def prep_param_lists(model):
""" fp32 copy of model parameters """
model_params = [p for p in model.parameters() if p.requires_grad]
- [2018]
- Paypal: Data Pipelines for Real-Time Fraud Prevention at Scale (Mikhail Kourjanski)
- Airbnb: Zipline—Airbnb’s Declarative Feature Engineering Framework (Nikhil Simha and Varant Zanoyan)
- [2019]
- Stripe: Reproducible Machine Learning with Functional Programming (Oscar Boykin)
- Uber: Michelangelo Palette: A Feature Engineering Platform at Uber (Amit Nene)
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
prompt engineering for autoregressive language models
https://github.com/openai/openai-cookbook
Greedy search
Beam search
Top-k sampling https://arxiv.org/abs/1805.04833
https://zdevito.github.io/2022/08/16/memory-snapshots.html
# enable the recording of stack frame information for each allocation
import torch
torch.cuda.memory._record_memory_history(True)
from torchvision.models import resnet18
from pprint import pprint
- https://abseil.io/resources/swe-book?ref=blog.pragmaticengineer.com
- https://www.amazon.com/gp/product/1422188612
- https://www.amazon.com/gp/product/0060891548
- https://www.amazon.com/dp/1484261461
- https://noidea.dog/staff
- https://staffeng.com/book
- https://www.learninpublic.org
- https://draculatheme.gumroad.com/l/14habits
- https://randallkanna.gumroad.com/l/zLNdN
- https://technicalinterviews.dev
[1] Ouali, Hudelot & Tami. “An Overview of Deep Semi-Supervised Learning” arXiv preprint arXiv:2006.05278 (2020).
[2] Sajjadi, Javanmardi & Tasdizen “Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning.” arXiv preprint arXiv:1606.04586 (2016).
[3] Pham et al. “Meta Pseudo Labels.” CVPR 2021.
[4] Laine & Aila. “Temporal Ensembling for Semi-Supervised Learning” ICLR 2017.
[5] Tarvaninen & Valpola. “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results.” NeuriPS 2017
CS 61B Data Structures, Spring 2023 UC Berkeley https://sp23.datastructur.es/
Brex’s Prompt Engineering Guide https://github.com/brexhq/prompt-engineering
Bark: A transformer based text to audio system https://github.com/suno-ai/bark
Attempto Controlled English https://en.wikipedia.org/wiki/Attempto_Controlled_English
Run Llama 13B with a 6GB graphics card https://gist.github.com/rain-1/8cc12b4b334052a21af8029aa9c4fafc