SATySFiの字句解析器には主要なモードが4つある:
- プログラムモード
- 垂直モード
- 水平モード
- 数式モード
またサブモードとして
-- Based on: http://augustss.blogspot.com/2007/10/simpler-easier-in-recent-paper-simply.html | |
import Data.List (delete, union) | |
{- HLINT ignore "Eta reduce" -} | |
-- File mnemonics: | |
-- env = typing environment | |
-- vid = variable identifier in Bind or Var | |
-- br = binder variant (Lambda or Pi) | |
-- xyzTyp = type of xyz | |
-- body = body of Lambda or Pi abstraction |
(** Coq proof that there is no monad compatible with the ZipList applicative functor. *) | |
(** Based on the original proof by Koji Miyazato https://gist.github.com/viercc/38853067c893f7ad9e0894abb543178b *) | |
(** Main theorem: [No_LawfulJoin : forall join, ~(LawfulJoin join)] | |
where [~] means "not" and [LawfulJoin] is the conjunction of the following properties (monad laws): | |
1. [join] is associative: | |
join (join xs) = join (map join xs)] | |
2. [join] is compatible with ZipList's applicative (i.e., [zip_with]): |
Given distributive categories | |
* -C>, >C<, 1C, +C+, 0C | |
* -D>, >D<, 1D, +D+, 0D | |
An alternative functor consists of | |
* A functor | |
- F : C -> D | |
* morphisms | |
- eps : 1D -D> F(1C) | |
- mu : F(a) >D< F(b) -D> F(a >C< b) |