Skip to content

Instantly share code, notes, and snippets.

@vincentarelbundock
Created August 26, 2012 23:20
Show Gist options
  • Save vincentarelbundock/3484282 to your computer and use it in GitHub Desktop.
Save vincentarelbundock/3484282 to your computer and use it in GitHub Desktop.
Statsmodels example: Generalized Linear Models
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "example_glm"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Generalized Linear Models"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import statsmodels.api as sm\n",
"from scipy import stats\n",
"from matplotlib import pyplot as plt"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## GLM: Binomial response data\n",
"\n",
"### Load data\n",
"\n",
" In this example, we use the Star98 dataset which was taken with permission\n",
" from Jeff Gill (2000) Generalized linear models: A unified approach. Codebook\n",
" information can be obtained by typing: "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print sm.datasets.star98.NOTE"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Number of Observations - 303 (counties in California).\n",
"\n",
"Number of Variables - 13 and 8 interaction terms.\n",
"\n",
"Definition of variables names::\n",
"\n",
" NABOVE - Total number of students above the national median for the math\n",
" section.\n",
" NBELOW - Total number of students below the national median for the math\n",
" section.\n",
" LOWINC - Percentage of low income students\n",
" PERASIAN - Percentage of Asian student\n",
" PERBLACK - Percentage of black students\n",
" PERHISP - Percentage of Hispanic students\n",
" PERMINTE - Percentage of minority teachers\n",
" AVYRSEXP - Sum of teachers' years in educational service divided by the\n",
" number of teachers.\n",
" AVSALK - Total salary budget including benefits divided by the number of\n",
" full-time teachers (in thousands)\n",
" PERSPENK - Per-pupil spending (in thousands)\n",
" PTRATIO - Pupil-teacher ratio.\n",
" PCTAF - Percentage of students taking UC/CSU prep courses\n",
" PCTCHRT - Percentage of charter schools\n",
" PCTYRRND - Percentage of year-round schools\n",
"\n",
" The below variables are interaction terms of the variables defined above.\n",
"\n",
" PERMINTE_AVYRSEXP\n",
" PEMINTE_AVSAL\n",
" AVYRSEXP_AVSAL\n",
" PERSPEN_PTRATIO\n",
" PERSPEN_PCTAF\n",
" PTRATIO_PCTAF\n",
" PERMINTE_AVTRSEXP_AVSAL\n",
" PERSPEN_PTRATIO_PCTAF\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load the data and add a constant to the exogenous (independent) variables:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = sm.datasets.star98.load()\n",
"data.exog = sm.add_constant(data.exog)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"/usr/local/lib/python2.7/dist-packages/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/tools/tools.py:306: FutureWarning: The default of `prepend` will be changed to True in 0.5.0, use explicit prepend\n",
" FutureWarning)\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" The dependent variable is N by 2 (Success: NABOVE, Failure: NBELOW): "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print data.endog[:5,:]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[[ 452. 355.]\n",
" [ 144. 40.]\n",
" [ 337. 234.]\n",
" [ 395. 178.]\n",
" [ 8. 57.]]\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" The independent variables include all the other variables described above, as\n",
" well as the interaction terms:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print data.exog[:2,:]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[[ 34.3973 23.2993 14.23528 11.41112 15.91837\n",
" 14.70646 59.15732 4.445207 21.71025 57.03276\n",
" 0. 22.22222 234.102872 941.68811 869.9948\n",
" 96.50656 253.52242 1238.1955 13848.8985 5504.0352\n",
" 1. ]\n",
" [ 17.36507 29.32838 8.234897 9.314884 13.63636\n",
" 16.08324 59.50397 5.267598 20.44278 64.62264\n",
" 0. 0. 219.316851 811.41756 957.0166\n",
" 107.68435 340.40609 1321.0664 13050.2233 6958.8468\n",
" 1. ]]\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fit and summary"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"glm_binom = sm.GLM(data.endog, data.exog, family=sm.families.Binomial())\n",
"res = glm_binom.fit()\n",
"print res.summary()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: ['y1', 'y2'] No. Observations: 303\n",
"Model: GLM Df Residuals: 282\n",
"Model Family: Binomial Df Model: 20\n",
"Link Function: logit Scale: 1.0\n",
"Method: IRLS Log-Likelihood: -2998.6\n",
"Date: Sun, 26 Aug 2012 Deviance: 4078.8\n",
"Time: 20:49:59 Pearson chi2: 4.05e+03\n",
"No. Iterations: 6 \n",
"==============================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------\n",
"x1 -0.0168 0.000 -38.749 0.000 -0.018 -0.016\n",
"x2 0.0099 0.001 16.505 0.000 0.009 0.011\n",
"x3 -0.0187 0.001 -25.182 0.000 -0.020 -0.017\n",
"x4 -0.0142 0.000 -32.818 0.000 -0.015 -0.013\n",
"x5 0.2545 0.030 8.498 0.000 0.196 0.313\n",
"x6 0.2407 0.057 4.212 0.000 0.129 0.353\n",
"x7 0.0804 0.014 5.775 0.000 0.053 0.108\n",
"x8 -1.9522 0.317 -6.162 0.000 -2.573 -1.331\n",
"x9 -0.3341 0.061 -5.453 0.000 -0.454 -0.214\n",
"x10 -0.1690 0.033 -5.169 0.000 -0.233 -0.105\n",
"x11 0.0049 0.001 3.921 0.000 0.002 0.007\n",
"x12 -0.0036 0.000 -15.878 0.000 -0.004 -0.003\n",
"x13 -0.0141 0.002 -7.391 0.000 -0.018 -0.010\n",
"x14 -0.0040 0.000 -8.450 0.000 -0.005 -0.003\n",
"x15 -0.0039 0.001 -4.059 0.000 -0.006 -0.002\n",
"x16 0.0917 0.015 6.321 0.000 0.063 0.120\n",
"x17 0.0490 0.007 6.574 0.000 0.034 0.064\n",
"x18 0.0080 0.001 5.362 0.000 0.005 0.011\n",
"x19 0.0002 2.99e-05 7.428 0.000 0.000 0.000\n",
"x20 -0.0022 0.000 -6.445 0.000 -0.003 -0.002\n",
"const 2.9589 1.547 1.913 0.057 -0.073 5.990\n",
"==============================================================================\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Quantities of interest"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print 'Total number of trials:', data.endog[0].sum()\n",
"print 'Parameters: ', res.params\n",
"print 'T-values: ', res.tvalues"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total number of trials: 807.0\n",
"Parameters: [-0.01681504 0.00992548 -0.01872421 -0.01423856 0.25448717 0.24069366\n",
" 0.08040867 -1.9521605 -0.33408647 -0.16902217 0.0049167 -0.00357996\n",
" -0.01407656 -0.00400499 -0.0039064 0.0917143 0.04898984 0.00804074\n",
" 0.00022201 -0.00224925 2.95887793]\n",
"T-values: [-38.74908321 16.50473627 -25.1821894 -32.81791308 8.49827113\n",
" 4.21247925 5.7749976 -6.16191078 -5.45321673 -5.16865445\n",
" 3.92119964 -15.87825999 -7.39093058 -8.44963886 -4.05916246\n",
" 6.3210987 6.57434662 5.36229044 7.42806363 -6.44513698\n",
" 1.91301155]\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First differences: We hold all explanatory variables constant at their means and manipulate the percentage of low income households to assess its impact on the response variables: "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"means = data.exog.mean(axis=0)\n",
"means25 = means.copy()\n",
"means25[0] = stats.scoreatpercentile(data.exog[:,0], 25)\n",
"means75 = means.copy()\n",
"means75[0] = lowinc_75per = stats.scoreatpercentile(data.exog[:,0], 75)\n",
"resp_25 = res.predict(means25)\n",
"resp_75 = res.predict(means75)\n",
"diff = resp_75 - resp_25"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The interquartile first difference for the percentage of low income households in a school district is:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print \"%2.4f%%\" % (diff*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"-11.8753%\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plots\n",
"\n",
" We extract information that will be used to draw some interesting plots: "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"nobs = res.nobs\n",
"y = data.endog[:,0]/data.endog.sum(1)\n",
"yhat = res.mu"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 10
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot yhat vs y:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.figure()\n",
"plt.scatter(yhat, y)\n",
"line_fit = sm.OLS(y, sm.add_constant(yhat)).fit().params\n",
"fit = lambda x: line_fit[1]+line_fit[0]*x # better way in scipy?\n",
"plt.plot(np.linspace(0,1,nobs), fit(np.linspace(0,1,nobs)))\n",
"plt.title('Model Fit Plot')\n",
"plt.ylabel('Observed values')\n",
"plt.xlabel('Fitted values')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 11,
"text": [
"<matplotlib.text.Text at 0x4788b90>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEVCAYAAAARjMm4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VMX6wPHvbnY32d0UQkISUggkdAgdqSERrhCk/QRp\nV5AiTYqAKAKKFKVduwIXEZWmFJEiSFE6V0A6AQEFCb2XkJC6m31/f+yyJlICSQhE5vM8PGTPzsyZ\nc8R5M2fmzGhERFAURVGUe9A+6gooiqIojz8VLBRFUZRsqWChKIqiZEsFC0VRFCVbKlgoiqIo2VLB\nQlEURcmWChaK4nDixAm0Wi02my3btDNnziQyMvKByt+yZQtly5bNafWyeJC6KkpeUMFCKZCKFy+O\nq6srV69ezXK8atWqaLVaTp069Yhq9ldD7uHh4fxTtWpVIiMjOXLkiDNd8eLFWb9+/V3L2bhxo7Mc\nT09PypYty8yZMx+4PqNHj6Zz5845uRRFcVLBQimQNBoNYWFhzJs3z3nswIEDpKSkoNFoHmHN/nLj\nxg0SExNJTExk7969t32v0WjI7p3YoKAgEhMTSUhIYNKkSfTs2TNLwFGU/KKChVJgderUidmzZzs/\nz5o1ixdffDFLA3zjxg1efPFF/Pz8KF68OOPGjXN+b7PZeO211yhSpAjh4eH8+OOPWcq/ceMGL730\nEoGBgQQHBzNy5MhcPfbZuHEjISEhAHTu3JlTp07RokULPDw8eP/997PN36pVK7y9vTl06NBt3507\nd46WLVvi4+NDqVKlmDFjBgCrV69mwoQJLFiwwNnDUZScUMFCKbBq165NQkICR44cISMjgwULFtCp\nU6csaQYMGEBiYiJxcXFs2rSJ2bNn8/XXXwMwffp0fvzxR/bt28euXbtYtGhRll5J165dMRgM/Pnn\nn+zdu5effvrJ2Qjfj3v1GubMmUOxYsVYsWIFiYmJvPbaa/csy2azsWTJEuLj44mIiLjt+w4dOlCs\nWDHOnz/PokWLGDFiBBs2bCAmJoYRI0bQoUOHu/ZwFOV+qGChFGidO3dm9uzZ/Pzzz5QvX56goCDn\nd7cCyIQJEzCbzYSGhjJkyBDmzJkDwMKFCxk8eDBBQUF4e3szYsQIZwN/8eJFVq1axUcffYTRaKRI\nkSIMGjSI+fPn33fdfH198fb2xtvbmw8//DBH13fu3Dm8vb0pUqQI77zzDnPnzqVUqVJZ0pw+fZqt\nW7cyadIkDAYDlStXpkePHs5el4hk+7hLUbKje9QVUJSc0mg0dO7cmcjISOLi4m57BHXlyhUsFguh\noaHOY8WKFePs2bMAnD9/3vlY6NZ3t5w8eRKLxULRokWdx2w2W5Y02bl69Spa7V+/j23cuPGBrg8g\nMDCQ06dP3zPNuXPnKFy4MGaz2XmsWLFi7Nq164HPpyh3o4KFUqAVK1aMsLAwVq1axVdffZXlO19f\nX/R6PSdOnKBcuXIAnDp1iuDgYACKFi2aZdZU5p9DQkKcs60yN/h5Ka8G4gMDA7l27Ro3b97E3d0d\nyHqdj8uAv1KwqcdQSoH35Zdfsn79eoxGY5bjLi4utGvXjjfffJObN29y8uRJPvroI+e4Rrt27fj0\n0085e/Ys169fZ+LEic68RYsWpXHjxrz66qskJiZis9n4888/2bx5c57V29/fnz///DPX5YSEhFC3\nbl2GDx9OWloasbGxfPXVV87rDAgI4MSJE+pRlJIrKlgoBV5YWBjVqlVzfs78m/Rnn32G2WwmLCyM\nyMhIXnjhBbp16wZAz549adKkCZUrV6ZGjRq0adMmS97Zs2eTnp5O+fLlKVy4MG3btuXChQvOc9zr\nN/a7fZf5+PDhw3n33XfvOaZxv+eYN28eJ06cIDAwkNatWzN27FgaNmwIQNu2bQHw8fGhRo0ady1P\nUe5FozY/UhRFUbKT7z2L7t274+/vf8fpfwDffPMNlStXplKlStSrV4/Y2Nh8rqGiKIryd/keLLp1\n68bq1avv+n1YWBibN28mNjaWkSNH0qtXr3ysnaIoinIn+R4sIiMj8fb2vuv3derUwcvLC4BatWpx\n5syZ/KqaoiiKcheP9dTZL7/8kmefffa242oqoKIoSs7kdJj6sZ0NtWHDBr766ismTZp0x+9vvZVa\nEP+MGjXqkddB1f/R10PVv+D9Kch1F8ndXKbHsmcRGxtLz549Wb169T0fWSmKoij547HrWZw6dYrW\nrVszd+5cSpYs+airoyiKovAIehYdO3Zk06ZNXLlyhZCQEMaMGYPFYgGgd+/ejB07luvXr/Pyyy8D\noNfr2bFjR35X86GKjo5+1FXIFVX/R0vV/9EpyHXPrQL5Ut79bBqjKIqiZJWbtvOxewylKIqiPH5U\nsFAURVGypYKFoiiKki0VLBRFUZRsqWChKIqiZEsFC0VRFCVbKlgoiqIo2VLBQlEURcmWChaKoihK\ntlSwUBRFUbKlgoWiKIqSLRUsFEVRlGypYKEoiqJkSwULRVEUJVsqWCiKoijZUsFCURRFyZYKFoqi\nKEq2VLBQFEVRsqWChaIoipItFSwURVGUbKlgoSiKomRLBQtFURQlWypYKIqiKNnK92DRvXt3/P39\niYiIuGuaV155hVKlSlG5cmX27t2bj7VTFEVR7iTfg0W3bt1YvXr1Xb9fuXIlx44d4+jRo0yfPp2X\nX345H2unKIqi3Ikuv08YGRnJiRMn7vr9Dz/8QJcuXQCoVasW8fHxXLx4EX9//yzpRo8e7fw5Ojqa\n6Ojoh1BbRVGUgmvjxo1s3LgxT8rK92CRnbNnzxISEuL8HBwczJkzZ+4ZLBRFUZTb/f0X6TFjxuS4\nrMdygFtEsnzWaDSPqCaKoigKPIbBIigoiNOnTzs/nzlzhqCgoEdYI0VRFLs//4TXXgOb7VHXJP89\ndsGiZcuWzJ49G4Dt27dTqFCh2x5BKYqi5KeMDPj4Y6hVCwID4W8PP54I+T5m0bFjRzZt2sSVK1cI\nCQlhzJgxWCwWAHr37s2zzz7LypUrKVmyJGazma+//jq/q6goiuL0++/QvTu4uMC2bVCq1KOu0aOh\nkb8PEBQAGo3mtnENRVGUvJSRAR9+CJMmwahR0K8faB+7ZzEPJjdt52M3G0pRFOVRO3QIunUDsxl2\n7ICwsEddo0evgMdJRVGUvGOxwPjxEBVlDxZr16pAcYvqWSiKogCxsfYA4esLu3dDsWKPukaPF9Wz\nUBTlsXb9+nU6dnyJ0qVr0rJlR86dO5en5aenw+jR0KiRfVxi9WoVKO5EDXArivLYstlsVKsWyeHD\nlUhP74JOt4LAwO85cmQPRqMx1+Xv2WPvTQQHw+ef2//+J8tN26l6FoqiPLbi4uI4evQU6elTgNpY\nre8SH29mz549uSo3LQ3efBNiYmDIEFix4p8fKHJLjVkoivLYMhgM2GxpQDrgBmRgs93EYDDkuMwd\nO+y9iVKlYP9+KFo0r2r7z6Z6FoqiPLaCg4Np3LgRJlML4Evc3NpToUIQ1apVe+CyUlJg6FBo2RJG\njoQlS1SgeBBqzEJRlMea1Wrl448/5ddfY6lYsRRDh776wOMVW7faexOVK8PkyeDn95Aq+5jLTdup\ngoWiKAXChg0bePvtd0hISKRDhzYMHfo6Li4u98yTnGwfm5g/3x4k2rTJp8o+ptQb3Iqi5CsR4erV\nq7i5ueHu7v5AeVNTUzl27Bi+vr74+vpy8uRJPD09KVKkyF3zLF26lDZtumGzDQXOExs7nm3b9vDD\nDwvvmmfTJnjpJfvifwcO2N+fUHJBCqACWm1F+Ue4cuWKVK/eQAwGL9HpjDJo0FCx2Wz3lTc2NlZ8\nfYuJh0dZMRi8xMsrUMzmYmIweMrAgXcvJzQ0QmCl2Nd7FYFBotWa5cyZM7elTUwU6ddPJDBQZNmy\nXF3qP05u2k41wK0oygPp3n0AsbERpKdfw2o9zRdfrGH+/Pn3lbdVq39z5coYEhMPk57+BzduaElK\nmk16ehwzZvzIsmXL7pgvJSUFyLxVgT9arcFx/C/r1kFEBNy8CQcP2gezlbyhgoWiKA/k1193YLEM\nwN58+JCU9AK//LIj23w2m40TJw4BnRxH/IBngYNAYZKTn2Pfvn13zPvii+2AHsBeYDXwPkFBfpQo\nUQKAhATo3ds+iD11KsycCd7eubpM5W9UsFAU5YEUKxaKRrPR8cmG0biFkiVDs82n1WoJDAwHbvUe\nbgDrgNJAKibTOsLDw++Yd+LEsfTtG4Wraww6XWdq1CjHzp1bcHFxYfVqqFjR/nDqwAFo2jTXl6jc\ngZoNpSjKA/ntt9+IjGxMRkYENttFypf3ZtOmlbi5uWWbd8eOHTRu3AooTmrqcSADV9eyZGSc41//\nqs3ixXPR3uemEdevw6uvwoYNMGMG/OtfubuuJ4GaOqsoSr66cuUKW7duxWw2ExUVhU53/xMr4+Pj\nOXjwIH5+fvj5+bF37168vLyoWrUqGo3mvspYvhxefhlatYKJE8HDI6dX8mRRwUJRlCfC1aswcKB9\ne9Mvv4To6Eddo4JFLSSoKMpjyWKxEBcXR0JCwn2lFxGuX79OWlrabd8tXmyf6eTra997QgWK/KWC\nhaIoD8XBgwcJDi5NREQUfn7BfPzx5Humv3jxIlWq1CMgIBR390K8885EAC5fhvbtYfhw+O47+Phj\n+3anSv5Sj6EURXkoQkPLc+rU60A34CQmU102bVpGjRo17pi+YcOWbNlSBqt1EnABozGKgQMX8vXX\nVencGcaOhTzYwuKJpsYsFEV5JETkjoPSqampmM0e2GzpgP17s7krn3wSyUsvvXTHsjw8/Lh5cx8Q\n6DhyiCJFfFm+3I9atR5O/Z80BWrMYvXq1ZQtW5ZSpUoxadKk276/cuUKMTExVKlShYoVKzJz5sz8\nrqKiKH/z008/UalSfcLCqjB8+Cj2799PqVJVcHHRERxcml9//TVLeldXV7y8igDrHUcSgK2EhYXd\n9RyBgcWALY5Pgk63lzFjVqhA8bjI8UIhOWC1WiU8PFzi4uIkPT1dKleuLIcOHcqSZtSoUTJs2DAR\nEbl8+bIULlxYLBZLljT5XG1FeaLt3LlTTKYiAksEdorJFClGYxGBGQLpAovF09Nfrl69miXfunXr\nxGz2FS+vRmIyBUufPoPuuYbUDz/sFheX1aLVxonR2EEiI5tIenr6w768J0pu2s58XXV2x44dlCxZ\nkuLFiwPQoUMHli1bRrly5ZxpihYtSmxsLAAJCQn4+Pg80BxuRVHy1vffLyE5uQ/wfwAkJ08D6gK3\nHic9h0bzAQcOHCAqKsqZr2HDhhw7doD9+/cTEBBA5cqV71i+CHz9NbzxRjVeeSWRmjV/wte3Ow0b\nNsx2CXIl/+RrK3z27FlCQkKcn4ODg2/rvvbs2ZOGDRsSGBhIYmIiCxfeeQni0aNHO3+Ojo4mWs2j\nU5QcmT17Dl98sQCTyY3Ro4dQp06dLN+bTEZ0unNYrbeOXHb8fRH74n4JpKcfx+8OOwoFBAQQEBBw\n13OfOgW9esGlS/Dzz1CligfwhG86kYc2btzIxo0b86awPOzhZGvRokXSo0cP5+c5c+ZI//79s6R5\n5513ZODAgSIicuzYMSlRooQkJCRkSZPP1VaUf6zPP/9CTKaSAt8LTBeTyVd2796dJc3Zs2fF2ztQ\nXFwGCnwgJlOQPPdcOzGbS4iray/R68OlUqXatz1SvhebTWTaNBFfX5F33xVRT5vyR27aznwd4A4K\nCuL06dPOz6dPnyY4ODhLmq1bt9K2bVsAwsPDKVGiBL///nt+VlNRnhgffDCd5OQvgNZAT5KTBzFj\nxuwsaf73v62kpNxEq52LTjeG0aMHsnjxAt5/fygi32Cx1CI29mlq1mzA/v37sz1nXJx9Hacvv4SN\nG+072en1D+XylDyUr8GiRo0aHD16lBMnTpCens6CBQto+bcF58uWLcvatWsB+0s6v//++z1nUCiK\ncrsdO3YwfPibvPvuOC5cuHDXdPZprxmZjticU2FFhAkTJtGhQ29SU6tisXyP1bqMsWP/Q1JSEkuX\nriU9/QPgG2A8SUnDGTv2g7uey2azb21asyY0aWLfF7tChTy5XCU/5F0H5/6sXLlSSpcuLeHh4TJ+\n/HgREZk2bZpMmzZNROwzoJo3by6VKlWSihUryjfffHNbGY+g2opSYKxcuVJMJj+Bt0Wv7y2+viFy\n7ty5LGmsVquIiHz99UwxmYoLzBX4RMxmX9m/f7+IiHz00afi5lbGsUPdLAFfgZ3i4VFKDh06JHXr\nNnXMkLq1e9238swzbe5Yp6NHRRo0EKlTR+Tw4Yd7/crd5abtLJCtrgoWinJ3Zcs+JfCDsxHX6frL\nm2+OFBGRvXv3SkhIWdFotFK4cIgUKRIiGo1eNBoP0WpN0rhxK0lOThYRkbCwqgL/yxQMxgm8KEZj\nIYmPj5cvvvhSTKayAtsEtojJFC7ffjsvS12sVpEPPxTx8bH/7YhRyiOSm7ZTrQ2lKI+BPXv20Lfv\nIPr2HeScOp5TN2/eBP6adWi1hnDmzAV++OEHnn76WU6ffhORdK5d+4TLlxMR8UVkPTbbcTZvdqFP\nn8EA6HQuQGqmkpNxcVnM1KmfsGbNGjIyLAwa1JbQ0F4ULdqdtm0jCQ0t5kx95AhERsLSpbB9Owwe\nDGombAGWh0Er3xTQaivKHW3dulVMJl+BdwXeEbPZV3bu3Jnj8l59dbiYTNEChwQ2iMHgLwaDp7i7\nPyUQkqmnIAKVBHpk+nxUfH1DRURkzpy5YjIVE/hSNJrx4ubmLatXr5YqVeqJu3sDMRq7icnkK336\n9BeTqai4u/9bTKbiMnjwWzJpkr038dlnIhkZeXSjlFzLTdv5QDmtVqvcuHEjxyfLKypYKP8kjRu3\nEfg8U4P9qbRq9e9s802Z8l/x8goQNzdP6dixu6SkpIiIiMVikUGD3hA/vzAJCakger1JYL/AOYFC\nAhcd57km4CkQk+ncP0rJklWd51i2bJm0avWCvPBCDzlw4IB8/vnnYjLFCNgc6RcIuAmccHyOF41m\nt9SufVOOH39ot0zJody0ndk+hurYsSMJCQkkJSURERFBuXLl+M9//vOwOzyK8sRITk4FfDId8SEp\nKfVuyQFYuXIlr78+iRs3fiY19RhLllxh4MA3ANDpdHz00UQuXvyTlSvno9P5AJWAosAQoDIuLi8C\nEcBzwB9AM7TaVzCZujJlykTneVq2bMnSpXOZO/cLKlasyMWLF0lNrcKtxQHtZXoBt/bg9kLkRwYO\nXEGJErm7L8rjJdtgcejQITw9PVm6dClNmzblxIkTzJkzJz/qpihPhN69O2IyDQM2AOswmd6kZ88O\n98zz448/k5zcD6gIFCE19V1+/PGnLGnOnz9Ps2bPk5JyDbj1XSsMhmTM5tXAKGAmsBcwULv2PrZv\nX0fjxo3vet4GDRrg5jYXOAKkodN9jj1QXHek2Aq8R0pK8oPcAqUAyDZYWK1WLBYLS5cupUWLFuj1\n+vveJ1dRlOx16vQCH330BqVLv0GZMiOYMmU07dq1vWceP7/CGAyHMx05TOHCPlnS9O37OufOPQf8\nCHQGiqLT1WXWrOkEBpYAbi3D4YlOF0jDhk8TERFxz/NGRUXxwQdvYzLVQaPxJjAwBlgOjANMQGvc\n3AoRHh7+AHdAKRCye071ySefSGBgoMTExEhGRobExcVJ/fr1c/zcKy/cR7UV5R/t6tWrEhJSRkym\n1uLq2ldMJl/ZvHlzljRly9bKNPU1RWCCtGjRQUREVq1aJUZjEdFo3hK9vocUKVJMzp8/f9/n37nT\nJhERNmneXGTUqK/EaAwWg6GnmM3VpUWL9vdcXVZ5dHLTdj7w5kciQkZGxiNdCVZtfqQocOPGDRYs\nWEBycjJNmzalTJkyWb7v3LkXCxdqSE//L5CO0diKUaOe4Y03XgNg165dLF36A2azie7du+Hv75/t\nOVNT7TvWffkltGmzle++e4GUlETq1KlNkybRhIWF8X//939otWpW/uPooe6Ud+HCBd58803Onj3L\n6tWrOXToENu2bbvrblf5QQUL5Ul28OBB9u3bR2hoKPXr17/rY+H4+Hiefro5f/xxEpstjUaNolmy\n5Bv0OVyI6ddfoVs3KFsWOnfeRqdOz5OcvBgohptbP9q182PWrGm5uDLlYctV25ld16NJkyYyf/58\niYiIEBGR9PR0qVChQo67MnnhPqqtKP9IX3zxlZhM/uLu3kHM5pLSq9cr90yfkZEhx44dk1OnTuX4\n0VByssiQISL+/iILFthXjB02bIRoNKMyTbk9Jj4+xXJUvpJ/ctN2ZttXvHLlCu3bt3duQqLX69Vm\nRIryCKSkpNC//0CSkzdx8+Y8kpL2MHfuMnbt2nXXPFqtlvDwcEJCQu7YAzl48CBt2rxIo0bP8fXX\ns277rfN//4PKleHMGThwANq1A40GfHy8MRiOZUp5FE/PQnl1qcpjKNtg4e7uztWrV52ft2/fjpeX\n10OtlKI8aeLj49m0aROxsbF3fUxw/fp1tFojcGtswgOdrgJnz57N0TmPHTtG7dpPs3hxAOvXP0Xv\n3sOJiXmWhQsXcvOmMHCgPThMmgTz50ORIn/l7dGjB/7+uzEa26HTvYbJ9GKW9zOUf6Dsuh67du2S\nOnXqiKenp9SpU0dKliwp+/bty3FXJi/cR7UVpcDYu3eveHsHipdXXTGZQuTf/37pjo+MrFar+PuX\nEPjK8Qb1djGZfOXEiRP3LP/o0aNSu/a/pHDhEImMbConT54UEZE333xLoLxjCZBwx9vd/cXNrae4\nu1+STp1Erly5e7nx8fEyefJkmTBhguzduzdX90DJH7lpO+8rZ3p6uhw4cEAOHDjwWGygroKF8k9S\nqlRVgdmOZ/9JYjRWkKpVI6VcudrSp88gSUpKcqY9cOCABAeXFp3OJGZzYVm+fLkkJCTIsGEjpXr1\nKKlUqZb06zdYLly4IDabTaZOnSYGg59AHYGfxcXlHQkNLSdpaWnSuHGMQJRAmiP4vCOwWOCaaLXt\nbpuKqxR8uWk7s50NNWvWrCwj6Leee7744osPt8tzD2o2lFLQ2Gw2pkz5L1u27KJ06VCGDXsNd3d3\nANzcPElLOwl4A5eAsmg0ryHSADe3T4mKsrJ69WJnWampqVy/fh1/f38sFgvVqkXy++/hZGQ8A3yB\nRpOGv388ffq8xMSJc0hNHQOcAD4EtuPhEcO2bYt5++3xLF5cGxjgKPkGsMLx91E8Pefx22+7btvN\nUim4HurU2f79+zsDRGpqKuvWraNatWosWrQoRyfMCypYKAVNly69WbToEMnJXXB13UDp0sfZtWsT\nBoOBKlXqExv7PCKdgZpAELDFkTMdna4Q165dxGw288wzzVm//mfHdyYiI2uyd28CN2/+in29pkSg\nKEZjQ3S6XSQmrgIqO9K/Anjj5jaVI0d28cMPy3n99dWkpS0FXIAXgZeAaABcXAbw1ltFGD367Xy4\nQ0p+yE3bme20psmTJ2f5HB8fT/v27XN0MkV5EsXHxzNv3rdYLOcAD9LSXuLEiZps2bKFRo0asWjR\nTKKjn+XChfFkZFQHEgDB3vinAIJOp+ONN4azfv0Z7L0PE/BvtmzZhl5fnL8W9jMCOkRMjkYh8wYS\nWvT6L3n++ecIDQ2lePGX0Wg6oNPNw2D4kOTkOGCoM3VGhg/JySkP+e4oBcUDv2ZpMpmIi4t7GHVR\nlH+k9PR0tFod9oYcQING40l6ejoAJUuW5Pjxg4SGhgA1gINAd+BrIJr27V/AaDSyevUmYDD2x1Wu\njp/9sFoPoNGMAX4BugCh6HTr6dXrRczmztjXbvoUvf5rxo0byMcfT6NLF3jlFReWL/fh0KHabNs2\ni9de64fJ1Af4FViC0TiVtm1b59dtUh5z2fYsWrRo4fzZZrNx6NAh2rVr91ArpSiPizVr1jBmzEek\npaXz8sud6NGj+wOXUaRIEapXr8nu3T1IS+uNi8sG3NziqFevnjONwWCgRo1KHD/+FfAN9tVbNwAm\nypa1r/UdHOzHwYObgK7YexJbgUKEhBSjfPkD7Ngxm4wMKxERFZg6dS4VK1akePFQ5s2bire3J+PH\nb+bkycpUqgTPPWd/b8LV1cqIEbNYsWIt/v6+dOpUlbVr++Du7s57782lZs2aub2Fyj9FdiPgGzZs\ncP7ZsmWLnDp1Ksej6XnlPqqtKLm2adMmMRr9BOYLrBSTqZRMnz4jR2UlJCRI164vS+nSNaVp0+cl\nLi7utjSXLl0SFxcvgSPON6M1mpEyfPibIiJy4cIFMRgKC9QQaCRQWPR6L1m2bNkdzxkbGysrV66U\n06dPy5UrIv/+t0h4uMjGjX+l6dKljxiNjQW2CEwVD48izqm1yj9PbtrOAtnqqmCh5IdOnXoKfJxp\nSYufJCLi4a643LfvYHFzixaIFVghJpOf7Nixw/l9fHy8DBgwQMLCwkWj0YubW4AULhyUJY2IyJAh\nI8RkChQvr2fEYOgqhQunyODBIplm4YrNZhODwSxwxXmNbm7dZMqUKQ/1GpVHJzdt513HLNzd3fHw\n8LjjH09Pz/zq+CjKI2Mw6LEPMN+SnGdL3WzdupXWrTvTsuW/+emnvzYt+vjjSfTpU4ugoHaULj2a\n7777OsujIC8vL/r168f58wmIHCA19TzXrn1K06atsdlsAOzYsYP//ncuyckHuXHjJ9LTp3LjRnPS\n0gaxdevaLPVwcdFjn0Flp9UmYjAY8uQalX+YPAxa+aaAVlspYPbv3y9ms6/AfwT+K0ZjUVm6dGmu\ny926dauYTL4CUwRmiNEYICtWrLjv/IsWLRJPz1aZejwibm4+cuHCBRERmTdvvri5fZjlezALjBST\nKUS+/nqms6xRo94Vs7miwAzR6QZJQEAJuXr1aq6vUXk85abtvO+cFy9elJMnTzr/5NSqVaukTJky\nUrJkSZk4ceId02zYsEGqVKkiFSpUkKioqNsrrYKFkk/27t0rnTr1lOef7yJr1qzJkzLbtHlR4LNM\nDfl8qVev6X3n3717txiNRQViBDwEiomrq7tYLBY5d06kYcMbotEcFjjpLB+KOd7S/lX8/cOcZdls\nNpk1a7Yzg5V5AAAgAElEQVQ8/3wXGTBgyANtgKQUPLlpO7PtU//www8MGTKEc+fO4efnx8mTJylX\nrhy//fbbA/diMjIy6N+/P2vXriUoKIiaNWvSsmVLypUr50wTHx9Pv379WLNmDcHBwVy5cuWBz6Mo\neaVKlSrMmTM9T8vMyLABmfeUMGC1ZgD2abYLFizg8uXLNGjQgBo1atyWv1q1ahQu7MXZs6HAt8A+\nbLY2fPDBJT74IJBevTxp02Yxr776CjabGYslHfgZ+wyqAFJSkpxlaTQagoODqFevCuHh4fe1AdKj\nsGHDBvbs2UOJEiXU5kqPSnbRJCIiQi5fvixVqlQREZH169dLt27dchSZtm7dKk2aNHF+njBhgkyY\nMCFLmilTpsjIkSPvWc59VFtRHlvr1q0To9Ff4BuBRWIyFZP58xdIWlqa1KwZLWbz02IwDBCTKUC+\n/XbebfmtVqtotTrHmk723olWu1+Cgq7I7t1/pUtMTJSVK1eK0egjsETggBiNMdK9e19nmpEj3xGz\nOUxcXfuL2VxRXnihR5a1qB4HY8dOEJOphOj1A8VsribPP99ZbduaQ7lpO7PNWa1aNRERqVSpklit\nVhER50ZID+q7776THj16OD/PmTNH+vfvnyXNoEGDpF+/fhIdHS3Vq1eX2bNn315pkFGjRjn/bNiw\nIUf1UZS8ZLPZZMKE9yQgoKQEBJSS99//6K6N2qpVqyQyspnUqRMjCxYsFBGRefPmidncQCDDEQR2\ni5eX/x3PYzYXFjjgSGcTg2GGTJ8+U9q16yphYVWlefP2cubMGRERWbt2rZQrV0sCA8tI376vSmpq\nqoiIXL58WVxdPQUuCKQLdBLQi4uLm7Rr1+WxWDQ0Pj5eDAZ3gXNyay9xsznsttlfyp1t2LAhS1uZ\nm2CR7WMob29vEhMTiYyM5IUXXsDPz8+5ANqDutv2j5lZLBb27NnDunXrSE5Opk6dOtSuXZtSpUpl\nSTd69Ogc1UFR7sZqtbJnzx6sVivVq1fH1dX1vvJZLBZ27tzJwoWLmD59NSkp3wE3GT68Hb/+upVx\n48bd9u83JiaGmJiYLMeuXr1KRkY5/lpYoRw3b15DRLL8v6PRaBg9ejpvvHEFm+00RuMYKlb8k7Fj\nz3LmzBnAxvHj16lZswHr1//I1atXmTp1IlFRUVnKuXbtGnq9D2lp/sA44CJwnYwMDcuXP8c770xk\n7NiRD3ob89SNGzfQ6TxJTy/qOOKGTheWZY8d5e6io6OJjo52fh4zZkyOy8r2wd+yZcswmUx89NFH\nxMTEULJkSZYvX56jkwUFBXH69Gnn59OnT9+2omVISAiNGzfGaDTi4+NDgwYN2L9/f47Opyj36+bN\nmzz11NM0atSVmJh+VKjwFJcvX75nniNHjlCqVFUMBm/q1+/EZ5+tJyUlAUgD2mOxFOW77w5Tpkx1\nPv10SrZ1aNCgARrNYuB/QAJ6/VDq1ftXlgbeZoP//hcmTWpDr15hjB8/n6lT6zNs2ADOnLkI7MQ+\n3bcHFy7EU7VqPXr0mE+LFn157rkXnNNrAYoXL467uwaN5r/YlwrpB5gBEykp/Vi/fvuD3cSHICgo\nCF9fT7TaD4CbwBJstliqVav2qKv25Mmu6/H+++87u7O5ZbFYJCwsTOLi4iQtLU0qV64shw4dypLm\n8OHD0qhRI7FarZKUlCQVK1aU3377LUua+6i2ojyQ118fIa6u/3Y8ArKJXj9YOnZ8yfn9vn37pH37\nbtK8eUdZunSppKWlOTYi+j+B5wSsjsckYwXCBIY5HxHBS6LRuDtnGm3fvl1q1oyW0qWfkjFjxjkf\n76anp0unTi+KwVBYtFpXadCgqVy6dEkGDx4iAQFlJDi4iVSseFFq1RL52/8SMmHCBIGOmWZYWQS0\nAj85PqeKu3vV26b+Hj58WMqUqS5gFBjkzK/TvSGdOvV8uDf9Pv35559SqVJd0encpFixcrJt27ZH\nXaUCKzdtZ7Y5R40aJeXLl5d69erJZ5995pzLnVMrV66U0qVLS3h4uIwfP15ERKZNmybTpk1zpnnv\nvfekfPnyUrFiRfnkk09ur7QKFkoea9q0nWPA+VZju04qV24gIiIHDx50vG/xvsDXYjIVk/fee1/c\n3cMEegpMzZRvl4CPwPpMx+YK+Mvw4W/K+vXrRaMxOd7dWCVabQ3p1WuA2Gw2adasrRiNTQRmiptb\nO6levYG0atVW7LvZ/SKQIDBCvv8+a4NvsVhk6dKl4uJSPtOg91YBtyyD4G5uvWXy5Ml3vP6zZ89K\nYGBJ8fB4Rjw8npGiRcPl3LlzD/2+K/nroQaLW/bt2ycjRoyQ0qVLS8OGDXN8wryggoWS10aPfleM\nxuaOxtUqrq7dpEcP++SL/v0Hi0YzOsuyH6VK1RCDwVNgokCkwE2BDNHpekuhQkECLR2DxjcFnhYw\nS2BgaQkNLe0YSBaBGY7A4iJRUc+Kq6uPQKrjuwwxm8sKlHGUc6uXEillylQWEXsQK168gmg0WvH1\nLSa1azcUg6Gc6HStRa/3kmLFSotWO9GR75iYTIHy66+/3vUe3LhxQxYvXizff/+93LhxI1/uu5K/\nctN23vdkZT8/PwICAvDx8cn2Wa6iPArbt2+nbNmaeHsH8eyzbR9oEHTYsNeIjNRhNBbDZAolIuI4\nH3wwDgCrNQORzEtg2Ae+hw59DZPpc7TaG4AfLi5FKF/+ANWqVQTWYt9zojCwG3iVhISrnD9/BogH\nNgKjHX/fYNs2XywWG9AReBr4D0lJXbCPX9yiAbz4448/iY2NpWHD5pw40QuRD7hy5Wn27dvDnDmj\n+fLLVhw8uINNm9ZQosS3GAyFMBgq8f77o3jqqafueg88PT157rnnaN26tVrSR7lddtFkypQpEhUV\nJeXKlZO33377tvGDR+E+qq08YU6dOiXu7kUEFgqcFL2+r9Su3eiByrDZbBIXFyfHjh2TjIwM5/Ed\nO3Y4lueYKbBcTKYyMnnyVBGxv3f08ccfy9y5cyUuLk6Cg0sJBAuME2guECr2t7XNAl0FXhYwCVQT\neDNTb+W04/injkdO+wU2iX112eaOx0ofOtK0lWbNWovZXEygpGOsYoiA522rIthsNrl69epjMQ1W\nefRy03Zmm3PYsGGyd+/eHJ/gYVDBQvm7uXPnirt7u0yNr1VcXFzz7AWzTZs2SVRUC6lZ818yffqM\nO74/cejQIQGDwPFMj41qCXgLjMpUt88cA8qNHWkyxL4kR5Djc5LAQAGdQEUBP4FCAoUFpgl8Kw0b\nthSt1lWgW6Zyf5Dixe/9DtSMGV9JyZLVJDy8qkyePFW93PaEyU3bme17FhMmTHjYnRtFyTX7Y5OT\ngA37jPBzaDSa+35X4pYjR45w8eJFIiIiKFy4sPN4gwYN2LixwT3z2qelZgC33gnQAMFAElAyU8qS\nlC1bgbNnY0lMrAScAkoBPwDHgZeBr7C/+9AeqAp0ADoB7phMY+nceThpaYn88kvWclNS7r4N6oIF\nC3nllXdITv4KcGHo0J4YjUa6d++azV1RFArmr+gFtNrKQ5Seni41akSJydRUYJSYTOEyYcJ7953f\nZrNJ376vitFYVLy86omnp79s3br1gepw4cIF0Wi8BNoJHBVY4HhsNECgtNjfuP5DdLow0eu9BCLE\nvhDgH46ewQHH46r3JOvsqiqOn4eK2VzY+Wb4unXrxNW1qMB2gVNiNDaT3r0H3rV+zzzTRuwzs26V\nvUTq1r3/BQyVgi83bWfeLM6vKI+YXq9ny5bVfP3115w5c4769T+jadOm951//fr1zJq1gpSUw6Sk\neAE/0Lp1J86f//OO6dPT0xk3bhwrVmxCxMpvv8WSnq4F2gJW4BkgHXtPZyX23s4zQAKgwWLZCLhh\nX1Dw1tvdFYEA7IPerzmO7XH83ROtdgevvtqPIUMGAdCwYUOmT5/E0KH/Jjn5Jq1bt+aTTybd9Ro9\nPExA5skpl3B3N94tuaJkoXFEmwJFo9FQAKutPMamTZvGq6/uJiXlC8eRDDQaAxZLOi4uLlnSJicn\nU758VU6evAr8B/uKrhsBD+yPj+o7Us5Cqx2NThePi0slUlP3o9PZsFqNiJzAHigGAm8CgcA5oAJQ\nBAjBxaUwGRnLHZ+HA79TuPBiDh3alaPVYffu3UtkZGOSkvoCOkymT1m3bjm1a9d+4LKUgik3bafa\nKU9RgPLly5OevgK44DgyB72+UJblaW6ZMmUqp06lAV8C3YGDwCLsQWIOIIAF+A6t9iqTJ/+HjIwD\niMzHYjmOyC7sy2uUBmZh71E0BaoAbwErcXWNZciQMDw8vIHlQF/gE5KS/sU333yTo2usWrUqv/66\nkYEDkxgwIJ5ffvlZBQrlvt31MdTNmzcBeOuttwgMDKRTp04AfPPNN5w7dy5/aqco+eTw4cNoNB5A\nWcAPuE56ug916vyLoUP74eXlRdu2bfHw8ODkybOImIBb715kYH+k9B4Qhb2XkA6k06dPd6xWK1pt\nO+DWwoH/A3oCOwAftNoOlClzlEuXDKSmTiY9fTR9+vRm5MiRfP75bMDLWU+rtRDp6ek5vs4KFSrw\n8cfv5zi/8gTLblDjTsuR53SJ8rxyH9VWlAfSt+8gx8DyJYHfHO85hAsUFYOhnZhMLaR48fJy8eJF\nWbBggRgMQQIlxL5PREfH+w6rBKYLuAo0EWgnPj4h8vrri0WjOeGYFiuO6a4TMg00HxVf31BJT0+X\nGTNmiMnkI+7u4WIyeUvTps+JyRTlePditpjNvretp6Yo9ys3bWe2OWvXri1z5swRq9UqVqtV5s6d\nK3Xq1MnxCfOCChZKbixbtkzCw6uIn1+YvPzyYElLS5Pp06eLm1s9gWRHAz5a4FkBL4FTAv92vBvh\nIeApBoOvgKeASYzGQNFqzY73KbwFxjsDgUazVszmGxIa+qaYTM+KVjtc9Hov0esbC2wUqC8QKj4+\nxeWLL75wrBv1i3MmlNFYWAYOfF1Kl64ptWs/I7/88sujvn1KAfZQg8Xx48elRYsW4uPjIz4+PtKy\nZUuJi4vL8QnzggoWSk5t375dTCZ/gTUCh8VobCK9ew8Uq9UqrVt3EheXwmLfrzrQ0XPo7OgFuDl6\nDz0F6grsE1gjRmOAFC1aQlxc3hE4K1BcYE+mXsNh6dJluKSkpMi0adNk7Nix8vPPP0vlyrUc02Tn\nC+wXg6GpaLVeAuUy5RVxc6sqGzduzHINly5dkoYNW4jRWEiCg8vK2rVr73nNFy9elBUrVsgvv/yi\nXsJ7wj3UYPE4UsFCyakRI94SGJmpQf5DfH1DRcT+rsXvv/8u48aNk2HDhktU1DPi6tpa7G9hl3Y0\n7BX+FgwmiE7nnekR00ixLzliETgien2ArFmz5rZ6vPfee6LT9clUzkWxv5NRSOCQ49ifAu7SoEGT\nLMuP1KrVUPT6gQKXBVaKyeQrx44du+P1bt++XTw8/MTTs7GYzaWkRYv2WcpSniy5aTuzXUjw999/\np1GjRlSoUAGA2NhY3n333Yc2hqIouXHp0iU6dnyJKlWi6NlzAAkJCVm+9/Bwx2A4k+nIGUwm+86P\nVquVhQsXs27dTuLjk5kz50uaNTOh0ezBvqHQaewTCM87c7u4nCMjIwn4P+zTW1/DPhuqEhBFq1aR\nNG7c+LZ6uru7o9dfyVxz7PNNxgA1gWigFjCJ3buPsm/fPgDS0tLYsWMTFksyMBEoj0YTw5YtW+54\nPzp27Eli4mQSEtaQlHSA9etPsHDhwvu4k4ryN9lFk8jISNm+fbtUqVJFROy/fZUvXz7H0Skv3Ee1\nlX+469evy/z582XevHly7do1ERFJSUmRsLAI0esHC6wTV9euUqNGlGRkZMj169dlwIAhEhXVQsxm\nX9HpugqMFqMxQBYtWiQiIq1adRBX1/oC80Wv7yclSlSQM2fOyKRJk0SjcXOMWZgFfAXeFegnGo27\naLVFHYPiSY7HVmUE3hMPD7+7PrK9fv26BAWVEr2+h8D7YjQWFy+vANHrm4l9LaifBeIERDw9a8nm\nzZtFRGTWrDliX9b8U4E3BIqKyVRVlixZcsfzuLp6CFxz9mB0utec+8goT57ctJ3ZvsGdnJxMrVq1\nnJ81Gg16vf4hhi9FubezZ89SvXokSUnlAQ0m03B2797CqVOnuHzZBYvlA0BDWloUhw4V4/fff6d1\n684cP16F9PRO2LfnXIRGY8Fm0wMaxo6dwLJliwFfYCQWy3LOnfuZkJByiJQBnkar3YxIcUSmA0sd\naRths83CPr31MnAGOE+hQpOZPXsGxYsXv+M1FCpUiP37t/HZZ1O4ePEUFSoMYcaMBRw7thuwkZGx\nApvtZbTaDzAaL1G1alUA3n77P8Bi4NY6VYl4e6+mWbNmdzxPRER19u6dSkbGCOACBsMSqlefmtv/\nBMqTKLtoEhMTI0ePHnX2LL777juJiYnJcXTKC/dRbeUfrFOnnuLiMtz527KLy5vSseNLsn37dnF3\nLy/2VVztW4kajX4yf/58cXevlmlcIcUxq6mkwDZxdS0sBoO/Y9bTToFWjgFug9jXebqVb4Zotb7y\n1+5zyQInxb7e0q0VZgcJ/CEazRQpXDjI2evZvHmzdOv2svTtO0iOHDmS5XouXrwonp7+Al8I/C56\nfR/x9AwSf/9wqVq1nowZM0a+++47sVgsEhBQSiA201jHSBkyZOhd79WJEyckLCxCjEZ/0evNMnr0\nuIf630Z5vOWm7cw257Fjx6Rhw4bi5uYmRYsWlbp166rZUEq+y8jIkJSUFBERiYxsLvb3G241mMuk\nbt2mYrFYpGrV+o69tL8Ro7GZNG78f7J27VoxmWpkSp/ueJQTLrBf9PqmAlGOgWl/gcECDcQ+bXZS\npnwHxGAoIq6uQwSuC8wW6OIoa6zYlxC3OdN7ejaUVatWyY8//uiYgfWBaDRvi7t7ETl8+LDz2r76\n6ivRaKIznccqOp27zJo1W0wmPzEae4q7ex2pV6+xvPHGW2I01hL79NqFYjIVkV27dmV7706fPi0J\nCQkP9b+R8vh7qMHi1mbyiYmJj81WiypYPFk+/PBTMRjM4uJikDp1/iXDho0Uk+lpgRsCCWIyNXT+\nxpyYmChDh74pTZu2k9Gj35W0tDRJSkqSwMBSYt8jYo1Ae7G/NOfn+C09QOybFBUT2CaZtzCFogLn\nHL2JrqLTLRST6by4ubVyBJMgxziGm9hfxrs1PmARKC5Vq9aViIj6At87g4FGM1p69RrgvL7mzZ8T\n+74Vt3pEF0Wj0YuXV4DYV5S1BxCTqY4UKuQvLi5eAoUkJKRittNmFSWz3LSd2Y5ZlChRgpiYGNq3\nb0/Dhg0f7jMxRfmbtWvX8tZbH5CefgAIYdeuwbi7H6Bt29LMnVsEgDZtuvDmm0MB+yyjSZOyztYz\nGAzs3r2ZGjUacu7cIkRKA9fQaDzQaJ5F5CYiDbGv71TGkUsDVMa+JEco0ByYjNUai9X6Cva1nVoC\nW4G92Gcy1UejqYtIN+yLC4ayf399tNppjnIsQDNECpOS8teSOTbbrWVD/g+oB8zCxyeYa9dOO+oA\n4EJychmSk0OABcAxrl5tkGXPDUV5mLKdOnv48GEaNWrE5MmTKV68OP3797/rND1FyWv/+98vpKR0\nAkoAOiyW4Wzb9gszZ04jJeUmKSk3mT17OjrdvX/vCQgI4OTJA3z++Sj69q2En98VtNoAbLbOaDQV\ngP3YFwIcAFzFvn7TQqA/9sb5U2AX9vWdFmLfiGgj8C72JcZLANMROQ+MBRoBP2GztcdqTQEOAV8A\nlTAax9GlSztn3Zo1i8ZodAWeAs5iMLjSpUtHnnoqGp1uJPZ1pnYD3wPDHLlKotE0Zs+ePShKfsg2\nWJjNZtq3b8+SJUvYt28fN27cIDo6Oh+qpigQGFgUo3EX9n0hAHbi7x8I2PewyDwzb8aMr6hYsR6V\nKzdg4cLvbisrLi6O3377gxMnTpGY6E5GxhZgPDbbOuAYsAH7bnUhwIvAMuzLh18GXgAy/xZfAUjF\nHgRuOQo0wR5ITmNfaPA17MuY/wCsBerTtGkUjRo1cuZ6+eXe9OrVEJ3uXVxcPue556owfvwoli6d\nS/Xqe9FqzXh6PovRqMU+kwvsu+/tIDQ09IHup6LkWHbPqWw2m2zYsEH69OkjxYsXl7Zt2zrnpT8q\n91Ft5R8iNTVVataMEnf32uLu3lHMZl/nOweZzZw5S4zGcIGfBFaIyRQsy5cvd35/9OhR8fDwE+gq\n0MkxG2qFc8Bbq/UUk6mmwFsCtUWj+VHsu931coxdlHYMel8UOOb47CP2t647iX0ZED+BgwLfi1Zb\nTGCUaDRFBHZkGryeKs8++7zs27dPLBZLlmuwWq23HRMR5xvXq1atEpPJVzw9m4nZHCadO/dSy3co\nDyQ3bWe2OUNDQ6VVq1by7bffSmJiYo5PdMuqVaukTJkyUrJkSZk4ceJd0+3YsUNcXFzk+++/v+07\nFSz+mY4cOSKbN292Tje9JT09XZYuXSqzZs2640y8lJQU8fQMFViaqVH+Spo37+hM07//q47GvphA\na0dDX1Rgs+j1zUWrLSJ/LSKYIVrthxISUlE0mv8IpAqMcwxkGx15Jwr86iijvNhfxPtdIFnc3GLE\n07OoaLX2l/hcXOoJvCDQVjSaYDEYioi7eympWLHWbdeanVOnTsmSJUtk+/btKlAoD+yhBQur1Spj\nxozJceF3Ki88PFzi4uIkPT1dKleufMfllq1Wqzz99NPSrFmzO/ZiVLD4Z/lr/+sA8fKqI56e/rJt\n2zbn99u2bZMBA16VoUOHy/Hjx2/L/8Ybbzka8CYCMxyzij6Qtm27ONPUrRvlmL00WOCMwBEBg3h5\nBUn16k+Ju3tMpkAjYjKFS3R0jJhMAWIweIvBYJbo6GdEo3k9U7rtotH4iLv7U2I0+ole7yF6vbsU\nKRImOl1/Rz2+FXAXmCIwVewr1f4kYBODoZd069Y3P26xoojIQ+5Z1KhRI8eF/93WrVulSZMmzs8T\nJkyQCRMm3Jbuo48+kilTpkjXrl1VsHgC/PTTT2I2lxGId0xZnSUBAeEiIrJmzRoxmfwExolW+7p4\nevpnWTQvIyNDvL2LC0QLfCBQQ6CWaLXusnv3bhER+fbbeaLX+wm8L/aX5oLEvkKsr8DbotcPE/s+\nFrsEzolW+x/RaNzFvtT4J2I0+smSJUukR4++jt7F+2JfEqSE9Ov3ivz888+SlJQkGzZskGXLljke\nd/0icEXsL/V9kaXHA5XF/gLgT1Kt2tOP5J4rT6bctJ3ZTp2tX78+/fv3p3379pjNZufxatWqPfD4\nyNmzZwkJCXF+Dg4O5tdff70tzbJly1i/fj07d+5Eo9HcsazRo0c7f46OjlaD7gXY0aNHsdmiABeg\nGfA/LlxIpXv3vuzbd5jk5KlAG2w2uHnTwEcfTWHy5A8B2LdvHzdvZgA/Yd/TuhdQlKefbuD8Nzp8\n+HgsloXYd7EDSAMGA2HAKCwWKy4ukVSooOf48T/Q6UzEx5cFRgOQkhLFu+9+wm+/HQR+xL6d6gZE\nLjFixBv4+/vTqlVH1q3bQWqqEUgGWmAfhDY7rukWN+xTaGthMDSgatXyD+GOKordxo0b2bhxY56U\nlW2w2Lt3LxqNhrfffjvL8Q0bNjzwye7W8Gc2aNAgJk6c6NxYXO6yuXjmYKEUbBUrVkSjeQ94BfAB\nrgHJLFjQFHf3K9i3ObWz2fxJTPzN+Tk5ORk3N38slluzosxoNCbGjx/lTJOSkox9HadbDI7zTAcO\nAKUR2cuuXUno9XrKlKlOfLw79im0AjTn1KkzuLoWJzU1iltBx2SK4NKlS6xZs4YNG86Tmvo70Bpo\nA7wDXAfqYt8/24h98uFQYDKwBU/Phbz/fmwe3EFFubO//yI9ZsyYHJeVbbDIq6gEEBQUxOnTp52f\nT58+TXBwcJY0u3fvpkOHDgBcuXKFVatWodfradmyZZ7VQ3m8NGjQgGefrcuiRUuAVdj/WXqSnNyN\n8PAvuHlzMMnJ/wXiMZkm0qnTTGfeqlWrYjZfIylpEjZbS1xcZlGiRNEsPd8WLRrz5Zddgf8CJ7C/\nTFcKWAeMwMXFTOPGLZ3TcHU6V+BVwN1RwiAKFZrAxYunsE+nbQkswsXlGqVKlWLBgu9ITn4GcAX2\nANOwv9RXGOiIVjsFF5cBWCzhwCdAK+Akzz7blEKFCuX5/VSUhyK751Tnz5+X7t27O8cafvvtN5kx\nY0aOnnlZLBYJCwuTuLg4SUtLu+sA9y1du3ZVs6EecwcPHpSJEyfKp59+eseZPTabTTZv3ixz5syR\ngwcP3rWcatWeFqgtf+1NbROttr0MHz5S3nlngoSGRkipUtVl/vwFWfL98ccfMmPGDKlZ82kJCCgl\nMTFt5Pz581nSrF+/3jHFdazAVYF5mcYQjohe7yU3b950pu/YsbtotSMypXlVgoPLydq1a8Xfv4Ro\nNC4SGFhSdu7cKSIi8+fPF6OxktjXi6ot8LkjX5pjBlYhadQoRkym2mLf23uDmEzBsnr16tzcekV5\nYLlpO7PN2aRJE5k/f75ERESIiH0aY4UKFXJ8wpUrV0rp0qUlPDzcua7+tGnTZNq0abelVcHi8bZ+\n/XoxmXxFpxskbm4dJDCwpFy5ciVLmh49BojZXFLc3TuI0egnX301M8v3qampkp6eLlWrRjtmMhUT\neEagqnh5BTkXv7NYLLJp0yZZtWqVXL9+XUREPvvs/9u787ioyrYP4L9ZYWZYRFYFFQU3QBA3NEwx\nxIWU3FIse9wyszT1SW17yuXJrTJz6a30scxQc8ulXNPEXBJLEBQtN9wFN1D2Zeb3/nGGCQQEWQaw\n+/v5vJ+3mbnPOdecxzkX59z3fd1fUKNxpK1tD2o0jly6tOi/oYsXL1KjaUvguPH/XiAwqkAiuEad\nrm6hba5evUo7O1dKxQV7EmhMtXoABw58iSSZnZ1dqL3BYOC4cZOoUFhRWoNbS8Cffy/P2oGDB4/g\nu9hIrHEAACAASURBVO9OZ/36zenu7suIiNUVO/mCUA5Vmizatm1LkqYS5STp5+dX7gNWBpEsagYv\nr44sWCBPpRrNGTNmmT6PioqiTudO4AHz16O2sLBmVlYWs7KyOHDgMCoUaiqVFuzWrTc1mkYEVhKY\nSLXalr/88gtJaR5FQMAztLJqRRubIDo4NOChQ4doaWlH4CLzlyC1tLRjYmKi6fh6PdmhQ4RxVNKn\nxmGr3YwX8y8JRFKr7cpx4yYV+W5vvfU2gf4E1hlHaV2ljY3zI89HYmIiN2zYwEaNfAg8T+BVAhGU\ny6dw/Ph/V9JZF4Tyq8i1s9RyH1ZWVrh7967p9dGjR2Fra1tFD8UEc1m16jt4ez8FL69OWLny23Lt\nIyUlGUAz0+vc3Ga4ezfF9PrGjRtQKHwAWBvfaQGZzAL37t3Du+/OxI4dydDrk5GXl4ioqPsYNOgZ\ndO68HsHBl7Fr12Z069YNALBkyVLExlohLS0GDx7sx927EzFo0AioVO6QajIBQBOo1Y1MfWJnzwI+\nPndx7FhjALMhjUhaA+AolEoiIGADvL3fxeTJz2Dx4o+LfDc3N1dYWgLA85AWNjoNa2s7vPjiy3j6\n6T6YPXs+8vLyCm3j7OyMQYMGYfXqL6HV7odcbgWV6gDq1FmLadMmlescC0KNUVo2+eOPP9ipUyfa\n2NiwU6dO9PT05IkTJ8qdnSpDGcIWHmHduvXUat2Nk8N+plbbmGvWrH2sfURHR7Nt20CqVD2McxaO\nU6ttyN27d5vaJCQkUKt1oDTT2UBgBV1cmlCv17N1664E9hZ4HBTB0NAhhY5hMBhoMBg4evTrBD4r\n0Da/rLiGwCHjewep0znw9u17/Phj0to6i0rlu5SWH33f+HjInsBUAuOo0dgXmq/xsLS0NDZv7k+t\nNpRq9XhqNA60tXWkQvEfAluo1QZx5MhxJW5/6tQpzpw5i/Pnz+eNGzce69wKQlWpyLWzTFvm5OTw\n5MmTPHnyJHNycsp9sMoikkXFBAf3pzSzOP/iu55BQWFl3l5aTMiRwDTKZH4ENLSzc+OyZUUHPmzb\nto06XV0qlVq6uTUzdXL37RtOuXx2gUdYE/jaa5NJSjP4X3ttMlUqLdVqLZ95pjc1mvbGx0F6Aq8T\nGEaZbAiVSmvqdA1oZWXPr746yA4dyG7dSA+P/sZHTf4ElMZE8XWB7/weO3YMeuT3TE9P54oVK/jp\np59y7ty5tLIKK7B9ChUKdbG1nAShpqrSZLFu3TrTokezZs1i//79TTNjq4tIFhXTt+9QSuUn8i98\nX7J37+fLvL2f39MENpi2VygmccqUt0tsr9fref/+/UK1jC5cuEAHhwa0sgqjtXUPNmjQnLdu3SJJ\nzp37MbXaQEqzqpNoadmW7u5NCSiMdxONKS1/+jmHDBnBs2cv8uWXL9LKKoNvvnmWej3p7u5r7Fxe\nRmkZVd+H7mT+R5XKnqdOneKZM2eo1+up1+u5adMmfvrpp0WKFUZERDxWsjAYDExOThbJRKhRqjRZ\n+Pj4kCQPHjzIrl278scff2T79u3LfcDKIJJFxURFRRkfD80mMJdarQOPHDlS5u0bN/Zj4UqqCzl6\n9OuPHcedO3e4du1arlmzhnfv3jW9HxgYyr+LAp4kYE+ZLMz4KOlZShVe69LCwolLlhxg/fo3KZcf\noEbzb+p0TThlynucPHkKAbcCMX5CwNu4vyjjZ85UKh2p1TZkp07d2afPYOp0balWT6BW25Aff7zQ\nFNPdu3fp5NSowGOoriU+hrpy5QpbtGhLlUpHtVrLpUu/eOxzIwhVoUqTRf7Ip7feeosREREkC4+M\nqg4iWVRcdHQ0X3llAseMGV/qGs4Pe+ut96nVdqFUjO8QtdoGxc4ZiI2NZZs2Xeno2Jh9+4YXGVab\nnZ3NIUNGUKFQU6FQ8+WXxzMvL4+DB4+gXD7LeJEPI7CEwLsEXitw8V9FlepjqtX3qVC8RmnpUxK4\nS43GiYcPHzYOZb1luhOQ6jpZE/A0PqJKMyaNGKrV3ahSNaZUYZYELlOl0jIjI8MU75UrV/jCC6PZ\nufOznD17vmnJ4Ye1adOFCsUMYz/NeWq1ro+VjAWhqlRpsggNDeWYMWPo7u7O5ORkZmZm0tfXt9wH\nrAwiWVSv3NxcTpr0Fh0cGtHVtQVXrvy2SJtbt24Z15D+H4GzVKleZ7t2XU2d1pcuXeLYsROo0fQ0\nXrSTqdV25iefLOTFixdZt64rtdpwymQNCBwkMJbA0gLJIp3ALwS+MCaB45TWz46kVuvP/fv38513\nplOn86CFxevU6bwYHBxKhcK1wD5IIJBAJIEpVCi6FXjfQJWqDtetW/fYpcAVCpUxPmlfFhbjuXDh\nwtI3FIQqVqXJIi0tjRs3buTZs2dJkjdu3Cg04qU6iGRR823evJk2NqEFLr56qtU2TExM5LPPPk9L\nSyfjwkC7CrT5niEhA0iSSUlJXL58OXv06GNMKN8SaEngNqVO7vkEphm3+8DYP9GSQBsCOjZp4s3k\n5GTu27ePCxcu5Pbt25mVlUUnJ3dKI6RSKc3krkfgNi0s+lGlsiWw3Xihn02ZzIk6nRf79h1iWoCo\nLJydG1MaaSYtrGRl1YHr16+vqlMtCGVWkWunzLiDRzp+/DgOHToEuVyOwMDAclWcrUz5RQaFmoMk\nNmzYgJMnT6FFi+ZwcHDAwIHvID29P6T1rO2gVG7B9OnTMWdOJDIztwEYDcAT+dVdlcopCA+/j5s3\nbyEq6ggcHeth+fKF+Oab77FmzWmQyyDVdhoPwBfABkhFAUMh1WLaBqly7X8gk23CK6/0xJdfflYo\nzl69+mH37hMAkiBVhFVBpVLDz68xPvzwHYwaNQE3blwE0ArAZgD1odG0R8OGBty/n4XWrb2xcuVX\ncHZ2LvFc7N27F889NxQKRVeQf6Fz52b46af1UCgUlXKuBaG8KnLtLLWQ4KxZs7BhwwYMGDAAJDFy\n5EgMGjQI77//frkOKNReOTk5UKlUxVYPfvnl8Vi37jekp/eFTrcYoaEtYGl5D+npewC8AyAKKpUV\noqLikJk5BFLRvQ8BPAWZ7DB0OhVsbM7h1CknnDrVBHl5C5GWlomwsBF46aVTUCoNyM09B2ly3Q0A\n8yGVJU8BcATAx5ASBQD0BbkJJ0+eLRLnlStJACIAdIZUKnwOAgOPYe/ebVAoFLhy5QxUKguQvyP/\n55GZ6YO//koE0BO7dn0Eb+82uHTpL1hZWRXZPwB0794d8fG/4+jRo3BwcMAzzzwDubzU+a+CULOV\nduvRtGlTZmZmml5nZGSwadOm5b6VqQxlCFuoRLdu3WLHjsGUy5W0tLTml18uL/T5pUuXaGnpwL/L\neqTT0rIe5XI1gfumx0xabTDr1m1EadGhwQRuUaGYyLZtA/n999/zxo0bBCyMn7sTCKFMdomentFU\nKj0p1XQyGB9DhRBwpLQKncz433HGz16mXN6ckya9VeS7DB06mmr1a8b9ZFOjeZazZxde3lejcSbw\nobHNGUpzNI4bv8d2ymQuhdb3FoTaoiLXzlLvLFxdXZGZmQlLqfYBsrKyipQVF548KSkp+OKLL3H7\n9j3s2/crzpzpCINhF7KyLuDf/w6Gt3cLdO7cGQDw4MEDqFQOyMrKL+uhhUrlgtzcewD0+XtERsYf\nyMycBSAEwFLI5V5wc3PEjz/uQ7169fDvf08FUB/AEgANADiBnISLF7fAYGgFYB2kxYc0kB47ZQHY\nBOAZSGtEdEL+3UD79v6YPbvwGiwAsHTpRzh5MhQXLzZBbu49ODq6oGHDcJA03THVq+eCixcjAMwB\nYIC0kFH+o1cnAAbxGFT45ykpi4wfP57jx4/nc889x3r16nH48OEcPnw469evz379+pU7O1WGR4Qt\nVIL79++zUaOWVKuHUZqL4UBgoekOQamcUmg53KysLLq6NqVc/jGB65TJltLRsRFHjBhLrbYzgQ2U\ny5+nTNb2oQ5ve164cMG0HweHxsa/5PPbfEjAkkAfAs6UKsZ+SGm+hQWlqrB/j2xSqx25atUqnj17\n9pEjmLKzs9muXVdaWnYnMJc6XWuOH/+m6fOZM+cYy4lHGUdg2Rg7vn8n4E9raxempqZWzckXhCpU\nkWtniR3cK1euLNQZ8vB/Dx8+3Fz5rAjRwV21vvrqK0yevBuZmT8Y34kF0ANSp7ABOl0Ili59CSNG\njDBt8+effyI4uB+Skm7A2toG9eq54sGDVNSr5wCt1hZarQIHD55DenocpL6FFKhUDdC8uRfi48+B\n1AKYDmA4pE5rAJgKqdP6dQC/AVhrfD8K0l/71pBWutMCuAy12hv37iUVWv63OIcPH0avXq8gLS0W\n0p1IMlSqhkhKugI7Ozvo9Xq8995MfPPNaqhUajz3XDDWrduFtLQ0NGvmjt27N6NevXplOpe//PIL\n5s37HLm5eZg4cST69etXpu0EoSpU6NpZWjbJyMhgXFwcT548WajvojqVIWyhAhYsWECVquAEuNsE\n1FQonqeVVUd27PhMoTUdDAYDe/bsT0vLZwlMMvYjrCRwghYWA9mzZ3/u2bOH/v6BtLDoTeATajRt\nqFbXNfYHbKI0Ge4n4/DX1cahsRoCIwnMIfBmgXiuEahLYDSBVgRGUqFw4sKFS8r0/Xbt2kUbm8Jz\nKjQaZ169erVSz2NkZCS1WicC3xBYQ63Wrdj1WQTBXCpy7Sxxy5ycHE6dOpX29vb09/env78/7e3t\nOWXKlGovJiiSRdWKj483zjnYQmmW9gACz9LCwoo//PBDkf/9r127RgsLe2M7FwJDClyI0wgoaG0d\nSMCGcrkDVaoG1GptqFQGGBNEfts8AkoqFPYEdPT0bGVMPF8YH4X9aHxM1ZNAE0rrVHxNwIEeHi3K\n/O/y3r17rFvXlTLZFwTOU6WaSm/vDo81l6IsBgx4icD/Ffh+GxkQ0KNSjyEIj6Mi184Sx/NNnToV\n9+7dQ0JCAqKjoxEdHY2LFy8iJSUFU6ZMKd9tjFAreHl5Ydy44ZDJXoM0h8EJwHg4OLiif//+prWq\nf/hhM/r3fwkTJ76NvLwsSENa5wJ4UGBvdwBokJraF0AQDIZE5OZeQWbmB8jL2wggB1InMgD8DsAC\nev0WALdw6VJvWFpqAHxk/PwVAB0BuAKwgdQZPg7AMFy/7oYlSz4v0/ezs7PDwYN70LbtOjg4BKNb\nt/PYt29bpQ9vlTrMC97yE3J50WHHglArlJRFPDw8iv1LKy8vjx4eHuXOTpXhEWEL5RAZGckpU97i\n7NlzTPWb0tLS2KyZP7XavlSpJlGjceTWrVtN2yxfvsK4JsYXBD6gTKYmMJHSzGhvAv8ydoo3ND5S\nerhcRxbl8v6UZl73pzSr2oXSkNr8NrmUyZTUaOwJ/Idy+RuUyWwok7kQGEFgvfEuox+B6ezUqSu3\nb99eYs0mkkxJSeGdO3cKdYBnZ2fzzJkzpqq3leXgwYPGUu7LCKyiVlufW7ZsqdRjCMLjqMi1s8Qt\nHzWXQsyzeHJERKymVlufwH+pVo9k/fqepgqwaWlpXLZsGT/66CNGR0cX2q5hQ28CvQiojSOTWhgv\n4tcoVaS1NfY5KCktPvSFsd9BT8BApfLfbNzYhyqVtXF7O0pzJ9obH0dJixypVFaMiYnhtGnv8IMP\npnP16tW0sPCiNAeCBLKN/Rc6qtXP08rKn927hxVJGHl5eXzhhdHGSrA27NatD9PS0njmzBm6uDSh\nlZUH1WobvvfezEo9vwcOHGBo6GD26DGQP/30U6XuWxAeV5Uki7CwMK5cubLI+6tWrWLfvn3LfcDK\nIJJF5XFx8SRw2PTXvIXFi2Uqemdl5UIglEAGgWQC7dm4cXMqFJbGfobFxgt6DIEGxruAC5TLQ6nR\nuNDRsTE1ms6U1tD+g1L11y3Gtu0oVZh1olpdn5s3bzYd98CBA7S2blsgWeRSGtq6wfTayiqAGzZs\nKBTvJ58spFbb1Xjnk0MLi3COHTuRzZu3pUyW36+QRJ3Og3v37q308ywINUFFrp0lTsr7/PPPMWDA\nAHz99ddo27YtAKlGVEZGBjZv3myGB2SCOWRmpkPqA5Dk5bkiNTWt1O2srOogLe1NSBPkNAAm4saN\nN2Fp2QDp6ZcBTDC2bA0gBhYWm/DzzylQKv8DJycnhIQMxO3bCyCtod0Y0jDZrwBkAhgBIA/AduTk\n7MDRo8dMQ047dOgAJ6ccZGVNRm5uL6jV3yAnRw+pDAgAKJGX1wY3b94sFO+vv/6OjIxRAKQSHdnZ\nr+Lw4fdw/nwcyBHGVk7Ize2NuLg4BAcHl/0kCsI/QIk9em5uboiKisIHH3wAd3d3NG7cGB988AF+