Last active
July 27, 2018 20:36
-
-
Save vinaykudari/2631e7f8e4f5d6492c60e67bafb2789a to your computer and use it in GitHub Desktop.
Rsampling
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>units</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:00:00</th>\n", | |
" <td>19</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:30:00</th>\n", | |
" <td>11</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 01:00:00</th>\n", | |
" <td>12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 01:30:00</th>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 02:00:00</th>\n", | |
" <td>10</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" units\n", | |
"2014-05-01 00:00:00 19\n", | |
"2014-05-01 00:30:00 11\n", | |
"2014-05-01 01:00:00 12\n", | |
"2014-05-01 01:30:00 4\n", | |
"2014-05-01 02:00:00 10" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"date_index = pd.date_range('2014-05-01', '2014-05-31', freq='30min')\n", | |
"units = np.random.randint(0, 20, len(date_index))\n", | |
"\n", | |
"df = pd.DataFrame(index=date_index)\n", | |
"df['units'] = units\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Downsampling" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>units</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2014-05-04</th>\n", | |
" <td>10.083333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-18</th>\n", | |
" <td>9.563988</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-06-01</th>\n", | |
" <td>9.662045</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" units\n", | |
"2014-05-04 10.083333\n", | |
"2014-05-18 9.563988\n", | |
"2014-06-01 9.662045" | |
] | |
}, | |
"execution_count": 32, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.resample('2W').mean() #resampled every two weeks" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Upsampling" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>units</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:00:00</th>\n", | |
" <td>19.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:10:00</th>\n", | |
" <td>14.904594</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:20:00</th>\n", | |
" <td>12.237927</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:30:00</th>\n", | |
" <td>11.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014-05-01 00:40:00</th>\n", | |
" <td>11.190812</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" units\n", | |
"2014-05-01 00:00:00 19.000000\n", | |
"2014-05-01 00:10:00 14.904594\n", | |
"2014-05-01 00:20:00 12.237927\n", | |
"2014-05-01 00:30:00 11.000000\n", | |
"2014-05-01 00:40:00 11.190812" | |
] | |
}, | |
"execution_count": 38, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.resample('10T').interpolate('quadratic').head()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment