- jQuery book quick overview
Intro 1
- https://eu.udacity.com/course/intro-to-javascript--ud803 Lightweight + jQuery book as a reference
- Start https://freecodecamp.org about 30-60 min/day
Terminal
"use strict"; | |
let https = require("https"); | |
let headers = { | |
"Accept": "application/json;v=1.8", | |
"Origin": "https://de.drive-now.com", | |
"X-Language": "de", |
package main | |
import "fmt" | |
import ( | |
"context" | |
"time" | |
"math/rand" | |
"sync" | |
) |
package main | |
import ( | |
"log" | |
"net" | |
"strconv" | |
"time" | |
) | |
const ( |
ffmpeg -reconnect 1 -reconnect_at_eof 1 -reconnect_streamed 1 -reconnect_delay_max 2000 \ | |
-timeout 2000000000 -y -thread_queue_size 5512 -nostdin -hide_banner -fflags +genpts \ | |
-probesize 10000000 -analyzeduration 15000000 -strict -2 \ | |
-i "http://185.38.12.37/sec/1507602961/37303231b693a468b631da8dce8ab261f039288f1e73a0e5/ivs/69/18/89f2c8aa6418.mp4/hls/tracks-1,4/index.m3u8" 2bg.s04e07.ts |
#!/bin/bash | |
export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin | |
if [ "$(id -u)" != "0" ]; then | |
echo "This script must be executed as root. Exiting" >&2 | |
exit 1 | |
fi |
Intro 1
Terminal
package main | |
import "io" | |
func main() { | |
} | |
// Storager - interface, naming recommendation is to have 'er' ending | |
type Storager interface { |
const admin = require("firebase-admin"); | |
const serviceAccountOld = require("./../../.serviceAccountKey.json"); | |
const serviceAccountNew = require("./../../.serviceAccountKey-new.json"); | |
const appOld = admin.initializeApp({ | |
credential: admin.credential.cert(serviceAccountOld), | |
databaseURL: "https://old.firebaseio.com", | |
}, "old"); | |
const appNew = admin.initializeApp({ | |
credential: admin.credential.cert(serviceAccountNew), |
import * as tf from "@tensorflow/tfjs-node"; | |
// In my case I have 256x256 pictures | |
const IMG_SIZE = 256; | |
const NUMBER_OF_CHANNELS = 3; | |
// Batch normalisation and ReLU always go together, let's add them to the separate function | |
const batchNormRelu = (input: tf.Tensor4D) => { | |
const batch = tf.layers.batchNormalization().apply(input); | |
return tf.layers.reLU().apply(batch); |