNKN9m2NT9wscpzVZMccA+4Wm+tNNRh1ROO5rMqsm\niVRPrycluH6obIz3Xx3ruFesuTk98sgjJb766qsbj6NcVN+LUBaj7qPsP+puxGev7z1Y4efl5+Pc\nGBGx4IILllj3/xynK6ywQomXWGKJdBxdYlZfffUS672k1E2fI8cw91l6Du57dazXvl+QwTJm+XnU\nmYfws6qUSEsY9PQ3Ec3zda0Mh0qalllmmRKzT/B7S0Qe923Hm+6pOu0eNLFgn1VJUM31lSy99NIl\nVjkpxxW/Y+px/J5Dear+XU3eRPkiHS4j8nfJJofjiP6PRWfUGGOMMcYYY4wxxnQJ/qHGGGOMMcYY\nY4wxpkvwDzXGGGOMMcYYY4wxXcKA1KihPov6T9XR06qOGtKIrP99+umnS6z1aqhxo65TNYHU26sd\nKqEd46233praqD1VTSR1d9S7qTZ9Uoea7oiIjTbaqMSsVaLHUePNOgd6n5vs2yKyFpJ1aagjjMjP\nR7WEPEdTHQG9jsECP6veO2pj1fqQ9aPUXpkMHfr/2juXX6uK5g3XN3HiERKCXERAEdAgQQWiICrE\nONAYnehQjcbEiSNjnDBx4l+BUxM1GEQTjHJMuAqC0YgXQIQjwYiEeEk0cfr7jew8/X50ucF9+NZa\n531GdejF2nt1d3X32qm3akWxN2zYUGzVjTIniup69bP/RnPqMK+A5obgc/ZxnP4JjpU+X1Zycmpq\nqtgHDhwoNnMe6P0z3T/15JoPgZ+tOYRIVpqS/qe5ePpAltOHtuZfYpvmi+I6yZwyqrHnGsp9UTXw\n3HefeOKJqo35Guhjqivn99d1kn2QjXVf8iko7E+do6OWXWXf6tmE5xbmSlC/59lE87q1vpOum1mO\nmqHBZ+eznjp1qrqOuRY0V8WRI0eKzRLPuu7yHmzTsWbOBF2TOW4822iJb+61et7mGqF5jIZAKzdd\nRN3X2u+c98ytp7ls+Df/j+atYL/zfhF1+WmOwfnz56vr+M6jfkqyUt19KcHONZTzV/PQcI3TZ2W/\nZu93CxYsKDbXa92Dub4uW7asauM+ye++b9++6jqOIb97RDsnTp9LdfO7c53Tteb48ePF1nMj+4y5\nMfW9n5/F9zv12c2bNxdb30PoH8y7t2PHjuo65i3TvZXvUVmJ93+LI2qMMcYYY4wxxhhjOoJ/qDHG\nGGOMMcYYY4zpCNMST85wMIZ9amgwQ4W0LBtDvvn/WIYyoi6lxVA5DX975JFHir1w4cKqjXKBw4cP\nNz8rC/Hm3/y+Wdj/UGCo55YtW6q2Z599ttiUO2m4KEu8njt3rtgqhaH8Yv78+VUb5XIsW6khlBwr\nlQAxFI/jyNDmiP8OTe4qrVBKDYul5E9L7DL0NvOx2267rdgMMVXpGf2KJQwj2qVqNZS5VUJa21rl\nO/W6vqLzMCsTy/DbbF1mX9M/NPQ/kyPRF3ld9llahpQh/kOQsHFuc+9juG9EHWqbySNYInblypXV\ndVxDudZq/991113Ffuihh6q2lswxk7npetOSPvVZWtMqKa/yTD6jrl/8f5Tb3njjjdV1lE5wPNQf\nKCNfvHhx1cZzSyabzNbDvpaJbcE9jfNXpU+U6eqc5dmEofl63mh9Lscsoi4HrVKMjz/+uNh79uy5\n5HePqH1M/Zdrcibr7it8Jj03ssQu18aIup+4x6k/HD16tNgHDx4sto7VunXrik3pYkR9LuI80bFq\n7cER7fLc+n37cr5praE8y0TUPqZ98tRTTxU7kw6z/zlHdA/mWWTNmjVVGyU0PGPxnSOiflfREtUc\nez6LnlH7BNcR+gR9JaL2P45HRH2e5VpMGVREPe/pO08++WR13ezZs4utZx/KDbdt21bs9957r7qO\nY6xyUt7T0idjjDHGGGOMMcaYGYB/qDHGGGOMMcYYY4zpCP6hxhhjjDHGGGOMMaYjjCVHTaZLpxZP\nc19QI3369OmqjTlrWBJLc77wHtQB3n333