Skip to content

Instantly share code, notes, and snippets.

@versae
Last active August 29, 2015 14:10
Show Gist options
  • Save versae/06ed109e815be1d71b65 to your computer and use it in GitHub Desktop.
Save versae/06ed109e815be1d71b65 to your computer and use it in GitHub Desktop.
A Mini Guide to IPython Parallel
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:2bde77c6d6afc841cf657b15dbdf133979fb23d8960105f8567e98d222b235a7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"A Mini Guide to IPython Parallel"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"IPython Parallalel is able to run in a single machine to maximize the use of the cores of the processor. If that's the case, the only thing you need is `ipcluster`, but what we want to do is to use 4 cores in 2 different machines. Those machines will be called the *engines*, and the one that connects to them, the *controller*.\n",
"\n",
"1. In the controller, we first create a profile named, let's say `cluster`\n",
" ```\n",
" $ ipython profile create --parallel --profile=cluster\n",
" ```\n",
" \n",
"2. The step is to create or edit a file named `ipcontroller_config.py`, where `c.HubFactory.ip` is the host to listen to, in our case all the interfaces, and `c.HubFactory.location` the external IP of the controller.\n",
" ```python\n",
" # ipcontroller_config.py\n",
" c.HubFactory.ip = '*'\n",
" c.HubFactory.location = 'controller.host'\n",
" ```\n",
" \n",
"3. Then, in each engine, we copy the file `~/.ipython/profile_cluster/security/ipcontroller-engine.json`.\n",
" ```\n",
" $ scp [email protected]:/home/username/.ipython/profile_cluster/security/ipcontroller-engine.json ./\n",
" ```\n",
" \n",
"4. In each engine, we just run `ipengine` with the file we just downloaded from the controller.\n",
" ```\n",
" $ ipengine --file=./ipcontroller-engine.json\n",
" ```\n",
" \n",
" So far, the easiest way to take advantage of all the cores in a single engine, is by running `ipengine` as many times as cores the machine has.\n",
"5. Finally, from the controller, we execute an IPython Notebook with password and using the profile.\n",
" ```\n",
" $ ipython notebook --profile=cluster --no-browser --pprint --NotebookApp.password=`python -c \"from IPython.lib import passwd; print passwd()\"\n",
" \n",
" ```\n",
" We can add `--ip=0.0.0.0` for the Notebook to listen in all the interfaces.\n",
" \n",
"Once everything is working, we just need an `IPython.parallel.Client` instance in our Notebook."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.parallel import Client"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the `ids` of the engines."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clients = Client()\n",
"clients.ids"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 2,
"text": [
"[3, 4, 5, 6, 7, 8, 9, 10]"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To execute functions in parallel, we access to a `View` and then call `map_sync` or `map_async`."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"view = Client()[:]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"view.map_sync(lambda x: 5**x, range(10))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": [
"[1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125]"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can execute some commands in all the engines using the cell and line magic `%px`,"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%px import socket; print(socket.gethostname())"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[stdout:3] engine1-desktop\n",
"[stdout:4] engine1-desktop\n",
"[stdout:5] engine1-desktop\n",
"[stdout:6] engine1-desktop\n",
"[stdout:7] engine2-desktop\n",
"[stdout:8] engine2-desktop\n",
"[stdout:9] engine2-desktop\n",
"[stdout:10] engine2-desktop\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tested that everything works as expected, we can now run our actual code."
]
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment