Skip to content

Instantly share code, notes, and snippets.

View ven-kyoshiro's full-sized avatar
🐹
pep8

Mukai Ven Kyoshiro ven-kyoshiro

🐹
pep8
  • Tokyo
View GitHub Profile
@ven-kyoshiro
ven-kyoshiro / tunstall.py
Created December 4, 2018 01:20
tunstall.py
import requests
import os
import pandas as pd
import collections
import pickle
def notify(message = 'done'):
pass
@ven-kyoshiro
ven-kyoshiro / error.py
Created September 5, 2018 12:08
openai gym's render cannot work with matplotlib
import matplotlib
# matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import gym
import numpy as np
def main():
env = gym.make('CartPole-v0')
env.reset()
_ = env.render(mode='rgb_array')
@ven-kyoshiro
ven-kyoshiro / gym_classic_error_in_server.py
Created August 30, 2018 02:43
gym_classic_error_in_server
import chainer
import chainer.functions as F
import chainer.links as L
import chainerrl
import gym
import numpy as np
# 描画用
import matplotlib as mpl
mpl.use('Agg')
@ven-kyoshiro
ven-kyoshiro / adaboost_test.py
Last active May 9, 2018 00:30
Adaboostの実装ですが,Uを自由に変更できます.(参考文献:情報学習論講義資料)
# -*- coding:utf-8 -*-
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import scipy.optimize as optimize
from multiprocessing import Pool
import os
from tqdm import tqdm
import multiprocessing as multi
@ven-kyoshiro
ven-kyoshiro / outbreak_model.py
Last active May 6, 2018 05:01
This is simple implementation of outbreak model introduced at '情報学修論' at Waseda University graduate school.
# -*- coding:utf-8 -*-
'''
ある人が抗体を持っている確率
p :[0-1)
想定する人数を配置する正方形の一辺
N
'''
import numpy as np
import random
import seaborn as sns
@ven-kyoshiro
ven-kyoshiro / mnist_cnn_bn.py
Created April 7, 2018 07:29 — forked from tomokishii/mnist_cnn_bn.py
MNIST using Batch Normalization - TensorFlow tutorial
#
# mnist_cnn_bn.py date. 5/21/2016
# date. 6/2/2017 check TF 1.1 compatibility
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
@ven-kyoshiro
ven-kyoshiro / cartpole_pg.py
Last active September 14, 2017 17:10 — forked from shanest/cartpole_pg.py
Policy gradients for reinforcement learning in TensorFlow (OpenAI gym CartPole environment)
#!/usr/bin/env python
import gym
import numpy as np
import tensorflow as tf
class PolicyGradientAgent(object):
def __init__(self, hparams, sess):