dV19913X7FVB8jSXNu3b7/k50bkOm22DSGfgpLl+qBm\nc9OmTVUbNfccH81Rw1Lo1Cnq3KKGeM6cOVUb86xQY6r3oE5cNZKPPfZYsaml1DLh1Mv2Rb9PDalq\nuOlXWjqQ/UWNpuaVYhlDakM/++yz6rpRy93xe4zqexHt3DZZXqmu08p3ofkQTp48WWwtDco5TD9S\n7S617RwPXXv52XqPVatWXfKz1Bf5WZqv6Kuvvmp+dh9p+Z9q25kLQbXZXE/pi6qd5t/0RS1zqesa\nafmR6u05vn3W2I9Kaz3UfmHfaoldrm3cPzds2FBdxxLsHMfsLKXnD35Hfg/1WbZpfivSygEW0Z81\nlX3Es4KuM1nJcvoEbfUB9hHzVjA/VES9n/I8FBGxc+fOYvOsrOcX5rDSvZXnKs0HNgRaOcAiIs6c\nOVPsycnJqo3+wXto/repqali0z/0vES/2rhxY9VGv+X+pv7M75Tl1uM+0pecNArPGDzD870sou4j\nPXtynbz99tuLrflIOVbM2aS+wvyXmieOPsx1hL4XUefH4WdF1PNsCGebiLov6Du6lzDfp+Y95B7E\ne+j7CtdU5sy74447quuYB0zvceDAgWLv2rWr2FpKPXu3b+WoGfc+OPxTlTHGGGOMMcYYY0xP8A81\nxhhjjDHGGGOMMR1hWspzMwSP4UAaNsTwy2PHjlVtDBtjaJiGeDO0ieVKX3755eo6hrJpaNObb75Z\nbJZjVFkBQxCzEO8sXHYI6LMznFDDqVthpRqCz/AylujTkqdr164tNkMcI+pQNoYhakgo/9+jjz5a\ntbFEJuck5ToR7bKzEd0d80wy05IrRtShqbRZjlv/pgxAS5tTzqEh2C2Jhc45fg/tb37/rHxlX+Ez\naVgpS1pqny1fvrzYq1evLjZLl0ZE/Prrr8Xmmq3yDYacbt68uWpjWD9DhRWO/759+6q2EydOXPJ7\n9BXOP+5pGhbNPfOnn36q2rjfsf8pn4moy43yfpmkRSVYnC9cxzXUf+7cucXW9Z++SD/t6hp5ubAv\ndH3JZJct+RD7MqL2nWzNo0xXzzf0Hd6fZ6KIes7omkAZ1xDKrHNsuAZle4Tu8xx72lk5Za67jz/+\neHXdkiVLiq1lwumbXDvUnzm+Kt3hvss50dcxjGivKXqG4b6oZ0/+v2wusI1jqv3Hsdq7d2/Vxnuy\nPDD33IhaEpJJjrm29/V8w2egvExlv9xbNO0B4buj7ou858WLF4utZ5ulS5c278F1gO8n3JsjIm66\n6aZiq6yb401Jjs7bPpG9X5DWOSiiPvPzHnqGpPRt69atxX744Yer67gu6572wQcfFLu1NkbUc0PP\n1FwTWmedceCIGmOMMcYYY4wxxpiO4B9qjDHGGGOMMcYYYzrCtEufWpnx9TqVQDA8kWFurHwQEbF4\n8eJiv/DCC8Vm2FlEHQ6s4Yi7d+8uNrN/a5jTqHKnvoYgjoqGCTL8T7PtMxyMIYQaTnjDDTcUm2Og\nYfb33ntvsbWyF6vcMHSYYYwREffff3+xtVIH5yHDyTU7eV+qm4wagsfrNMSbrFy5stjPPfdc1bZm\nzZpiM4xewz6zLPccb/q6rg+tkMOIttypzyHepFUBKqKWyqgEglW5nn766WJrWCmrdLGfVYbISnpZ\nGD99RceKPvbOO+9UbX/88UexhzB22bgRrn8qX6BMilUwNBScfcd76P14j/3791dt69evL3Ym++Ua\nmlX1GsIYRrRlM7pXtf5PRB1eTZ9QWQbD4rluHjp0qLruo48+KjZlHhH13rVo0aJia5USfrZK2FoS\nk76O6aiVGkd9Vp5ndJ2kv7AanvYx/V7XSY4hz1gqt6A/c22NqPeDvlSqvByyMwx9J6t4lcn6+DfH\nVM/7lFjs2LGjauN48R5axYh7ciZho91XX+RcpyRIn5vPpzJdXsvKiPq+SN/hWPP/6P9TP219J60q\nxLHhfhzRrmQ8FL/M5iL3vux56StaIe+VV14pNisl6lhRsnvkyJGqrVVVNKvQmP2GMZ3+14+3TWOM\nMcYYY4wxxpgZgH+oMcYYY4wxxhhjjOkI/qHGGGOMMcYYY4wxpiNMS44a6rhGLeWo2i9qCak/ZC6T\niDovCfPVaLm7Tz75pNiaC4El4ag5Uy0+tWtawqtVbnOIZLl7NEcNtX/UC2pOhQcffLDY1NHreG/c\nuLHYmnuG5WSZP0Pz4VD/qzkBWDLx7Nmzxdb8A0PQ6bfQ+UvNPft/3bp11XUTExPFpv6TZRAjal9X\nTel1111XbJYf5tyJqNcE1fO3Sjn3pYz6P8Hvrc+alfxkWXr6yksvvVRdR/00S6vrZ7EU7IIFC5rf\nkT6mpdrfeOONYn/33XdV29ByfbVy1GTzMtNwM+eErmPMw0DtvPYp//7yyy+rNua4uPnmm4vN+RFR\n+7D68xD3wlYZYJYwj6j3jGyt4Vh98803VRvHhH25bdu26jqOlc4Zfi+eYXSsWOpZ84iNmsOsj2tq\nq+yyom2tcul6VmC+C9rcL/UemhOPOUx4f+6RERHff/99sTUvRp9L/45CdibL5iV9gnNbx5tttHVN\nZZ6gLB/O2rVri813l4h6bpw+fbpqY66NPvqbwvWKa5Cup9m5h3m5Tp48WWzuWxG1//FzNUcQ18bs\n3fTChQvF1vMLx41zIqI9L4Z4Rr2cMwD7mjlqnnnmmeq6e+65p9icJ9qvn3/+ebFff/31qu3HH38s\nNn1Yc4zx+2c5aqbzrOOIGmOMMcYYY4wxxpiO4B9qjDHGGGOMMcYYYzrCWKRPGp51JSFAeg+GGDHM\nTe/NsmoMSWNYU0TE5ORksRkaF1HLKlol+PRv/b5DC9PP0LBDlqHbuXNn1TZv3rxi33nnncXWsnks\nmb1p06Zia/lshhtriBpD4DgeWm6NUgAt80eJHMMVtdTx0MhCfhkWyhLPCvuLJZ5VlsH76/jyszie\n2v+ZnINrx5AlahH//ewsz/3tt99WbZQXUv6na2pLfqayRvazStM4XmfOnCn2rl27quvefffdYjPs\nOWKY4/U32T4z6v+jlEHnAdforIQkx14lGxxThnjrmsm1XMPV+WxDkcy0xkDDrrk/6fi01luVK+7d\nu/eSbXqGoS9m84lyGJWk/vzzz5e8X0afxo2MKi/Mwt459lmfU35B+anKXeg7v/zyS9VGmSnnmUpJ\n+f9UvjZEGSLJ5iLb9DxImRnHIDvjt84Yeh330oi6zHAmfeJarPti631lCNCndL5y3PS8wXWNsvsV\nK1ZU161evbrY119/fbGzvU8/i/Jyrs979uypruM+OWpJ+JkOx+GWW24pNt8dI+q5wL79+uuvq+te\ne+21Yn/xxRdVG9dHjoFKRDOZ+tUqp+6IGmOMMcYYY4wxxpiO4B9qjDHGGGOMMcYYYzqCf6gxxhhj\njDHGGGOM6QjTUp6bXKmGsqXhV80n9WSnTp0q9v79+6vrWKaLOVUi2vlltHwltXBZXowh0tLlR9Sl\n8Q4fPly1MVfQ888/X+wtW7ZU11HP3yrXF5HnUmGOFGpWNb8JyxtqST3mPuFnaUnaVgnovpDlqsj0\n9tTEnzhxompjX7711lvF1jKho+bn4LipZp+6YR2Loem2M3Qd4jzdvn171UZ9/AMPPFBs5quJqP2b\n/qD5M44fP15srr0R9XgdPXq02FpqlGPcd59SRs3dll03at4F3X9a+5H6GzXhWclTtv3555/VdZwj\no5a0HYqPsp/ZDxH18+pZgrnWmJdr/vz5zXvQV7KcNwrPLVNTU8XWHCYcV93jh5zri8+j/ZrtTxzv\nrHQwy8wy14yuu5xLumdy7WUJbs0bxnxw2RgOHV3/OI46xuxDroeat4TjTf/VnDc8y956661VG8sK\nM1+Rfifmi/rhhx+qNs6NLP9YH+G46fqU5TvjeYO5+dTH6EfMgUIfjajnxNmzZ6u2Y8eOFfvTTz8t\ntu6LfM/UZ2mN2xDG8J/I3jWYs3LVqlXF1v2T51zmw9y6dWt1HedCdr7MctRk+Wev1tg5osYYY4wx\nxhhjjDGmI/iHGmOMMcYYY4wxxpiOMO3Sp1HRUDb+zdBClcIwtImhRwcPHqyuoyxmVKmEhkBlZcLJ\n0Et1a3+xX7QUM8N0X3311WKrhI2hbSyRqCGs/GyGn+r3YJiqzpksXJTfgyHjQ5fXZM/DUNv333+/\n2CxlHlGHiGalCenPGrrN/8dx0lBw+mY2R2ZaWCnnKWUOEREvvvhisRmSzRDgiHp8WO5bS8EyjFj9\nnmNOX9Txnmnjc7lk0ousv1rhxRpCzFBjXeNYVn3WrFnF1lB8+n0m/8lK2vaJluRM+499wRLA+vei\nRYuKPWfOnOo6yii43+n5I5PeMCSftp5Tsn1xaH7aeoasXxX2F9c1lemyZCzX3YmJieo6rq+Tk5NV\nG2WmlFTo3jqqjw1hDC+HrF8oS+Gepmsl11GeUdW3Z8+eXWyWgI6o5xfXUa61EfV4a8lhnn2GIBce\ndS5m71Vso2xs9+7d1XWHDh0qNmWmHLOIeh7o2ZNnHa7xWVnn7BmHnjYjQ9/heB7hO/uHH35YXXfh\nwoViv/3228VWmRr9Y9R5pj7Vkm/rPadzHB1RY4wxxhhjjDHGGNMR/EONMcYYY4wxxhhjTEf4z/8l\n8UCZvOeKPiy5n4Z4t6oiLFy4sLpuyZIlxaZsQkMJGa6mIXSt8CX9vvyO0x0aPM7Q1HGPY1fInqsr\nob3j+h7T7YtZeB99MfMBhgxmYfQtWaP+zXuMmnn9Un//W4bii9kYt64b9dnHfd100CVfzCofjHp/\nPk/mz1mVNYYa6966fPnyS95DpR2sDnXx4sWqjZKQcVQo6bIvZucFDfGmXILnG5VKkHPnzhVbx2BU\nCURX/LRLvnil92utp5SrRUSsWLGi2OvXry+2Vvji+VVlxS0p8eX0o/fFf/fZ9GeeU7I1denSpVUb\n31f4TsLqqBG5lK5VbexK6aovjoNsTR71PHSl0vqrWeWwT76Y7Yvz5s0r9rJly4pNqWFExPnz54vN\nSqJaXWsc/XI13zNb93NEjTHGGGOMMcYYY0xH8A81xhhjjDHGGGOMMR3BP9QYY4wxxhhjjDHGdISr\nmqMmu/+o+u5rr722um7u3LnFZjmv3377rbpOS6eRruQzIX3SHJo2fdH/jqrXHXfJzyw/R1bu7mr6\nrH1xGPTRFzNGLc89Ktdcc031N0uWUiP+119/Vdcx14LmSqEPj6N85VB8sbXeZrmGxpHjpyv0xRev\nBN3TmLOG51c9k9Kv1I+6WB59KL74b8l8Vkt8a66Nv9G1sZXvT9vGwZB9cabQJ1/k+qj+MWvWrGLz\n3V79g+/3v//+e7GzXJZ9wDlqjDHGGGOMMcYYYzqOf6gxxhhjjDHGGGOM6Qj/U+lTRquEr4ZKEYaS\nZiXV+kCfQtlMG4eV9h/74jCwL+boc3HfzaQXV1OWYV8cBjPJF8chZewi9sXLp/Wc+u/jkImOykzy\nxaHSV19UmSjl1xMTE8VWmWgmt+4zlj4ZY4wxxhhjjDHGdBz/UGOMMcYYY4wxxhjTEfxDjTHGGGOM\nMcYYY0xH6GyOmplOXzWHpsb63/5jXxwG9sX+Y18cBvbF/mNfHAb2xf5jXxwGzlFjjDHGGGOMMcYY\n03H8Q40xxhhjjDHGGGNMR0ilT8YYY4wxxhhjjDHm6uGIGmOMMcYYY4wxxpiO4B9qjDHGGGOMMcYY\nYzqCf6gxxhhjjDHGGGOM6Qj+ocYYY4wxxhhjjDGmI/iHGmOMMcYYY4wxxpiO4B9qjDHGGGOMMcYY\nYzrC/wNEz17Ku+m7WQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f82179166d8>"
]
},
"metadata": {
"tags": []
}
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment