Skip to content

Instantly share code, notes, and snippets.

View ved93's full-sized avatar
🎯
Focusing

Ved ved93

🎯
Focusing
  • India
View GitHub Profile
@ved93
ved93 / useful_pandas_snippets.py
Created August 6, 2016 11:12 — forked from bsweger/useful_pandas_snippets.md
Useful Pandas Snippets
#List unique values in a DataFrame column
pd.unique(df.column_name.ravel())
#Convert Series datatype to numeric, getting rid of any non-numeric values
df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True)
#Grab DataFrame rows where column has certain values
valuelist = ['value1', 'value2', 'value3']
df = df[df.column.isin(value_list)]
@ved93
ved93 / apply_df_by_multiprocessing.py
Created August 6, 2016 11:13 — forked from yong27/apply_df_by_multiprocessing.py
pandas DataFrame apply multiprocessing
import multiprocessing
import pandas as pd
import numpy as np
def _apply_df(args):
df, func, kwargs = args
return df.apply(func, **kwargs)
def apply_by_multiprocessing(df, func, **kwargs):
workers = kwargs.pop('workers')
@ved93
ved93 / convolutional_nn_tutorial_3.R
Created August 12, 2016 17:38 — forked from dkbradley/convolutional_nn_tutorial_3.R
Image recognition tutorial in R using deep convolutional neural networks (MXNet package). Part 3. Full article at https://firsttimeprogrammer.blogspot.com/2016/08/image-recognition-tutorial-in-r-using.html
# Clean workspace
rm(list=ls())
# Load MXNet
require(mxnet)
# Loading data and set up
#-------------------------------------------------------------------------------
# Load train and test datasets
@ved93
ved93 / Spark Dataframe Cheat Sheet.py
Created September 22, 2016 14:32 — forked from evenv/Spark Dataframe Cheat Sheet.py
Cheat sheet for Spark Dataframes (using Python)
# A simple cheat sheet of Spark Dataframe syntax
# Current for Spark 1.6.1
# import statements
from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark.sql.functions import *
#creating dataframes
df = sqlContext.createDataFrame([(1, 4), (2, 5), (3, 6)], ["A", "B"]) # from manual data