\n//13MYP7CdK/fz9oNK8D+BPADqjV36BPn2dL2wzt2rWGTHbE9FomO4ScnCZITz8NwBJAvPETA4CX\n0bbtOoSEBCMkZChCQvpBp9MCuGjaXqE4j3r1zsLSUglp/sREAP7Qag/B3b2hqZ2lpSWOHv0FQ4dm\noX37BRg7tiH8/dtAocifbX0GcvkWdOrUqVC8zZo1glodifwOZ4XiAJo0aQhXV08APxlbpUGlioSn\np2cZz54g/INU4h2O2dTSsGukrKwsvvLKG3R29mDTpm24c+fOYttdvHiRmzZt4tGjR0lKy6La27vR\nyqovraxCqFDYUlpfgsbHWokENhPwpUxWl5aWvpQWIDJQoZhBP79AarUOVCjepFo9gg4ODXjjxg0e\nP36cNjbOtLF5llZWvgwM7FFoTkdBcXFx7NlzIFu1CqSLiycVCjUtLa359ddFH5+mpKQYO+zbUavt\nQmfnxrx8+TKPHTtGGxtn2tp2plbryuHDX33s9SvM5fDhw/zss8+4adOmSh/mK/wzVOTaWS1X3Z07\nd7J58+b09PTkvHnzinweERFBX19ftmrVik899RRjY2MLfS6ShXlt3ryFWq0DbWz6Uqt158svT6DB\nYDAti7p+/XqGhDxHhWIO/y70N8I4sukdymSWBP5bYJTTJdrZufLUqVP88MPZXLBgAZOSkkzHS0pK\n4ubNm7lv374SRzZdvHiRVlaOlMkWE9hFrbYj33hjSokX0Tt37tDDw5caTRNaWjakt3d7PnjwgKS0\nZOr+/ft58uTJyj95leSzz5ZSq3UzLuTUlmFh4TU2qQk1V61KFvlDbxMSEpiTk0M/Pz+ePn26UJsj\nR44wJSWFpJRYAgICCn0ukkX53bp1i+PH/5t9+gzl0qX/V+pfqHq9njqdHf9ec/sBdTpPHjx40NTG\nYCAXL75HufwOZbKlxk5qN2PHcwO2axdgXIZVWrJUJvucbdt2rdD3+OSTT6hWv1ogASXQ2tqpxPb/\n+tdYqtUTTMnMwmI4J02aVqEYzCU7O5sqldY4GEAadmxl1ZKRkZHVHZpQy1Tk2mn2IvvHjh2Dp6cn\n3N3doVKpEB4ejq1btxZq06lTJ9ja2gIAAgICcO3aNXOH+URKTU1F27ZP46uvcvDTT70xbdq3mDDh\n0RMsU1NTkZOTA6C98R1rkK1x8uRJAMD160BYGLB8uR0OH7ZBRIQdNJo0KJXPwcKiP+ztiY0b1yEo\nyAk6XUvY2gbC3n4eIiK+rNB3USgUkMlyCryT/chJdfHx55CT0wdStVo5srOfxcmT5yoUg7k8ePAA\nMpkKgLvxHQvI5c1w586daoxK+KcptUR5Zbt+/ToaNGhgep3fkV6SFStWIDQ0tMj7M2bMMP13UFAQ\ngoKCKjPMJ9LOnTuRnOyO3NwlAICMjGexbFl9LFr0EZTK4v8p2NjYwMmpPq5f/xrAKABnkJGxB2+8\nsRvr11sjJmYwunSJx40bzyM4+B7Cwvrh6NFI7N69G2q1GuHh8+Hs7IyfflqPmJgYPHjwAG3atIGN\njU2FvsvgwYMxc+ZHyM2dDoOhGbTaeZgyZWKJ7Tt08MOpU98hOzsYgB4azRoEBPg91jGvX7+OzZs3\nQyaTYcCAAWUuJlhR9vb2aNjQHRcvzoPBMAnAQej1h9GhwxKzHF+ovSIjIxEZGVkp+yrTsqqVadOm\nTdi1axeWL18OAIiIiEBUVBSWLCn6D3///v14/fXXcfjwYdjZ2ZneF1Vny2fNmjUYO3Yj0tLyq8lm\nQKGwQ0ZGKtRqqdJrQkICNm/ejMTERBgMhJOTIzp27IghQ0YiMfEWpBFHqwD0BnAOKtW7yMuLAjkN\nwGoAN9G0qSteffUlKJVKDBo0CPXr1zfFsGvXLvz66yG4udVH165dceDAAeh0OgwcOLDEledKkpCQ\ngJkz5+PWrWQMHNgLo0aNKHYVPwBIS0tDSMhziIv7E6QenTq1x/btG0zrtJTm7Nmz6NChK7KzewEg\nLC334I8/DsLDw+OxYi6vy5cv47nnXsSpU8fg4NAAa9YsxzPPPGOWYwtPjiqtOlvZfvvtN/bs2dP0\nes6cOcV2csfGxtLDw4Pnzp0r8lk1hF1rpKam8vTp08Wut3Dr1i3WretKuXw+gf3UaPpw4MBhps9j\nY2NpZeVIpfIVAkMJ2FGlGkwHhwY8duwYLSwcCeQU6Cd4ioCfcea1M4E9BGIJtKFc3o4WFiNZp049\nnj9/niQ5f/4CarVNCMyghUVvyuU2tLAYSZ0ulE2a+PD+/ftVem4MBgMvXLjAhISEx+4cHjDgJcrl\nc03fXS7/L4cMGVlFkZZMdGoLFVGRa6fZr7q5ubls0qQJExISmJ2dXWwH9+XLl+nh4cHffvut2H2I\nZFG8bdt+pFZbl9bWTanV1uWWLVuLtDl37hxDQ59nq1adOXny28zKyjJ91r17Pxau3/QfAq9RJutG\nS8t2BPYbO1n1xtIdLgTGEGhEoEuB7aIJeBkvqrMYHj6KeXl5VKk0BC4xf/EjqbTHZuPM8Rc4d27R\nPxpqisDAUAJbC3zHTQwKCqvusAThsVTk2mn2PgulUomlS5eiZ8+e0Ov1GD16NFq2bImvvvoKADB2\n7FjMmjULycnJGDduHABApVLh2LFj5g61Vrl37x7Cw0cgI2MHgAAAv+OFF3rhypWzsLe3N7Xz9PTE\n9u3ri93HnTvJAJoXeKcZgBUguyAr6wMANwEEAbgPIB3AZUgVaR8A8ABwBkBLSNVnpQWIDIYWuHUr\nGrm5uTAY9Ph7trgc0sxtqUJtdrYvEhNvgyS2bduG2NhYeHh4YOjQoZVeDbY8+vULQUzMbGRk+AMw\nQKudg379RlR3WIJgPpWXs8ynloZdpX7//Xfa2LQu8JcvaWPThlFRUWXex6xZc6nVBhr/+v+TUkXX\n3wkkEbhsvIPobPz/9QodS6o025/ALEpFBP9H4AK12tZcuvQLkmRgYA/jcNfLxlpO1gROEfiTWm1j\n7tixg5Mnv02dzosy2bvU6TqyX78XasSjF71ezzfffIdarR11urqcNu0/NSIuQXgcFbl21sqrrkgW\nRSUlJdHS0s54kSeBs7S0tGNiYmKZ95GXl8dJk6ZRp3OmQvEOgTtUKv9DqWpsGIGPjPvOoFQldrlx\n7sQGY5/FS7S2duILL/yLVlYOtLZ25HvvzTBdVO/evctnnx3MOnXqs2lTfz79dHcqlZbU6ez52WdL\nePv2barVNpQWNSKBTOp0jXn8+PGqOm2C8I8ikoVAkvzf/76hRmNPW9su1GjsuXz514+9j5iYTLZt\nm8XOnQ08e1Yq62Fr60LAlcDxAncS71GrdSEgN07AW0Ct1osLFnz2WMcr+Nf5+fPnqdM1KHTHYmv7\nNPft2/fY30MQhKIqcu00+9DZyiCGzpbsypUrOH/+PDw9PdGwYcPSNzDKywOGDYvBunUNoVJ9Chub\nCOzZsxlt2rTBtWvXEBr6PE6f9oJevwxAOrTanli4cBR8fVvh/fc/QmpqOoYPH4hXXx1T4vDV0mPI\ng6enH65dGwa9fhSAnbCzew8XLpwqNHRaEITyqci1UyQLAfHxwNChWYiPPwaDwQVSx/Y6ODpOQ2Ji\nAuRyOVJSUtCjR3/ExcXBYMjBsGEv4X//W1rpnc+XL1/GkCGjcerUCTRq5IG1a5fD19e3Uo8hCP9U\nIlkI5ZKbC3z0EfDZZ8CAAdFYu3YWUlO3mD63tHTApUvxcHZ2BgCQRFJSEiwtLVGnTh2zxUkSO3fu\nxKVLl9CmTRt07NjRbMcWhCdJRa6d1T8mUagWsbFAQADw66/A8ePAK68Qen00gGRji2hkZaXC378z\nDh8+DED6h+bi4lJpieL06dOYO3cuFi5ciNu3bxfbhiRefPFlDBnyNqZMiUVw8PNYuFCUuRAEs6tI\nZ0l1qaVh1wjZ2eT06aSDA7lihVQx1mAw8Pvvv2dAQBeq1S6UyZ4mUIfAWgLbqNHU5Z49eyp1qOiv\nv/5KrdaBSuVkWlgMp6NjQ964caNIu6NHj1Kna0IgnfnlzdVqHdPS0iotFkH4p6jItVPcWfyDHD8O\ntG8P/PEHcOIEMGoUIJMBY8ZMwKhR8xAV1RSkGjLZCQAxAMIB9EVmZnP07fsS+vd/EQaDoVJimTz5\nA2RkLEZe3qfIzl6J5OR+xd4x3Lp1CwpFMwBa4zuNoFBYIzk5uUhbQRCqjkgW/wDZ2cC77wKhocDU\nqcCPPwKuxonUV65cwapV3yEj4w6A7cjNNcBgyAagMm6dCSAR2dkbsXdvAtasWVMpMSUnp0Ca9S3J\ny/PAnTspRdq1bdsWev0fAPYAyIVMtgT29jZmq/gqCIJEJIsn3K5dyXB2voEvvjiI3r2no1+/NBQc\n2RoTE4Pc3DwAUwB8Bmn97EaQy9sBGAOgI4CuAAKRkRGMCxcuVEpc/fuHQqN5B1LJkGhotQvRv3/v\nIu3q16+PH39cD0fHVyCTWaJ582/xyy8/QaFQVEocgiCUjRgN9YTKzATefTcPS5akANgOvb4+LCy+\nRZs2STh8eI/pHPbu3Re7d7cG8KFxy0MAhgK4BZlMDVIGYB8AD+h0XRAR8SH69etX4fhyc3MxceI0\nrF79PSwsLDFz5jsYN+6VR25jMBhqRJ0oQaitKnLtNHshQaHqHT4s9Ue4uibD0jIc6el7AciQaegr\nDQAAEDhJREFUnd0NJ0644cqVK2jUqBE+/ngh9u07BsC/wNZyAGkAToP0ALARwDNQqWQYM+Y1PPfc\ncxWO7/jx41i3biMcHW1x6tSxQothPYpIFIJQfUSyeIKkpwPvvQesXw8sXQq4uJxDz54Fh6TqQepN\nj3Dmz1+IvLxlkB431QPgDGASADf83Z8wCMC/YG9fH02bupd7dna+X375BX37hiMz8zXI5clYtKgD\nTpz4De7u7hXaryAIVUv8qfaEiIwE/PyAO3eAkyeBAQOA9u3bw91dCwuLUQDWQ6N5Hl26dIarsXdb\nr9cDaAVgJ4BfAbyPp55yh0ZzH8Bd456PALBEYuIqTJ26AGvXfl+hOKdO/S8yMj4HOQN6/SKkpg7H\nwoVLK7RPQRCqnkgWtVxqKvD668CwYcDChUBEBJC/fIVKpcLhw3vw6quOCAlZhylT2mPbtu9Ndwdj\nxoyEVjsM0kS8rrCyuoNVq1Zi/Pjh0Gh8oFAEAOgDabnUp5CRMR3ffbe5QvGmpaUD+HuZVYPBFSkp\naRXapyAIZlA5Uz3Mq5aGXel+/pls1IgcOZJMTn787fV6PefM+Yj+/kHs3r0fo6OjTZ/Fx8fT3z+w\nQFlyUiabx/DwURWKeebMOdRqAwicIBBJrdaNO3furNA+BUEom4pcO8VoqFro/n1gyhRg925g2TKg\nV6+qOc7vv/+Obt1CkZExBjJZDrTaVYiKioSXl1e592kwGPDBBx/im2/WQK22wH//Ow3Dhr1YiVEL\nglASUUjwH2TnTmDsWClBfPwxYGtbtceLj4/H6tVroVAoMHz4S/D09KzaAwqCUGVEsvgHSE4GJk8G\nDhwAli8Hunev7ogEQahtRNXZJ9y2bYCPD2BlBcTFiUQhCIL5iXkWNdjdu8AbbwBRUcCaNUDXrtUd\nkSAI/1TizqKG2rRJuptwcpLWnhCJQhCE6iTuLGqYW7eA8eOlBLFxIxAYWN0RCYIgVMOdxa5du9Ci\nRQs0bdoU8+fPL7bNG2+8gaZNm8LPzw8xMTFmjrB6kMD33wO+voC7u7TehEgUgiDUFGa9s9Dr9Rg/\nfjz27t0LV1dXtG/fHmFhYWjZsqWpzY4dO3D+/HmcO3cOUVFRGDduHI4ePWrOMM0uMREYNw44exbY\nulVa7lQQBKEmMeudxbFjx+Dp6Ql3d3eoVCqEh4dj69athdps27YNw4cPBwAEBAQgJSUFSUlJ5gzT\nbEjgu++kmk5eXkB0tEgUgiDUTGa9s7h+/XqhctRubm6Iiooqtc21a9fg7OxcqN2MGTNM/x0UFISg\noKAqibmqXL8uTa67elWaaNemTXVHJAjCkyYyMhKRkZGVsi+zJouylrd+eNJIcdsVTBa1TVwcEBws\ndWT/8AOgVld3RIIgPIke/kN65syZ5d6XWZOFq6srrl69anp99epVuLm5PbLNtWvXTCW1nxReXtJM\n7AqUWBIEQTArs/ZZtGvXDufOncOlS5eQk5ODdevWISwsrFCbsLAwrFq1CgBw9OhR1KlTp8gjqNpO\nqRSJQhCE2sWsdxZKpRJLly5Fz549odfrMXr0aLRs2RJfffUVAGDs2LEIDQ3Fjh074OnpCZ1Oh2++\n+cacIQqCIAjFEIUEBUEQ/iFEIUFBEAShSolkIQiCIJRKJAtBEAShVCJZCIIgCKUSyUIQBEEolUgW\ngiAIQqlEshAEQRBKJZKFIAiCUCqRLARBEIRSiWQhCIIglEokC0EQBKFUIlkIgiAIpRLJQhAEQSiV\nSBaCIAhCqUSyEARBEEolkoUgCIJQKpEsBEEQhFKJZCEIgiCUSiQLQRAEoVQiWQiCIAilEslCEARB\nKJVIFoIgCEKpRLKoBpGRkdUdQoWI+KuXiL/61ObYK8qsyeLevXsICQlBs2bN0KNHD6SkpBRpc/Xq\nVXTr1g3e3t7w8fHB4sWLzRmiWdT2f3Ai/uol4q8+tTn2ijJrspg3bx5CQkJw9uxZBAcHY968eUXa\nqFQqLFy4EPHx8Th69Cg+//xznDlzxpxhCoIgCA8xa7LYtm0bhg8fDgAYPnw4tmzZUqSNi4sLWrdu\nDQCwsrJCy5YtcePGDXOGKQiCIDxERpLmOpidnR2Sk5MBACRRt25d0+viXLp0CV27dkV8fDysrKxM\n78tksiqPVRAE4UlU3ku+spLjQEhICBITE4u8P3v27EKvZTLZIy/6aWlpGDRoEBYtWlQoUQDl/7KC\nIAhC+VR6svj5559L/MzZ2RmJiYlwcXHBzZs34eTkVGy73NxcDBw4EMOGDUO/fv0qO0RBEAThMZm1\nzyIsLAzffvstAODbb78tNhGQxOjRo+Hl5YVJkyaZMzxBEAShBGbts7h37x4GDx6MK1euwN3dHevX\nr0edOnVw48YNjBkzBtu3b8ehQ4fQpUsX+Pr6mh5TzZ07F7169TJXmIIgCMLDWEvcvXuX3bt3Z9Om\nTRkSEsLk5OQiba5cucKgoCB6eXnR29ubixYtqoZI/7Zz5042b96cnp6enDdvXrFtJkyYQE9PT/r6\n+jI6OtrMET5aafFHRETQ19eXrVq14lNPPcXY2NhqiLJkZTn/JHns2DEqFApu2rTJjNGVrizx79+/\nn61bt6a3tze7du1q3gBLUVr8t2/fZs+ePenn50dvb29+88035g+yBCNHjqSTkxN9fHxKbFOTf7ul\nxV+e326tSRZTp07l/PnzSZLz5s3jW2+9VaTNzZs3GRMTQ5JMTU1ls2bNePr0abPGmS8vL48eHh5M\nSEhgTk4O/fz8isSyfft29u7dmyR59OhRBgQEVEeoxSpL/EeOHGFKSgpJ6cJQ2+LPb9etWzc+++yz\n3LhxYzVEWryyxJ+cnEwvLy9evXqVpHTxrSnKEv/06dP59ttvk5Rir1u3LnNzc6sj3CJ+/fVXRkdH\nl3ixrcm/XbL0+Mvz26015T5q2xyNY8eOwdPTE+7u7lCpVAgPD8fWrVsLtSn4nQICApCSkoKkpKTq\nCLeIssTfqVMn2NraApDiv3btWnWEWqyyxA8AS5YswaBBg+Do6FgNUZasLPGvWbMGAwcOhJubGwDA\nwcGhOkItVlnir1evHh48eAAAePDgAezt7aFUVvqYm3J5+umnYWdnV+LnNfm3C5Qef3l+u7UmWSQl\nJcHZ2RmANKqqtP9hLl26hJiYGAQEBJgjvCKuX7+OBg0amF67ubnh+vXrpbapKRfcssRf0IoVKxAa\nGmqO0MqkrOd/69atGDduHICaNX+nLPGfO3cO9+7dQ7du3dCuXTt899135g6zRGWJf8yYMYiPj0f9\n+vXh5+eHRYsWmTvMcqvJv93HVdbfbs1I40bmmKNhLmW98PCh8QU15YL1OHHs378fX3/9NQ4fPlyF\nET2essQ/adIkzJs3DzKZDJQeyZohsrIpS/y5ubmIjo7Gvn37kJGRgU6dOqFjx45o2rSpGSJ8tLLE\nP2fOHLRu3RqRkZG4cOECQkJCEBsbC2trazNEWHE19bf7OB7nt1ujksWTNEfD1dUVV69eNb2+evWq\n6XFBSW2uXbsGV1dXs8X4KGWJHwDi4uIwZswY7Nq165G3veZWlviPHz+O8PBwAMCdO3ewc+dOqFQq\nhIWFmTXW4pQl/gYNGsDBwQEajQYajQZdunRBbGxsjUgWZYn/yJEjeO+99wAAHh4eaNy4Mf766y+0\na9fOrLGWR03+7ZbVY/92K61HpYpNnTrVNKJi7ty5xXZwGwwGvvTSS5w0aZK5wysiNzeXTZo0YUJC\nArOzs0vt4P7tt99qVCdZWeK/fPkyPTw8+Ntvv1VTlCUrS/wFjRgxokaNhipL/GfOnGFwcDDz8vKY\nnp5OHx8fxsfHV1PEhZUl/smTJ3PGjBkkycTERLq6uvLu3bvVEW6xEhISytTBXdN+u/keFX95fru1\nJlncvXuXwcHBRYbOXr9+naGhoSTJgwcPUiaT0c/Pj61bt2br1q25c+fOaot5x44dbNasGT08PDhn\nzhyS5Jdffskvv/zS1Ob111+nh4cHfX19efz48eoKtVilxT969GjWrVvXdK7bt29fneEWUZbzn6+m\nJQuybPF//PHH9PLyoo+PT7UPFX9YafHfvn2bffr0oa+vL318fLh69erqDLeQ8PBw1qtXjyqVim5u\nblyxYkWt+u2WFn95frtmnZQnCIIg1E61ZjSUIAiCUH1EshAEQRBKJZKFIAiCUCqRLARBEIRSiWQh\nPLEUCgX8/f3h7++PNm3a4PLlywgMDAQAXL58GWvXrjW1jY2Nxc6dOx/7GEFBQTh+/HiFY62s/QhC\nVRHJQnhiabVaxMTEICYmBtHR0WjUqJFppmpCQgLWrFljahsTE4MdO3Y89jFKqyZg7v0IQlURyUL4\nR8kv//L222/j4MGD8Pf3x0cffYTp06dj3bp18Pf3x4YNG5Ceno5Ro0YhICAAbdq0wbZt2wAAmZmZ\nCA8Ph5eXFwYMGIDMzMwiZR927dqFwYMHm15HRkaib9++AIBx48ahffv28PHxwYwZMx4ZIwBs3LgR\nI0eOBADcvn0bgwYNQocOHdChQwccOXIEAHDgwIFCd1BpaWmVc7IEoaAqnRkiCNVIoVCYJh0NGDCA\nJGllZUWSjIyMZJ8+fUxtV65cyQkTJphev/POO4yIiCAplQJv1qwZ09PTuWDBAo4ePZokGRcXR6VS\nWWRCVm5uLhs2bMiMjAyS5KuvvmqacHbv3j2SUgnvoKAgxsXFkSSDgoJM+8mPkSQ3btzIESNGkCSH\nDh3KQ4cOkZRm4LZs2ZIk2bdvXx45coQkmZ6ezry8vAqcNUEoXo2qDSUIlUmj0SAmJqbYz/jQ3QAf\nKiS4Z88e/Pjjj/jkk08AANnZ2bhy5QoOHjyIiRMnAgBatWoFX1/fIvtWKpXo1asXtm3bhoEDB2LH\njh2m/axbtw7Lly9HXl4ebt68iTNnzqBVq1Zl+j579+7FmTNnTK9TU1ORnp6OwMBATJ48GS+++CIG\nDBhQ62oUCbWDSBaCgOIrhv7www/FFuV7ONEUJzw8HEuXLkXdunXRrl076HQ6JCQkYMGCBfjjjz9g\na2uLkSNHIisr65GxZGZmFjpuVFQU1Gp1ofZvvfUW+vTpg+3btyMwMBC7d+9G8+bNS41REB6H6LMQ\n/pGsra2Rmppa4uuePXti8eLFptf5dyhdunQxdYyfOnUKcXFxxe6/a9euiI6OxvLlyzF06FAA0gI/\nOp0ONjY2SEpKKnH0lbOzM/78808YDAZs3rzZlDx69OhRKKYTJ04AAC5cuABvb29MmzYN7du3x19/\n/fXY50MQSiOShfDEKu5uIf89Pz8/KBQKtG7dGosWLUK3bt1w+vRpUwf3+++/j9zcXPj6+sLHxwfT\np08HIHVQp6WlwcvLC9OnTy+xnLZcLkefPn2wa9cu9OnTx3RMf39/tGjRAi+++CI6d+5c7Lbz5s1D\nnz59EBgYiPr165veX7x4Mf744w/4+fnB29sby5YtAwAsWrQIrVq1gp+fH9RqNXr37l3+kyYIJRCF\nBAVBEIRSiTsLQRAEoVQiWQiCIAilEslCEARBKJVIFoIgCEKpRLIQBEEQSiWShSAIglCq/wenuafW\nMDsOtAAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 11
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot yhat vs. Pearson residuals:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.scatter(yhat, res.resid_pearson)\n",
"plt.plot([0.0, 1.0],[0.0, 0.0], 'k-')\n",
"plt.title('Residual Dependence Plot')\n",
"plt.ylabel('Pearson Residuals')\n",
"plt.xlabel('Fitted values')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 12,
"text": [
"<matplotlib.text.Text at 0x477d610>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEVCAYAAAD6u3K7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4E/UfB/B3kjbjknTRCV2ssil7j7IKIiBDsGwsSxFE\nhuxR/CFLNgjKhiIKiIhsZJQtiFpAUKDMyqZQ6F55//5ICK1NaWlpA/J9PQ+Pzd197z65PN7n7rtO\nRpIQBEEQhH+RWzsAQRAE4dUkEoQgCIJgkUgQgiAIgkUiQQiCIAgWiQQhCIIgWCQShCAIgmCRSBBC\ngfjmm2/QvHnzLNcHBARg+fLleT5OWFgYvLy88ryfV0FISAi6d+9u7TBy5L903oVnRIIQMvH19YUk\nSdDr9XB3d0f37t3x5MmTPO2za9eu2L17d5brZTIZZDJZno6RE3K5HDqdDnq9Hs7OzmjatCk2bNiQ\n78fNjYI4Hy9i1apVUCgU0Ov1sLe3R+XKlbF9+/YX3k+vXr0wfvz4fIhQeNlEghAykclk2LZtG2Ji\nYnD69GmcPXsWkydPtnZYL82ZM2cQExODixcvolevXhg4cCA+++wza4f1Wqhbty5iYmIQHR2N3r17\no1OnToiOjrZ2WEI+EQlCeC43NzcEBgbi3Llz5mW//PIL6tSpA0dHR1SqVAkHDx40r1u1ahWKFy8O\nOzs7FCtWDOvWrTMvr1+/vnm7n3/+GaVLl4aDgwMGDRqE9AP6/121cu3aNcjlchgMBgDAypUrUbZs\nWdjZ2aF48eJYsmRJrr6bk5MTunXrhsWLF2Pq1Kl4+PAhAODx48fo3bs3ChcuDE9PT4wfP9587FWr\nVqFu3boYNGgQHBwcUKZMGezfv9+8z+zK1qtXD59++imcnJxQrFgx7Nq1y1z26tWraNiwIezs7BAY\nGIgHDx5kiPd55z0gIAATJkxAvXr1YGdnh+bNmyMqKsq8/siRI+ay3t7eWL16NQAgKSkJw4cPh4+P\nD9zd3fHhhx8iMTExy3P29HeSyWR4//33kZCQgCtXrmTa7q+//kJAQAAcHR1Rvnx5bN26FQCwZMkS\nrFu3DjNmzIBer8c777yTg19KsBaRIASLnl4I/vnnH+zatQs1a9YEANy8eROtWrXChAkT8OjRI8yc\nORMdOnRAVFQU4uLiMHjwYOzatQtPnjzB8ePHUalSpUz7fvDgATp06IApU6YgKioKxYsXx9GjR83r\ns6tacXNzw/bt2/HkyROsXLkSQ4YMwR9//JHr79qmTRukpqbi119/BWCsAlEqlbh8+TL++OMP7Nmz\nB8uWLTNvf/LkSZQoUQJRUVGYNGkS2rdvb76LzknZ0qVLIyoqCiNGjEDv3r3N67p06YLq1asjKioK\n48ePx+rVq83n4nnn/alvv/0Wq1atwr1795CcnIyZM2cCAK5fv46WLVti8ODBePDgAcLDw82/y6hR\noxAREYHTp08jIiICN2/ezNHTVGpqKpYtWwa9Xo+SJUtmWJeSkoLWrVujRYsWuH//PhYsWICuXbvi\n4sWL6NevH7p27YqRI0ciJiYGW7ZseaHfSihgFIR/8fHxoU6no16vp0wmY9u2bZmWlkaSnDZtGrt3\n755h++bNm3P16tWMi4ujg4MDN23axPj4+AzbrFy5kvXq1SNJrl69mrVr186w3tPTk8uXLydJTpw4\nkd26dTOvu3r1KmUymTmGf2vbti3nzZtHkjxw4AA9PT2z/G4ymYyXL1/OtNzd3Z3r1q3jnTt3qFKp\nmJCQYF63bt06NmrUyPw9ChcunKFsjRo1GBoamqOyJUqUMK+Li4ujTCbj3bt3ef36ddrY2GQ4b126\ndDGf6+edd5IMCAjg559/bl63aNEitmjRgiQ5ZcoUtm/fPtN3NhgM1Gq1Gc7HsWPHWLRoUYvnbuXK\nlbSxsaGDgwOdnZ1Zu3Zt7tu3j2TG837o0CG6u7tnKNu5c2eGhISQJHv27Mlx48ZZPIbwarGxdoIS\nXj0ymQxbtmxB48aNcejQIbRu3RqnTp1CjRo1cP36dWzcuNFcZQAY7yYbN24MSZKwfv16zJw5E717\n90bdunUxa9YslCpVKsP+b926BU9PzwzLXqQHzM6dOzFp0iRcunQJBoMB8fHxqFixYq6/b0pKCu7f\nvw8nJydcv34dKSkp8PDwMK83GAzw9vY2fy5SpEiG8j4+Prh16xZu3LiRbVl3d3fz35IkAQBiY2Nx\n7949ODo6QqPRZNhvZGQkADz3vFvat0ajQWxsLAAgMjISxYoVy/S979+/j/j4eFStWtW8jKS5SsyS\nWrVq4fDhw1muB4y/779/z6fnCHj1Gt+FrIkEITxXgwYNMGjQIIwcORIHDhyAt7c3unfvnmW9f2Bg\nIAIDA5GUlISxY8eib9++OHToUIZtChcunKFqgaT5QggAOp0O8fHx5s937twx/52UlIQOHTpg7dq1\neOedd6BQKNCuXbsMbRgvasuWLbCxsUGNGjWQmJgIlUqFqKgoyOWWa2Bv3ryZ4fP169fxzjvvwMvL\nK9uyWfHw8MCjR48QHx9vThzXr1+HQqEAgGzP+/N4e3vj5MmTmZY7OztDo9Hg/PnzGZJaXhUuXBiR\nkZEgaU4G169fR+nSpQGIBPE6EW0QQrY++eQTnDx5EidOnEC3bt2wdetW7NmzB2lpaUhMTERYWBhu\n3ryJe/fuYcuWLYiLi4OtrS20Wq35Apdey5Ytce7cOWzevBmpqamYP39+hiRQqVIlHDp0CJGRkXj8\n+DGmTp1qXpecnIzk5GQ4OztDLpdj586d2LNnzwt9n6fJ5OHDh/jmm28wcOBAjBo1Co6OjvDw8EBg\nYCCGDh2KmJgYGAwGXL58OUOSu3fvHubPn4+UlBRs3LgRf//9N1q2bAl3d/dsy2bFx8cH1apVw8SJ\nE5GSkoIjR45g27Zt5vXPO+///l7/1qVLF+zduxcbN25EamoqoqKicPr0acjlcvTt2xeffPIJ7t+/\nD8CY/F70fP5bzZo1IUkSZsyYgZSUFISFhWHbtm0ICgoCYGxDstSwLbx6RIIQsuXs7IyePXti+vTp\n8PT0xJYtWzBlyhS4urrC29sbs2bNMldNzJkzB0WKFEGhQoVw+PBhLF68GEDGcQ7Ozs7YuHEjRo0a\nBWdnZ0RERKBevXrm4zVt2hTvvfceKlasiOrVq6N169bmsnq9HvPnz0enTp3g5OSEb7/9NlNPmOzu\nUP39/c2NqytWrMDcuXMREhJiXr9mzRokJyejbNmycHJyQseOHTMksJo1a+LSpUtwcXHB+PHjsWnT\nJjg6OmZb1tJYj/Sf161bhxMnTsDJyQmfffYZevbsaV73vPNuaV/pj+Xt7Y0dO3Zg1qxZKFSoECpX\nrowzZ84AAKZPn44SJUqgVq1asLe3R7NmzXDx4kWL5y27sSpP1ymVSmzduhU7d+6Ei4sLBg4ciNDQ\nUPj5+QEAevfujfPnz8PR0RHt27fPcn+C9cmYl2dzQXjDrFq1CsuXL8+2Hl4Q/gsK/AkiMjISjRo1\nQrly5VC+fHnMnz8fgPFxv1mzZvDz80NgYKAYfCMIgmBlBZ4gbG1tMWfOHJw7dw6//PILvvzyS/z1\n11+YNm2a+fG2SZMmmDZtWkGHJgjZKqgpQQThVWD1Kqa2bdti4MCBGDhwIA4ePAg3NzfcuXMHAQEB\n+Pvvv60ZmiAIwhvNqgni2rVraNiwIf788094e3vj0aNHAIy9MZycnMyfAdE1ThAEIbdye5m3Wi+m\n2NhYdOjQAfPmzYNer8+wLqvHeJKv7b+JEydaPQYRv/XjEPG/fv9e59jJvN3/WyVBpKSkoEOHDuje\nvTvatm0LAOaqJQC4ffs2XF1drRGaIAiCYFLgCYIkevfujbJly+KTTz4xL2/Tpo15hsnVq1ebE4cg\nCIJgHQU+1cbRo0exdu1aVKxYEZUrVwYATJ06FaNGjUKnTp2wfPly+Pr6vrIvccmtgIAAa4eQJyJ+\n6xLxW8/rHHteWb0XU07JZLI816cJgiC8afJy7RRTbQiCIAgWiQQhCIIgWCQShCAIgmCRSBCCIAiC\nRSJBCIIgCBaJBCEIgiBYJBKEIAiCYJFIEIIgCIJFIkEIgiAIFokEIQiCIFgkEoQgCIJgkUgQgiAI\ngkUiQQiCIAgWiQQhCIIgWCQShCAIgmCRSBCCIAiCRSJBCIIgCBaJBCEIgiBYJBKEIAiCYJFIEMIr\nadmyFahatTHq1GmB3bt3WzscQXgjyZjbt1kXsLy8eFt4vSxduhyffDId8fFzAcRAo/kYu3ZtRIMG\nDawdmiC8dvJy7bR5ybEIQp4tWLAK8fELAQQCABIS7mLp0rUiQQhCARNVTMIrx8bGBkBCuiXxsLUV\n9zKCUNAKPEEEBwfDzc0NFSpUMC8LCQmBp6cnKleujMqVK2PXrl0FHZbwCpk48RNoNB8C+ArAF9Bq\nZ2Hw4P7WDksQ3jgF3gZx+PBh6HQ69OjRA2fPngUATJo0CXq9HkOHDs2ynGiDeLPs2bMHS5eug1qt\nxLBhA1CpUiVrhyQIr6XXqg2ifv36uHbtWqblOfkCISEh5r8DAgIQEBDw8gITXimBgYEIDAy0dhiC\n8NoJCwtDWFjYS9mXVXoxXbt2Da1bt87wBLFy5UrY29ujWrVqmDVrFhwcHDIGKp4gBEEQXlherp2v\nRCP1hx9+iKtXryI8PBweHh4YNmyYtUMSBEF4470SCcLV1RUymQwymQx9+vTByZMnrR2SIAjCG++V\nSBC3b982/7158+YMPZwEQRAE6yjwRurOnTvj4MGDePDgAby8vDBp0iSEhYUhPDwcMpkMRYsWxddf\nf13QYQmCIAj/IqbaEARB+A977RupBUEQhFePSBCCIAiCRSJBCIIgCBaJBCEIgiBYJBKEIAiCYJFI\nEIIgCIJFIkEIgiAIFokEIQiCIFgkEoQgCIJgkUgQgiAIgkUiQQiCIAgWiQQhCEKOxcfHIyUlxdph\nCAVEJAhBELL15MkTNGrUCnZ2TpAkPcaMmSgmz3wDiAQhCEK2+vcfguPHnZGWFoPU1BuYP/8HrF+/\n3tphCflMJAhBELJ1+PAxJCUNB2ALwBVxccE4cOCYtcMS8plIEIJFBoMB06bNRNWqjdG8eQecPn3a\n2iEJVlSkSBEAx02fCJXqF/j6FrZmSEIBEC8MEiwaMWIcvvxyL+LjPwMQAZ0uBOHhx1G8eHFrhyZY\nwZkzZ1C/fiDIugDuwds7GSdO7IdWq7V2aEI28nLtFAlCsMjBwQOPHx8BYEwItraDMHmyF0aMGGHd\nwASruXPnDsLCwiBJEgIDA6FWq60dkpADebl2Fvg7qYXXg0JhAyDJ/FkmS4RCobBeQILVubu7Iygo\nyNphCAVItEEIFn366WBIUkcAoZDLJ0KStouLgyC8YUQVk2ARSaxZE4qNG3fCxcUBEyaMQNGiRa0d\nliAIL0i0QQiCIAgW5eXaWeBVTMHBwXBzc0OFChXMyx4+fIhmzZrBz88PgYGBiI6OLuiwBMHsxx9/\nRIUKdVGyZDXMmDFb3JgIb6wCTxDvv/8+du3alWHZtGnT0KxZM1y8eBFNmjTBtGnTCjosQQAAHDhw\nAF27DsCff45GRMQ8TJq0BrNmzbN2WIJgFQWeIOrXrw9HR8cMy3766Sf07NkTANCzZ0/8+OOPBR2W\nIAAAVq/egPj4EQBaAaiL+Pj5WLbsW2uHJQhW8Up0c7179y7c3NwAAG5ubrh7967F7UJCQsx/BwQE\nICAgoACi++84f/48lixZCZIIDu4Of39/a4f0ytFq1ZDJHuJZrdJDaDSiv7/w+ggLC0NYWNhL2ZdV\nGqmvXbuG1q1b4+zZswAAR0dHPHr0yLzeyckJDx8+zFBGNFLnTXh4OOrVa4a4uA8B2ECSFmDfvq2o\nVauWtUN7pVy8eBHVqtVHbGxfkA6QpJnYuHEFWrZsae3QBCFXXvuBcm5ubrhz5w7c3d1x+/ZtuLq6\nWjuk/5zJk+cgLm4MgCEAgPh4d0yc+AV2795k3cBeMX5+fvjttyNYuPBrJCRcR/fuG1G/fn1rhyUI\nVvFKDJRr06YNVq9eDQBYvXo12rZta+WI/ntiY+MBpE+8roiNTbBWOK+0kiVLYt68mViyZMF/Mjmk\npaVh9OiJ8PAoCV/fCggNXWvtkIRXFQtYUFAQPTw8aGtrS09PT65YsYJRUVFs0qQJS5YsyWbNmvHR\no0eZylkh1P+U775bT0kqSuAAgSOUpFJctmyFtcMSrCAk5HNKUi0CZwgcoiR5cceOHdYOS8gnebl2\nZltyzpw5jI6OpsFgYHBwMCtVqsRdu3bl+oC5JRJE3i1btoLFi1dmsWKVuGDBlzQYDNYOSbACP7/q\nBI4QoOnffPbo0d/aYQn5JC/XzmyrmFasWAF7e3vs2bMHDx8+RGhoKEaNGpXfDzZCPujd+31ERPyO\ny5f/wMCBAyCTyawdkmAFer0OwE3zZ7n8Hzg46KwXkPDKyraRmqbW7+3bt6N79+4oX758vgclCEL+\nmTFjHFq1eg8JCX9CoXgEvX4Thg49nn1B4Y2TbTfXXr164datW7hy5QpOnz6NtLQ0NGrUCL/99ltB\nxQhAdHMVnu/IkSO4cOECypcvj5o1a1o7nFfe77//jg0bNkGjUSE4+H14eXlZOyQhn+TrZH0GgwF/\n/PEHihcvDgcHB0RFReHmzZuoWLFirg6YWyJBCFkZPnwsvvrqWwANQO7HmDEDMXaseLGRIAD5lCB+\n++03i3XUJCGTyVClSpVcHTC3RIIQLLl06RL8/eshIeEvAE4AbkGlKosbNy6K8TSCgHwaKDds2LDn\nNmIeOHAgVwcUhJfp7t27UCqLISHBybSkMJRKD9y7d08kCEHIoywTxMuay0MQ8lPZsmVhMFwBsAPA\nWwA2wNY2BsWLF7dyZILw+svRVBtnz57FX3/9hcTERPOyHj165FtQgpBTTk5O2LFjE9q164KHD2/D\nzc0H27b9BI1GY+3QBOG1l20jdUhICA4ePIhz587h7bffxs6dO1GvXj18//33BRUjANEGIWQvMTER\narWYeVUQ0svXN8p9//332Lt3Lzw8PLBy5UqcPn1avPFNeCWJ5JBzd+7cwbhxEzBgwCfYt2+ftcMR\nXlHZJgiNRgOFQgEbGxs8fvwYrq6uiIyMLIjYBEF4CW7fvo0WLTrA3b0kGjRoiV9//RUVK9bE9OkP\nsXhxEbRp0xNr135j7TCFV1C2bRDVq1fHo0eP0LdvX1SrVg1arRZ16tQpiNgEwdytWsid1NRUNGjw\nFq5da4nU1M9x//5PaNKkNRISmiM1dSEAID6+DkaN6oNu3bpaOVrhVfNCLwy6evUqYmJiCnyQHCDa\nIN40K1euxuDBnyI+PhoNG7bA99+vzvSqWiF7Fy5cQNWqLRAXdwWAMdGqVP5ISqoIINS0VQQKFWqC\nBw+uWytMIR/laxvEwYMHcejQIRw6dAiRkZGIjo7GoUOHcnUwQciJo0ePYuDAMYiJ2Yu0tGgcOeKO\nbt36Wzus15JWq0VaWgyAeNOSZMjlj6FWbwOwBUA4JKk/OnfuaL0ghVdWtlVMX3zxhfkRPzExESdP\nnkTVqlWxf//+fA9OeDOFhYUhKakbAOOTanLyZISFlbFuUK8pT09PtG/fFj/+2Azx8R0gSbtQt24l\nDB36AYYNm4QnT56gY8c2mD79M2uHKryCsk0Q27Zty/A5MjISgwcPzreAhJcvOjoa06bNxNWrt9C0\naR306dP7la7Xd3FxgUp1FPHxhLFa5AwcHV2sHdYrLS0tDRMmTMaaNeuhVmswbdoYdOjQAQAQGroE\nq1atwqlTZ1CuXFv069cPtra2aNGihZWjFl55L/oCCYPBwNKlS+f6BRS5lYtQBZJxcXEsXrwilcpg\nAksoSdX48cfDrR3WcyUkJLBixdrUahtTre5HSXLmzp07rR1WBjt37mTlyg1ZqlQNzpgx2+ovXxo3\n7jNKUm0CvxPYQ0ny4P79+60ak/BqyMu1M9tG6kGDBpn/NhgMCA8PR9GiRbF2bcG+x1Y0UufO5s2b\n0aPHfMTG7ofxbjwKNjZFEB8fA1tbW2uHl6WkpCRs2rQJjx49QqNGjVC2bFlrh2R27NgxNG3aDgkJ\niwE4Q5IGY/z4rhg1arjVYipa1B/Xri0DUN20ZCb697+Br76ab7WYhFdDvkzW91TVqlWfbWxjg86d\nO6NevXq5OphQ8JKSkiCT2eNpDxZAB9LY/fFVThAqlQpdunSxdhgWhYauR0LCUADtAQDx8YuwdOlH\nVk0QkiQBuGP+rFDcgV6vtVo8wn9DtgmiV69eBRCGkF+aNGkCG5thkMnmgKwFtXoOGjVqJeYqygO1\nWgWZ7DGe3ZRFQ6VSWjMkfPHFeLz77vtISPgYCsV96PUbMGjQL1aNSXj9ZVnFVKFChawLyWQ4c+ZM\nvgWV1TFFFVPuXLhwAQMGjEBk5C00alQHc+ZMNd1xvnxHjx5Fly79cOfONVSoUB0//LAG3t7e+XIs\na4mIiECVKnURG9sfpDMkaTrWrJlvbhR+2ZKSkrB+/Xo8ePAADRs2zPBUn97x48exfv0P0Ok06N+/\nr3hLnAAgn14YdO3aNQDAokWLAADdu3cHSXzzjXFI/vTp03N1wNwSCeLVd/v2bfj5+SM2dgmARlAo\nFqJo0Y24ePGPV7rX1P3795Gamgp3d/ccx3np0iXMmfMlYmMT0LNnJzRp0sS8jiTS0tJgY5OjyZKf\nKykpCXXqNMOFC7ZISSkPG5v1WLFiPt57r1Oe9y28GfJ07cyuFdvf3z/TskqVKuW6VTy3chCqYGVb\ntmyhnd1bBGj6Z6BaXYi3b9+2dmgWpaSk8N13u1OptKdaXYh16jTjkydP8rTP2bPnU63WU6GwZZMm\nbRgdHZ2n/a1du5ZabSMCBtM5PUlHx8J52qfwZsnLtTPbkdQkceTIEfPno0eP5tudvK+vLypWrIjK\nlSujRo0a+XIM4flu3bqFs2fPZnj3R045OTkhLe0KgOSne0NaWgLs7OxyVP6vv/7CyJFjMGLEaJw7\nd+6Fj/+iZs+ehx07biE5+RYSE+/gt9/cMXTomFzvb/fu3Rg3bjYSE/9AWloMDh92QnDwwOeWSUxM\nfO65joqKQlKSEkBtAJUB7MXjx/fF07RQMLLLIKdOnWKFChXo7e1Nb29vVqxYkb/99luuM9Lz+Pr6\nMioqyuK6HIQq5NHw4WOpUjlSry9NV1cfnjt37oXKGwwGtmrViTpdTdraDqEk+XLq1C9yVDY8PJxa\nrTNlsjEExlKrdeavv/6am6+RY23adCGwOt0Tz0GWK1cn1/sbOXI0gUnp9neFTk6eFrdNTk5m587B\nVChUVChUDAp6n8nJyZm2W7x4MQFHAjsIHCVQhsWLV8h1jNZy/fp1btiwgQcOHLD6mJE3TV6unTku\nGR0dnefH5ez4+vrywYMHFteJBJG/du/eTa22JIEHBEiZbAn9/Kq88H7S0tL43XffccaMGdy3b1+O\ny7Vt25XAnHQX1y/ZsmWnFz7+ixgxYixVqu7m6hsbm3Fs27Zrrvc3d+5cqtVt01UHbWKpUtUsbhsS\n8jlVqkYEYgjEUqNpygkT/pdpu65d+xCYn+68HKCfX/Vcx2gN+/bto1brTL2+LXW6smzVqhPT0tKs\nHdYbIy/Xzixb0UJDQ9G9e3fMmjUrQ8MdTdMvDx069KU/zchkMjRt2hQKhQL9+/dH3759M6wPCQkx\n/x0QEICAgICXHsOb6s8//0RKylsACgEAyK64dOkjpKSkZBgvQRLLlq3A8uUboNNJ+OyzTzNM/y6X\ny/Hee++98PFjYuIBeKRb4o4nT+Jy+W0yMxgMOHbsGB4/foyaNWvC2dkZ48aNxI4dzXDtWiUAStjZ\nRWPhwrBcH6Nv375YunQdrl9vDIPBGzLZDixbttnitmvX/oCkpPEAdACAhIRB2L37S0yalHE7rVYD\nmexBui61D6DX63IdozV06dIHcXHrADQDkIywsLr48ccf0b59e2uH9p8UFhaGsLCwl7KvLBNEfLxx\n9seYmBiLCSI/HD16FB4eHrh//z6aNWuG0qVLo379+ub16ROE8HL5+flBoVgGIAaAHsCPAOzx0UfD\nsGTJs9G4CxYswujRCxEfPx3AfRw//g6OHNmDypUr5+n4vXp1wPHj4xEf7wVADkkai169RuRpn0+l\npqaiRYv2OHEiAnK5J2SyswgL24lKlSohOLgLRo4cA7lcj7Q0DZ48eYIiRYrk6jiSJOHUqYP46aef\nEBMTg0aNJqJYsWIWt42MvA7gGIB3TEuOIC0tIdN2w4YNxLff1kNsbApIe0jSbHz++ZpcxWcNJPHg\nwT8Anv5/rERKSg38888/1gzrP+3fN8+T/n3X8SJe0lPMSxcSEsKZM2eaP7/Cof4nGAwG1qjRgEAh\nAjUIFCawkzqdc4btihWrROBIuiqPzzho0NCXEsOiRV/Rx6cCvb3Lc+7cBS+trnrZsmWUpAACyaaY\nV7FcuZr89ddfKUmFCVw1Lf+aRYuWfynHzI4kORHwJRBIoDkBZ44ZM8bithcvXuTAgZ8wKKgHd+3a\nZV5uMBi4ePEStmjRkb16fcDr168XSOwvyt+/LuXyz01Vb1coSZ48duyYtcN6Y+Tl2pltL6YRI0bg\nyZMnSElJQZMmTeDs7IzQ0NDsir2w+Ph4xMTEAADi4uKwZ8+e5w7WE14umUyGbt3ehVJZB8AcAOcB\nFIFSmfE9z3K5AkBKuiXJsLFRvJQYPvywP65dO4Pr189i8OCBL+1J9erVa4iPbwjgaVVZE/zzz3WE\nh4cDCATga1reB9eu/YXk5GRLu7GIJObMmQ9PzzLw8CiJ2rUbo0aNZujTZyAePXqUZbmgoCCo1cVg\nrHYpB43GkOXUIlFRUVi7dj22bTuKd97phCVLlgMAxo2bhGHDFmHXrrYIDS2EKlXq4t69ezmO/UVd\nu3YNNWo0hlZbCGXL1sDp06dzVG7Llm9QvPhGKJUOsLUtj2nTRqN27dr5FqfwEmWXQSpWrEiS/OGH\nHxgcHMzo6GhWqPDye1FcuXKF/v7+9Pf3Z7ly5ThlypQM63MQqpBH9+/fp6urD21sPiawkJJUnPPm\nLcywzYqfVyo6AAAgAElEQVQVKylJvgTWEJhJrdb5hXs7FbQff/yRWm0ZAvcIGGhjM4YNG77Nn3/+\nmVptKVNDMQnse+ExBsuXr6QklSbwC4FqBIII7KRS2Z9ly1a32DOJJJOSkjho0Kf08irHihXrMSws\nzOJ2qampdHIqTGCLKcZL1Ghc+ddff1GSHAlcMz/NaTRduGjRInPZyMhI7t69mxcuXHih72RJSkoK\nfXzKUC6fSuAugVV0dCzMR48e5ai8wWBgVFRUludDyD95uXZmW7Js2bIkyeDgYO7YsYPks6RRkESC\nKBi3b9/msGEj2b17P/7www8Wt9m48Xu+9VYndurUi6dPny7gCJ+JiYlh//4f0sOjNEuWrMbVq9dY\n3M5gMHDkyPG0tdVSrXZh6dJVeevWLRoMBr7//gBKkjft7AKp1Tpz7969LxRDo0bvENhA4C8CPgTS\nzIMEdbrSPHXqVJ6+4507d6hWF0pXpUfa2b3DjRs3Uq22I3DLvFytfp8LFizg5MnT6OhYhDKZlhpN\nPWo0rvzf/6blKY5Lly5Rq/XJEIe9ff0X6qkmWEe+JoiRI0eyVKlS9Pf3Z1JSEu/evcsaNWrk+oC5\nJRKE9RkMBs6aNZc+PhVYrFglLl263Gqx3L9/33Rn7UVgP4GfqdF4c+PG77Ms8/jxY968eTNTF8tT\np05x27ZtvHnz5gvH8ax77t8EPAmkmC6gadTpSuZ5zFBKSgq1WicCx0z7vUdJKsLff/+dAwYMoSTV\nJ7CbMtls2tm5cfz4EGo0FQnY0/huCBK4TY3GjefPn891HPfu3aNSaWfuBg0kUKv1zbcxUcLLk68J\ngiSjoqKYmppKkoyNjbXK1AkiQVjf4sVLKEllCRwncIiSVJTr1294oX3cvHmTixcv5pIlS3jv3r1c\nxzJgwBDKZKUJbEp3VxvK5s3fzfU+c+L48ePs128QBw0ayvPnz/P06dOmAX7DCZQk0JrARqpU3Vil\nSj2mpKTk+Zjbtm2jVutMe/uG1GhcOW7cZySN1U+ffTaVVas25ltvdeT58+dZqVJDU/Wf57/u9gO5\nffv2PMUxZMgoarVlKZONplZbk+3adRGD3l4Debl2ZvvCoLi4OMyePRs3btzA0qVLcenSJVy4cAGt\nWrXK7+aRDMRkfdZXs2YgTp78GMDT3z4ULVtux/bt3+Wo/IULF1CzZgCSk5sCSIFWewy//340V7OO\nvv12EHbsuAEgGEAf09J5aNfuFH74IfedKEjiiy/mYNWqjdBqJUybNsY8Ed/+/fvRunUQ4uOHQSZL\ngCR9iV9+OQClUonQ0G+QnJyMqKjHuHLlFvz9S+N//xsHnS5nYxYSExOxePFXuHLlBurWrYH33nsv\nQyP9nTt3cO7cORQpUgQxMTGIi4tD1apVodfrM+ynQYO3cfhwewBjAawE8BaAc9BoAnD+/K/w9fXN\n07nZunUrwsPDUaJECQQFBUEuz7afi2Bl+TpZX8eOHTlt2jRzW0RsbKxog3hDNWnSlsBS812pTDaD\n7733fo7Lt24dRJlshrm8QjGGvXp9kKtYZs2aS5WqIgFnAlMITKKtrX2e6/wnT55GSapM4ACBb6hU\n6jlgwAAePnyYdeq0IPBNuu8/hd2798vxvq9fv87//W8yJ0wIydCwn5yczOrVA6jRtCYwg5JUgcOG\njc5UPjk5mU2atKZOV5J2dnXo4uLDixcvZtjmyJEjlCRnAj1N1UwuVKnsGBr6Te5PipWcOHGCS5cu\n5f79+8WTSh7k5dqZbckqVYzTLaSfwVUkiDfT8ePHTRefiaZqBmeePXs2R2Xj4+NZvHhFAqNNvYlI\n4Fs2b/4u09LSeOXKFUZGRj73QnDw4EG2adOFrVoFcffu3ezd+yPK5TYENPT1LftS5m7y9i5P4KRp\nzEQtU8NzVapUzvTyqkBgV7qqm6/ZoUOPHO03IiKC9vZutLEZSLn8U2q1zvzll19Iknv27KFOVyVd\nA/d92thoGBcXl2EfX375JTWapnw6nkMun8PatZtlOlZ4eDhHjBjNkSNHc9++fbmeofa779bTw6Mk\n7ezc2K1bX8bHx+eo3NatWzlkyKecOXMmY2Njc3XsL76YS0kqQknqRa22JD/8cEiu9iPkc4KoXbs2\n4+PjzQkiIiKC1asX/FwwIkFkLS4ujhcvXszx/4ypqamcOHEyS5euyVq1mvHIkSM5PlZ4eDiHDPmU\nn346in///XeOykRHR9PPrxKVyloEmhDwIHCQklSVM2bMZJUq9SlJhalWO7NVq04Wu0KGhYVRo3Eh\n8BWBpdRo3Lhr1y4mJibm+MKVEyVKVCGwl8AiAjoCowjMJuBOuVxpaoM5RGAXJckz23r9hw8f8vjx\n4+zUqQfl8onpkssyNmzYiiS5efNm2tm1TLculUqlXaaJKwcNGkpgerrtLtDVtdhL++7pHTlyhBqN\nO42DIm9QrX6HPXtm/7Q3Y8ZsSlJxAlOoVr/LMmWqZfp9oqKiuGvXLh47dszinEyPHj2iUqkncMP0\nPR9Tkork+GZEyChfE8Tu3bvZoEEDOjs7s3PnzvT29ub+/ftzfcDcEgnCsl27dlGrLUSdriglyZE/\n/rgl2zLDh4+hJNUxXehCKUk5fxKIi4tjUlISSfLu3bts3TqIXl7l2LRp2yxH8o4ePZ5KZU8+m8Ru\nFmUyew4fPobdu/enUtnHdPecQI0mkNOmZZ4BtlWrIAJfZ2iQDghok6OYX8S6dd9SkjwJVCAwLN3x\ndhKw56xZc1iyZDWWLVuL3323PkPZy5cvc/r06Zw5cyYjIyO5d+9e6nQutLevRrnckcCKdPv7mZUq\nNSRp7CHk4OBBmWwJgb9pazuA1ao1zPQ0tXr1amq11Qk8pnE8x0gGBrZ76eeAJMeMGUdgfLp4L9PJ\nyeu5ZQwGA1UqHYErfNbVtzG/++478zanT5+mg4MH7e0bU6crxcDAtpka8o1dan3/1cgewD179uTL\nd/2vy9cEQRq7FG7dupVbt27l/fv3GRkZmesD5pZIEJlFR0dTqy1E4DCfvkxGkgpl2zvI2dmHxm6Z\nNFVVfMqQkEnPLRMbG8vAwLaUy20pk0n096/JokXL0tZ2OIFwyuW9KJc7UKVyYO3aTbl69WrOnj2b\nYWFhDAoK/tfF/QSLFzdWXZYpUytd/CSwkm3bdst0/JYt3/vXBfY76vXedHb2YcOGb/PGjRu5Oodr\n1oTSza0Y9XpXdu/ejwkJCdyxYwd9fMoQmJohZpXKLcv9nD59mjqdC21tP6JS2Y/29u6m7qn7TeUX\n0zh9ya8EzlGSqnH69Fnm8mfOnGG1ao3o5lacbdp0tjirscFgYHDwACqV9pQkT5YqVSXfehTOnDmT\nKlXXdN9/D318nj8NSUpKChUKWwIJ5nJabXcuW7bMvE2FCnUILDetT6ZW2zDDetI4iNDFxYfAKtNN\nxR7qdC68e/duvnzX/7p8SxCnTp3ihg0b+Oeff5Ikb9y4wb59+9LL6/l3EvlBJIjM/vjjD9rZlf/X\nnVYNHj169LnlPDxK0ljPbixja9ufU6dOfW6Z4OCPaGNT11Q9NNt0dy3ROI/RJRobi7cTuEOgD2Uy\nFyqVgyhJPmzXriO12moEoggkUaUKYu/eA0mS7dt3o43NKD4dO6BWd+K4cSGZjr97925KkjuNjcTr\nCRSiTPY+gQgqFJPo61vuhUfp7t+/n5JUhMZR0JHUaFqzT59BJMmjR49SpXImsJnAUcrl5Tly5Ngs\n99WixbtMPy23XB5Cudw+w2+jUvnTwcGLLi5FOW7cpAzVK7GxsTxy5AjDw8OzbZC9c+cOL1y4wGXL\nlnHChAncsiX7p8YX9ejRI3p5laJa/R7l8hGUJFdu3bo123LNmrU1TaF+kcB31GqdefXqVfN6e3uP\ndFVHJBDCMWMyn9czZ87Q27sM5XIbFirkyQMHDrzEb/dmyZcEMXbsWJYuXZpBQUEsVqwYhw4dSl9f\nX86ZM4cJCQm5PmBuiQSR2f3796lWO6R7GrhCtdqJ//zzz3PLffXVEkpSUQKLqVCMpKNj4WzLFCtW\nmUA5AnvS/c89yJQoggl0Trc8mYCt6b//0NZWYv/+H9PGRkUbGzWbNXvH3F5y69YtenmVpl5fjTpd\nGVar1jBT4+xTO3bsYIMGrejv34AaTfF0xzMQcGfZstVe6Om2c+duNI5dKEmgD4Hf6OLyrE5/+/bt\nrFixHkuUqMrJk6eZL+g///wzv/jiC/7www/mi3n16k1pfKnP05i+oUJRKN35uk5JcjffbKV36dIl\nurr60s6uOrVaX771VodM1S6xsbFcsWIF586dy7NnzzIwsC212gYExlOrLcORI8fn6DtHRUVxwIAh\nbNasAydPnvbccRqPHj3ivHnz+L//Tc5x77DHjx+zU6dedHEpynLlamWalK9hw7epUIwz/WYPqNWW\n46ZNm7LcX2JiYo6OK2QtXxJEmTJlzIkgKiqKkiRluBMoaCJBWLZs2UpqNM60t29MjcaFCxYszlG5\nzZs3MygomAMGfMK9e/dy/PgJDAmZxMuXL5u32bRpEwcOHMIZM75gvXrNCXgT+C3D3Z/xbWdlaZyH\n6GkvnAs0NvAaRxVrNG6MjIxkUlJShot/fHw833qrAxUKNRUKJVu2bJujC8LZs2cpSd7pqjJiCDhT\nLv+EZcvmrAPF1atXqVTaE1hL4LwpwTWgSuX63CeRceM+o1ZbnLa2n1CrrczOnYNpMBg4deoXVKsr\nEDhlqkIqx08/HUm93pV2dv5Uqx05a9Z8i/usXbsZ5fJZpu+SSEkK4Ndff21e/+TJE5Ys6U9JakmV\n6kOqVPZUq0vy2ey092hrq+Xjx4+f+52NPckqUKn8gMB3lKSm7NSpZ5bbHz9+nKtXr85z1+H0bt68\nST+/ytRo3KlU6jhkyCjRhTWf5UuCSN+tlST9/f1zfZCXQSSIrF29epW7d+/OcHHPqVOnTlGrdaZc\nPoIKxRDq9caJ4CZOnGyahG4GVap3WaKEP5VKBwL+NI6k3kxbWz1tbRsQSCTQgEBTAv0I2BFQmZJE\nEH18ylrsrTJo0HCq1R1M5R9Tkupz1qy52cZsMBjYuvV7VKlq0zgGogaBvgQMtLXV5ujNh0uXLqVG\n0y1dsosnoKBKVTzDlNrpRUVFmXrX3DGViaNW68NNmzbR3b0YbW09CKio0RTi559Pp8FgYHR0NE+d\nOsVbt27x0KFD3LRpU4b2EoPBQElyM1XTPY1lKgcPHmbeZs6cOVSr3+WzRv4QymS1MjxBaTSu2T4F\n7ty5k3p9nXT7icvyfI0ePZFarQ91ui6UpCKcNm2WhT3mTlpaGm/cuJHjif6EvMmXBGFnZ8dWrVqZ\n/9nb25v/bt26da4PmFsiQeSPZs3a0diA+mzwV6dOvWhjoyZw03wB0unqceXKlXz33S50dy/F8uXr\nsm/fvlQqB5nvfI118DoCk00XofOUyRz4008/WTx2hQr1aByQ9vRCt4atWnXOsM39+/d5/fr1TAkm\nNTWVQ4YMoa2tG42N12kELlOplHI0vcU333xDrbZJuovlVQJa6vVvZ1nlcfnyZWq13uniNfauKVLE\njzLZ03P4DyXJO0PX4bS0NLZt24VabSna2bWhVutsnuRu9uz5lMvdaOwxZCAQQ5WqKlevXm0uP3r0\nWMpk6bvI/kZAS+P7tG9SoRhPP7/K2b7Gc9u2bdTrA9LtJ5FKpZ4PHz7MsF1ERISpS/F903aRVKns\nrdJInJKSwnPnzvHKlSviSSOX8iVBHDhwIMt/WU1NnJ9EgsgfxrrzbekuGmsZGNiBCoUyXRUGqdN1\n5Nq1azOU/f33300NuccJPKatbV8CcgKp5nKSFMyvvvrK4rHbtOlMuXwAgd0EblOp7MfBgz8labyz\n7tNnIJVKPTUad5YrVyPTBSotLY3Nm7ejTlfL1CDuyYULn1/F9jR5xMXF0c+vEmWyDgRmEChBoCPt\n7d0zHOenn35irVrNWb16U37zzTcsUqQkZbI5BJ4Q+JIqld70nZ+dK7W6PxcufDZN+ubNm00D4RJN\n2+ymq6svSbJy5QAaG97LEyhGwIFeXhmfuIyN6Z4Ewgk8okrVmc2atWbZsjWp17uyfv23sn16II1V\nVYULl6CNzRgCe6hWt2fz5pm7yR4+fJh2djXTJU9Sry/DM2fOZHuMl+nOnTssWbISdbriVKtd2a5d\nF/OccELO5Xs311eBSBD5Y968hZQkf9PF5yQlqSTXrv2GAQFvU6l8n8ZprFdRr89chfG//02jUulK\nwImALd3cStDOzpXAUfMdqk5XyeIThMFgYFDQ+zS+wa4mAR0LFy5qvptdtWoVJakagWhT1dEQvv12\np0z7SU1N5fr16zl79uzn9t66cuUKy5SpTplMTgcHd27bto1PnjzhhAkT6etblmq1nk5Ovhw+fIQ5\niezcuZMajQeBjQR+pCR5c968+axQoTYVCiVlMi3V6q6UyRwJbOXT9hCttix37tyZ7hzPo0o1IMOd\nu1yuoMFgYIMGbxNYaUowfxEYxp49+2eKf+nS5bS3d6dSqeU773RmTExMzn7gf7l58yY7derFKlUa\ncfDgEZkGsSUkJLB16/cI2NDYS+1zAt/T0bFwlp0H8svbb3eijc0IU6KKpyQFcOHCLws0hv8CkSCE\nXDMYDJw8eRrd3UuwcOFSnD/feOf7tDeKm1sJVqpUP9O0ztHR0VQqdXz2PoJ4arVFOXv2bEqSM/X6\n96jTlWObNkEWqz6evaznian8Ljo7e5vXf/jhYAIz011Uz9PNrUSuvuOTJ0/o5eVHmewz09ONcb6i\niIgIpqWlsXHjVtRo3iKwiJLUlC1bvkuDwcCmTdvxWZ99Eviedeq8RZKsXLkBgVDT8vWmKp8qlMmc\n2bJlhwzVIceOHTM9AVwlYKBcPp0VKtQmaZw+RC7XExhHYCgBifPnL8jV93wZPvjgE6rVbU2/y3UC\nPrSzc+bJkycLPBYvr3KmG5en539+rufuepOJBCEUuKtXr5rGEKSvj2/CXbt28dKlS1y7di1//vln\ni/XGu3fvZrlytSiXlyGwj0/HQMhkcnMPorlz55ku2k/frzCLNjaFMr3hLjs//bTV9P5nd9OTzhZT\nlcm7XLduHc+cOWMatZtoulNNpEbjwcOHD9PW1pnAlwSSCAwgYE8bG3suWvQVCxcuReBPGts+ytE4\nOd5cAnOo07lkerfEvHlf0tZWokrlyGLFypt7BG7evJkaTTkCI0xJYhPt7bMekJffihb1p7En1tPf\ndSF79Mj8RFMQAgPbUaEI4dOu0xpNc86Zk30nBiEjkSCEApeSkkIvr1KUyWYTiCXwA/V612xHce/c\nudM04G0lgWUEXExJYhmLFn02UjcpKYn16zenUlmcQBUCRUzVPCVy/A4KY/fsQjQOhCONgwMLEbhJ\nrbYM9+/fz59//pkKhYupSsWJwArqdCXYo0cw5fL3aBwA2IzGOaT+IRBOSfJlo0bNqVIFmS6mehq7\n+hYn0IQKRQNu3ryZly9f5vjxEzl69FieOXOGiYmJvHfvXoakuXjxYmo0fdJdkJMplyusVtdeq1Yz\n0+/ydBBlH44Zk7MxFi/bjRs36OVVinq9PzUabzZs2FK8sjQX8jVB/P333+zTpw+bNm3KgIAABgQE\nsFGjRrk+YG6JBPHqiYiIYIUKtWljo6K3d5lMg6IsMb6iMzTdBXEpFQoXurr6ZhpElpqayqJFy5uq\nmqLN27/7bs8cxXfy5EnTxHFLCJwwlS9DjaYE27XrSoPBwCZN2tA4SC6RwFkCLnR2LsLq1evQOBDw\nOI1TZKQf/zGHTZq0pI2NI4319B+Ynj5SCXQk4MSpU6dSr3elQjGUMtlYSpKzxfMTHh5u6uYaTiCV\nCsUEVq5cP0ffLyuJiYk8ffo0r1y5kmndhg0b2aJFR3bs2JN//PFHpvW///47dToXSlIParVv09u7\ndKZJA1evXsNy5eqwfPm6XLMmNE+xZmfFilVUKnXUaktQo3Hkli2We8QJWcvXBFGhQgUuWrSIv/zy\nC3/99Vf++uuvL3XgTE6JBJH/Hj16xO3bt3Pfvn35dqcWENCG6d+pAKxgw4atsjxevXpvMf0cTArF\naH7wwcc5Ota773YzPXn0pPENa2Npa2vH0NBQ8128RmPPZ905SWAIbW1dqFT2JeBG4CMaG9G/S7dN\nXwJqGt+34MaMXXXXEihEhcKBxoGEz76njY0zixQpzdDQjL3BjBMEOlIut6G/f90c9UjKyrVr10x3\n3aWoVruwa9c+5jaglStXUZJ8aXzj3Gxqtc4WR3Zfv36dS5Ys4Zo1azJMFX737l3OmTOHGo0PjT3P\ndlGSfF/4rYI5dfPmTWo0TqbETQK/UJKcsh0QKGRUIO+DsDaRIPJXREQEXVy8aWfXmHp9Ffr718n1\nXP7p3blzh0FBwaxUqSE/+OATbtiwgZJU2JQk1lCS3J87S+eJEyeo1TrTxmYIlcq+dHQsnOWssel9\n++23piqjx6aLyw0CKs6dm7EBuHDhkgR+5rMpO+oRWGj6fJuA2jSQUE9jO0QXAkUJfEogkEB/Ar1p\nbItIJvAWAQ2BhszYwL2bQG0C66lQOLFGjSZcuXK1OVEZDAbzLLl5UbducyoUn/NZj6oaXLNmDUmy\nZMmqfDZ5IAlM4McfD8tmj8bYhg4dTZXKngqFB43vAY8w7eNbNm7cNs9xW3Lw4EHa29dJF691utu+\n7vJy7cz2fYGtW7fGl19+idu3b+Phw4fmf8J/S79+QxEVNRBPnuxDTMyvuHDBE7Nnz8vTPhMSElCr\nVmNs2uSE8PDxWLnyHubNW4bvvvsKjRptQOPGP+CHH1ahWbNmmcomJyfj999/h1qtxokTYQgJccbn\nn/vhzJkT+Pnnn/Hxx8OwdOlSpKWlWTz2uHGfAygNwM60xAuAHTQaJc6cOWN+beennw6AWh0EjaYP\nNJr6kMsv4tkrTN2h0xXBb78dQbdu7wK4AqAWgFMA+gG4CGAqgLMAPAC4AzgKYB2AQQAmAzgG4A8A\nnwJoAWAw0tIG4uTJXvjoo+mYPn0WAONrIZVK5XPPp8FgwKZNmzB79mwcOnTI4jbnz59DWloX0ycd\n4uLa4MyZc6byBGCTbmtbpKUZnntMANi+fTu+/nozkpIuIy3tFoCPAbxvWhsNjUaV7T5yo1ixYkhK\n+hvAJdOS00hNvZOrV9QKuZRdBvHx8aGvr2+Gf0WLFs11RsqtHIQq5EHm3itfslu3nL9O8ymDwcDb\nt29z3bp17NWrF9Xqyun2mUK12iXbCfXu379PP7/K1OnKUKstxtq1mzI+Pp4Gg4EdO/agJNUlMJ2S\n1IBt2gRZ7Cnl4uJLY4P0btPd/XIaR3nrqdeXpSQVop2dK+3sqlKlcmG1anW4ZMkS6vWuNL4saACB\nhrS3d2VSUhKXLVtGSapH45QcpHG0eCCftaPYs337znRw8CRwxrzc2H5hT6AHjQPy+qU7H3/Syckz\nx+f1nXc6U6erRqXyY0qST4bpwp+qVatpunmd4imXV2VgYEvGxsZy4cJFlKRSBH4ksJSS5Mzff/89\n22N//vnnVChGpIv7AY1tL9MoSc48fvx4jr5DbixZspwajRPt7WtSkgpx/fqN+Xas/6q8XDtfqavu\nzp07WapUKZYoUYLTpk3LsE4kiPzVuXNvqlS9aWxofUxJqsWvv17yQvt4/Pgxa9duSoXCjsY6/64E\n/PhsRG4CVSon3rp167n7CQoKpq3tx3za8KtWd+C4cZNMU0C4EYgz70+SivCvv/7KtI9OnXpRJmtq\nqg5RmC7STWmcXDDVVNXiQGPjdBw1mors2bMn+/btS5lMS2AsgUVUqz25Zk0oU1NT2a5dV0pSYdrZ\nVaAkudLW1oEyWQnTvhfR1nYgnZy8qFD40ThN+BwCOpYtW4mS5EKgEYEP011oL9He3oNff72EwcED\n+MUXM7OcrPDo0aPUakvy2WjsSCqV2kyD1yIiIujuXoxyuR8BVwKNqVIFsUaNRkxNTeWyZStYqlRN\nqtXutLd3Z79+H2c7QeL69eup1VZNlxxX0c7Ok717f1Qg7ZH//PMPjxw5wjt37uT7sf6L8jVBJCUl\nce7cuWzfvj07dOjA+fPn50sDZmpqKosXL86rV68yOTmZ/v7+PH/+/LNARYLIV9HR0axVqwlVKkfa\n2moZHDwg27l9SOO0DB988DE/+mgwixQpTWO3UHsap7lOIlDdVG//LTWat/j22x0t7ufUqVNcsGAB\nN27cyHLl6hII49P5mQAv2to6sUuX96nTlcpQJ21nV9Hiu6ijo6NNPaBsaGxQnmJKOK40DlgjjQ3Y\nVwicJmBPhaInFYryBD5Jd4wwFi5cmr6+5Whrq6GfXxX++OOPTEhI4IoVK2hjI/HZNN8G6vVV+Mkn\nw+jnV53FilXkhAkTmJKSwt9++40DBw4yzSC7gMBOSlINlilTzfR2v3nUaFqxbt1mFru4btmyhXZ2\nb6WLy0C12sVisj1+/DjVak8aG3eNSVar9eG5c+d44sQJajSupt/nAjWat9inz8Dn/sZpaWns1Kkn\nJcmb9vZ16eDgYbEHlPBqytcEERwczB49enDfvn3cu3cve/bsyd69e+f6gFk5duwYmzdvbv48derU\nDC+xEQki/xkMBt67dy9Hs6GSxvclGLtoTidQ2vTE8DeNYxxcaZzs7yFtbLxYsmRVjh070WJD7PTp\nX1Au11Am86GtrQ/d3UuapqTeaXoSOUrgAiUpgHZ27lQoJhG4QIViCosUKZnlO6l/+eUXyuWefDYt\n+EMaRzzfp3FshN607m0+a5geQWBiugvxb5TJHAhsIPCEcvlsenr6ce7chVSr3Qi0oXH8wwcE1lKt\n9uHevXvN5/PAgQP87rvvzF1Ow8PDWaVKQ7q6+rFhwya0sbGjcbpyYxWcTlfaYpXNrVu3qNU6E+hF\noDGB6vT0LGkxif/xxx/U6Ury2fTradRqi/LPP//kuHHjKZONTff9IrJ9lejT7xIeHs4DBw6IWVhf\nM6gU3FEAACAASURBVHm5dspMO8hSxYoVcebMmWyX5dX333+P3bt3Y+nSpQCAtWvX4sSJE1iwYAEA\nYyPexIkTzdsHBAQgICDgpcaQn2QymbVDEAQhl7K5TL5SwsLCEBYWZv48adKk3MefXQapXLkyL126\nZP4cERHBypUr5zojZeX7779nnz59zJ9DQ0M5cOCzR98chCrkA4PBwO+//57Dh4/klClTuGTJEoaG\nhvLx48csUaIqgSM0Toeh5rN5mQw0vjdCQZmsMZ9OlyGXT2dAQKsM+zd2vVyerlxHAracM2cOe/fu\nR4ViULq73e9ZsWK9HMe+Z88e6nS1CAymcezCemo0Ply3bh0jIyNZrFgF2tgMI3CMxraBSgT+pkrl\ny2LFKrFs2dr86KPBVKncaRyFnUbgDm1t9f+aZqR5uicQA1WqbuzSpRt1uorpnl4O08HBnRqNg+np\naotp+Q4aG8+7E3Ckg4NbhrEH6X8HpVIicM98XI2mS4YXC6UXHR3Nfv0+Zs2agfzwwyHmfUZFRZne\nXdGBxjYRLSUpgBqNC+fOzdk0JgaDgc2bt6NG05rARqpUfVimTLVcddPt1KkXVarOpqe7cEpSEfF6\n0ZcsL9fObEvu3buXXl5ebNCgARs0aEBvb2/zXPYv0/HjxzNUMU2ZMiVDQ7VIEDl39+5ddurUi+XL\n12WvXh/muMrIkhEjxlGrLUdjr50GlMt9KEkt6enpx3HjQihJVWgcbdyTxjfOTSfQks7OvuzRox+N\n8xM9vZCeYeHCfhw+fDRbt+7MSZMm08nJl8Y5jZ5uM5OAlgcPHuTNmzfp7OxFW9s+lMlGU5JczNU3\nObFw4SJTlVIjGge09aJOV4ixsbE8deoU9fpyfNaAbnxtqUZjz5CQz83VbX5+lWljU5SAO2WyEpSk\nohwzZiJdXHxobB8x0NgQn36k9QLWqtWAkhScblkqZTIFZTIbAhXSLSeBqjRWeR2iJLlY/C4Gg4Eq\nVfrJEUlJeo9Lly5lcnIyHzx48P/2zjw+puv9459ZMsudmYRIIhESJILsse+hQS2x1K6olqqlVfxa\nW5Uoii72UqWttpba2thpUVvtSu272NeqfslCJpnP7487mSTNJJLIRs/79ZoXM3PuOc+9k3uee86z\n8ffff6e3dwC1WhNr1Wps11ssKSmJrVp1olpdgnJ98YqUtwIvU6dzzlbJ1hs3blCrdWaqwdxCvT6Y\nO3bsyPZvk0Lx4p5MtQmRCkUUR436MMf9CDInXxUEKacA/vPPP3n06NF8qxFrNptZvnx5xsTE8MmT\nJ8JInUsSEhJYvnyg9cl4O7Xa3qxSpX62DM7/JjY2lmq1Ps1TaxKBYAJb6eAwgIMHD+XHH3/CcuVC\nqVQ6E+hMOSPpcOp0Jfjxxx9bDbCPCFioVg+k0ehOB4fXKBe7qUGFwsl63BPr5Fee7u7eNtfVW7du\ncfLkyRwzJipHhtG4uDjqdE6UDdCknAhPQ43GhWXL+nPDhg00GMoxNRngE+r1pXju3DlbH507v0EH\nh0FWJWCmWt2aLVq0ZqtWXVitWjiLFfOkXHu7WJpzuEsHB3+OHz/emnPqLOUMrp+zUqWqjIiItK4Y\nUib6O5Tdca8Q+B+VSq1t/JMnT3LYsJEcPvwDnj59mkOGDKckVSewnCrVhyxRojSnTp1BrdZIjcaJ\nCoWJcnLBv6lSjWHFilUyuADPnTuXklSfskeShbK3VjsCpJNTjSxTpqdw9epVKhSOaa6dhUBFLl26\nNNu/TwrlygUTWG/rR6frwGnTpuW4H0Hm5KuCWLZsmS20fdy4cXzllVcypH7OKzZs2EA/Pz/6+Phw\n4sSJ6QUVCiJb7NmzhyZTaJon42RKkicvXLiQ477u3r1LrbYYU42dpBwpvJrA17acSJcuXbKms059\nKnZyasJ169axe/c+1GqLUZI86eXlZ3WXTJEtloBEpbIYZW8jNQMCqmeocJaWv//+2+4WzL9JX/3t\nNwJlmVohbxI9PPzYoEFz6vWtCXxNvb4FmzRpk25C9fevTWBnmvP6niqVM+XKecspSRVYokRpyvW4\nnSiXWlWxadNIWiwWfv31t9RoDNRoHFmuXCAvXrzIR48eMSiollUptLL++w7lraj+9PaWExYuWbKE\nGo2BQHsCw2kwyDEL06fPYkTEK+zR4y1u2LDBqoTOWOWbSiAl7sRCrbZYhuSJb7010NouNRZDXgHt\npSSVeGqyRVLeppKVUWfKjgSDqFC4cuHCnOdl+vXXXylJLtRqB1CSWrJChZBc17oQ2CdfFURgoPwH\nu2vXLoaHh3Pt2rWsXj17heHzEqEgsseBAwdoNFZKM6k/pk7nxsuXL+e4L4vFwpCQOlSrhxC4SDnL\nZzEC/ajRlOH8+V+TlF1UZRtESkK8q9TpXHn27FmS8irg0qVLXLduHQ2GemkmpycEnKjVelGrNVGp\ndGClSlVtqbBJ8rvvvre6jIbSzy+MDg5GqtV6tm/fjWFh9anXO9HPr0qGgK/Hjx9b8/hsIPAZZTtE\nyrgPCTiwV68BnDBhEjt06MlJkz7NsIf+6qtvUqMZYFVoiVSrm1P2IErp53eq1c4EhlhXAAuoUpnS\npfo2m828f/9+hif5gwcPcsqUKVSp9JS3wZQEDBw4cDC/++57KpXFKXssVSPQlsDnbNu2W7o+5s+f\nT0l6PY08yZRjPp4QuEYHBz0TEhLSHTNr1heUpAimbg9FUaksQYPBmWvWrM3W30ViYiIdHPSUg/4a\nE+hDg6FSjrb/0nLixAlOnz6d33zzTZ6kdxGkJ18VREhICEly+PDhtpKToaGhuR4wtwgFkT3MZjOr\nVm1Ana4LgYXU61vw5ZdfyXU937t377JZs/Z0di5DjcaFclnMD+ngUJVt2nSlxWKx1rXuY30ark3A\nibVrZ8z4+/DhQ7q5laVskC1tnRRLUN5yOUJ5K2YyK1WqRpJcsWKlNbncVgIdKG+FJBL4HxWKKtaJ\n8y8CC1msmEeGrKM9erxmVWgulN1wUwzG0QT8qFJpsozpuX//Pv39q9No9KEklWaZMpUIjEgzIa+h\n7CqbWprT0fFlrl1rf6KNj4/nqVOnbCuk/fv3U5K8CPxkVTweBEpbn85T8kMlWlcFwzLkPNq0aZPV\nPpQSwPY7AQNVqvcoSeU4adJnGWQwm81s1qwdJcmLjo4h9PSswF27dmXqKpwZs2bNoSSVpkYzkAZD\nDTZr1i5X25iC/CdfFUSLFi3Yp08fli1blg8ePGBCQgKDg4NzPWBuEQoi+8TGxnLEiNFs2bILx42b\nmCvvksTERO7atYvjx49n06bt2aJFRzo4OFL2NpGjmHU6L6sy8rQ+od+mvCXzOdu06cb9+/czPDyS\nISENOHHip0xOTubBgwetkcqbrE+6nZiyB57yFKxUOjAhIYHNmnWkbAgmgRpMLWVKyp5Pxa2TfxQd\nHetneIJdvHix1Yj+J+UkfKUpexy5EdhClUqT4dpYLBZ+//0PfOWVHuzffxAvX77MEydO8MyZMzx+\n/Li1+FA3Av2o05WlSqVjqo3GTKMxwG7N9t27d9PJyZ0mUwXqdE6cO3c+V61aRUfHlpQD515iatGi\n4ZS3llLO9VVqNG4ZUmtbLBbWrNmIcsDfywQMrFOnPidOnJjl07zFYuHx48e5f//+HCuGf5/T1KlT\nuWLFClErugiTrwoiLi6OK1eutBnvbt68yV9++SXXA+YWoSAKjtjYWIaF1aNWW4ZyQZ/vKBt5XdNM\nWqTsjTOU8j60H+X01lcoScEcP/5ja2DX1wS2UJJqcsSI0XYigjdaVyUpWx6HaTAUp8ViYYcOrzF1\nv7wDZU+qFKNoV8rbLw0JeFKtLpHONvbw4UNOnTqVgYE1qNG40GDwI6CnUtmNwFLq9c3ZqVPPDOc+\nfvwkSpI/5fTc79PV1Yv37t0jKad8KF7ckypVJJXKtpQkF7711js0GCoTGEtJimB4eIsMk2VSUhKL\nF/cgsM4q/3nq9W7cunUrJcnFem4z0lyTo1ZllsiUgL5RozIW7Xn48CG1WkfKBv/lBPZTry/JM2fO\n5O0fhOC5Jt8UhNlsZsWKFXPdeV4iFETe8uDBA/bo8Rb9/WuzQ4fX0uW5GTUqijpdZwJ1mZpGwkzA\n01rX+QblIjzOTC3kc5CAI/V6J3744Uf86KOPqFL9X5pJ7wxLlPDinj17aDD4ptkWuUR5i8mHGk0n\n6vWuXL5cTsh25MgR6vXFKUcpv0vZZ/8lKpXB1rE7WCfdt6hSFbN52D169Ig+PkHU6ToSGE2dzo3j\nxo3jmTNn2KbNq6xSpRGHDx9td2VlNLoQOE/ZgD6ZKpU/e/bsyYsXL7JHjz5UqVK2mE4TqEcPj4oc\nPXo0R44cxXnz5tndsrp16xZ1Opd0ytXRsTV/+uknrlu3zmqMrp1mBfGhVUHIOaS6dOli9zc8f/68\ntVxqWueAl3L0AJeYmMiBA9+nq2s5enkFcOnSZdk+VvB8kK8riNatW+fKwJnXCAWRdyQnJzM0tC7V\n6jYEWlChCKW7e1mbQfOVV3pQLtJTm6l74SQwkq6uvtb6DM6UM5SmfLeLXl6BNlvHpEmTqFanTUx3\nmG5u5W0ZWVWqipQruZW2Pj1PZunSfjx58iRJeRtkwID/o1brTAeH8tTrXfjDDz9w9erVDA2tRXlr\nKdXNUq2uwL1793Lfvn2MiHiZanUlApet3x/KdtZUuYDQZcpbWh0JTCFQnmp1CapUBso2iHOUV1Nj\nCcyhJHnyxx8zd/FMTEykweBMOSCPBG5Tkkrx0KFDfP/9UaxYsQaLF/emTleKCoU35XoT71G2zxgY\nEdHC7v5+QkICnZzcmeomepiS5JKtWIYUhgwZQUlqZFV42yhJHna3yATPL/mqIOrVq0eDwcBGjRox\nMjKSkZGRbNWqVa4HzC1CQeQd586do1brZp1kZ1lXA8U4ZYqcPvqzz6ZSkl4i8CUBX8pG3QWUJFdG\nR0db6zy/TdkAPJ6y904pzpv3tW2Ma9eusVgxDyqVowl8S0ny5YwZX/DmzZtcsGABAwNDKXvApNgV\nvmZ4uBxlbbFYOG3aNOp0lQg8oBxA9QWDgmqTlIM35bFTFYTBUJnTpk2jJLlZZRpMwN26QrlHnc6R\nJHnq1CmOHDmKH3zwod2tmD59BlKjCSRQi6nG59sEtJQTCBqsim1kGuX3CytWrMFLly5x+vTpnD17\ntm1bKoX169dTp3OiSlWGCkUJvvxyK77+ej/q9U0I7CLwJSWpOCdNmkQHByOBypQ9x65Skmpz8uTP\n7f6Wv//+O4sVc6ckeVKvL8aVK3/K0d+CnGDxaJpzmZStIkKC54d8VRDbtm2z+ypohILIOxYuXEjZ\n+6Y55UAtElhqS2MRGxvLunUb08GhGB0cnGgwlGGDBi25Y8cOfvjhGCoUKS6jpwi0IeBOSSqeYZxL\nly6xd++32bZtdy5duownTpygk5M7DYZOlKSmVCpNVKtfp0r1fzQYXLh//35b5lAHByfKQXcpE9d9\narUmkrICqVXrJarVbQn8TI2mFwMCajA4uB6Bn9McM4xAH2q1ndmuXXf+8ccfNBhcqFCMoEIhxxYc\nPXo0ncxms5lt2rSnQvFymn4SrQqiK+WtLYO17z8pe0btoaenP41GV2q1fajXd6Wrq1c6d9dTp05Z\nFetXlDO5hlGp1FNOHPiYwEdUKCoxIqI5a9duSuDHNOOvZ40aTTL9PZ88ecLLly/nyuBcsWJ1ptpG\nSLW6P0ePjspxP4KiS75HUhcFhILIG77//gdrUNsnlP3Yy1onqWjWqNGEp0+fpkZTgnLQlwNLlCiT\nLlXHsGEjKUffpkxeRwh4sXz5kKeO3aBBSyoUX9iOdXDozfDwCI4fP8FW02H58uXWYLofKedGemRd\nQXzNypVT42/i4+M5dOgohoe34ttv/x//+ecfa26otJ5O06hUmihJHvT2DmJQUA2m5kySA8teeaW7\nrc/vvvue5cuHslSpStRqnayT+XHKaUTcraumwwSqWJVEBQKe1Ov9rKnF56aZaN/j228PsfU9ZkwU\nlcqhacY+ZlXSFykHzLUm8CNVqo7W6x+eZvU0ha1a2bdDZMalS5fYo8dbbNasI7/++ttM3ZzljLxu\nBMbQwaEPXV29eOvWrRyNJSja5KuC2LNnD6tVq0aDwUC1Wk2FQkGTyZTrAXOLUBB5g7u7L+XcSSkT\nVQ8Cr1OSvPnjj0vp4eFH2c3SQtl9szwjI1P97//880+r580PlOMTAqhWO/K333576tjyBL4vzdhz\n2bVr+tTxEydOpEo11Dp+P+vELEcsHz9+PMv+x42bZE1F8QeBzVSri1Gr9aecaG8nlUoP65N/yvhL\nbbEFq1atssYkbCewnzpdIMuUqUQnpzLWuAQn6yQ+kEAgU43zM+nh4cfKlWsR2JGm76/Zvv1rNtk+\n+mgcVap303x/kEajB/X6CpTtGYlMDXbzIdCMCkVJajSv0dGxJPfs2cOmTV+hJDnTy8s/SzfWGzdu\nWLf3oggspiQFcvz4SZm2379/P0eOHMUJEz4WRXleQPJVQVSpUoXnzp1jaGgok5KS+O2333L48OG5\nHjC3CAWRNxQrVoryvnzKRPU+S5Uqz2nTpjMhIYEqlYnAtTTfj6GXl1+6Pnbu3MlatZqyTJlAtm3b\nwW5FN3v06zeYOt0rlCvC3aLBEMIFC75L10aOtq5EOQCOVCiG09c3OFvpF5KTkzlmzHi6uflSoShO\neTtoQ5pz+ZZKZUpm1n2UJD9+//0PJFMM8/PTtP2FYWENee7cOer1JSgnEVxhnczfT9PuLyqVerZo\n0ZZ6fUPKOZbOUZIqc+HCRVy4cBFr127GWrUaU5JKUKGYQOAHSlIFzpgxi59++hlVKjfKea5SXHiD\nCeyhVtuQPXv25NWrV1m/fjM6OAygbA/ZSElySZc3Ki3Tpk2jVps2UeAZOjl5ZOs3Erx45LuCIMmg\noCDbZynR1QWJUBB5Q9++g6yG0aMEoung4ESNxkSjsZw1kMudcsGflL332mzatEWejB0fH882bbpS\npdJQrdZx+PAP7W59vPfeB1SrjQTcqFA40Wgswd9//91un3PmfMWyZYPp7R3E6dNnMS4ujo6ObpTj\nKyIpe2PRqmw+ZtWq9Vi6dGWWKePPGTNS01v37NnXOnn/RXnL7QfWq9eCY8aMpVL5XprJ9lPKW0sp\nRX6+IlCRkuTP6tXl1B9GowsjIppbFYuBsjfUt9TpivPll9uyZcsuXLx4Cc1mM/fu3cuKFatQo3md\nwBbK7ryhBB7TYOjM7777jmazmUqlA+XAQlkOSerJ+fPn270mn3/+ubXgUorMl2gyueXJbyh4/shX\nBVG/fn0+fvyY3bt359ChQzllyhQRSf0c8+TJE7777lCWLl2ZPj4h1GpLUHZxJIG1NBpdqVQaKXvx\neNHJqbQtWWNWJCYmct++fdy3b5/dWICEhATu3r2bBw8eZEJCQpaRt8ePH6dO50p5CyuRwHoWL+7B\n5ORkLliwgDpdSSqVznRxKUudzptyiom9lKRKnDBhIo3G8tbz2U3ZU2sMFYphNBpdbW60/+bo0aNU\nqZysE7qBCoUjFy5caLUdpF0x/EG12plqtQsBf8o1r08QOEYXF2+S5Ny582kwBFN2h71I2WV2GoHP\n2bNnP5JyAGr16uE0GivRaAyh0ehOk8mLSmVFApupUMylo6Mbb9y4QYvFYnW/TUnKl0yjsR5XrFhh\n91wuXbpEo9GVCsUM62qjFt97b+RTf8PsYLFYeOLECe7Zs0ck1XtOyFcFERMTw/j4eP7zzz+Miori\nkCFD0hUQKiiEgsh7UlM9MM3LkeXKBXD8+PFcvHgxzWbzU/t58OABAwJq0GQKoMkUwICAGunKUt68\neZPe3v40mcJoNPqxVq2ILD1uli9fTkfHV9LJpVAYWbFiGOWgug8pu4a+StlGkeKOGs1q1SKoUkmU\n8zR9RGAtVSoT+/Tpm+mWDEl+8MFY6nQtKHslPSbQjGq1ExcvXkyj0ZVyXYufaDAE8JNPPufgwUOo\nVHZMs5I4bYu1aNy4HYGlaeRfRzkVxmT26jWAJPnhh2OtgXzy1pJKNYxNm7Zhnz7vsly5ENap83I6\nD6svv5xHSSpNheIdKpXeVKuLs3r1lzLd3jt27BibNevAatUiOHny53mSJyk5OZkdOvSgJJWmo2M1\nurp6i6jt54B892KKi4sr9D8EoSDynmPHjlGv97Dua8uGUzm/0acsW9Y/2wn++vUbRI3mTetEbaFW\n+yb79Rtk+75Nm1epVqfEDSRRp3uFH300IdP+jhw5QkkqReCW9ZjtlOMeIih7EKVMvGarwniDcg6o\n2XR19aFG08i6tdSGCoUTx43L3ECbQv36kZTjPVL6XkOgJsuVC+LRo0fZunVX1q8fya+++poWi8Ua\nxVzCqqTepV4fzA8//Igk+eqrvalUfpSmrykEalCSXGxZZ9u27c7UrTxaFV5xrlu3LtMEgr/99htd\nXctaVzTnqFB8wRIlSj9TQaic8MMPP9BgqMWUKHiF4guGhTUokLEFuSdfFcTq1avp5+dHb29vkuTh\nw4dFoNwLRFTUx9YsrdUpR+6uIkBqtcV5586dbPVRt24LppbQJIHVrFs31W7h51edqVHEsodPSi2J\nzBg16iOq1cWoUARYlcOvlI3DFdOsGOKsCiKKgDM1GqPVRTQla2sStVpfhoXVY8OGrblhw4ZMx3vz\nzXeoVPa3KTk50K4nJcnZbvuYmBg6OXlQpWprzctUghcvXiQpl+WV62j0pOxKbKJCUYLjxo23HT9p\n0qfUaCIob+9tJ9CMgCMVChMlqTgHDRrCpk07sEuXXraHsytXrlCSPJg2e6yTUwNu3rw5nWxJSUm8\ndu1anm8BjRr1ofVap/yO1+joWDJPxxDkPfmqIMLCwvjgwYN0Kb4DAgJyPWBuEQoi/1i8eLE1I+tF\n641/gRqNIdvVAwcPHm7N3WQmYKZO15mDB6d6unXp0osaTX/KLpwJlKQm/PTTKZn2l5iYyJCQOtRo\nIim7lKYk7PvbusLpSDmBYH3KbroksIplywZZVx5pCxxVJDCGwCJKkjs3bdpkd8x79+5Zy4gGWJWl\nP1WqvgwPb8nVq1dz1apV6QoVdenSiyrVWNs4KtU4dur0uu17P7+qBAZQ9n66zH+7vSYmJrJEiTJW\nBRdAQJ9m8n2XgDeBJVQoJtLRUa7n8ddff1GjMTElPkLOHluRe/futfV74cIFentXpl5fkhqNgZ98\nkvl1zilLly6lwRBG4H8ESKVyMmvVapxn/Qvyh3xVEDVq1CCZvgZEWo+mgkIoiPwjJXOq0RhMvb4P\nJakUZ8+em+3j5cjrppSkUpSkUqxbtynj4uJs39+/f5/BwbVpMHhRr3djy5Yds6zDsGPHDhqNIdaJ\nfgdl19IvCMyhTufCatVqWY3EbZiabmMXvbyCGBZWjxrNW5QN10MpG5FTEgMuYLNmHe2OuW7dOur1\nJahWNyBQioCBwcF16OFRnibTSzSZIliqlC9v3rxJMmVLKm3U9irWq9fS1l94eCTTB869z7ffHsLE\nxEQuX76co0aNooODM1NLj+6yruDMlIMXj6Y59m1OnChvk/XtO4gGQxUCkylJTdioUct09oXAwFpU\nKqfYnvANBm/u3Lkz279lVlgsFr755jvU6UrQZPJj6dJ+vHTpUp70Lcg/8lVBvPHGG1y0aBEDAwN5\n7tw5vvPOO+zbt2+uB8wtQkHkLxaLhevWreOcOXN44MCBXB1/4cIFXrhwwa7tIikpiefOnePly5ef\natvYvHkzHR3rppl8t1OpLM7mzTvYEsmp1TrKBuq1lL2VAtiqVVtbltpKlWrSxcWH8v7/r5QT2s1k\nixad7I4plw5NKS+aSIOhBhs1amqt7Z0yUQ9j9+59SJKffDLFWm/7DoG7lKS6HDt2Ards2cJ9+/bx\n0KFD1tQbfanTvUpXVy9evnyZtWpF0GisY3VrdWT6rbkSlO0uXpTTmKSsTgZxwoSPbdd50aJFHDTo\nPc6ePTuDolWpHNIoRFKrfZvTp0/P8e+ZFVevXuWJEydyVWdEUPDkez2IkSNHsmrVqqxatSo/+OCD\nDGUMCwKhIP47PHr0iG5uXlQoXiIwgBpNJ9ao0SidYpFjHWYSqEOgCtXqwAxxAT///DMVCkcCIZRT\nlxu5ZMmSDONZLBYqlSqm1qQgdbp+9PEJ4L8N13XqNCcpb0n17t2fDg56ajQSO3bsTkdHN5pM1SlJ\nvmzatC3PnTvHadOmcfbs2bx79y4XLVpEg6FBmi2wXZSL/ZBy3IZEk6k11WpnOjgEUvZ+mkWDwSXb\nnoOlSlWwKk0SiKfRGMbo6Ohn+DUEzzvPMneqkQkJCQmYO3cuLly4gODgYOzduxcODg6ZNRe8APzy\nyy84dOgQvL290bVrV6hUqjwf4+LFi9i0aRMkSUKHDh1gMpkytDl79ixiY+MABACIA/AL5s/fCYVC\nYWszadJHGDp0MuLj+0OjOYlSpf5A586d0/Vz8OARqNWRMJsXAVBAqRyPRYui0bVr13TtFAoFQkPr\n4ujRiUhOjgJwFgrFKrz00iu4efNLJCQ0BQDo9V+iQYPq6NjxNaxZswoKhQr16kVg9uxPERJSF2az\nM4ArAFpi164YbN++HYMHD7aNc/fuXZjNwQCU1k9CAdyGyeQPheJvzJ79FfR6PcqVi8LOnXuwdOlM\nODs7YdKkLfD19c3W9V269Bu0aNEeKlVVJCWdR7NmddGmTRvI8wRs19BiseD27dvQ6XQ4deoULBYL\natSoAZ1Ol61xBP8RMtMcHTt2ZLdu3fjll1+yTZs2fPfdd3OthfKCLEQV5ILHjx8zOjqaixYt4vXr\n1xkVNYEGgy+VyuE0GOrkS41huViQC3W6NylJrVi2rH+6eIkUGjVqTTlCmVZj6Ghb/EBaNm7cyEGD\n3uPHH0+06+rZvv1rlEuTpqwAfmelSjXtynbt2jUGBdWiSqWhTmfi/PnfcOzYCXR19aFCoaFaWswz\nUgAAHtRJREFUrWf79t05btxESlJjyh5UidTpOtHDoyKBcdYxYgnUJNCB77+fPiXNwYMHqdeXpJwF\n9gnV6iGsVSuCx44dY2xsbC6vakZu3brFtWvXct++fUxOTub7739ArdZEjUZinz4Def78eZYrF2At\nYmSkVutPk6kKfXyCM6QpFzz/PMvcmemRgYGBtv+bzeZ0RurCQCiIvCMuLo5BQbVoNNaj0diRRqOb\ndU8/Je7gCY3GSty1a1eejhsSUo9yjYklBH6ig0M3jhuXMR4iNDSc6QsVLWDr1q/meLzp02dSkupT\nDmYzU6vtwV693s7ymPj4eFosFnbt2ouSFEHgJ6pUA1mqlC8fPnxorZO9OI1sW6wR2GnzW00g4Mof\nf/yRpJxB19e3KsuVC+Grr/ag0ViCSqWatWs3zrYrcW6ZPftLSlJVAtettpJwurv7UamcTGAIgd5M\nce3VaAbaIr0FLw7PMncqM1tZqNVqu/8XPP/MmfMlzp8vhdjYnYiNXY7Y2E+RnKwDUNLaQgOVqiz+\n+eefPB335s3rAKIALAfwBczmXbh8+XqGdp06tYQkfQjgHICjkKRJ6Nw5MsfjvfPOALRrVwkODu7Q\nal1Ro8ZdTJ8+Kctj9Ho9Hj9+jBUrliA+fjWAdkhOnolHj7yxdetWVKxYFhrNbwDkLRu1+jcYjY4A\nVlh7SACwAgrFI5w6dQr9+vVDv34jceHCZ4iJ+RKrVx/G5MkTkJj4GHv2bIabm1uOzysnrFmzFfHx\n7wHwBOCK+PgPcPt2DCyWAQAuAWgOQAFAgcTE5jh9+mK+ypNdkpKS8OmnUxAZ2RXvvTcS//vf/wpb\npP8mmWoOpZJGo9H2UqlUtv/ndbrvqKgoenp6MjQ0lKGhody4cWOGNlmIKsghgwa9R2BymifeM1Sp\nilGliqKc4nsZTSa3PE/97O5ekXJOIlqfWruxQ4eMdQ6Sk5M5bNiHNBpL0mh053vvDXumcR88eMC7\nd+9mOzI8Li7OuqKKs10jk6kpf/75Zz548IAVK4bRZKpBR8f69PSswHnz5lGhcCIQRNklN5CARI3m\nTSqV7QiUZKo76wZWrfrSM51PTnjjjf5UqVKr3ykUn1nzXK2iHHfRhnISwETqdJ357rtDC0y2rOjU\nqae1quEP1GpfZ+XKVbMdlyNIz7PMnUVi1h07dqyt3GVmCAWRd/z888+UpIoEbhBIpEbTiy1adGTt\n2k0oScXp6xvK/fv35/m4Pj5V+LR6EKTsVdS27as0GoMpST0pSSW5cOGiPJMjPj6er7/enyVL+rJy\n5Rp2KyS2b9+den1zAuuoVn9Ad/fytqSFCQkJ3Lx5Mzdt2sQ9e/bQy6syAQ3liO++lGMv5qU5z4FM\nTRH+HRs0aJlhvLSYzWZeuHAhT7afrl27RldXL0pSJ+r13enk5M4lS5bQaHSlydSESqULlUon6nRu\nbNCgWbr4lcLi/v371oDAWNvDhMlULcsaGILMeSEUxOef26+5m4JQEHnL2LEfU63WUaXSMjy8RYHk\n83nzzYHWBHWPCdyjJFXh119/k6Hdli1baDQGMNXt9AS1WiNPnDiRJ8bcjh17UqdrRznNxc+UJBee\nOnUqXZsnT57wgw+iWKvWy+zSpVe68qEpxMbGWuMnFhLwIHDIKm8NyoF6KQriKwLVCIynJLlwx44d\nmcp2/fp1+vgE02AoQ63Wif37D86w8tm9ezfr12/BkJAG/OSTKU91Jrh37x7nz5/PuXPn2s7j1q1b\nXLNmDXfv3s2rV6/y6tWr2V5h5Td37961pipJtF1DR8cGmUbBC7LmhVAQ3t7eDA4OZq9evex6tgBg\nVFSU7VUYdbFfNMxmc67qGOeW2NhYNm/eniqVliqVhoMHD7M7KS1atIhGY+c0E+yPBHQ0GivQaHTJ\nkHsop2i1Jso1H+T+NZoBnDp1aqbtDxw4wFWrVvHKlSvpPv/jjz/o6Bhk7cdIORUIKZdkbWA1+p+l\nXl+RzZtHcuDA/+OhQ4eylC08vCVVqjHWLbgHNBhCuXTpUtv3x44ds1b0W0BgCyWpGseMGZ9Fj88f\nFouF4eEtqNN1JbCNKtVoenj4pEt1Isicbdu2pZsrnwsF0bhxYwYGBmZ4rV69mnfu3KHFYqHFYuGo\nUaPYq1evjIKKFcQLQ3x8fJapNs6dO0dJciWwn8AVyuU+jzElqtpodHmmlYSTkzvTprKQpLacN29e\nhnYWi4W9e79Ng6EsHR1bUpJcuH79etv3V69epU7nTLnIUGfKmV2vElhPlaoYtVpHmkyunDTps2zL\nVry4J+XcTSnKcTyHDRth+/6DDz6kQjEyzffHWLKkb66vRVElNjaW/foNZlBQPbZt243Xrl0rbJGe\nW54LBZFdYmJi0rnYpiAUxItLQkIC33//A9ap05y9eg3gX3/9xVWrVtFkcqFCoaRSmTbFN2k0+ma7\nzKk95NoKXgQmUqPpQW/vynaLIm3bto0Ggx9Taz7spsnkkm7V8/77o2gw+FKr7UWVyo0aTTF6eQVk\nmTk2K6pUCadCMYcp7sYGQ3i6CPGxYz+iSjUozfXYy9KlK+dqLMF/g2eZO4uE/+qtW7fg4eEBAIiO\njkZQUFAhSyQoKEiiVavO2L1bjYSE/jh48Ffs2PESTpzYj//97y7OnTuHsLB6SEi4CsALwDEkJ/+F\nUqVK5XrMfv36oHx5b2zcuBlubv7o338mHB0dM7S7cuUKFIrqAIzWT2ojPv4REhISIEkSAOCzzyag\nefOXcPLkSVSq1AXVqlWDo6NjrqPQFy36EnXrNsGTJ9/BYrmH+vXD4OXlhdGjx8DDwx1dunTG1Knh\niI0tBoulDCTpY4we/UEur4RA8BTyTk/lnh49ejAoKIjBwcFs06aNXffKIiKqII+5efMmtVpnptZb\nttBkqs7ffvvN1mbatFnU613o5NSADg5OdHMrR3//Wvzpp5+yPY7FYuG9e/f4999/Z6v9l1/Oo8lU\nkoCOQCfKNSbm08vL/tP6sWPH6OHhQ43GREkqxujoVdmWLS07duygJDlTkmpSp/NiYGBN6vVlCIym\nXh/J4ODaPHnyJHv3HsD27V/jypXZvwaC/ybPMnc+N7OuUBAvJrdu3bKjIKplcEK4dOkS+/YdQJ3O\nn3L21vWUJI9suT7GxsayTp0IqtUGqtUSO3XqmWUp1U2bNlm3oP6knK21CVWq4vTw8LFb0zopKYkl\nS5ajXKOCBA5QklwYExOT08thTba3ztrPYwKVKKc6/5VAP6rVZTlr1qwc9yv47/Isc2emkdQCQUFQ\nsmRJNGhQH3p9ZwCrodG8g5IlzahVq1a6dmXKlMGyZWvx+PF1AG0AHEV8/HB8//3yp47xyiudsWfP\nASQlVUFSkoTo6P2YOnVGpu3Xr/8V8fEDAIQAcAMwDS4uJXDt2ln4+/tnaH/nzh08fBgHoKf1k+pQ\nq2vi6NGj2bsI6fq6AqCR9Z0WQAMAewG8AaAykpI6YdiwKFy5ciXHfQsEOUUoCEGholAosGbNUrz7\nbhDq1ZuPnj1V2L//twxZRceOnYiHD0sBOAN5wlwMYDuMRn2W/cfGxmLLlt8A7LS+/oDZfBcbN27L\n9BhXV2doNGfTfHIWLi4umdoVnJ2dYbEkADht/eQhkpKOw9PTM0vZ7BEYWB1K5SzIqTyuQalcDWAr\ngB8AvAvgEzx58hrmz/8mx30LBDlFKAhBoaPT6fDOO2+hf/9XERnZGEajMUObpUtXw2KZBMADgC+A\n96FS7cTgwQOy7PvmzZtQKotDTq0NyIbuCnB2NmR6zNtv94eb227o9R2h0bwLSeqLL77IPIeTTqfD\nV1/Nhl7fECZTJxgMYejZsz2qVav2tFPPwKpVi+DtvQg6nSscHCph7NhB0OkIoLitjcXijPj4x1n2\ns3v3bowePQbTpk0TeYwEuScPt7ryledIVEEOOXDggDX1Q0cajbUZGlo3XQDf/fv3qVI5W/fiU9w7\n/48dO3Z/at/x8fE0GEoQ2GaLylYojDx+/HiWx/3zzz/88ssv+fnnn2eIss6MU6dOccmSJRw3bjwD\nAurQz686Z8z4IscRysnJybx165Yt7cWYMeMpSSnR2Sup17tmmQplyZIfKUkeVChGU6vtwrJl/e26\n8Qr+GzzL3PnczLpCQby4BAbWJrDIZqTW6VqnK5O5bds2Go2hlBPh9bEGpBmzTFmRli1bttBgcKFe\nX54ajSO//fa7/DoVbtiwgZLkSblC3HZKUmXOmfPVM/WZnJzMceMmsUKFagwLC+cvv/ySZfuSJcsT\n2GNTpjpdB2HY/g/zLHOn2GISFDq3b98EkGKUVuDx45q4du2m7XtXV1dYLPcA/AYgEEAQHByAypUr\nZ6v/iIgI3LlzGevWzUfDhhGYOHEWunXrk+fpzAHgm2+WIj5+DIBmAMIRHz8V8+f/+Ex9KpVKjB49\nAufOHcThw9vRtGnTLNvHxT0EUNb23mwui4cPHz6TDIL/JkJBCAqdunXrQqP5BEASgBuQpO/RoEFd\n2/cBAQHo0qUNDIYu0GrPQpLmYcSI4XB1dc3ROD169MXWrSG4cGE2Vq5UoHHjNrBYLHl6LpKkg0Lx\nIM0nf0On0+bpGE8jMrIVdLp3AFwGsBkazfdo1qxZgcogeEHIw5VMvvIciSrIIX///Tfr1XuZKpWW\narWO48dPytDGYrFw/fr1nD59eroguuyydetWOjrWTmPDSKZeXzJDAr5n5fjx4zQYXKhQjCXwKfV6\n1wJPUx0XF8fu3fuwePHS9PYO5Nq1awt0fEHR4lnmToW1gyKPQqHAcyKqIJckJCRAo9HkOk1FVuze\nvRvNmvVDbOxRyAvneGi1nrh8+TTc3d0BANu2bcP8+Yuh1TpgyJD+CA4OztVYp06dwuzZ82E2J+GN\nN15F7dq18+5EBIIc8ixzp1AQgv8ESUlJqFUrAidPlsTjx00hSYvRsqUXli//HgCwfv16dOr0JuLj\nRwGIhcEwBXv2bM21khAIigpCQQgE2SA+Ph6ffjoVp05dRJ06YRg48G3baqV69QgcOjQAQHtr68l4\n/fUrWLDgy0KTVyDIC55l7iwS2VwFgoJAkiSMHfuh3e8SE80ATGk+MeHx48QCkUsgKKoILyaBAMCA\nAa9Bkt4F8CuAnyFJE9CnT7fCFgu///47pkyZgmXLliE5ObmwxRH8xxBbTAIB5LoU8+Z9jTlzFkKj\n0SAqajAiIyMLVaZZs+ZgxIhJSEpqB43mAOrW9cCGDSuhVIrnOkH2ETYIgeAFw2w2w2gshsTEEwDK\nATDDaKyK6OipaNy4cWGLJ3iOeJa5UzyKCARFkPj4eJAKpEZEO0Ch8MP9+/cLUSrBfw2hIASCIoiT\nkxN8fStDpfoIQCyAX2Cx7MhQJ0MgyE+EghD8pyGJtWvXYubMmdi9e3dhi5OOX3+NRpUqO6FWu8LD\n4x2sXbsc3t7ez9zvvXv30KbNqyhd2h8NG0bi4sWLeSCt4EVE2CAE+c5ff/2F48ePw93dPdsJ9goC\nkujatRfWrz8Cs7kuVKq1GDv2/zB06ODCFi3fsFgsCAmpg7Nna8Fs7g2l8he4uMzGhQvHYDKZnt6B\n4LlDGKkFRZadO3eiZcsOUKkqIjHxAnr37o5Zsz4rbLEAAPv370dExKuIizsBQA/gGjSayrh//7bd\nokUvAleuXEHlyrWQkHATgAIA4OhYD9HR4/DSSy8VrnCCfEEYqQVFlvbtuyM29nv873+7kJBwGgsW\nrMK2bZmX+yxI7t27B5WqAmTlAABloFKZ8iUNeFFBkiQkJydAtmsAQBIslvvQ67Mu3Sr4byIUhCDf\nSExMxP37NyHXRgCAYiDr4cKFC4Uplo2qVavCYjkMYAOAJ1AopsPFpRg8PDwKW7R8w9XVFV27doEk\nNQUwA3p9W4SEeKFGjRqFLZqgCCIUhCDf0Gg0KF3aF8Ai6yc3AGxBUFBQIUqVioeHB9avXwl394FQ\nKg2oVGkJfvttbb5kky1KfPvtHMyc+SZ69z6PCRMisHXrmhf+nAW5o0BtECtWrMDYsWNx5swZHDx4\nEFWqVLF9N2nSJHz77bdQqVSYOXNmhqpZwgbxfHL06FE0btwKjx9rYTbfxdixYzBixHuFLVYGSEKh\nUBS2GAJBnvPcJOsLCgpCdHQ0+vbtm+7zU6dOYdmyZTh16hRu3LiBxo0b49y5cyKlwAtASEgIrl8/\nj5iYGLi6uqJEiRKFLZJdhHIQCDJSoAqiUqVKdj9fvXo1unbtCgcHB5QtWxa+vr44cOCACAp6QdBq\ntZn+9gKBoOhSJNJ937x5M50yKF26NG7cuJGh3dixY23/b9iwIRo2bFgA0gkEAsHzw/bt27F9+/Y8\n6SvPFUSTJk1w+/btDJ9PnDgRrVq1ynY/9pb8aRWEQCAQCDLy74fnjz76KNd95bmC2Lx5c46P8fT0\nxLVr12zvr1+/Dk9Pz7wUSyAQCAQ5pNCswGmt6q1bt8bSpUuRmJiImJgYnD9/XvhlCwQCQSFToAoi\nOjoaZcqUwb59+9CyZUs0b94cAODv749OnTrB398fzZs3x5w5c4RXiUAgEBQyIheTQCAQvMCIXEwC\ngUAgyHOEghAIBAKBXYSCEAgEAoFdhIIQCAQCgV2EghAIBAKBXYSCEAgEAoFdhIIQCAQCgV2EghAI\nBAKBXYSCEAgEAoFdhIIQCAQCgV2EghAIBAKBXYSCEAgEAoFdhIIQCAQCgV2EghAIBAKBXYSCEAgE\nAoFdhIIQCAQCgV2EghAIBAKBXYSCEAgEAoFdhIIQCAQCgV2EghAIBAKBXYSCEAgEAoFdhIIQCAQC\ngV2Egiggtm/fXtgiPBNC/sJFyF94PM+yPysFqiBWrFiBgIAAqFQqHD582Pb55cuXodfrERYWhrCw\nMAwYMKAgxSoQnvc/MiF/4SLkLzyeZ9mfFXVBDhYUFITo6Gj07ds3w3e+vr44cuRIQYojEAgEgiwo\nUAVRqVKlghxOIBAIBM8CC4GGDRvyjz/+sL2PiYmhwWBgaGgow8PDuWvXrgzHABAv8RIv8RKvXLxy\nS56vIJo0aYLbt29n+HzixIlo1aqV3WNKlSqFa9euoXjx4jh8+DDatm2LkydPwmQy2drIOkIgEAgE\nBUWeK4jNmzfn+BiNRgONRgMAqFKlCnx8fHD+/HlUqVIlr8UTCAQCQTYpNDfXtCuCv/76C8nJyQCA\nS5cu4fz58yhfvnxhiSYQCAQCFLCCiI6ORpkyZbBv3z60bNkSzZs3BwDs2LEDISEhCAsLQ8eOHfHV\nV1+hWLFiBSmaQCAQCP5Nrq0XBcD9+/fZuHFjVqhQgU2aNOGDBw8ytLl69SobNmxIf39/BgQEcMaM\nGYUgaSobN25kxYoV6evry8mTJ9ttM3DgQPr6+jI4OJiHDx8uYAmz5mnyL1q0iMHBwQwKCmKdOnV4\n9OjRQpAyc7Jz/UnywIEDVKlU/OmnnwpQuqeTHfm3bdvG0NBQBgQEMDw8vGAFfApPk//evXt8+eWX\nGRISwoCAAC5YsKDghcyEN954g25ubgwMDMy0TVG+d58mf27u3SKtIIYOHcpPPvmEJDl58mQOHz48\nQ5tbt27xyJEjJMlHjx7Rz8+Pp06dKlA5U0hKSqKPjw9jYmKYmJjIkJCQDLKsX7+ezZs3J0nu27eP\nNWvWLAxR7ZId+ffs2cN//vmHpDwZPG/yp7Rr1KgRW7ZsyZUrVxaCpPbJjvwPHjygv78/r127RlKe\ncIsK2ZE/KiqKI0aMICnL7uzsTLPZXBjiZmDnzp08fPhwphNsUb53yafLn5t7t0in2lizZg169uwJ\nAOjZsydWrVqVoY27uztCQ0MBAEajEZUrV8bNmzcLVM4UDhw4AF9fX5QtWxYODg7o0qULVq9ena5N\n2nOqWbMm/vnnH9y5c6cwxM1AduSvXbs2nJycAMjyX79+vTBEtUt25AeAWbNmoUOHDnB1dS0EKTMn\nO/IvWbIE7du3R+nSpQEALi4uhSGqXbIjv4eHBx4+fAgAePjwIUqUKAG1ukDDsTKlfv36KF68eKbf\nF+V7F3i6/Lm5d4u0grhz5w5KliwJAChZsuRTf4zLly/jyJEjqFmzZkGIl4EbN26gTJkytvelS5fG\njRs3ntqmqEyy2ZE/Ld988w1atGhREKJli+xe/9WrV6N///4AAIVCUaAyZkV25D9//jz+/vtvNGrU\nCNWqVcPChQsLWsxMyY78ffr0wcmTJ1GqVCmEhIRgxowZBS1mrinK925Oye69W+iqO7O4iY8//jjd\ne4VCkeXNHBsbiw4dOmDGjBkwGo15Lmd2yO5kw3/FdBSVSSoncmzbtg3ffvstdu/enY8S5YzsyD94\n8GBMnjwZCoUClLdYC0Cy7JEd+c1mMw4fPoytW7ciPj4etWvXRq1atVChQoUCkDBrsiP/xIkTERoa\niu3bt+PixYto0qQJjh49mi7mqShTVO/dnJCTe7fQFURWcRMlS5bE7du34e7ujlu3bsHNzc1uO7PZ\njPbt26N79+5o27Ztfon6VDw9PXHt2jXb+2vXrtm2AjJrc/36dXh6ehaYjFmRHfkB4NixY+jTpw82\nbdqU5ZK2oMmO/H/88Qe6dOkCQHav3rhxIxwcHNC6desCldUe2ZG/TJkycHFxgV6vh16vR4MGDXD0\n6NEioSCyI/+ePXswatQoAICPjw/KlSuHs2fPolq1agUqa24oyvdudsnxvZtnFpJ8YOjQoTZPiEmT\nJtk1UlssFvbo0YODBw8uaPEyYDabWb58ecbExPDJkydPNVLv3bu3SBm6siP/lStX6OPjw7179xaS\nlJmTHfnT8vrrrxcpL6bsyH/69GlGREQwKSmJcXFxDAwM5MmTJwtJ4vRkR/4hQ4Zw7NixJMnbt2/T\n09OT9+/fLwxx7RITE5MtI3VRu3dTyEr+3Ny7RVpB3L9/nxERERncXG/cuMEWLVqQJHft2kWFQsGQ\nkBCGhoYyNDSUGzduLDSZN2zYQD8/P/r4+HDixIkkyblz53Lu3Lm2Nm+//TZ9fHwYHBycLidVUeBp\n8vfu3ZvOzs62a129evXCFDcD2bn+KRQ1BUFmT/7PPvuM/v7+DAwMLHS37n/zNPnv3bvHyMhIBgcH\nMzAwkIsXLy5McdPRpUsXenh40MHBgaVLl+Y333zzXN27T5M/N/eugixCm7ACgUAgKDIUaS8mgUAg\nEBQeQkEIBAKBwC5CQQgEAoHALkJBCAQCgcAuQkEIXihUKhXCwsIQFhaGKlWq4MqVK6hbty4A4MqV\nK/jxxx9tbY8ePYqNGzfmeIyGDRvijz/+eGZZ86ofgSC/EApC8EIhSRKOHDmCI0eO4PDhw/D29rZF\njMbExGDJkiW2tkeOHMGGDRtyPMbTovoLuh+BIL8QCkLwwpOSemXEiBHYtWsXwsLC8OmnnyIqKgrL\nli1DWFgYVqxYgbi4OPTq1Qs1a9ZElSpVsGbNGgBAQkICunTpAn9/f7Rr1w4JCQkZUi5s2rQJnTp1\nsr3fvn27rcRu//79Ub16dQQGBmLs2LFZyggAK1euxBtvvAEAuHfvHjp06IAaNWqgRo0a2LNnDwC5\nhkralVJsbGzeXCyBIC35GrkhEBQwKpXKFgjUrl07kqTRaCRJbt++nZGRkba23333HQcOHGh7P3Lk\nSC5atIiknFbbz8+PcXFxnDJlCnv37k2SPHbsGNVqdYYgKbPZTC8vL8bHx5Mk+/XrZwsC+/vvv0nK\n6bAbNmzIY8eOkSQbNmxo6ydFRpJcuXIlX3/9dZJk165d+fvvv5OUI2ErV65MkmzVqhX37NlDkoyL\ni2NSUtIzXDWBwD6FnotJIMhL9Ho9jhw5Yvc7/uupn/9K1vfrr79i7dq1+PzzzwEAT548wdWrV7Fr\n1y4MGjQIABAUFITg4OAMfavVajRr1gxr1qxB+/btsWHDBls/y5Ytw/z585GUlIRbt27h9OnTCAoK\nytb5bNmyBadPn7a9f/ToEeLi4lC3bl0MGTIE3bp1Q7t27Z67nECC5wOhIAT/Wezt///88892E9/9\nW7nYo0uXLvjiiy/g7OyMatWqwWAwICYmBlOmTMGhQ4fg5OSEN954A48fP85SloSEhHTj7t+/HxqN\nJl374cOHIzIyEuvXr0fdunXxyy+/oGLFik+VUSDICcIGIfjPYDKZ8OjRo0zfv/zyy5g5c6btfcpK\npEGDBjbj9okTJ3Ds2DG7/YeHh+Pw4cOYP38+unbtCkAuimMwGODo6Ig7d+5k6jVVsmRJnDlzBhaL\nBdHR0TaF0bRp03Qy/fnnnwCAixcvIiAgAMOGDUP16tVx9uzZHF8PgeBpCAUheKGwtypI+SwkJAQq\nlQqhoaGYMWMGGjVqhFOnTtmM1KNHj4bZbEZwcDACAwMRFRUFQDYyx8bGwt/fH1FRUZmmplYqlYiM\njMSmTZsQGRlpGzMsLAyVKlVCt27dUK9ePbvHTp48GZGRkahbty5KlSpl+3zmzJk4dOgQQkJCEBAQ\ngHnz5gEAZsyYgaCgIISEhECj0aB58+a5v2gCQSaIZH0CgUAgsItYQQgEAoHALkJBCAQCgcAuQkEI\nBAKBwC5CQQgEAoHALkJBCAQCgcAuQkEIBAKBwC7/DzkwKBkxo25zAAAAAElFTkSuQmCC\n"
}
],
"prompt_number": 12
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Histogram of standardized deviance residuals:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.figure()\n",
"resid = res.resid_deviance.copy()\n",
"resid_std = (resid - resid.mean())/resid.std()\n",
"plt.hist(resid_std, bins=25)\n",
"plt.title('Histogram of standardized deviance residuals')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 13,
"text": [
"<matplotlib.text.Text at 0x4bd5bd0>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUlPX+B/D3oKSSAwwiA4qIRhwFFCa5brmMGmoZuaUH\nuSKmZteWc9Bcb5nYKcOFW2rlsa4pnq65dFzQkDRtXG+ShW1WqIGCDaSyLwYM398fXp4fEzDMwAwz\nD75f58w5M8z3+T6feXjmzcP32RRCCAEiIpIVJ3sXQERElmN4ExHJEMObiEiGGN5ERDLE8CYikiGG\nNxGRDN234R0SEoLTp0/buwy7OnDgAHr06AGlUonvvvvO3uVI4uPjERMTY7X+Zs+ejZUrVwIAzpw5\ngz59+lit71pOTk747bffzGprrc+3YMECvPHGGy3uxxGZ+n7qdDr06NHDKvPRarXYtm2bVfpqbW0y\nvP39/XHixAmjn+3YsQPDhw+XXv/4448YMWKEyX6ysrLg5OSEmpoam9Rpb4sXL8b777+PkpIShIaG\nmj1d3TC0BYVCYfX+avscPnw4fvnlF6v235x6rGHLli149dVXrdKXozHn+2kNddcNuWmT4W3tX4it\nzmMyGAw26dccQgjcuHEDQUFBdqvBFhr7Q8tz0VqfPdfv+0GbDO+G/DXM/f39cfLkSQBAWloawsPD\n4ebmBm9vbyxevBgApL/87u7uUCqVuHDhAoQQeOONN+Dv7w+1Wo3Y2FgUFxdL/e7cuRM9e/aEp6en\n1K52PvHx8Xj66acRExMDNzc3JCUl4euvv8aQIUOgUqnQrVs3vPTSS6iqqpL6c3JywpYtW/Dwww/D\n1dUVr732Gq5du4YhQ4bA3d0dUVFRRu3raqzWP//8E0qlEgaDAaGhoXj44YcbnH7hwoVQq9Vwc3ND\n//798dNPP+GDDz7Arl27sG7dOiiVSkycOBEAkJCQgICAALi6uiI4OBgHDx6U+tmxYweGDRuGJUuW\nwMPDA71790Zqaqr0fmZmJkaOHAlXV1eMHTsWt2/fNqpj2rRp8PHxgbu7O0aOHInLly9L782ePRsL\nFizAE088gc6dO0On0yE9PR2PPPIIXF1dERUVhbt370rt6/7LvWfPHiiVSunRoUMHjBo1CgDw559/\nYvHixejZsye8vb2xYMECo37Wr1+Pbt26wdfXFx999FGDy8/cz/fVV19h6NChUKlUCAsLw6lTp6T6\n/va3vxm1ffvtt6VlXvc/oIKCAjz55JPw8vKCh4cHIiMjcfPmTWk6rVaL1157DcOGDYOrqyvGjRuH\nO3fuSO+fPXtWqsHPzw9JSUlmLYe6duzYgUcffRSLFi2Cp6cnVq9ejcrKykanv337Np588kmoVCp0\n6dLFaEu77n/PFRUVmD17Njw8PBAcHIyvv/7aaL5/HbKyZLnUdfXqVYwcORLu7u7o2rUroqKiGmzn\nMEQb5O/vL7744gujn23fvl0MGzbMqM2JEyeEEEIMHjxYfPzxx0IIIcrKysRXX30lhBAiKytLKBQK\nYTAYpOm2bdsmAgICRGZmpigtLRVTpkwRMTExQgghfvrpJ9G5c2dx7tw5UVlZKRYvXiycnZ2l+axa\ntUo4OzuLQ4cOCSGEqKioEN988424cOGCMBgMIisrS/Tt21e888470vwUCoWYNGmSKCkpET/99JN4\n4IEHxKhRo0RmZqYoKioSQUFBIikpqcHlYKrW2r6vXbvW4LSpqaliwIABoqioSAghxC+//CL0er0Q\nQojZs2eLlStXGrXft2+f9P6ePXvEgw8+KHJzc6Vl7+zsLP7973+LmpoasWXLFtGtWzdp2sGDB4uX\nX35ZVFZWitOnTwulUmlU5/bt20VpaamorKwUcXFxIiwsTHovNjZWuLm5ifPnzwshhCgqKhJ+fn7i\nnXfeEdXV1eLTTz8Vzs7OUr1ffvml8PX1rfd5i4uLRd++fcUHH3wghBAiLi5OTJw4URQUFIiSkhIR\nGRkpVqxYIYQQ4ujRo0KtVouffvpJlJWViRkzZphclqY+X05OjujSpYs4evSoEEKI48ePiy5duojb\nt2+LsrIyoVQqxZUrV6S+wsPDxZ49e+r9Hu7cuSP2798vKioqRElJiZg2bZqYNGmSNN3IkSNFQECA\nuHLliqioqBBarVYsX75cCHFvPVcqlWL37t2iurpa3LlzR1y6dKnJ5fBX27dvF+3btxfvvvuuMBgM\noqKiwuT0y5cvF//4xz9EdXW1qK6uFmfPnpX6qvv9XLZsmRgxYoQoKCgQ2dnZIjg4WPTo0UNq+9dl\nb8ly0Wq1Ytu2bUIIIaKiosSaNWuEEEL8+eef4ty5cw1+TkfRJsO7Z8+eonPnzsLd3V16uLi4iOHD\nh0tt6q4cI0aMEKtWrRK3bt0y6iczM7NeeI8ePVps2bJFev3rr78KZ2dnUV1dLVavXi2io6Ol98rL\ny8UDDzxgFN4jR440Wfvbb78tJk+eLL1WKBRSMAkhxIABA8S6deuk1y+//LKIi4trsK/Gaq39PKYC\n5+TJkyIwMFB89dVXRp9fiHtfjldffdXk5wgLC5P+SG3fvl0EBARI75WVlQmFQiHy8vLE9evXRfv2\n7UV5ebn0fnR0tJg5c2aD/RYUFAiFQiGKi4uFEPfCOzY2Vnr/1KlTRn8YhBBi6NChJsPbYDCICRMm\niOeff14IIURNTY148MEHjZbN+fPnRa9evYQQQjzzzDNGAZaRkdHosmzs89WGd0JCgtEfKiGEGDdu\nnPQHeebMmeL111+X5qNUKkVFRYUQwvTvIT09XahUKum1VqsVb775pvT6/fffF+PHjxdCCLFmzRox\nZcqUen00tRz+avv27cLPz8/s6V977TUxceJEcfXq1Xp91f1+9u7dW3z++efSex988IHR77Ch8LZk\nudSG96xZs8T8+fNFTk5Og9M6mjY5bKJQKHDo0CEUFBRIj/fff7/Rcc9t27YhIyMDffv2xcCBA/HZ\nZ5812rder0fPnj2l135+fqiurkZeXh70ej18fX2l9zp16oQuXboYTV/3fQDIyMjAk08+CR8fH7i5\nueGVV14x+ncWANRqtVGff31dWlpqca1NGTVqFF588UW88MILUKvVeO6551BSUtJo+507d0Kj0UCl\nUkGlUuHHH380+hze3t7ScxcXFwBAaWkpfv/9d6hUKnTq1El6v27NBoMBy5cvR0BAANzc3NCrVy8A\nkIYeFAqF0TL9/fff0b17d6Pa6vbXkFdeeQVlZWXYtGkTAODWrVsoLy/HgAEDpM/z+OOPS/PU6/VG\nRzv4+fk12ndjn692Xbx+/Tr27dsnzUelUuHcuXPIzc0FAERHR+OTTz4BAOzatQuTJ09Gx44d682n\nvLwczz33HPz9/eHm5oaRI0eiqKjIaJ2v+zuou95kZ2ejd+/e9fpsajk0pO5yaWr6JUuWICAgAGPH\njsVDDz2EtWvXNroMzV3ef2XOcqm1bt06CCEwcOBAhISEYPv27WbPxx7aZHg3pLHgBoCAgADs2rUL\nt27dwrJly/D000+joqKiwZ2e3bp1Q1ZWlvT6xo0baN++Pby9veHj44OcnBzpvYqKinpB/Nc+FyxY\ngKCgIFy9ehVFRUV48803rXZ0S2O11g1/U1566SVcvHgRly9fRkZGBtavX9/gZ7h+/Trmz5+P9957\nD/n5+SgoKEBISIhZOwl9fHxQUFCA8vJyo/5q57Fr1y4kJyfjxIkTKCoqQmZmJgDj32fdenx8fOqN\naV6/fr3R+e/evRt79uzBp59+inbt2gEAPD090alTJ1y+fFn6419YWCjt2/Dx8cGNGzekPuo+t/Tz\n+fn5ISYmxmhDo6SkBEuXLgUAPPbYY7h16xa+++477N69G9HR0Ub91/aTmJiIjIwMpKWloaioCKdO\nnYK49591o7XV8vPzw7Vr1+r9vKnl0JC6v4umpu/cuTM2bNiAa9euITk5Gf/617/w5ZdfNrgMTS1v\nFxcXo+Wr1+ubtVzUajU++OAD3Lx5E1u3bsXzzz9v9uGf9nDfhLcpH3/8MW7dugUAcHNzg0KhgJOT\nE7p27QonJyejFXvGjBl4++23kZWVhdLSUvzzn/9EVFQUnJycMHXqVBw+fBj//e9/UVlZifj4+Ca/\nPKWlpVAqlXBxccEvv/yCLVu2NFlv3T5N9W+q1qZcvHgRFy5cQFVVFVxcXNCxY0cp3NRqtdFKXVZW\nBoVCAU9PT9TU1GD79u348ccfm5wHcG8rNDw8HKtWrUJVVRXOnj2LI0eOSO+XlpaiQ4cO8PDwQFlZ\nGf75z382uiwAYOjQoWjfvj02bdqEqqoq7N+/v94Orlrp6el46aWXcODAAaP/kJycnPDss88iLi5O\nWi9u3ryJY8eOAQCmT5+OHTt24Oeff0Z5eTlWr17d7M83c+ZMHD58GMeOHYPBYMDdu3eh0+mkP0DO\nzs6YNm0aFi9ejIKCAkRERBh99trPX1paik6dOsHNzQ35+fkN1tTYuhIdHY0vvvgC+/btQ3V1Ne7c\nuYPvvvuuyeXQlKam/+yzz3D16lUIIeDq6op27do1uG5Onz4db731FgoLC5GTk4PNmzcbvR8WFob/\n/Oc/MBgMSE1NNTo+3JzlUmvfvn3Sxpe7u7uUA47KcSuzMlOHD37++ecICQmBUqnEwoULsXv3bnTo\n0AEuLi545ZVX8Oijj0KlUiEtLQ1z5sxBTEwMRowYgd69e8PFxUVamYKDg7F582ZERUWhW7duUCqV\n8PLyQocOHRqtYcOGDdi1axdcXV0xf/58REVFGbVpqOa/vt/Y5zJVa2N91youLsb8+fPh4eEBf39/\neHp6YsmSJQCAuXPn4vLly1CpVJgyZQqCgoLw8ssvY8iQIfD29saPP/6IYcOGmayx7utdu3bhwoUL\n8PDwwOuvv47Y2FjpvVmzZqFnz57o3r07QkJCMGTIEJOf39nZGfv378eOHTvQpUsX7N27F1OnTm1w\n3ocOHUJhYSGGDRsmHXEyYcIEAMDatWsREBCAwYMHw83NDREREcjIyAAAjB8/HnFxcRg9ejQCAwMx\nZswYk8vS1Ofz9fXFoUOHsGbNGnh5ecHPzw+JiYlG/31FR0fjxIkTmDZtmlGY1P3scXFxqKiogKen\nJ4YOHYrHH3/c5DKvO62fnx9SUlKQmJiILl26QKPR4Pvvv29yOfxVQ79nU9NfuXIFERERUCqVGDp0\nKF544QWMHDmyXr+rVq1Cz5490atXL4wfPx6zZs0yms/GjRtx+PBhqFQqaWipljnLpdbFixcxePBg\n6SiqTZs2wd/fv8G2jkAhzPm/ipqltLQUKpUKV69ebXLclYjIEmZteRsMBmg0GkRGRgK4d7yyr68v\nNBoNNBqN0TG797vDhw+jvLwcZWVlWLx4Mfr378/gJiKrMyu8N27ciKCgIOnfDYVCgUWLFiE9PR3p\n6ekYP368TYuUk+TkZHTv3h3du3fHtWvXsHv3bnuXRERtUJPhnZOTg5SUFMybN0/a4WHuXuz70Ycf\nfijtVT9+/HijZy8SEbVE+6YaLFy4EOvXrzc6PEihUGDz5s3YuXMnwsPDkZiYCHd3d6Pp5HqxFyIi\nezNn49jklveRI0fg5eUFjUZj1NmCBQuQmZmJS5cuwcfHBy+//HKjBTj6Y9WqVXavoS3UyDpZp6M/\n5FKnuUyG9/nz55GcnIxevXphxowZOHnyJGbNmgUvLy/psKB58+YhLS3N7BkSEVHLmQzvNWvWIDs7\nG5mZmdi9ezdGjx6NnTt3Qq/XS20OHDiAfv362bxQIiL6f02OedcSQkjj2EuXLsV3330HhUKBXr16\nYevWrTYr0Na0Wq29S2iSHGoEWKe1sU7rkkud5rLZSToKhcKi8RsiIjI/O++b0+OJiNoShjcRkQwx\nvImIZIjhTUQkQwxvIiIZYngTEckQw5uISIYY3kREMsTwJiKSIYY3EZEMMbyJiGSI4U1EJEMMbyIi\nGWJ4U7O5unpIN+Uw5+Hq6mHvkonaDF4Slprt3vXdLfkdc50gaopVLwlrMBig0WgQGRkJAMjPz0dE\nRAQCAwMxduxYFBYWtqxaIiKyiFnhvXHjRgQFBUl30klISEBERAQyMjIwZswYJCQk2LRIIiIy1mR4\n5+TkICUlBfPmzZM25ZOTkxEbGwsAiI2NxcGDB21bJRERGWnyHpYLFy7E+vXrUVxcLP0sLy8ParUa\nAKBWq5GXl9fgtPHx8dJzrVbb5u4hR0TUUjqdDjqdzuLpTO6wPHLkCI4ePYr33nsPOp0OiYmJOHz4\nMFQqFQoKCqR2Hh4eyM/PN+6YOyzbPO6wJLI+c7PT5Jb3+fPnkZycjJSUFNy9exfFxcWIiYmBWq1G\nbm4uvL29odfr4eXlZbXCiYioaWYfKnjq1Cls2LABhw8fxtKlS9GlSxcsW7YMCQkJKCwsrLfTklve\nbR+3vImszyZ3j6892mT58uU4fvw4AgMDcfLkSSxfvrx5VRIRUbPwJB1qNm55E1mfTba8iYjIMTC8\niYhkiOFNRCRDDG8iIhlieBMRyRDDm4hIhhjeREQyxPAmIpIhhjcRkQwxvImIZIjhTUQkQwxvIiIZ\nYngTEckQw5uISIYY3kREMsTwJiKSIZPhfffuXQwaNAhhYWEICgrCihUrANy7K7yvry80Gg00Gg1S\nU1NbpVgiIrqnyTvplJeXw8XFBdXV1Rg2bBg2bNiAEydOQKlUYtGiRY13zDvptHm8kw6R9VntTjou\nLi4AgMrKShgMBqhUKgDgl5CIyI7aN9WgpqYGjzzyCK5du4YFCxYgODgYn376KTZv3oydO3ciPDwc\niYmJcHd3rzdtfHy89Fyr1UKr1VqzdiIi2dPpdNDpdBZPZ/YNiIuKijBu3DgkJCQgKCgIXbt2BQCs\nXLkSer0e27ZtM+6YwyZtHodNiKzP6jcgdnNzw4QJE3Dx4kV4eXlBoVBAoVBg3rx5SEtLa1GxRERk\nGZPhffv2bRQWFgIAKioqcPz4cWg0GuTm5kptDhw4gH79+tm2SiIiMmJyzFuv1yM2NhY1NTWoqalB\nTEwMxowZg1mzZuHSpUtQKBTo1asXtm7d2lr1EhERLBjztrhjjnm3eRzzJrI+q495ExGR42B4ExHJ\nEMObiEiGGN5ERDLE8CYjrq4e0jH8TT2IyH54tAkZsewIEh5tQmRtPNqEiKgNY3gTEckQw5uISIYY\n3kREMsTwJiKSIYY3EZEMMbyJiGSI4U1EJEMM7/sAz5okant4huV9wHZnTfIMSyJrs8oZlnfv3sWg\nQYMQFhaGoKAgrFixAgCQn5+PiIgIBAYGYuzYsdKt0oiIqHU0ueVdXl4OFxcXVFdXY9iwYdiwYQOS\nk5Ph6emJpUuXYu3atSgoKEBCQoJxx9zydhjc8iaSD6td28TFxQUAUFlZCYPBAJVKheTkZMTGxgIA\nYmNjcfDgwRaWS0REljB5A2IAqKmpwSOPPIJr165hwYIFCA4ORl5eHtRqNQBArVYjLy+vwWnj4+Ol\n51qtFlqt1ipFExG1FTqdDjqdzuLpzN5hWVRUhHHjxuGtt97ClClTUFBQIL3n4eGB/Px84445bOIw\nOGxCJB9WvySsm5sbJkyYgG+++QZqtRq5ubkAAL1eDy8vr+ZXSkREFjMZ3rdv35aOJKmoqMDx48eh\n0Wjw1FNPISkpCQCQlJSESZMm2b5SIiKSmBw2+eGHHxAbG4uamhrU1NQgJiYGS5YsQX5+PqZPn44b\nN27A398fe/fuhbu7u3HHHDZxGBw2IZIPc7OTJ+ncBxjeRPLB26AREbVhDG8iIhlieBMRyRDDm4hI\nhhje1Iram31pWldXD3sXS+TQeLTJfcCRjjaxpG+uP3Q/4tEmRERtGMObiEiGGN5ERDLE8JYhS+5J\nyftSErVN3GEpQ5btgARstxOSOyyJrI07LImI2jCGNxGRDDG8iYhkiOFNDsr8szF5Ribdj5q8ATGR\nfVTDkp2hJSU8qobuLya3vLOzszFq1CgEBwcjJCQEmzZtAnDvrvC+vr7QaDTQaDRITU1tlWKJiOge\nk4cK5ubmIjc3F2FhYSgtLcWAAQNw8OBB7N27F0qlEosWLWq8Yx4qaDP3y6GCvEsP3Y/MzU6Twybe\n3t7w9vYGAHTu3Bl9+/bFzZs3AYBfFCIiOzJ7zDsrKwvp6ekYPHgwzp07h82bN2Pnzp0IDw9HYmJi\nvRsQA/eGV2pptVpotVpr1ExE1GbodDrodDqLpzPrDMvS0lJotVq8+uqrmDRpEv744w907doVALBy\n5Uro9Xps27bNuGMOm9gMh00abs/1jdoCq909vqqqCk8++SQef/xxxMXF1Xs/KysLkZGR+OGHH5pV\nAFmO4d1we65v1BZY5fR4IQTmzp2LoKAgo+DW6/XS8wMHDqBfv34tKJWIiCxlcsv77NmzGDFiBPr3\n7y9dnW7NmjX45JNPcOnSJSgUCvTq1Qtbt26FWq027phb3jbDLe+G23N9o7bAasMmti6ALMfwbrg9\n1zdqC3hVQSKiNozhTUQkQwxvIiIZYngTEckQw5vaCPMvIcvLx1JbwEvCUhth/iVkeflYagu45U1E\nJEMMbyIiGWJ4ExHJEMObiEiGGN5ERDLE8CYikiGGNxGRDDG8iYhkiOFNRCRDDG8iIhkyGd7Z2dkY\nNWoUgoODERISgk2bNgEA8vPzERERgcDAQIwdOxaFhYWtUiwREd1j8k46ubm5yM3NRVhYGEpLSzFg\nwAAcPHgQ27dvh6enJ5YuXYq1a9eioKAACQkJxh3zTjo2wzvptLxvrpvkqKxyJx1vb2+EhYUBADp3\n7oy+ffvi5s2bSE5ORmxsLAAgNjYWBw8etELJRERkLrOvKpiVlYX09HQMGjQIeXl50g2H1Wo18vLy\nGpwmPj5eeq7VaqHValtUbFvm6uqBkpICe5dBRK1Mp9NBp9NZPJ1ZNyAuLS3FyJEjsXLlSkyaNAkq\nlQoFBf8fNB4eHsjPzzfumMMmFrFsKMRRhiscpQ7L++a6SY7KajcgrqqqwtSpUxETE4NJkyYBuLe1\nnZubCwDQ6/Xw8vJqYblERGQJk+EthMDcuXMRFBSEuLg46edPPfUUkpKSAABJSUlSqBMRUeswOWxy\n9uxZjBgxAv379//fv/XAW2+9hYEDB2L69Om4ceMG/P39sXfvXri7uxt3zGETi3DYpHX75rpJjsrc\n7DRrzNuWBdA9DO/W7ZvrJjkqq415ExGR42F4ExHJEMObiEiGGN5ERDLE8CYikiGGNxGRDDG8iYhk\niOFNRCRDDG+6D7WHQqEw6+Hq6mHvYokaZPYlYYnajmqYezZmSYnCtqUQNRO3vImIZIjhTUQkQwxv\nIiIZYngTEckQw5uISIaaDO85c+ZArVajX79+0s/i4+Ph6+sLjUYDjUaD1NRUmxZJRETGmgzvZ555\npl44KxQKLFq0COnp6UhPT8f48eNtViAREdXXZHgPHz4cKpWq3s95JxIiIvtp9kk6mzdvxs6dOxEe\nHo7ExMR697AE7g2v1NJqtdBqtc2dHRFRm6TT6aDT6Syezqx7WGZlZSEyMhI//PADAOCPP/5A165d\nAQArV66EXq/Htm3bjDvmPSwtwntYOmrfXI+pddn0HpZeXl7StR/mzZuHtLS05nRDRETN1Kzw1uv1\n0vMDBw4YHYlCRES21+SY94wZM3Dq1Cncvn0bPXr0wOrVq6HT6XDp0iUoFAr06tULW7dubY1aiYjo\nf8wa825WxxzztgjHvB21b67H1LpsOuZNRET2xfAmIpIhhjcRkQwxvImIZIjhTUQkQwxvIiIZYngT\nEckQw5uISIYY3kREMsTwJiKSIYY3EZEMMbyJiGSI4U1EJEMMbyIiGWr2PSzvR66uHigpKTCztTOA\nKluWQ62i/f8u12sepVKF4uJ8G9ZDdA+v520BeV5z25Z9O0odtuzb8jra2npPrcsq1/OeM2cO1Gq1\n0W3O8vPzERERgcDAQIwdOxaFhYUtr5aIiCxiMryfeeYZpKamGv0sISEBERERyMjIwJgxY5CQkGDT\nAomIqL4mh02ysrIQGRmJH374AQDQp08fnDp1Cmq1Grm5udBqtfjll1/qd8xhEwvaWtreUfp2lDps\n2TeHTah1mZudFu+wzMvLg1qtBgCo1Wrk5eU12jY+Pl56rtVqodVqLZ0dEVGbptPpoNPpLJ7O4i1v\nlUqFgoL/P+LCw8MD+fn1965zy9tRthxt2bej1GHLvrnlTa3LZjcgrh0uAQC9Xg8vLy/LqyMiohax\nOLyfeuopJCUlAQCSkpIwadIkqxdFRESmmRw2mTFjBk6dOoXbt29DrVbj9ddfx8SJEzF9+nTcuHED\n/v7+2Lt3L9zd3et3zGETC9pa2t5R+naUOmzZN4dNqHWZm508SccCDG9HrcOWfTO8qXXZbMybiIjs\nj+FNRCRDDG8iIhlieBMRyRDDm4hIhhjeREQyxPAmIpIhhjcRkQwxvImIZIjhTUQkQwxvIiIZYngT\nEckQw5uISIYY3kREMsTwJiKSIYY3EZEMWXz3+Lr8/f3h6uqKdu3awdnZGWlpadaqi4iITGhReCsU\nCuh0Onh4eFirHiIiMkOLh014yyciotbX4i3vxx57DO3atcNzzz2HZ5991uj9+Ph46blWq4VWq23J\n7IiI2hydTgedTmfxdC26AbFer4ePjw9u3bqFiIgIbN68GcOHD7/XMW9AbEFbS9s7St+OUoct++YN\niKl1tcoNiH18fAAAXbt2xeTJk7nDkoiolTQ7vMvLy1FSUgIAKCsrw7Fjx9CvXz+rFUZERI1r9ph3\nXl4eJk+eDACorq7G3//+d4wdO9ZqhRERUeNaNOZtsmOZjHm7unqgpKTAginkNmZry74dpQ5b9m1p\nHc4Aqs1qqVSqUFycb0HfdD8wNzvv+/C23U5IRwkfW/btKHXYsm/b1iGH7wi1rlbZYUlERPbB8CYi\nkiGGNxGRDLXoDMvWkpKSiv37j5jdfuBADebPn2vDiohanyU717kztO2TxQ7L6Ohn8cknpQAeNaP1\ndTz8sA4ZGV+b1Td3WLaFOmzZt+PssLR0XeXOUHkyNztlseV9z2gAzzbZCvgagM62pRAR2RnHvImI\nZIjhTUSiXagCAAAGRklEQVQkQzIaNjFXBK5cKfrf+CCRI2vvEOuppWcZc2eoY2iD4V0Ey3cwEdlD\nNRxhXb0X3ObXUVLC74wj4LAJEZEMMbyJiGSI4U1EJEMMb6I26d7OUHMetuzb1dXDop5dXT1s0rcl\n/TanbntgeMuCzt4FmEln7wLaGF0Lpq3dGWrOo6V9f9lo35ZdK7/uztOmH5b0fa9t43W2tG57aHZ4\np6amok+fPnj44Yexdu1aa9ZE9ejsXYCZdPYuoI3R2bsAM+nsXYCZdPYuwKqaFd4GgwEvvvgiUlNT\ncfnyZXzyySf4+eefrV0bERE1olnhnZaWhoCAAPj7+8PZ2RlRUVE4dOiQtWsjIqJGNOsknZs3b6JH\njx7Sa19fX1y4cKFeO+uePfZvAPPNbGvpfC1pb6u2TbVfbcO+rdn2r3W2Vh227NuedbTk996an7Hx\n37vlOWB+e8v6Xo2m18/m9t36mhXe5nwoXo6SiMh2mjVs0r17d2RnZ0uvs7Oz4evra7WiiIjItGaF\nd3h4OK5cuYKsrCxUVlZiz549eOqpp6xdGxERNaJZwybt27fHu+++i3HjxsFgMGDu3Lno27evtWsj\nIqJGNPs478cffxy//vorrl69ihUrVjTYZuXKlQgNDUVYWBjGjBljNNTiSJYsWYK+ffsiNDQUU6ZM\nQVFRkb1LatC+ffsQHByMdu3a4dtvv7V3OUbkctz/nDlzoFar0a9fP3uX0qjs7GyMGjUKwcHBCAkJ\nwaZNm+xdUoPu3r2LQYMGISwsDEFBQY3mgKMwGAzQaDSIjIy0dymN8vf3R//+/aHRaDBw4EDTjYUN\nFRcXS883bdok5s6da8vZNduxY8eEwWAQQgixbNkysWzZMjtX1LCff/5Z/Prrr0Kr1YpvvvnG3uVI\nqqurxUMPPSQyMzNFZWWlCA0NFZcvX7Z3WQ06ffq0+Pbbb0VISIi9S2mUXq8X6enpQgghSkpKRGBg\noMMuz7KyMiGEEFVVVWLQoEHizJkzdq6ocYmJiSI6OlpERkbau5RG+fv7izt37pjV1qanxyuVSul5\naWkpPD09bTm7ZouIiICT071FMWjQIOTk5Ni5oob16dMHgYGB9i6jHjkd9z98+HCoVCp7l2GSt7c3\nwsLCAACdO3dG37598fvvv9u5qoa5uLgAACorK2EwGODh4ZjXBMnJyUFKSgrmzZvn8EfCmVufza9t\n8sorr8DPzw9JSUlYvny5rWfXYh999BGeeOIJe5chKw0d93/z5k07VtR2ZGVlIT09HYMGDbJ3KQ2q\nqalBWFgY1Go1Ro0ahaCgIHuX1KCFCxdi/fr10kaao1IoFHjssccQHh6ODz/80GTbFn+SiIgI9OvX\nr97j8OHDAIA333wTN27cwOzZs7Fw4cKWzs5mddbW+sADDyA6Otqh63Q0jn4yg1yVlpbi6aefxsaN\nG9G5c2d7l9MgJycnXLp0CTk5OTh9+jR0Op29S6rnyJEj8PLygkajcfit7nPnziE9PR1Hjx7Fe++9\nhzNnzjTatsW3QTt+/LhZ7aKjo+26RdtUnTt27EBKSgpOnDjRShU1zNzl6Uh43L/1VVVVYerUqZg5\ncyYmTZpk73Ka5ObmhgkTJuDixYvQarX2LsfI+fPnkZycjJSUFNy9exfFxcWYNWsWdu7cae/S6vHx\n8QEAdO3aFZMnT0ZaWhqGDx/eYFub/g9x5coV6fmhQ4eg0WhsObtmS01Nxfr163Ho0CF07NjR3uWY\nxZG2IHjcv3UJITB37lwEBQUhLi7O3uU06vbt2ygsLAQAVFRU4Pjx4w75HV+zZg2ys7ORmZmJ3bt3\nY/To0Q4Z3OXl5SgpKQEAlJWV4dixY6aPirLdflMhpk6dKkJCQkRoaKiYMmWKyMvLs+Xsmi0gIED4\n+fmJsLAwERYWJhYsWGDvkhq0f/9+4evrKzp27CjUarUYP368vUuSpKSkiMDAQPHQQw+JNWvW2Luc\nRkVFRQkfHx/xwAMPCF9fX/HRRx/Zu6R6zpw5IxQKhQgNDZXWyaNHj9q7rHq+//57odFoRGhoqOjX\nr59Yt26dvUtqkk6nc9ijTX777TcRGhoqQkNDRXBwcJPfI4UQDrQJR0REZnHsXa9ERNQghjcRkQwx\nvImIZIjhTUQkQwxvIiIZYngTEcnQ/wFqI0jRU54CMQAAAABJRU5ErkJggg==\n"
}
],
"prompt_number": 13
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"QQ Plot of Deviance Residuals:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from statsmodels import graphics\n",
"graphics.gofplots.qqplot(resid, line='r')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAELCAYAAAA2mZrgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1WXex/H3AQRUUHFDEQzEFUFATcseFU1ccqnGNDXT\nzBoz0Wmcp8UpJ/QpM2eaGRVtGy2tnMrKJSlHW4g2x1TcU3FB0SD3FGQR+D1//DwHEBCXcziAn9d1\neQln4XxPy/lw39/7vn8WwzAMREREABdnFyAiIpWHQkFERGwUCiIiYqNQEBERG4WCiIjYKBRERMTG\naaGQmppKr169aN++PaGhocybNw+A06dPEx0dTevWrenbty9nz551VokiIjcdi7P2KaSnp5Oenk5E\nRAQZGRl06tSJlStX8tZbb9GwYUOeeuopXn75Zc6cOcPs2bOdUaKIyE3HaSOFJk2aEBERAYCXlxft\n2rXj2LFjrF69mrFjxwIwduxYVq5c6awSRURuOk4bKRSVkpJCz5492blzJ82bN+fMmTMAGIZB/fr1\nbd8DWCwWZ5UpIlKlXc3HvdMbzRkZGQwdOpS5c+fi7e1d7D6LxVJqCBiGUW3/PP/8806vQe9P7+9m\nfH/V+b0ZxtX/7u/UULh48SJDhw7lwQcf5J577gHA19eX9PR0ANLS0mjcuLEzSxQRuak4LRQMw2D8\n+PGEhITwxBNP2G4fMmQIS5YsAWDJkiW2sBAREcdzc9YLf//997z77rt06NCByMhIAF566SWeeeYZ\nhg8fzqJFiwgMDOTDDz90VolOERUV5ewSHErvr2qrzu+vOr+3a1EpGs3XwmKxXNP8mIiIXP1np9Mb\nzSIiUnkoFERExEahICIiNgoFERGxUSiIiIiNQkFERGwUCiIiYqNQEBERG4WCiIjYKBRERMRGoSAi\nIjYKBRERsVEoiIiIjUJBRERsFAoiImKjUBARERuFgoiI2CgURETERqEgIiI2CgUREbFxc3YBIiJS\ntvj4RObNW0dOjhseHnlMmdKXgQN7OOz1FAoiIpVUfHwif/jDfzhw4EXbbQcOPAvgsGDQ9JGISCU1\nb966YoEAcODAi8yfv95hr+m0UHj44Yfx9fUlLCzMdltsbCz+/v5ERkYSGRnJ2rVrnVWeiIjT5eSU\nPpmTne3qsNd0WiiMGzeuxIe+xWJh6tSpJCUlkZSURP/+/Z1UnYiI83l45JV6u6dnvsNe02k9he7d\nu5OSklLidsMwyn1ubGys7euoqCiioqLsV5iISCUxZUpfDhx4ttgUUnDwn5k8ufxfmBMSEkhISLjm\n17QYV/Mp7CApKSkMHjyYHTt2ADBjxgzeeust6tatS+fOnXnllVeoV69esedYLJarCg4RkeogPj6R\n+fPXk53tiqdnPpMnR19Xk/lqPzsrVSgcP36cRo0aATB9+nTS0tJYtGhRsecoFERErt3VfnZWqtVH\njRs3xmKxYLFYeOSRR9i4caOzSxIRualUqlBIS0uzfb1ixYpiK5NERMTxnNZoHjlyJN988w0nT54k\nICCAGTNmkJCQwNatW7FYLAQFBfH66687qzwRkZuSU3sK10M9BRGRa1clewoiIuJcCgUREbFRKIiI\niI1CQUREbHR0tohIBanoayNcD4WCiEgFcMa1Ea6Hpo9ERCqAM66NcD0UCiIiFcAZ10a4HgoFEZEK\n4IxrI1wPhYKISAWYMqUvwcHPFrvNvDZCtJMqKp2OuRARqSD2ujbC9agS11O4HgoFEZFrp7OPRETk\nmikURETERqEgIiI2CgUREbFRKIiIiI1CQUREbHQgnoiInVSFU1DLo1AQEbGDqnIKank0fSQiYgdV\n5RTU8mikICJyjUqbJqoqp6CWx2mh8PDDDxMfH0/jxo3ZsWMHAKdPn+b+++/n8OHDBAYG8uGHH1Kv\nXj1nlSgiUkJZ00R16pwt9fGV7RTU8jht+mjcuHGsXbu22G2zZ88mOjqaffv2ceeddzJ79mwnVSci\nUrqypoksltwqcQpqeZw2UujevTspKSnFblu9ejXffPMNAGPHjiUqKkrBICKVSlnTRN7ezZg5szfz\n508vcgpq/yrVZIZK1lP49ddf8fX1BcDX15dff/211MfFxsbavo6KiiIqKqoCqhORm9Hl/YNz586U\n+jhPz3wGDuxRaUIgISGBhISEa36eU4/OTklJYfDgwbaego+PD2fOFP4Dr1+/PqdPny72HB2dLSIV\npbT+QZMm44G6pKf/3XZbcPCfmTu3AkYF+fngen2N66v97KxUIwVfX1/S09Np0qQJaWlpNG7c2Nkl\nichNrLT+QXr6Ijp2fJTw8AqcJkpOhoUL4ZNPYM8eqFnTYS9VqUJhyJAhLFmyhKeffpolS5Zwzz33\nOLskEbmJXal/sHZtrGNfPD8fPv8c4uJgyxZ45BH49luHBgI4MRRGjhzJN998w8mTJwkICGDmzJk8\n88wzDB8+nEWLFtmWpIqIOIuHR16ptzt0menp07B4sTkyaNAAJk+GlSvB09Nxr1mELscpIlKG0noK\nDusfJCXBggXw8ccweDDExECXLnb78XbrKezfvx9/f388PT35+uuv2bFjB2PGjNGmMhGp9qwf/A5b\nZpqba4bAggVw+DBMnAh794IT+6nljhTCw8PZvHkzKSkp3HXXXdx9993s2rWLzz77rKJqLEYjBRFx\npAo56fSXX+D11+GNNyAkxBwVDB4Mbo6b0bfbSMHFxQU3Nzc++eQTJk+ezOTJk4mMjLRLkSIizlY0\nBM6dO0paWp1iy03tdtKpYcB335mN4/XrYeRI+OILaN/+xn6unZUbCu7u7ixbtoylS5fy6aefAnDx\n4kWHFyYi4mglewbPAS8Ue4x50un06w+FzExYtswMg+xsc1TwxhtQt+4N1e4o5Z59tHjxYjZs2MCz\nzz5LUFAQhw4d4sEHH6yI2kREHKrkPgQ7nnS6fz9MnQq33ALx8fC3v8HPP5uriSppIMBVjBTat2/P\n7NmzOXLkCABBQUE8/fTTDi9MRMTRSu5DuMElqAUFsHatOSr46ScYPx42bYLAwBuqsyKVO1JYvXo1\nkZGR9O/fH4CkpCSGDBni8MJERByt5D6EvsB1nHR65gz8/e/QujVMnw7Dh8ORIzB7dpUKBLiK1Ucd\nO3bkq6++olevXiQlJQEQGhrKzp07K6TAy2n1kYjcKGtz+dixExw8aCEr6zXbfU2aPIyfX028vRtd\nWoIaXXY/Yds2cznp8uUwcKDZL+jaFSyWCnonV89uq49q1KhRYk+Ci4uu4ikiVUvZQZBIzZr307Kl\nH35+Xkye/NCVm8oXL5pnEMXFwaFD5t6CPXvg0gnPVd1V9RTee+898vLySE5OZt68eXTr1q0iahMR\nsYviq4wuX2HUg6ysHvj5TWft2v8r+4ekpZmrhl5/Hdq0gSeegLvvdujeAmco91f++fPns2vXLjw8\nPBg5ciR16tThn//8Z0XUJiJiF8VXGV3DCiPr3oKRI81NZunpsG4dfP01DB1a7QIBrmKkULt2bWbN\nmsWsWbMqoh4REbsrvsroKlYYXbhQuLfgwgWzV/Daa5V6Kam9lBkKgwcPLvNJFouF1atXO6QgEZEb\ndfku5f37i16sy7rCqPghd5Mn94cDB+DVV+Htt6FbN5gzB/r0gZuoj1rm6qPyLuPmrEtgavWRiFxJ\n8f5BIvAfoN+lv61BkEjNmgto2dKPZk1rM+OOunTZ+A38978wbpzZPA4KctZbcIir/ezU0dkiUq30\n6/cc69ZZG8lFm8qJwHrAlYYN9/Bu3IP0+2Wfed0Cb29zimjECKhVyyl1O9oNL0kdNmwYy5cvJzQ0\nFMtla24tFgvbt2+/8SpFROwoPj6Rn35KLXJL0Y+4HkAPwtjOCzUept9jo+Guu2DpUrjttkq5t8AZ\nygyFuXPnAhAfH18iXS4PCRERZ4qPT2T69KX8/HMNsrMDitxjNpXduMg9rCSGOFqyny9qt4ItP0OT\nJs4puBIrs3vi5+cHwMKFCwkMDCz2Z+HChRVWoIjIlVh7CElJTcjOfpWiR1X40onn6EkKgcQQRxwx\n3NliNA3/OVOBUIZyW+rr1q0rcZuzLrAjInK5wj0I1omP7txOM94jlJ8ZxS1uKUxt153ne/bifL/t\nvDJvoP0vmlONlDl99Oqrr7Jw4UIOHDhAWFiY7fbz589zxx13VEhxIiJXUrSH4EkWI1lMDHF4c54F\nTOJxHuK2O1+58k5lKabM1Ue//fYbZ86c4ZlnnuHll1+29RW8vb1p0KBBhRZZlFYfiUjRHkKTbFcm\nUotxvMF/aUQc81lHXwxcCA7+M3Pn2vGaylWYXZek5ufn8+uvv5KXV7gTsHnz5jdW4XVSKIjcXIoe\nZHf4cCp5eQXkZjejDxeYRCbdSORt2vIq73GQY8B6PD2PEBLixcyZ9ysQLrFbKMyfP58ZM2bQuHFj\nXF0LzwbZsWPHjVd5HRQKItWbdRSwb18aWVk5GMYtGMZYYAl1qMdD7GASKVzgHPN5kX8zkiw2Yd2D\n4OOzl3femagwuIzdQiE4OJiNGzdW6JRRYGAgderUwdXVlRo1arBx40bbfQoFkeorPj6RRx5ZQno6\nQBPAArxAe37PJDYzgoOsxZ84XuMHPqPoURVW/fqVc9rpTcpu11No3rw5derUsUtRV8tisZCQkED9\n+vUr9HVFxHni4xMZO3YBp061AsCN57mbB5hEL9qwidfpRAi7SWcBcAeQT5lnGMl1KzcUgoKC6NWr\nFwMHDsTd3R0wP7SnTp3q0MI0GhC5ecTGLmTOnO1kZbWjMRk8yhYeI4iDuBDH31hBEnm4Ak0peaDd\ndPUQ7OiqRgrNmzcnNzeX3NxcDMNw+I5mi8VCnz59cHV1ZcKECTz66KPF7o+NjbV9HRUV5bTD+UTk\n+lkbyHv27OXIkVy6Mo0YHmUg+1lOOwYSz3Z+wzzIbgCwhMvDwN39EKGhdZk5c7zC4DIJCQnlHmxa\nmkp5IF5aWhpNmzblxIkTREdHM3/+fLp37w6opyBSFV3ePC4oyAZa48lI7udZYjiKDzVZwADe4ixn\n8cDsKVhPOl2Pq+tW3N1zcXX1pkaN2gQFaWRwLezWaD5+/Dhz5sxh9+7dZGVl2X74V199ZZ9KyzFj\nxgy8vLz405/+ZHtthYJI1RAfn8iUKXM5eNAAfGy338KvTKQ944hjE37E0Ym1LMPABTME3gHSAAte\nXnVo3bqeAuAGXe1nZ7nHXDzwwAO0bduWgwcPEhsbS2BgIJ07d7ZLkaW5cOEC58+fByAzM5N169YV\n21EtIpVffHwiwcFDGTTonxw86AaEAE3oQxYr+ZZNfIUbeXRjPAO5n895HIPpl57dA3iTmjWbsWbN\nk5w//x6bNy9QIFSQckcKHTt2ZMuWLXTo0MF2XHbnzp3ZtGmTQwo6dOgQ9957LwB5eXk88MADTJs2\nrbBgjRREKrXY2IW89FICubkWoBXe5DOWrUziJ3JwI45bWUY7LjAH83oHfSm8EI6518DFZTvTp/ch\nNvZxJ76T6sVuS1KtK46aNGnCmjVr8PPz48yZMzdeYRmCgoLYunWrw36+iDhG4VRRPhBKO84wiXWM\nZAfrCeJR7uI7AjD3HlhXEFmviFYYCDVr/sxTTykQnKXckcKnn35K9+7dSU1NZfLkyZw7d47Y2FiG\nDBlSUTUWo5GCSOVStG/giitDcCGGjbTjJK8TyRs8QRrxlz2rCYVBcByL5RjNm/vRtq0vkydHa6rI\nAXQ5ThFxmMIgSAd8aUQ+j3COiWzhMHWIozOfEMNFllEYANbm8QUAXFy8qFXLW03kCmK3UBg3blyJ\nHwywePHiGyjv+ikURJzDuqx09+6D5OS4AfW4ldPEcJzBJPMx7VhAR7YyBnNPQdEwyMBiyaNFi1rM\nnas9Bc5gt57CwIEDbUGQlZXFihUrbFdlE5HqrXgQ1AEa4EF9xpBKDDtpQBYLuJUniOYMNSlsGo/F\nDINXgTyCg2sxd64OqasKrnn6qKCggDvuuIMff/zRUTVdkUYKIo5XOD1UANQHTtGcAB5jC+PZymZ8\niKMHawmkABfMMCg6OjCbxu7uO5k2rbeaxpWA3UYKl9u3bx8nTpy4rqJEpHKLj09k/PgX+fXX2kAB\n0J7epBDDFnqwjqWEcwdj2c8poAWFYVB8dFA4VTRFo4MqptxQ8PLysk0fWSwWfH19efnllx1emIhU\njNjYhbzyyhoyMk4BdQAvvAlmDIlM4nvycCGOAB5kBJm4YwbBP4F9gEHpYaCpoqpKq49EbkKxsQt5\n+eXlZGdnAgGYH+4GbclmEqcYxQ6+oBFxRPEtAcCvlx4DhVNE84AzQC1cXDwICqqtJnIlZpfVRzk5\nOSxbtoxdu3aRl5dHWFgYw4cPx9vb267FXguFgsi1sfYHUlLOUFCQA1zEPIeoLpCFK2EMIpEYfiGU\nNN6gM28QyTEuUBgEVi6Yy0pdsVhq0KKFgqCquOFQ2L17N0OGDKFbt2507twZwzDYvHkzP/zwA2vW\nrOHzzz/nj3/8o90LL49CQeTqFPYHCjBDIA9zxjgLqEVD/BhPIhM5wDHciaMbH+NGLlMw+wRW1iDI\nBjzx9PQiJKSB9hZUMTccCr1792batGlER0cXu/2LL75gzJgxhIWF8Z///Mc+1V4DhYLIlcXGLmTW\nrHe5eLE24AnUAloByUArOrOVGPYwhGOsoAkL6M0WMoBJmL2CxsAoCjebgbt7LUJDGykIqrAbDoU2\nbdqwd+/eUp8UFBTEzp07qV279o1VeR0UCiJlGzXqaf79721ATcAdMxQsuOPPcL4hhkM05iwLCWYx\nd3KalkAC5ijCGgbzgFzAA3f3bKZNG6AlpdXADS9JNQyD7OxsPD09i92enZ1NjRo1nBIIIlJS8SMn\n6mH2CtoBKfhzmsfYzyN8xFa8eIGefEZ3CogHjmKGRxQQD+wCZmOxeOHlVYOpU3spDG5CZYbCmDFj\nuO+++4iLiyMwMBAwj7WeMmUKDz74YEXVJyJlKNkzaIQZCgZR7CeGBHpxgncIoAfd2UdNzMZxGjAY\n+Ag4CdTGYvGkRYuGahrLlVcfxcXFMWfOHDIzMwGoXbs2Tz75JJMnT66wAi+n6SMRs28wc+ZqDKMG\n1p6BFwd5kL1MYj8GDYijLu8SRCY+wG+Yy0ezMaeVvHB19SQwUGcR3SzsekrquXPnAKhTp86NV3aD\nFApysyqcJkrFHBV4AZ605hyT+IXRbOUrQojDnW+IAB6g6F4Ci8WdFi28FAI3KR2dLVKNmA3kLZgz\nvm64UI+B/EIMuwjnLG/Smdfx5yjBQDPMqaGamGGQwV/+Mlj9gZucQkGkiivcdXwOaArUpgE5jCeV\niewhjZrEEcpH1CUXD8C6qdQPcAXyqVfvEO+++3uNDEShIFLVFF9FlA00xNw45kJHLMSwh3tIZSV+\nLKADm3HFHDl4U9gzMIBa2lcgJdgtFDIzM/n73//OkSNHePPNN0lOTmbv3r0MGjTIbsVeC4WCVDfF\nVxFZFwS64E5N7uMoMRzEj0wW0pJFBHGKhhQeP2ENg1qAO02auPKvf8UoCKQEu4XC8OHD6dSpE0uX\nLmXXrl1kZmbSrVs3tm3bZrdir4VCQaqL4mFg3XkMzbjAYxzhEfaxAx/iaMEaWlPAWcwjKrwv/XEB\nMgB3XFxOM326NplJ2ex2PYUDBw7w4Ycf8v777wNo05rIDTKbxl9jbjKzhoEHPTlODHvoTRrv0pwo\nothLHaAn5q5jH8wg+AWoAXhdWlHkzty5T2p0IHZRbih4eHiQlZVl+/7AgQN4eHg4tCiR6sjcW7AI\nw2gE+AK1qI0rozlEDLtxAeJoyTg6kkEf4FPgHLCdwl3HNQBffHzyeeedqQoCsTuX8h4QGxtL//79\nOXr0KKNGjaJ3794Ov8jO2rVradu2La1atdIFfaTKio9PJDh4KBbLHVgsnZgxYxWG4QvUpRVu/IMd\nHOZj+pLKFO6gPb15lcZkkIUZBIOBHGAHsAaoRc2aBs8/fyenT69UIIhDXNXqo5MnT7JhwwYAbrvt\nNho2bOiwgvLz82nTpg1ffPEFzZo149Zbb+Xf//437dq1MwtWT0EqscIVRCmY1zYubBy7UIu7SCeG\ng0RwikUE8RrhpJJL8VVE6ZiXwqwH1KZmzVyeeqqf+gVyQ264p7B582bbZTgBmjZtCsCRI0c4cuQI\nHTt2tEOZJW3cuJGWLVvazlsaMWIEq1atsoWCSGVTfKdxXcyL2Jj7CgDqk8PDHOVx9nIcN+Jozd1E\nk8M5zA9/6zEUKZj9BV+tIhKnKTMU/vSnPxULhct9/fXXDino2LFjBAQE2L739/fnv//9b7HHxMbG\n2r6OiooiKirKIbWIXEls7EJeeOFt8vPrYv6vZPYJ4AJQn0hOM4k9/I4jrKYp99OVn+gEbLv0mMvD\noJ7CQOwmISGBhISEa35emaFwPT/MHq4URFZFQ0GkIhXfZeyFeQ0C64o8T2pQwH0cYRIbCOACrxJM\na/pzkn6YjePfgHDgO6wH00E9goN1JpHY1+W/MM+YMeOqnlfu6qOsrCwWLlzId999h8VioXv37kyc\nOLHEdRbspVmzZqSmptq+T01Nxd/f3yGvJXK1zGWkX2DuMrYuI3XB7BtY8COTCWziUQ6yCy/+SgRr\nqE0+OZgXrLE2jq1nEvnh5naBZ5/V3gKpXMptNA8bNow6deowevRoDMNg2bJl/PbbbyxfvtwhBeXl\n5dGmTRu+/PJL/Pz86NKlixrN4hSFo4IzQBPM84S8Lt1bE8iiOyeIIZk+HGcZwSzEj5/JwwyPuqhx\nLJWF3Tav7dq1i927d9u+7927NyEhITdW3ZUKcnMjLi6Ofv36kZ+fz/jx49VklgpTfHrIOirww1wZ\nVBOAWlzkAXYSwz7ccSGOW3iEtpzHh8IVRKmYF7DxRo1jqUrKDYWOHTvy448/cvvttwOwYcMGOnXq\n5NCiBgwYwIABAxz6GiKX69lzHImJaRROD1lHBRbAk5Yc53H2M4bDJNKOPxLEV7TEHAH8RvGdxv66\ndoFUSeVOH7Vt25Z9+/YREBCAxWLhyJEjtGnTBjc3NywWC9u3b6+oWgFNH4n9FD+VNBPzOgRFp4fA\nhQL6s4cYUulEBotozGsEcIS2QAfgPQobxjqQTiovux2Il5KScsUfYN1PUFEUCnKjSp5KmoW5gqiR\n7TE+nGUcKTzOfs7gxXwa8QFdyaEjZrM4B7NnoB6BVA12vZ7CmTNnSE1NJS8vz3abozavlUehINer\nrFNJzT0DDYAswjlDDPsZSjpr8CGO5mykA+YU0XdYg8DFJZPp0wcpCKTKsFujefr06bz99tu0aNEC\nF5fCo5IctXlNxJ4KG8eZFD+V1BOzVwA1KOB37CWG49zCL7xKAG0Yxgm6Yo4Kdl56rt+lUUEvhYFU\nW+WOFFq3bs3OnTtxd3evqJquSCMFuRqFu42tx027UTwMsmnKBX7PQX7PfvZwC3EEsppB5LMCTQ9J\ndWO3kUL79u05c+YMvr6+dilMxFGKn0Hkg9kjsDaOrWGQxR2cIIbD9COVf9OEaMLYTQQQCSQCzYET\ntG/vzs6djtmPI1JZlTtS+Omnn7j77rsJDQ21XUfBYrGwevXqCinwchopSFElD6PzwWwc18K6ggig\nFhmM4jAxHMSTXBbQkiWEco4szM1luZh9BS9cXC5w//2hLFumY9ul+rBbo7ldu3ZMnDiR0NBQW0/B\nYrHQs2dP+1R6jRQKAqWtILJOD7UCjl56VBYtyOBx9jOWw3yPD3G05kuCMTiHrm0sNxO7TR95eXkx\nZcoUuxQlcqMKw8AAPChcQWSdHnLDwgX6kU4Mp+nCPhbjz63cSQpNMDeZHUankoqUrtyRwtSpU/Hw\n8GDIkCHFLsOpJalSUYpvMrPuNHan6AoiyKYeOYwjg8fZym/kEkck73MP2azGbBybm8xcXDwICqqt\n3cZyU7Hb9FFUVFSpx1k7a0mqQuHmUbic1A2zV5CLOTpoh3kNgmzAoANnmcRhhnGQeJoSRy/+y63A\nx5h9hVq4u2czbZpOJJWbl103r1UmCoXqyzoiSEk5Q0HBb0AgkI8ZBK0wD5mzAP64sZd7OUUM22lB\nBq/RkjfpwHFyUa9ApCS79RQA1qxZw+7du8nOzrbd9pe//OX6qxO5JDZ2Ia+8soaMjFNAHcwRQT3M\n3/DbURgEbkAOTbjAo7gygTUk4808OrCKeuRxHEjDPIyung6jE7lO5YbChAkTyMrK4quvvuLRRx9l\n+fLldO3atSJqk2qq+DLSAAqPp3bHHBEkYwaEGQRQQDcOEcNP9CeV92lFP15lF2swRwUXsVh8FQQi\ndlDu9FFYWBg7duygQ4cObN++nYyMDPr37893331XUTUWo+mjqs3cafwp+fnemPsJwjFDwNonCLz0\ndxY1CWQkPxDDDmqTzwLas4SW/EY2Zn+hFnCekSO1p0CkPHabPqpZ89KFRWrV4tixYzRo0ID09PQb\nr1BuCvHxiUyfvpR9+9LIzDyJeQWzOhTuJ3DDnCrKwwyJPII4wURyGcdKfsSXZ+jKerwwOIt5zYJa\nuLvXIjS0ATNnPq6RgYgdlRsKgwcP5syZMzz55JN07NgRi8XCo48+WhG1SRUXH5/I6NFvcvasO2az\n2A9zZJBC4ZHVZhhY6ENfviaGb+nKKd6mHV14lkP8F3NUkIObmw8dOvgyc+b9CgIRB7mm1Uc5OTlk\nZ2dTt25dR9Z0RZo+qhri4xMZNmwOWVkRl26xThHlXfq6FeBHXdbxEAeZxGEyaMx86vI+XmRxEaiL\ni4sXtWvnM3XqnVpOKnIDbnj6aOPGjQQEBNC0aVMAlixZwscff0xgYCCxsbHUr1/fftVKlWadItq9\n+yA5OWA2h30x5/yt/4lZp4j6ArsJ5ScmcYL72cPn+DCWQH7ED4vFGy+vfJ5XCIg4RZkjhcjISL78\n8kvq169PYmIi999/P3FxcSQlJbFnzx4++uijiq4V0EihMilcRWT99+GGeaH6DMyRwH6g5aX7knFj\nAncTRwyHaMUeXqcpbxLMcZe62mEs4mA3vHktPDycbdu2ATBp0iQaNWpEbGxsifsqmkLBuYqPCuph\nXqjeuozIc2LlAAAWIklEQVS01aVHWUcHRwEDXy7wKNuYwBEO0JIFBLOCEPLYyciRrbVySKQCXO1n\np0tZd+Tn53Px4kUAvvjiC3r16mW7r+hlOeXmEB+fSHDwUAYN+idJSQY5OY2AEMw+gXUFkfW00jzg\nIrfRiXdJ4Gc+wZ9M7qIVUfjxsYsrNb138/zz0QoEkUqmzJ7CyJEj6dmzJw0bNqRWrVp0794dgOTk\nZOrVq1dhBYrzxcYu5KWXEsjNdaPkaMD6C4K5ksiTi4zAQgz/oi4FLGAUMXhyFi/c3Xfy/LTe6hWI\nVGJXXH30448/kp6eTt++falduzYA+/btIyMjwyGnpMbGxvKvf/2LRo0aAfDSSy/Rv3//4gVr+sih\nrNNDKSkZ5OZmcfHiGXJz6wOhFP8dwhoGfYElBHKUiRxmHIf5L/7E8XvWsReDTCyWPFq0qKWegYgT\nVckD8WbMmIG3tzdTp04t8zEKBcco3jRuB/QDlmA2jdtdelTRacO+WHibPmQRwxG6sZm3acyr+HGQ\nWkBtPD1rExLSQPsKRCoBux6IV5H0gV+xrCODnTvPc/GidXroBeA5oCmFPQKwjgrqkMtYXmASe8gi\nkziCGckAmgbXYZ5GAyJVWqULhfnz57N06VI6d+7MK6+8Umr/wroKCszrPURFRVVcgdVIbOxC5szZ\nTlZWE8zjJ4r+51C0Z2CGQQjvMolTjGAt66jPeILY7OFPSPuGfKjRgEilkpCQQEJCwjU/r8Knj6Kj\no0s9O+nFF1/ktttus/UTpk+fTlpaGosWLSr2OE0f2Ye543gBWVkfALGXbrWOCKwjBXClN3ezgBgO\n0Ya9vE4L3uAWagc3UI9ApAqpkj2FolJSUhg8eDA7duwodrtC4cbExycyb946vv9+F5mZ4ZiB8Nyl\ne80RATShEV14lJk8RjIpBBJHS1bQHov7z0zTCiKRKqdK9hTS0tJsx2qsWLGCsLAwJ1dUtVkD4Nix\nE6Snn8XF5QKnTjWmoGAs5sVrivcKYC1duJUYXmEQf+UjfPmdWzv2eAZQo0ZtwoJOM3PmFI0ORKqx\nSjVSGDNmDFu3bsVisRAUFMTrr7+Or69vscdopFC6KwfAfzBXEy0APqD4yOA/ePIc9zOTGP6FDxdY\n5N6GH9tG8r+zxioARKqJKj99VBaFgqloCBw+nEpubgC5uQ9QegBYewRumNNFsUBvmvMhEznDw6xk\nE34soBFd/jKK52fEOOU9iYjjVMnpI7myokFw8KCFrKxRmCHQiMIP/hcv/W3dW+BW5O88wOBOkolh\nK935miW04w4eZj/16NgxXYEgcpNTKFQR8fGJ/OEP/+HAAeuHftEQiL30qMsDANvf3mQyhovE0Ihc\n6hJHGx7gFy5g7lQPDv4zM2c+WDFvRkQqLYVCJWUdFeTkuHHu3FH27z/N+fOfXLrX7bK/80r5uy/w\nLO1owyQ6MZJk1uPP73meb/kVOIGLywhuCWhK27a+TJ7cX/0DEVEoVCYlp4deAxIxp4j8izzy8hAw\nA8DsJTyLK3cymHnEcIgQ5vEGrQm3dCGnoQ+G8T1hTZvi59eYyZMfUBCISDEKhUqi9OkhgHUU9gms\nioeAeT80ZCUTXNYywfgHv7rX5g33lmxqPo7G/nV5bXK0AkBEyqVQcKKiU0Q7d/7MqVMfXLqntOMm\nrEHwImB+uNesuYDGjWvQ+mw0MZZj9Mo4xJnedxIw+z0CIiPpXGHvRESqC4WCkxQfGUBhsxiKn0Zq\n/dr6W/50wJVmDXaxZkxrIr5bDy4n4fHHYdw4vBs0cHDlIlKdKRScZN68dUUCAS4/lrpwVFB8hBBA\nINPqjeDhvJ/x2H0e/vIXGDAAXF0rrngRqbYUChWo6HTR9u2pl91b2vTQ/bRs6UcNt/Pcev5uRp3d\nR8RvhznVYyAef30bWreu2DcgItWeQqGClJwueu6yR5hB0LDhCNq3b4unZz5PjB9H/+MHYMEC8HSF\nF56ABx6gjpdXhdYuIjcPhUIFKTldVHRkYAoOXsvcuY8zMLixGQQTRsGdd8Krr0KPHmCxVHTZInKT\nUSg4SNGpIg+PPNLSMi97hDky8PEZSYcObajlcZGZXbzo/M//gx074NFHYft28Pcv+cNFRBxEoeAA\nJaeKzP5AST3oE7GKD/t6wqtvwflmMGkS3HcfeHhUXMEiIpcoFByg5FQRZGVNombNxy7tUoZObGKa\n98MM2XgIAofBJ59Ap07OKFdExEah4AA5OaX9Y+1Bm8CljHS7h0Epm2hwMYPT942kxpyvoGHDCq9R\nRKQ0CoUbdHnvYMqUvnh45BV7jD+pPMZrPH7gfXx6doMXFsLAgfhqb4GIVDIKhRtQWu/gwIFnGT26\nGQf2/5mAg9HEEEcvvmZ13WC2vfwaURNGO7FiEZEr05XXylHaSMB6sFy/fs+xbt0LxR7vxXlmtbuf\nhzJ/5vSpDD7268K3zdvzyB8H6UA6EXEaXXnNDsoaCQAMHNijWO+gNXuZxAJG8y47TjTB+8PFeEdF\nMdViYWqFVy4icn1cnF1AZVbaKqIDB15k/vz1ANR0z2Uwq/kPfUmkB+eoQzjbeKnTUOjVS5vNRKTK\nuWlGCleaBipL6auIwP18DsyZw8fb3mKvxxJeyXmZ5QwjFw+Cg//M5Mn9HfEWREQc7qYIhfKmgcpy\n+SqijmxmEgsYtvHf0Op+aq1ZzS/Hszg5fz23Z7+Ep2e+LmspIlXaTdFoLq0hbN4+nbVr/6/M58XH\nJ/LklHgiD3Yghjj8+IUP67cgYv4fiR415JprFxFxlqv97HRKT2H58uW0b98eV1dXtmzZUuy+l156\niVatWtG2bVvWrVtnl9craxooO/sK+wSOHmXghvVsOf0v/tRgOmva38LEvqMJWTpDgSAi1ZZTpo/C\nwsJYsWIFEyZMKHb77t27+eCDD9i9ezfHjh2jT58+7Nu3DxeXG8uuy6eBrDw984vfYBiQmAhxcfDl\nl/DAA3j+8B0d27Wj4w1VICJSNThlpNC2bVtal3KBmFWrVjFy5Ehq1KhBYGAgLVu2ZOPGjTf8elOm\n9CU4+Nlit5kN4Wjzm4wMeO01CAuDxx6DqChISYH586Fduxt+fRGRqqJSNZp/+eUXbrvtNtv3/v7+\nHDt2rMTjYmNjbV9HRUURFRV1xZ9rbfzOnz+d7GzXwoZwqybwxBPwzjvQsyfMnQu9e2spqYhUeQkJ\nCSQkJFzz8xwWCtHR0aSnp5e4fdasWQwePPiqf46llA/ooqFwtQYO7GGGQ34+fP45zJ8FW7bAI49A\nUhI0b37NP1NEpLK6/BfmGTNmXNXzHBYK69evv+bnNGvWjNTUwmsXHz16lGbNmtmzLPj+e5g5E2Ji\nYOVK8PS0788XEanCnL6juegSqSFDhvD++++Tm5vLoUOHSE5OpkuXLvZ9we7dYeNGGDNGgSAichmn\nhMKKFSsICAhgw4YNDBw4kAEDBgAQEhLC8OHDCQkJYcCAASxcuLDU6aMbon6BiEiZborNayIiN7tK\nvXlNREQqJ4WCiIjYKBRERMRGoSAiIjYKBRERsVEoiIiIjUJBRERsFAoiImKjUBARERuFgoiI2CgU\nRETERqEgIiI2CgUREbFRKIiIiI1CQUREbBQKIiJio1AQEREbhYKIiNgoFERExEahICIiNgoFERGx\nUSiIiIiNQqGSSUhIcHYJDqX3V7VV5/dXnd/btXBKKCxfvpz27dvj6urKli1bbLenpKRQs2ZNIiMj\niYyM5PHHH3dGeU5V3f/D1Pur2qrz+6vO7+1auDnjRcPCwlixYgUTJkwocV/Lli1JSkpyQlUiIuKU\nUGjbtq0zXlZERMpjOFFUVJSxefNm2/eHDh0yateubURERBg9e/Y0vv322xLPAfRHf/RHf/TnOv5c\nDYeNFKKjo0lPTy9x+6xZsxg8eHCpz/Hz8yM1NRUfHx+2bNnCPffcw65du/D29rY9xswFERFxBIeF\nwvr166/5Oe7u7ri7uwPQsWNHgoODSU5OpmPHjvYuT0RESuH0JalFf/M/efIk+fn5ABw8eJDk5GRa\ntGjhrNJERG46TgmFFStWEBAQwIYNGxg4cCADBgwA4JtvviE8PJzIyEiGDRvG66+/Tr169ZxRoojI\nzclOPeMK99xzzxkdOnQwwsPDjd69extHjhxxdkl287//+79G27ZtjQ4dOhj33nuvcfbsWWeXZFcf\nfvihERISYri4uBRbaFDVff7550abNm2Mli1bGrNnz3Z2OXY1btw4o3HjxkZoaKizS3GII0eOGFFR\nUUZISIjRvn17Y+7cuc4uyW6ysrKMLl26GOHh4Ua7du2MZ5555oqPr7KhcO7cOdvX8+bNM8aPH+/E\nauxr3bp1Rn5+vmEYhvH0008bTz/9tJMrsq+ff/7Z2Lt3b4nVZ1VZXl6eERwcbBw6dMjIzc01wsPD\njd27dzu7LLtJTEw0tmzZUm1DIS0tzUhKSjIMwzDOnz9vtG7dulr9+8vMzDQMwzAuXrxodO3atdSV\nnVZO7ylcr6IrkjIyMmjYsKETq7Gv6OhoXFzMfzVdu3bl6NGjTq7Ivtq2bUvr1q2dXYZdbdy4kZYt\nWxIYGEiNGjUYMWIEq1atcnZZdtO9e3d8fHycXYbDNGnShIiICAC8vLxo164dv/zyi5Orsp9atWoB\nkJubS35+PvXr1y/zsVU2FACeffZZmjdvzpIlS3jmmWecXY5DLF68mLvuusvZZUg5jh07RkBAgO17\nf39/jh075sSK5HqlpKSQlJRE165dnV2K3RQUFBAREYGvry+9evUiJCSkzMdW6lCIjo4mLCysxJ9P\nP/0UgBdffJEjR47w0EMP8cc//tHJ1V6b8t4bmO/P3d2dUaNGObHS63M17686sVgszi5B7CAjI4P7\n7ruPuXPn4uXl5exy7MbFxYWtW7dy9OhREhMTr3jOk1OOubhaV7vXYdSoUVXut+ny3tvbb7/NZ599\nxpdffllBFdnX9exTqcqaNWtGamqq7fvU1FT8/f2dWJFcq4sXLzJ06FBGjx7NPffc4+xyHKJu3boM\nHDiQTZs2ERUVVepjKvVI4UqSk5NtX69atYrIyEgnVmNfa9eu5a9//SurVq3C09PT2eU4lFFNdqh3\n7tyZ5ORkUlJSyM3N5YMPPmDIkCHOLkuukmEYjB8/npCQEJ544glnl2NXJ0+e5OzZswBkZWWxfv36\nK39eVkzv2/6GDh1qhIaGGuHh4cbvfvc749dff3V2SXbTsmVLo3nz5kZERIQRERFhTJw40dkl2dUn\nn3xi+Pv7G56enoavr6/Rv39/Z5dkF5999pnRunVrIzg42Jg1a5azy7GrESNGGE2bNjXc3d0Nf39/\nY/Hixc4uya6+/fZbw2KxGOHh4bb/7z7//HNnl2UX27dvNyIjI43w8HAjLCzMmDNnzhUfbzGMavKr\nmoiI3LAqO30kIiL2p1AQEREbhYKIiNgoFERExEahIE5z6tQpIiMjiYyMpGnTpvj7+xMZGYmPjw/t\n27ev0FpWrVrFzz//bPv++eefv649IikpKYSFhZV6365du+jdu7ftmI8XXnjhuuu9ktLey1dffQVA\nVFQUmzdvdsjrSvWgUBCnadCgAUlJSSQlJfHYY48xdepUkpKS2Lp1q+3sJ3uyXqujNCtWrGD37t22\n72fMmMGdd95pt9fOysri7rvv5s9//jN79uxh27Zt/PDDDyxcuNBur2FV2nvp3bs3YO681u5ruRKF\nglQa1tXRhmGQn5/P73//e0JDQ+nXrx/Z2dkAHDhwgAEDBtC5c2d69OjB3r17AfM39N69exMeHk6f\nPn1su4sfeughHnvsMW677TaefvrpUp//ww8/8Omnn/Lkk0/SsWNHDh48yEMPPcTHH38MwE8//cQd\nd9xBREQEXbt2JSMjg5SUFHr06EGnTp3o1KkTP/744xXf27Jly/if//kf+vTpA0DNmjWJi4vj5Zdf\nBiA2NpZXXnnF9vjQ0FCOHDkCwL333kvnzp0JDQ3lzTfftD3Gy8uL5557joiICG6//XaOHz9e7nsp\nat26dXTr1o1OnToxfPhwMjMzAXjmmWdo37494eHhPPnkk9f4b1GqvArYOyFSrtjYWONvf/ubYRiG\ncejQIcPNzc3Ytm2bYRiGMXz4cOPdd981DMMwevfubSQnJxuGYRgbNmwwevfubRiGYQwaNMhYunSp\nYRiGsXjxYuOee+4xDMMwxo4dawwePNgoKCi44vMfeugh4+OPP7bVY/0+JyfHaNGihbFp0ybDMMxj\nlfPy8owLFy4Y2dnZhmEYxr59+4zOnTvbai/teOmpU6ca8+bNK3G7j4+Pcf78+WLv3zAMIzQ01Dh8\n+LBhGIZx+vRpwzAM48KFC0ZoaKjte4vFYqxZs8YwDMN46qmnjBdeeOGK78UwDNtx5SdOnDB69Ohh\nXLhwwTAMw5g9e7Yxc+ZM49SpU0abNm1sz/3tt99K1CzVW6U++0huXkFBQXTo0AGATp06kZKSQmZm\nJj/88APDhg2zPS43NxeADRs2sHLlSgBGjx7NU089BZjTJcOGDcNisZCRkcGPP/5Y6vOh5JEbhmGw\nd+9emjZtSqdOnQBsh6Tl5uYSExPDtm3bcHV1Zd++feW+p8t/vtXFixev+Ly5c+fa3ltqairJycl0\n6dIFd3d3Bg4cCJj/jIqeN1XWa1nv27BhA7t376Zbt26299OtWzfq1q2Lp6cn48ePZ9CgQQwaNKjc\n9yXVi0JBKiUPDw/b166urmRnZ1NQUICPjw9JSUmlPqesD0LrWfIFBQXUq1evzOeXNtde1vz7P/7x\nD5o2bco777xDfn5+uWdUhYSEkJiYWOy2gwcPUqtWLXx8fHBzc6OgoMB2n3W6LCEhgS+//JINGzbg\n6elJr169bPfVqFHD9ngXFxfy8vLKrbuo6Oholi1bVuL2jRs38uWXX/LRRx8RFxdXZQ9llOujnoJU\nCYZh4O3tTVBQEB999JHttu3btwPQrVs33n//fQDee+89evToUeJn1KlTp8zne3t7c+7cuWKPt1gs\ntGnThrS0NDZt2gTA+fPnyc/P59y5czRp0gSApUuXXrGJDfDAAw/w3Xff2T5gs7Ky+MMf/sCf/vQn\nAAIDA9myZQsAW7Zs4dChQwCcO3cOHx8fPD092bNnDxs2bCj3n1Vp7+Xy93Xbbbfx/fffc+DAAQAy\nMzNJTk4mMzOTs2fPMmDAAP7+97+zbdu2cl9PqheFglQaRX+7vfw3Xev37733HosWLSIiIoLQ0FBW\nr14NwPz583nrrbcIDw/nvffeY+7cuaX+rLKeP2LECP7617/SqVMnDh48aHt8jRo1+OCDD5g8eTIR\nERH069ePnJwcHn/8cZYsWUJERAR79+4tdvZ+ab+le3p6snr1al588UXatGlDo0aNaNWqle06IEOH\nDuX06dOEhoayYMEC2rRpA0D//v3Jy8sjJCSEadOmcfvtt5f5z8v6fVnvpaiGDRvy9ttvM3LkSMLD\nw+nWrRt79+7l/PnzDB48mPDwcLp3784//vGPUp8v1ZcOxBNxglWrVjFz5kzi4+NtIw6RykChICIi\nNpo+EhERG4WCiIjYKBRERMRGoSAiIjYKBRERsVEoiIiIzf8DVUkqIR82FksAAAAASUVORK5CYII=\n",
"prompt_number": 14,
"text": [
"<matplotlib.figure.Figure at 0x48019d0>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAELCAYAAAA2mZrgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1WXex/H3AQRUUHFDEQzEFUFATcseFU1ccqnGNDXT\nzBoz0Wmcp8UpJ/QpM2eaGRVtGy2tnMrKJSlHW4g2x1TcU3FB0SD3FGQR+D1//DwHEBCXcziAn9d1\neQln4XxPy/lw39/7vn8WwzAMREREABdnFyAiIpWHQkFERGwUCiIiYqNQEBERG4WCiIjYKBRERMTG\naaGQmppKr169aN++PaGhocybNw+A06dPEx0dTevWrenbty9nz551VokiIjcdi7P2KaSnp5Oenk5E\nRAQZGRl06tSJlStX8tZbb9GwYUOeeuopXn75Zc6cOcPs2bOdUaKIyE3HaSOFJk2aEBERAYCXlxft\n2rXj2LFjrF69mrFjxwIwduxYVq5c6awSRURuOk4bKRSVkpJCz5492blzJ82bN+fMmTMAGIZB/fr1\nbd8DWCwWZ5UpIlKlXc3HvdMbzRkZGQwdOpS5c+fi7e1d7D6LxVJqCBiGUW3/PP/8806vQe9P7+9m\nfH/V+b0ZxtX/7u/UULh48SJDhw7lwQcf5J577gHA19eX9PR0ANLS0mjcuLEzSxQRuak4LRQMw2D8\n+PGEhITwxBNP2G4fMmQIS5YsAWDJkiW2sBAREcdzc9YLf//997z77rt06NCByMhIAF566SWeeeYZ\nhg8fzqJFiwgMDOTDDz90VolOERUV5ewSHErvr2qrzu+vOr+3a1EpGs3XwmKxXNP8mIiIXP1np9Mb\nzSIiUnkoFERExEahICIiNgoFERGxUSiIiIiNQkFERGwUCiIiYqNQEBERG4WCiIjYKBRERMRGoSAi\nIjYKBRERsVEoiIiIjUJBRERsFAoiImKjUBARERuFgoiI2CgURETERqEgIiI2CgUREbFxc3YBIiJS\ntvj4RObNW0dOjhseHnlMmdKXgQN7OOz1FAoiIpVUfHwif/jDfzhw4EXbbQcOPAvgsGDQ9JGISCU1\nb966YoEAcODAi8yfv95hr+m0UHj44Yfx9fUlLCzMdltsbCz+/v5ERkYSGRnJ2rVrnVWeiIjT5eSU\nPpmTne3qsNd0WiiMGzeuxIe+xWJh6tSpJCUlkZSURP/+/Z1UnYiI83l45JV6u6dnvsNe02k9he7d\nu5OSklLidsMwyn1ubGys7euoqCiioqLsV5iISCUxZUpfDhx4ttgUUnDwn5k8ufxfmBMSEkhISLjm\n17QYV/Mp7CApKSkMHjyYHTt2ADBjxgzeeust6tatS+fOnXnllVeoV69esedYLJarCg4RkeogPj6R\n+fPXk53tiqdnPpMnR19Xk/lqPzsrVSgcP36cRo0aATB9+nTS0tJYtGhRsecoFERErt3VfnZWqtVH\njRs3xmKxYLFYeOSRR9i4caOzSxIRualUqlBIS0uzfb1ixYpiK5NERMTxnNZoHjlyJN988w0nT54k\nICCAGTNmkJCQwNatW7FYLAQFBfH66687qzwRkZuSU3sK10M9BRGRa1clewoiIuJcCgUREbFRKIiI\niI1CQUREbHR0tohIBanoayNcD4WCiEgFcMa1Ea6Hpo9ERCqAM66NcD0UCiIiFcAZ10a4HgoFEZEK\n4IxrI1wPhYKISAWYMqUvwcHPFrvNvDZCtJMqKp2OuRARqSD2ujbC9agS11O4HgoFEZFrp7OPRETk\nmikURETERqEgIiI2CgUREbFRKIiIiI1CQUREbHQgnoiInVSFU1DLo1AQEbGDqnIKank0fSQiYgdV\n5RTU8mikICJyjUqbJqoqp6CWx2mh8PDDDxMfH0/jxo3ZsWMHAKdPn+b+++/n8OHDBAYG8uGHH1Kv\nXj1nlSgiUkJZ00R16pwt9fGV7RTU8jht+mjcuHGsXbu22G2zZ88mOjqaffv2ceeddzJ79mwnVSci\nUrqypoksltwqcQpqeZw2UujevTspKSnFblu9ejXffPMNAGPHjiUqKkrBICKVSlnTRN7ezZg5szfz\n508vcgpq/yrVZIZK1lP49ddf8fX1BcDX15dff/211MfFxsbavo6KiiIqKqoCqhORm9Hl/YNz586U\n+jhPz3wGDuxRaUIgISGBhISEa36eU4/OTklJYfDgwbaego+PD2fOFP4Dr1+/PqdPny72HB2dLSIV\npbT+QZMm44G6pKf/3XZbcPCfmTu3AkYF+fngen2N66v97KxUIwVfX1/S09Np0qQJaWlpNG7c2Nkl\nichNrLT+QXr6Ijp2fJTw8AqcJkpOhoUL4ZNPYM8eqFnTYS9VqUJhyJAhLFmyhKeffpolS5Zwzz33\nOLskEbmJXal/sHZtrGNfPD8fPv8c4uJgyxZ45BH49luHBgI4MRRGjhzJN998w8mTJwkICGDmzJk8\n88wzDB8+nEWLFtmWpIqIOIuHR16ptzt0menp07B4sTkyaNAAJk+GlSvB09Nxr1mELscpIlKG0noK\nDusfJCXBggXw8ccweDDExECXLnb78XbrKezfvx9/f388PT35+uuv2bFjB2PGjNGmMhGp9qwf/A5b\nZpqba4bAggVw+DBMnAh794IT+6nljhTCw8PZvHkzKSkp3HXXXdx9993s2rWLzz77rKJqLEYjBRFx\npAo56fSXX+D11+GNNyAkxBwVDB4Mbo6b0bfbSMHFxQU3Nzc++eQTJk+ezOTJk4mMjLRLkSIizlY0\nBM6dO0paWp1iy03tdtKpYcB335mN4/XrYeRI+OILaN/+xn6unZUbCu7u7ixbtoylS5fy6aefAnDx\n4kWHFyYi4mglewbPAS8Ue4x50un06w+FzExYtswMg+xsc1TwxhtQt+4N1e4o5Z59tHjxYjZs2MCz\nzz5LUFAQhw4d4sEHH6yI2kREHKrkPgQ7nnS6fz9MnQq33ALx8fC3v8HPP5uriSppIMBVjBTat2/P\n7NmzOXLkCABBQUE8/fTTDi9MRMTRSu5DuMElqAUFsHatOSr46ScYPx42bYLAwBuqsyKVO1JYvXo1\nkZGR9O/fH4CkpCSGDBni8MJERByt5D6EvsB1nHR65gz8/e/QujVMnw7Dh8ORIzB7dpUKBLiK1Ucd\nO3bkq6++olevXiQlJQEQGhrKzp07K6TAy2n1kYjcKGtz+dixExw8aCEr6zXbfU2aPIyfX028vRtd\nWoIaXXY/Yds2cznp8uUwcKDZL+jaFSyWCnonV89uq49q1KhRYk+Ci4uu4ikiVUvZQZBIzZr307Kl\nH35+Xkye/NCVm8oXL5pnEMXFwaFD5t6CPXvg0gnPVd1V9RTee+898vLySE5OZt68eXTr1q0iahMR\nsYviq4wuX2HUg6ysHvj5TWft2v8r+4ekpZmrhl5/Hdq0gSeegLvvdujeAmco91f++fPns2vXLjw8\nPBg5ciR16tThn//8Z0XUJiJiF8VXGV3DCiPr3oKRI81NZunpsG4dfP01DB1a7QIBrmKkULt2bWbN\nmsWsWbMqoh4REbsrvsroKlYYXbhQuLfgwgWzV/Daa5V6Kam9lBkKgwcPLvNJFouF1atXO6QgEZEb\ndfku5f37i16sy7rCqPghd5Mn94cDB+DVV+Htt6FbN5gzB/r0gZuoj1rm6qPyLuPmrEtgavWRiFxJ\n8f5BIvAfoN+lv61BkEjNmgto2dKPZk1rM+OOunTZ+A38978wbpzZPA4KctZbcIir/ezU0dkiUq30\n6/cc69ZZG8lFm8qJwHrAlYYN9/Bu3IP0+2Wfed0Cb29zimjECKhVyyl1O9oNL0kdNmwYy5cvJzQ0\nFMtla24tFgvbt2+/8SpFROwoPj6Rn35KLXJL0Y+4HkAPwtjOCzUept9jo+Guu2DpUrjttkq5t8AZ\nygyFuXPnAhAfH18iXS4PCRERZ4qPT2T69KX8/HMNsrMDitxjNpXduMg9rCSGOFqyny9qt4ItP0OT\nJs4puBIrs3vi5+cHwMKFCwkMDCz2Z+HChRVWoIjIlVh7CElJTcjOfpWiR1X40onn6EkKgcQQRxwx\n3NliNA3/OVOBUIZyW+rr1q0rcZuzLrAjInK5wj0I1omP7txOM94jlJ8ZxS1uKUxt153ne/bifL/t\nvDJvoP0vmlONlDl99Oqrr7Jw4UIOHDhAWFiY7fbz589zxx13VEhxIiJXUrSH4EkWI1lMDHF4c54F\nTOJxHuK2O1+58k5lKabM1Ue//fYbZ86c4ZlnnuHll1+29RW8vb1p0KBBhRZZlFYfiUjRHkKTbFcm\nUotxvMF/aUQc81lHXwxcCA7+M3Pn2vGaylWYXZek5ufn8+uvv5KXV7gTsHnz5jdW4XVSKIjcXIoe\nZHf4cCp5eQXkZjejDxeYRCbdSORt2vIq73GQY8B6PD2PEBLixcyZ9ysQLrFbKMyfP58ZM2bQuHFj\nXF0LzwbZsWPHjVd5HRQKItWbdRSwb18aWVk5GMYtGMZYYAl1qMdD7GASKVzgHPN5kX8zkiw2Yd2D\n4OOzl3femagwuIzdQiE4OJiNGzdW6JRRYGAgderUwdXVlRo1arBx40bbfQoFkeorPj6RRx5ZQno6\nQBPAArxAe37PJDYzgoOsxZ84XuMHPqPoURVW/fqVc9rpTcpu11No3rw5derUsUtRV8tisZCQkED9\n+vUr9HVFxHni4xMZO3YBp061AsCN57mbB5hEL9qwidfpRAi7SWcBcAeQT5lnGMl1KzcUgoKC6NWr\nFwMHDsTd3R0wP7SnTp3q0MI0GhC5ecTGLmTOnO1kZbWjMRk8yhYeI4iDuBDH31hBEnm4Ak0peaDd\ndPUQ7OiqRgrNmzcnNzeX3NxcDMNw+I5mi8VCnz59cHV1ZcKECTz66KPF7o+NjbV9HRUV5bTD+UTk\n+lkbyHv27OXIkVy6Mo0YHmUg+1lOOwYSz3Z+wzzIbgCwhMvDwN39EKGhdZk5c7zC4DIJCQnlHmxa\nmkp5IF5aWhpNmzblxIkTREdHM3/+fLp37w6opyBSFV3ePC4oyAZa48lI7udZYjiKDzVZwADe4ixn\n8cDsKVhPOl2Pq+tW3N1zcXX1pkaN2gQFaWRwLezWaD5+/Dhz5sxh9+7dZGVl2X74V199ZZ9KyzFj\nxgy8vLz405/+ZHtthYJI1RAfn8iUKXM5eNAAfGy338KvTKQ944hjE37E0Ym1LMPABTME3gHSAAte\nXnVo3bqeAuAGXe1nZ7nHXDzwwAO0bduWgwcPEhsbS2BgIJ07d7ZLkaW5cOEC58+fByAzM5N169YV\n21EtIpVffHwiwcFDGTTonxw86AaEAE3oQxYr+ZZNfIUbeXRjPAO5n895HIPpl57dA3iTmjWbsWbN\nk5w//x6bNy9QIFSQckcKHTt2ZMuWLXTo0MF2XHbnzp3ZtGmTQwo6dOgQ9957LwB5eXk88MADTJs2\nrbBgjRREKrXY2IW89FICubkWoBXe5DOWrUziJ3JwI45bWUY7LjAH83oHfSm8EI6518DFZTvTp/ch\nNvZxJ76T6sVuS1KtK46aNGnCmjVr8PPz48yZMzdeYRmCgoLYunWrw36+iDhG4VRRPhBKO84wiXWM\nZAfrCeJR7uI7AjD3HlhXEFmviFYYCDVr/sxTTykQnKXckcKnn35K9+7dSU1NZfLkyZw7d47Y2FiG\nDBlSUTUWo5GCSOVStG/giitDcCGGjbTjJK8TyRs8QRrxlz2rCYVBcByL5RjNm/vRtq0vkydHa6rI\nAXQ5ThFxmMIgSAd8aUQ+j3COiWzhMHWIozOfEMNFllEYANbm8QUAXFy8qFXLW03kCmK3UBg3blyJ\nHwywePHiGyjv+ikURJzDuqx09+6D5OS4AfW4ldPEcJzBJPMx7VhAR7YyBnNPQdEwyMBiyaNFi1rM\nnas9Bc5gt57CwIEDbUGQlZXFihUrbFdlE5HqrXgQ1AEa4EF9xpBKDDtpQBYLuJUniOYMNSlsGo/F\nDINXgTyCg2sxd64OqasKrnn6qKCggDvuuIMff/zRUTVdkUYKIo5XOD1UANQHTtGcAB5jC+PZymZ8\niKMHawmkABfMMCg6OjCbxu7uO5k2rbeaxpWA3UYKl9u3bx8nTpy4rqJEpHKLj09k/PgX+fXX2kAB\n0J7epBDDFnqwjqWEcwdj2c8poAWFYVB8dFA4VTRFo4MqptxQ8PLysk0fWSwWfH19efnllx1emIhU\njNjYhbzyyhoyMk4BdQAvvAlmDIlM4nvycCGOAB5kBJm4YwbBP4F9gEHpYaCpoqpKq49EbkKxsQt5\n+eXlZGdnAgGYH+4GbclmEqcYxQ6+oBFxRPEtAcCvlx4DhVNE84AzQC1cXDwICqqtJnIlZpfVRzk5\nOSxbtoxdu3aRl5dHWFgYw4cPx9vb267FXguFgsi1sfYHUlLOUFCQA1zEPIeoLpCFK2EMIpEYfiGU\nNN6gM28QyTEuUBgEVi6Yy0pdsVhq0KKFgqCquOFQ2L17N0OGDKFbt2507twZwzDYvHkzP/zwA2vW\nrOHzzz/nj3/8o90LL49CQeTqFPYHCjBDIA9zxjgLqEVD/BhPIhM5wDHciaMbH+NGLlMw+wRW1iDI\nBjzx9PQiJKSB9hZUMTccCr1792batGlER0cXu/2LL75gzJgxhIWF8Z///Mc+1V4DhYLIlcXGLmTW\nrHe5eLE24AnUAloByUArOrOVGPYwhGOsoAkL6M0WMoBJmL2CxsAoCjebgbt7LUJDGykIqrAbDoU2\nbdqwd+/eUp8UFBTEzp07qV279o1VeR0UCiJlGzXqaf79721ATcAdMxQsuOPPcL4hhkM05iwLCWYx\nd3KalkAC5ijCGgbzgFzAA3f3bKZNG6AlpdXADS9JNQyD7OxsPD09i92enZ1NjRo1nBIIIlJS8SMn\n6mH2CtoBKfhzmsfYzyN8xFa8eIGefEZ3CogHjmKGRxQQD+wCZmOxeOHlVYOpU3spDG5CZYbCmDFj\nuO+++4iLiyMwMBAwj7WeMmUKDz74YEXVJyJlKNkzaIQZCgZR7CeGBHpxgncIoAfd2UdNzMZxGjAY\n+Ag4CdTGYvGkRYuGahrLlVcfxcXFMWfOHDIzMwGoXbs2Tz75JJMnT66wAi+n6SMRs28wc+ZqDKMG\n1p6BFwd5kL1MYj8GDYijLu8SRCY+wG+Yy0ezMaeVvHB19SQwUGcR3SzsekrquXPnAKhTp86NV3aD\nFApysyqcJkrFHBV4AZ605hyT+IXRbOUrQojDnW+IAB6g6F4Ci8WdFi28FAI3KR2dLVKNmA3kLZgz\nvm64UI+B/EIMuwjnLG/Smdfx5yjBQDPMqaGamGGQwV/+Mlj9gZucQkGkiivcdXwOaArUpgE5jCeV\niewhjZrEEcpH1CUXD8C6qdQPcAXyqVfvEO+++3uNDEShIFLVFF9FlA00xNw45kJHLMSwh3tIZSV+\nLKADm3HFHDl4U9gzMIBa2lcgJdgtFDIzM/n73//OkSNHePPNN0lOTmbv3r0MGjTIbsVeC4WCVDfF\nVxFZFwS64E5N7uMoMRzEj0wW0pJFBHGKhhQeP2ENg1qAO02auPKvf8UoCKQEu4XC8OHD6dSpE0uX\nLmXXrl1kZmbSrVs3tm3bZrdir4VCQaqL4mFg3XkMzbjAYxzhEfaxAx/iaMEaWlPAWcwjKrwv/XEB\nMgB3XFxOM326NplJ2ex2PYUDBw7w4Ycf8v777wNo05rIDTKbxl9jbjKzhoEHPTlODHvoTRrv0pwo\nothLHaAn5q5jH8wg+AWoAXhdWlHkzty5T2p0IHZRbih4eHiQlZVl+/7AgQN4eHg4tCiR6sjcW7AI\nw2gE+AK1qI0rozlEDLtxAeJoyTg6kkEf4FPgHLCdwl3HNQBffHzyeeedqQoCsTuX8h4QGxtL//79\nOXr0KKNGjaJ3794Ov8jO2rVradu2La1atdIFfaTKio9PJDh4KBbLHVgsnZgxYxWG4QvUpRVu/IMd\nHOZj+pLKFO6gPb15lcZkkIUZBIOBHGAHsAaoRc2aBs8/fyenT69UIIhDXNXqo5MnT7JhwwYAbrvt\nNho2bOiwgvLz82nTpg1ffPEFzZo149Zbb+Xf//437dq1MwtWT0EqscIVRCmY1zYubBy7UIu7SCeG\ng0RwikUE8RrhpJJL8VVE6ZiXwqwH1KZmzVyeeqqf+gVyQ264p7B582bbZTgBmjZtCsCRI0c4cuQI\nHTt2tEOZJW3cuJGWLVvazlsaMWIEq1atsoWCSGVTfKdxXcyL2Jj7CgDqk8PDHOVx9nIcN+Jozd1E\nk8M5zA9/6zEUKZj9BV+tIhKnKTMU/vSnPxULhct9/fXXDino2LFjBAQE2L739/fnv//9b7HHxMbG\n2r6OiooiKirKIbWIXEls7EJeeOFt8vPrYv6vZPYJ4AJQn0hOM4k9/I4jrKYp99OVn+gEbLv0mMvD\noJ7CQOwmISGBhISEa35emaFwPT/MHq4URFZFQ0GkIhXfZeyFeQ0C64o8T2pQwH0cYRIbCOACrxJM\na/pzkn6YjePfgHDgO6wH00E9goN1JpHY1+W/MM+YMeOqnlfu6qOsrCwWLlzId999h8VioXv37kyc\nOLHEdRbspVmzZqSmptq+T01Nxd/f3yGvJXK1zGWkX2DuMrYuI3XB7BtY8COTCWziUQ6yCy/+SgRr\nqE0+OZgXrLE2jq1nEvnh5naBZ5/V3gKpXMptNA8bNow6deowevRoDMNg2bJl/PbbbyxfvtwhBeXl\n5dGmTRu+/PJL/Pz86NKlixrN4hSFo4IzQBPM84S8Lt1bE8iiOyeIIZk+HGcZwSzEj5/JwwyPuqhx\nLJWF3Tav7dq1i927d9u+7927NyEhITdW3ZUKcnMjLi6Ofv36kZ+fz/jx49VklgpTfHrIOirww1wZ\nVBOAWlzkAXYSwz7ccSGOW3iEtpzHh8IVRKmYF7DxRo1jqUrKDYWOHTvy448/cvvttwOwYcMGOnXq\n5NCiBgwYwIABAxz6GiKX69lzHImJaRROD1lHBRbAk5Yc53H2M4bDJNKOPxLEV7TEHAH8RvGdxv66\ndoFUSeVOH7Vt25Z9+/YREBCAxWLhyJEjtGnTBjc3NywWC9u3b6+oWgFNH4n9FD+VNBPzOgRFp4fA\nhQL6s4cYUulEBotozGsEcIS2QAfgPQobxjqQTiovux2Il5KScsUfYN1PUFEUCnKjSp5KmoW5gqiR\n7TE+nGUcKTzOfs7gxXwa8QFdyaEjZrM4B7NnoB6BVA12vZ7CmTNnSE1NJS8vz3abozavlUehINer\nrFNJzT0DDYAswjlDDPsZSjpr8CGO5mykA+YU0XdYg8DFJZPp0wcpCKTKsFujefr06bz99tu0aNEC\nF5fCo5IctXlNxJ4KG8eZFD+V1BOzVwA1KOB37CWG49zCL7xKAG0Yxgm6Yo4Kdl56rt+lUUEvhYFU\nW+WOFFq3bs3OnTtxd3evqJquSCMFuRqFu42tx027UTwMsmnKBX7PQX7PfvZwC3EEsppB5LMCTQ9J\ndWO3kUL79u05c+YMvr6+dilMxFGKn0Hkg9kjsDaOrWGQxR2cIIbD9COVf9OEaMLYTQQQCSQCzYET\ntG/vzs6djtmPI1JZlTtS+Omnn7j77rsJDQ21XUfBYrGwevXqCinwchopSFElD6PzwWwc18K6ggig\nFhmM4jAxHMSTXBbQkiWEco4szM1luZh9BS9cXC5w//2hLFumY9ul+rBbo7ldu3ZMnDiR0NBQW0/B\nYrHQs2dP+1R6jRQKAqWtILJOD7UCjl56VBYtyOBx9jOWw3yPD3G05kuCMTiHrm0sNxO7TR95eXkx\nZcoUuxQlcqMKw8AAPChcQWSdHnLDwgX6kU4Mp+nCPhbjz63cSQpNMDeZHUankoqUrtyRwtSpU/Hw\n8GDIkCHFLsOpJalSUYpvMrPuNHan6AoiyKYeOYwjg8fZym/kEkck73MP2azGbBybm8xcXDwICqqt\n3cZyU7Hb9FFUVFSpx1k7a0mqQuHmUbic1A2zV5CLOTpoh3kNgmzAoANnmcRhhnGQeJoSRy/+y63A\nx5h9hVq4u2czbZpOJJWbl103r1UmCoXqyzoiSEk5Q0HBb0AgkI8ZBK0wD5mzAP64sZd7OUUM22lB\nBq/RkjfpwHFyUa9ApCS79RQA1qxZw+7du8nOzrbd9pe//OX6qxO5JDZ2Ia+8soaMjFNAHcwRQT3M\n3/DbURgEbkAOTbjAo7gygTUk4808OrCKeuRxHEjDPIyung6jE7lO5YbChAkTyMrK4quvvuLRRx9l\n+fLldO3atSJqk2qq+DLSAAqPp3bHHBEkYwaEGQRQQDcOEcNP9CeV92lFP15lF2swRwUXsVh8FQQi\ndlDu9FFYWBg7duygQ4cObN++nYyMDPr37893331XUTUWo+mjqs3cafwp+fnemPsJwjFDwNonCLz0\ndxY1CWQkPxDDDmqTzwLas4SW/EY2Zn+hFnCekSO1p0CkPHabPqpZ89KFRWrV4tixYzRo0ID09PQb\nr1BuCvHxiUyfvpR9+9LIzDyJeQWzOhTuJ3DDnCrKwwyJPII4wURyGcdKfsSXZ+jKerwwOIt5zYJa\nuLvXIjS0ATNnPq6RgYgdlRsKgwcP5syZMzz55JN07NgRi8XCo48+WhG1SRUXH5/I6NFvcvasO2az\n2A9zZJBC4ZHVZhhY6ENfviaGb+nKKd6mHV14lkP8F3NUkIObmw8dOvgyc+b9CgIRB7mm1Uc5OTlk\nZ2dTt25dR9Z0RZo+qhri4xMZNmwOWVkRl26xThHlXfq6FeBHXdbxEAeZxGEyaMx86vI+XmRxEaiL\ni4sXtWvnM3XqnVpOKnIDbnj6aOPGjQQEBNC0aVMAlixZwscff0xgYCCxsbHUr1/fftVKlWadItq9\n+yA5OWA2h30x5/yt/4lZp4j6ArsJ5ScmcYL72cPn+DCWQH7ED4vFGy+vfJ5XCIg4RZkjhcjISL78\n8kvq169PYmIi999/P3FxcSQlJbFnzx4++uijiq4V0EihMilcRWT99+GGeaH6DMyRwH6g5aX7knFj\nAncTRwyHaMUeXqcpbxLMcZe62mEs4mA3vHktPDycbdu2ATBp0iQaNWpEbGxsifsqmkLBuYqPCuph\nXqjeuozIc2LlAAAWIklEQVS01aVHWUcHRwEDXy7wKNuYwBEO0JIFBLOCEPLYyciRrbVySKQCXO1n\np0tZd+Tn53Px4kUAvvjiC3r16mW7r+hlOeXmEB+fSHDwUAYN+idJSQY5OY2AEMw+gXUFkfW00jzg\nIrfRiXdJ4Gc+wZ9M7qIVUfjxsYsrNb138/zz0QoEkUqmzJ7CyJEj6dmzJw0bNqRWrVp0794dgOTk\nZOrVq1dhBYrzxcYu5KWXEsjNdaPkaMD6C4K5ksiTi4zAQgz/oi4FLGAUMXhyFi/c3Xfy/LTe6hWI\nVGJXXH30448/kp6eTt++falduzYA+/btIyMjwyGnpMbGxvKvf/2LRo0aAfDSSy/Rv3//4gVr+sih\nrNNDKSkZ5OZmcfHiGXJz6wOhFP8dwhoGfYElBHKUiRxmHIf5L/7E8XvWsReDTCyWPFq0qKWegYgT\nVckD8WbMmIG3tzdTp04t8zEKBcco3jRuB/QDlmA2jdtdelTRacO+WHibPmQRwxG6sZm3acyr+HGQ\nWkBtPD1rExLSQPsKRCoBux6IV5H0gV+xrCODnTvPc/GidXroBeA5oCmFPQKwjgrqkMtYXmASe8gi\nkziCGckAmgbXYZ5GAyJVWqULhfnz57N06VI6d+7MK6+8Umr/wroKCszrPURFRVVcgdVIbOxC5szZ\nTlZWE8zjJ4r+51C0Z2CGQQjvMolTjGAt66jPeILY7OFPSPuGfKjRgEilkpCQQEJCwjU/r8Knj6Kj\no0s9O+nFF1/ktttus/UTpk+fTlpaGosWLSr2OE0f2Ye543gBWVkfALGXbrWOCKwjBXClN3ezgBgO\n0Ya9vE4L3uAWagc3UI9ApAqpkj2FolJSUhg8eDA7duwodrtC4cbExycyb946vv9+F5mZ4ZiB8Nyl\ne80RATShEV14lJk8RjIpBBJHS1bQHov7z0zTCiKRKqdK9hTS0tJsx2qsWLGCsLAwJ1dUtVkD4Nix\nE6Snn8XF5QKnTjWmoGAs5sVrivcKYC1duJUYXmEQf+UjfPmdWzv2eAZQo0ZtwoJOM3PmFI0ORKqx\nSjVSGDNmDFu3bsVisRAUFMTrr7+Or69vscdopFC6KwfAfzBXEy0APqD4yOA/ePIc9zOTGP6FDxdY\n5N6GH9tG8r+zxioARKqJKj99VBaFgqloCBw+nEpubgC5uQ9QegBYewRumNNFsUBvmvMhEznDw6xk\nE34soBFd/jKK52fEOOU9iYjjVMnpI7myokFw8KCFrKxRmCHQiMIP/hcv/W3dW+BW5O88wOBOkolh\nK935miW04w4eZj/16NgxXYEgcpNTKFQR8fGJ/OEP/+HAAeuHftEQiL30qMsDANvf3mQyhovE0Ihc\n6hJHGx7gFy5g7lQPDv4zM2c+WDFvRkQqLYVCJWUdFeTkuHHu3FH27z/N+fOfXLrX7bK/80r5uy/w\nLO1owyQ6MZJk1uPP73meb/kVOIGLywhuCWhK27a+TJ7cX/0DEVEoVCYlp4deAxIxp4j8izzy8hAw\nA8DsJTyLK3cymHnEcIgQ5vEGrQm3dCGnoQ+G8T1hTZvi59eYyZMfUBCISDEKhUqi9OkhgHUU9gms\nioeAeT80ZCUTXNYywfgHv7rX5g33lmxqPo7G/nV5bXK0AkBEyqVQcKKiU0Q7d/7MqVMfXLqntOMm\nrEHwImB+uNesuYDGjWvQ+mw0MZZj9Mo4xJnedxIw+z0CIiPpXGHvRESqC4WCkxQfGUBhsxiKn0Zq\n/dr6W/50wJVmDXaxZkxrIr5bDy4n4fHHYdw4vBs0cHDlIlKdKRScZN68dUUCAS4/lrpwVFB8hBBA\nINPqjeDhvJ/x2H0e/vIXGDAAXF0rrngRqbYUChWo6HTR9u2pl91b2vTQ/bRs6UcNt/Pcev5uRp3d\nR8RvhznVYyAef30bWreu2DcgItWeQqGClJwueu6yR5hB0LDhCNq3b4unZz5PjB9H/+MHYMEC8HSF\nF56ABx6gjpdXhdYuIjcPhUIFKTldVHRkYAoOXsvcuY8zMLixGQQTRsGdd8Krr0KPHmCxVHTZInKT\nUSg4SNGpIg+PPNLSMi97hDky8PEZSYcObajlcZGZXbzo/M//gx074NFHYft28Pcv+cNFRBxEoeAA\nJaeKzP5AST3oE7GKD/t6wqtvwflmMGkS3HcfeHhUXMEiIpcoFByg5FQRZGVNombNxy7tUoZObGKa\n98MM2XgIAofBJ59Ap07OKFdExEah4AA5OaX9Y+1Bm8CljHS7h0Epm2hwMYPT942kxpyvoGHDCq9R\nRKQ0CoUbdHnvYMqUvnh45BV7jD+pPMZrPH7gfXx6doMXFsLAgfhqb4GIVDIKhRtQWu/gwIFnGT26\nGQf2/5mAg9HEEEcvvmZ13WC2vfwaURNGO7FiEZEr05XXylHaSMB6sFy/fs+xbt0LxR7vxXlmtbuf\nhzJ/5vSpDD7268K3zdvzyB8H6UA6EXEaXXnNDsoaCQAMHNijWO+gNXuZxAJG8y47TjTB+8PFeEdF\nMdViYWqFVy4icn1cnF1AZVbaKqIDB15k/vz1ANR0z2Uwq/kPfUmkB+eoQzjbeKnTUOjVS5vNRKTK\nuWlGCleaBipL6auIwP18DsyZw8fb3mKvxxJeyXmZ5QwjFw+Cg//M5Mn9HfEWREQc7qYIhfKmgcpy\n+SqijmxmEgsYtvHf0Op+aq1ZzS/Hszg5fz23Z7+Ep2e+LmspIlXaTdFoLq0hbN4+nbVr/6/M58XH\nJ/LklHgiD3Yghjj8+IUP67cgYv4fiR415JprFxFxlqv97HRKT2H58uW0b98eV1dXtmzZUuy+l156\niVatWtG2bVvWrVtnl9craxooO/sK+wSOHmXghvVsOf0v/tRgOmva38LEvqMJWTpDgSAi1ZZTpo/C\nwsJYsWIFEyZMKHb77t27+eCDD9i9ezfHjh2jT58+7Nu3DxeXG8uuy6eBrDw984vfYBiQmAhxcfDl\nl/DAA3j+8B0d27Wj4w1VICJSNThlpNC2bVtal3KBmFWrVjFy5Ehq1KhBYGAgLVu2ZOPGjTf8elOm\n9CU4+Nlit5kN4Wjzm4wMeO01CAuDxx6DqChISYH586Fduxt+fRGRqqJSNZp/+eUXbrvtNtv3/v7+\nHDt2rMTjYmNjbV9HRUURFRV1xZ9rbfzOnz+d7GzXwoZwqybwxBPwzjvQsyfMnQu9e2spqYhUeQkJ\nCSQkJFzz8xwWCtHR0aSnp5e4fdasWQwePPiqf46llA/ooqFwtQYO7GGGQ34+fP45zJ8FW7bAI49A\nUhI0b37NP1NEpLK6/BfmGTNmXNXzHBYK69evv+bnNGvWjNTUwmsXHz16lGbNmtmzLPj+e5g5E2Ji\nYOVK8PS0788XEanCnL6juegSqSFDhvD++++Tm5vLoUOHSE5OpkuXLvZ9we7dYeNGGDNGgSAichmn\nhMKKFSsICAhgw4YNDBw4kAEDBgAQEhLC8OHDCQkJYcCAASxcuLDU6aMbon6BiEiZborNayIiN7tK\nvXlNREQqJ4WCiIjYKBRERMRGoSAiIjYKBRERsVEoiIiIjUJBRERsFAoiImKjUBARERuFgoiI2CgU\nRETERqEgIiI2CgUREbFRKIiIiI1CQUREbBQKIiJio1AQEREbhYKIiNgoFERExEahICIiNgoFERGx\nUSiIiIiNQqGSSUhIcHYJDqX3V7VV5/dXnd/btXBKKCxfvpz27dvj6urKli1bbLenpKRQs2ZNIiMj\niYyM5PHHH3dGeU5V3f/D1Pur2qrz+6vO7+1auDnjRcPCwlixYgUTJkwocV/Lli1JSkpyQlUiIuKU\nUGjbtq0zXlZERMpjOFFUVJSxefNm2/eHDh0yateubURERBg9e/Y0vv322xLPAfRHf/RHf/TnOv5c\nDYeNFKKjo0lPTy9x+6xZsxg8eHCpz/Hz8yM1NRUfHx+2bNnCPffcw65du/D29rY9xswFERFxBIeF\nwvr166/5Oe7u7ri7uwPQsWNHgoODSU5OpmPHjvYuT0RESuH0JalFf/M/efIk+fn5ABw8eJDk5GRa\ntGjhrNJERG46TgmFFStWEBAQwIYNGxg4cCADBgwA4JtvviE8PJzIyEiGDRvG66+/Tr169ZxRoojI\nzclOPeMK99xzzxkdOnQwwsPDjd69extHjhxxdkl287//+79G27ZtjQ4dOhj33nuvcfbsWWeXZFcf\nfvihERISYri4uBRbaFDVff7550abNm2Mli1bGrNnz3Z2OXY1btw4o3HjxkZoaKizS3GII0eOGFFR\nUUZISIjRvn17Y+7cuc4uyW6ysrKMLl26GOHh4Ua7du2MZ5555oqPr7KhcO7cOdvX8+bNM8aPH+/E\nauxr3bp1Rn5+vmEYhvH0008bTz/9tJMrsq+ff/7Z2Lt3b4nVZ1VZXl6eERwcbBw6dMjIzc01wsPD\njd27dzu7LLtJTEw0tmzZUm1DIS0tzUhKSjIMwzDOnz9vtG7dulr9+8vMzDQMwzAuXrxodO3atdSV\nnVZO7ylcr6IrkjIyMmjYsKETq7Gv6OhoXFzMfzVdu3bl6NGjTq7Ivtq2bUvr1q2dXYZdbdy4kZYt\nWxIYGEiNGjUYMWIEq1atcnZZdtO9e3d8fHycXYbDNGnShIiICAC8vLxo164dv/zyi5Orsp9atWoB\nkJubS35+PvXr1y/zsVU2FACeffZZmjdvzpIlS3jmmWecXY5DLF68mLvuusvZZUg5jh07RkBAgO17\nf39/jh075sSK5HqlpKSQlJRE165dnV2K3RQUFBAREYGvry+9evUiJCSkzMdW6lCIjo4mLCysxJ9P\nP/0UgBdffJEjR47w0EMP8cc//tHJ1V6b8t4bmO/P3d2dUaNGObHS63M17686sVgszi5B7CAjI4P7\n7ruPuXPn4uXl5exy7MbFxYWtW7dy9OhREhMTr3jOk1OOubhaV7vXYdSoUVXut+ny3tvbb7/NZ599\nxpdffllBFdnX9exTqcqaNWtGamqq7fvU1FT8/f2dWJFcq4sXLzJ06FBGjx7NPffc4+xyHKJu3boM\nHDiQTZs2ERUVVepjKvVI4UqSk5NtX69atYrIyEgnVmNfa9eu5a9//SurVq3C09PT2eU4lFFNdqh3\n7tyZ5ORkUlJSyM3N5YMPPmDIkCHOLkuukmEYjB8/npCQEJ544glnl2NXJ0+e5OzZswBkZWWxfv36\nK39eVkzv2/6GDh1qhIaGGuHh4cbvfvc749dff3V2SXbTsmVLo3nz5kZERIQRERFhTJw40dkl2dUn\nn3xi+Pv7G56enoavr6/Rv39/Z5dkF5999pnRunVrIzg42Jg1a5azy7GrESNGGE2bNjXc3d0Nf39/\nY/Hixc4uya6+/fZbw2KxGOHh4bb/7z7//HNnl2UX27dvNyIjI43w8HAjLCzMmDNnzhUfbzGMavKr\nmoiI3LAqO30kIiL2p1AQEREbhYKIiNgoFERExEahIE5z6tQpIiMjiYyMpGnTpvj7+xMZGYmPjw/t\n27ev0FpWrVrFzz//bPv++eefv649IikpKYSFhZV6365du+jdu7ftmI8XXnjhuuu9ktLey1dffQVA\nVFQUmzdvdsjrSvWgUBCnadCgAUlJSSQlJfHYY48xdepUkpKS2Lp1q+3sJ3uyXqujNCtWrGD37t22\n72fMmMGdd95pt9fOysri7rvv5s9//jN79uxh27Zt/PDDDyxcuNBur2FV2nvp3bs3YO681u5ruRKF\nglQa1tXRhmGQn5/P73//e0JDQ+nXrx/Z2dkAHDhwgAEDBtC5c2d69OjB3r17AfM39N69exMeHk6f\nPn1su4sfeughHnvsMW677TaefvrpUp//ww8/8Omnn/Lkk0/SsWNHDh48yEMPPcTHH38MwE8//cQd\nd9xBREQEXbt2JSMjg5SUFHr06EGnTp3o1KkTP/744xXf27Jly/if//kf+vTpA0DNmjWJi4vj5Zdf\nBiA2NpZXXnnF9vjQ0FCOHDkCwL333kvnzp0JDQ3lzTfftD3Gy8uL5557joiICG6//XaOHz9e7nsp\nat26dXTr1o1OnToxfPhwMjMzAXjmmWdo37494eHhPPnkk9f4b1GqvArYOyFSrtjYWONvf/ubYRiG\ncejQIcPNzc3Ytm2bYRiGMXz4cOPdd981DMMwevfubSQnJxuGYRgbNmwwevfubRiGYQwaNMhYunSp\nYRiGsXjxYuOee+4xDMMwxo4dawwePNgoKCi44vMfeugh4+OPP7bVY/0+JyfHaNGihbFp0ybDMMxj\nlfPy8owLFy4Y2dnZhmEYxr59+4zOnTvbai/teOmpU6ca8+bNK3G7j4+Pcf78+WLv3zAMIzQ01Dh8\n+LBhGIZx+vRpwzAM48KFC0ZoaKjte4vFYqxZs8YwDMN46qmnjBdeeOGK78UwDNtx5SdOnDB69Ohh\nXLhwwTAMw5g9e7Yxc+ZM49SpU0abNm1sz/3tt99K1CzVW6U++0huXkFBQXTo0AGATp06kZKSQmZm\nJj/88APDhg2zPS43NxeADRs2sHLlSgBGjx7NU089BZjTJcOGDcNisZCRkcGPP/5Y6vOh5JEbhmGw\nd+9emjZtSqdOnQBsh6Tl5uYSExPDtm3bcHV1Zd++feW+p8t/vtXFixev+Ly5c+fa3ltqairJycl0\n6dIFd3d3Bg4cCJj/jIqeN1XWa1nv27BhA7t376Zbt26299OtWzfq1q2Lp6cn48ePZ9CgQQwaNKjc\n9yXVi0JBKiUPDw/b166urmRnZ1NQUICPjw9JSUmlPqesD0LrWfIFBQXUq1evzOeXNtde1vz7P/7x\nD5o2bco777xDfn5+uWdUhYSEkJiYWOy2gwcPUqtWLXx8fHBzc6OgoMB2n3W6LCEhgS+//JINGzbg\n6elJr169bPfVqFHD9ngXFxfy8vLKrbuo6Oholi1bVuL2jRs38uWXX/LRRx8RFxdXZQ9llOujnoJU\nCYZh4O3tTVBQEB999JHttu3btwPQrVs33n//fQDee+89evToUeJn1KlTp8zne3t7c+7cuWKPt1gs\ntGnThrS0NDZt2gTA+fPnyc/P59y5czRp0gSApUuXXrGJDfDAAw/w3Xff2T5gs7Ky+MMf/sCf/vQn\nAAIDA9myZQsAW7Zs4dChQwCcO3cOHx8fPD092bNnDxs2bCj3n1Vp7+Xy93Xbbbfx/fffc+DAAQAy\nMzNJTk4mMzOTs2fPMmDAAP7+97+zbdu2cl9PqheFglQaRX+7vfw3Xev37733HosWLSIiIoLQ0FBW\nr14NwPz583nrrbcIDw/nvffeY+7cuaX+rLKeP2LECP7617/SqVMnDh48aHt8jRo1+OCDD5g8eTIR\nERH069ePnJwcHn/8cZYsWUJERAR79+4tdvZ+ab+le3p6snr1al588UXatGlDo0aNaNWqle06IEOH\nDuX06dOEhoayYMEC2rRpA0D//v3Jy8sjJCSEadOmcfvtt5f5z8v6fVnvpaiGDRvy9ttvM3LkSMLD\nw+nWrRt79+7l/PnzDB48mPDwcLp3784//vGPUp8v1ZcOxBNxglWrVjFz5kzi4+NtIw6RykChICIi\nNpo+EhERG4WCiIjYKBRERMRGoSAiIjYKBRERsVEoiIiIzf8DVUkqIR82FksAAAAASUVORK5CYII=\n"
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## GLM: Gamma for proportional count response\n",
"\n",
"### Load data\n",
"\n",
" In the example above, we printed the ``NOTE`` attribute to learn about the\n",
" Star98 dataset. Statsmodels datasets ships with other useful information. For\n",
" example: "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print sm.datasets.scotland.DESCRLONG"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"This data is based on the example in Gill and describes the proportion of\n",
"voters who voted Yes to grant the Scottish Parliament taxation powers.\n",
"The data are divided into 32 council districts. This example's explanatory\n",
"variables include the amount of council tax collected in pounds sterling as\n",
"of April 1997 per two adults before adjustments, the female percentage of\n",
"total claims for unemployment benefits as of January, 1998, the standardized\n",
"mortality rate (UK is 100), the percentage of labor force participation,\n",
"regional GDP, the percentage of children aged 5 to 15, and an interaction term\n",
"between female unemployment and the council tax.\n",
"\n",
"The original source files and variable information are included in\n",
"/scotland/src/\n",
"\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" Load the data and add a constant to the exogenous variables:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data2 = sm.datasets.scotland.load()\n",
"data2.exog = sm.add_constant(data2.exog)\n",
"print data2.exog[:5,:]\n",
"print data2.endog[:5]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[[ 712. 21. 105. 82.4 13566. 12.3 14952. 1. ]\n",
" [ 643. 26.5 97. 80.2 13566. 15.3 17039.5 1. ]\n",
" [ 679. 28.3 113. 86.3 9611. 13.9 19215.7 1. ]\n",
" [ 801. 27.1 109. 80.4 9483. 13.6 21707.1 1. ]\n",
" [ 753. 22. 115. 64.7 9265. 14.6 16566. 1. ]]\n",
"[ 60.3 52.3 53.4 57. 68.7]\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fit and summary"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"glm_gamma = sm.GLM(data2.endog, data2.exog, family=sm.families.Gamma())\n",
"glm_results = glm_gamma.fit()\n",
"print glm_results.summary()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y No. Observations: 32\n",
"Model: GLM Df Residuals: 24\n",
"Model Family: Gamma Df Model: 7\n",
"Link Function: inverse_power Scale: 0.00358428317349\n",
"Method: IRLS Log-Likelihood: -83.017\n",
"Date: Sun, 26 Aug 2012 Deviance: 0.087389\n",
"Time: 20:50:10 Pearson chi2: 0.0860\n",
"No. Iterations: 5 \n",
"==============================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------\n",
"x1 4.962e-05 1.62e-05 3.060 0.005 1.78e-05 8.14e-05\n",
"x2 0.0020 0.001 3.824 0.001 0.001 0.003\n",
"x3 -7.181e-05 2.71e-05 -2.648 0.014 -0.000 -1.87e-05\n",
"x4 0.0001 4.06e-05 2.757 0.011 3.23e-05 0.000\n",
"x5 -1.468e-07 1.24e-07 -1.187 0.247 -3.89e-07 9.56e-08\n",
"x6 -0.0005 0.000 -2.159 0.041 -0.001 -4.78e-05\n",
"x7 -2.427e-06 7.46e-07 -3.253 0.003 -3.89e-06 -9.65e-07\n",
"const -0.0178 0.011 -1.548 0.135 -0.040 0.005\n",
"==============================================================================\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## GLM: Gaussian distribution with a noncanonical link\n",
"\n",
"### Artificial data"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"nobs2 = 100\n",
"x = np.arange(nobs2)\n",
"np.random.seed(54321)\n",
"X = np.column_stack((x,x**2))\n",
"X = sm.add_constant(X)\n",
"lny = np.exp(-(.03*x + .0001*x**2 - 1.0)) + .001 * np.random.rand(nobs2)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fit and summary"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"gauss_log = sm.GLM(lny, X, family=sm.families.Gaussian(sm.families.links.log))\n",
"gauss_log_results = gauss_log.fit()\n",
"print gauss_log_results.summary()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y No. Observations: 100\n",
"Model: GLM Df Residuals: 97\n",
"Model Family: Gaussian Df Model: 2\n",
"Link Function: log Scale: 1.05311425588e-07\n",
"Method: IRLS Log-Likelihood: 662.92\n",
"Date: Sun, 26 Aug 2012 Deviance: 1.0215e-05\n",
"Time: 20:50:12 Pearson chi2: 1.02e-05\n",
"No. Iterations: 6 \n",
"==============================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------\n",
"x1 -0.0300 5.6e-06 -5361.316 0.000 -0.030 -0.030\n",
"x2 -9.939e-05 1.05e-07 -951.091 0.000 -9.96e-05 -9.92e-05\n",
"const 1.0003 5.39e-05 1.86e+04 0.000 1.000 1.000\n",
"==============================================================================\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment