Created
August 26, 2012 23:22
-
-
Save vincentarelbundock/3484305 to your computer and use it in GitHub Desktop.
Statsmodels example: Interactions and ANOVA
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "example_interactions" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Interactions and ANOVA\n", | |
"\n", | |
"Note: This script is based heavily on Jonathan Taylor's class notes http://www.stanford.edu/class/stats191/interactions.html\n", | |
"\n", | |
"Download and format data:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from urllib2 import urlopen\n", | |
"import numpy as np\n", | |
"np.set_printoptions(precision=4, suppress=True)\n", | |
"import statsmodels.api as sm\n", | |
"import pandas\n", | |
"import matplotlib.pyplot as plt\n", | |
"from statsmodels.formula.api import ols\n", | |
"from statsmodels.graphics.api import interaction_plot, abline_plot\n", | |
"from statsmodels.stats.anova import anova_lm\n", | |
"\n", | |
"try:\n", | |
" salary_table = pandas.read_csv('salary.table')\n", | |
"except: # recent pandas should be able to read URL\n", | |
" url = 'http://stats191.stanford.edu/data/salary.table'\n", | |
" fh = urlopen(url)\n", | |
" salary_table = pandas.read_table(fh)\n", | |
" salary_table.to_csv('salary.table')\n", | |
"\n", | |
"E = salary_table.E\n", | |
"M = salary_table.M\n", | |
"X = salary_table.X\n", | |
"S = salary_table.S" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Take a look at the data:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.figure(figsize=(6,6))\n", | |
"symbols = ['D', '^']\n", | |
"colors = ['r', 'g', 'blue']\n", | |
"factor_groups = salary_table.groupby(['E','M'])\n", | |
"for values, group in factor_groups:\n", | |
" i,j = values\n", | |
" plt.scatter(group['X'], group['S'], marker=symbols[j], color=colors[i-1],\n", | |
" s=144)\n", | |
"plt.xlabel('Experience');\n", | |
"plt.ylabel('Salary');" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAF8CAYAAADo0k1PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8U3Wi/vFPaAu07KAUbNEiFLFQKQqlroOyiIwCioKM\nsnNHcVxQB3EZEXUQvDPODHhlRseqiEtB5idwFZBlqChiUS6IikuVtbV0ZJUudMv5/XE4IV3SJulJ\n0uV5v155CafJyTcx5Olzzvme4zAMw0BERKSWmoR6ACIi0jAoUERExBYKFBERsYUCRUREbKFAERER\nWyhQRETEFgELlFOnTjFgwACSkpJISEjgkUceAeDo0aMMGTKEHj16MHToUI4fP+56zLx584iPj6dn\nz56sW7fOtXz79u0kJiYSHx/Pfffd51peVFTE2LFjiY+PJyUlhf379wfq5YiISA0CFijNmzdn06ZN\n7Ny5k127drFp0yY+/vhj5s+fz5AhQ/j+++8ZNGgQ8+fPB2D37t0sXbqU3bt3s3btWu666y6sKTLT\np08nNTWVzMxMMjMzWbt2LQCpqal06NCBzMxM7r//fmbNmhWolyMiIjUI6CavqKgoAIqLiykrK6Nd\nu3asWrWKiRMnAjBx4kRWrFgBwMqVKxk3bhwRERHExcXRvXt3MjIyyMnJ4eTJkyQnJwMwYcIE12Pc\n1zV69Gg2btwYyJcjIiLVCA/kyp1OJxdffDE//vgj06dPp1evXuTm5hIdHQ1AdHQ0ubm5APz000+k\npKS4HhsbG0t2djYRERHExsa6lsfExJCdnQ1AdnY2Xbp0MV9IeDht2rTh6NGjtG/f3nV/h8MRyJco\nItIg+XMSlYA2lCZNmrBz506ysrLYvHkzmzZtKvdzh8MRlC98wzB0MwyeeOKJkI+hrtz0Xuh90Hvh\n+eavoBzl1aZNG37961+zfft2oqOjOXToEAA5OTl07NgRMJvHwYMHXY/JysoiNjaWmJgYsrKyKi23\nHnPgwAEASktLOXHiRLl2IiIiwROwQDl8+LDrCK7CwkLWr19P3759GTFiBIsXLwZg8eLFjBo1CoAR\nI0aQlpZGcXExe/fuJTMzk+TkZDp16kTr1q3JyMjAMAyWLFnCyJEjXY+x1rV8+XIGDRoUqJcjIiI1\nCNg+lJycHCZOnIjT6cTpdDJ+/HgGDRpE3759GTNmDKmpqcTFxbFs2TIAEhISGDNmDAkJCYSHh7No\n0SLX5rBFixYxadIkCgsLGT58OMOGDQNg6tSpjB8/nvj4eDp06EBaWlqgXk6DMHDgwFAPoc7Qe2HS\n+3CG3ovacxi12WBWDzgcjlptExQRaWz8/d7UTHkREbGFAkVERGyhQBEREVsoUERExBYKFBERsYUC\nRUREbKFAERERWyhQRETEFgoUERGxhQJFRERsoUARERFbKFBERMQWChQREbGFAkVERGyhQBEREVso\nUERExBYKFBERsYUCRUR8tnHPRvYe2xvqYUgdo0AREZ/kFecxaukofvveb0M9FKljFCgi4pOFGQsp\nc5ax5cAWduTsCPVwpA5xGP5cib4ecTgcNPCXKBI0ecV5nPPcOZwsPokDB4POH8T68etDPSyxmb/f\nm2ooIuK1hRkLKTPKADAw1FKkHDUUEfGKezuxqKU0TGooIhJQ7u3EopYi7tRQRKRGVbUTi1pKw6OG\nIiIBU1U7sailiEUNRUSqVV07sailNCxqKCISENW1E4taioAaiohUw5t2YlFLaTjUUETEdn//7O8U\nlBQQ5gir8dbE0YQNezbwZe6XoR62hEh4qAcgInXXVeddxR+v+aPX93fg4OwWZwdwRFKXaZOXiIiU\no01eIiISUgoUERGxhQJFRERsoUARERFbKFBERMQWChSROmhX7i5KykpCPQwRnyhQROqYQ3mH6P/P\n/vzj83+EeigiPlGgiNQxczfPxWk4eSL9CU6Vngr1cES8pkARqUMO5R0idUcqpc5SisuK+ef2f4Z6\nSCJeU6CI1CFWOwHIL8lXS5F6RYEiUkdY7aSorMi1TC1F6hMFikgd4d5OLGopUp8oUETqgKraiUUt\nReoLBYpIHVBVO7GopUh9oUARCbHq2oklUC2loABmzIASzaEUGyhQREKsunZiCVRLeeEFWLAAFi+2\ndbXSSOkCWyIhdCjvEOcvOJ/C0sIa79siogXzBs3jngH32PLcBQVwzjlw4gR07AhZWRARYcuqpZ7T\nBbZEAiwQv5jM3TyX4rJir+5rd0t54YUzm7oKCtRSpPbUUES8NHrZaAbEDOChyx+ybZ1/+uRPbN63\n2ev7t2jagpdueInWzVrX6nnd24lFLUUs/n5vKlBEvLArdxfJ/0wmIiyC7Aeya/2FHmp/+hPMmWMG\ni6VlS/jrX2HatJANS+oIbfISCaBZG2ZR4izBaTj526d/C/VwaqWgAObOLR8mAHl58NhjOuJL/KdA\nEanBrtxdfLjvQ5yGk4KSAv70yZ/4peiXUA/Lb+77TirSvhSpDQWKSA1mbZhVbo5IfW4pntqJRS1F\nakOBIlIN93Ziqc8tpbp2YlFLEX8pUESqUbGdWOpjS6mpnVjUUsRfChQRD6pqJ5b62FK8aScWtRTx\nR8AC5eDBg1x99dX06tWL3r17s3DhQgDmzJlDbGwsffv2pW/fvqxZs8b1mHnz5hEfH0/Pnj1Zt26d\na/n27dtJTEwkPj6e++67z7W8qKiIsWPHEh8fT0pKCvv37w/Uy5FGyFM7sdS3lvLss2AY0KZNzbfS\nUrPNiPgiYPNQDh06xKFDh0hKSiIvL49LLrmEFStWsGzZMlq1asUDDzxQ7v67d+/mN7/5DZ999hnZ\n2dkMHjyYzMxMHA4HycnJ/M///A/JyckMHz6ce++9l2HDhrFo0SK++uorFi1axNKlS3n33XdJS0sr\n/wI1D0X8sCt3Fykvp9R4SpSWTVvWm3kpW7fC8ePe3/+ss6B//8CNR+ouf783wwMwFgA6depEp06d\nAGjZsiUXXngh2dnZQNWnsFi5ciXjxo0jIiKCuLg4unfvTkZGBueddx4nT54kOTkZgAkTJrBixQqG\nDRvGqlWrePLJJwEYPXo0d999d6BejjQyNbUTi9VSZv9qdhBGVTuXXhrqEUhDF7BAcbdv3z527NhB\nSkoKW7Zs4fnnn+f111+nX79+PPfcc7Rt25affvqJlJQU12NiY2PJzs4mIiKC2NhY1/KYmBhXMGVn\nZ9OlSxfzhYSH06ZNG44ePUr79u3LPf+cOXNcfx44cCADBw4M3IuVem9X7i7S96XXeAZgOL0vZcuf\nmJEyo160FJGqpKenk56eXuv1BDxQ8vLyuPnmm1mwYAEtW7Zk+vTpzJ5t/jb3+OOP8+CDD5KamhrQ\nMbgHikhNPvjhA0qdpYQ38e6fR1FZERlZGQzpNiTAIxMJjIq/aFtbfnwV0EApKSlh9OjR3H777Ywa\nNQqAjh07un4+bdo0brjhBsBsHgcPHnT9LCsri9jYWGJiYsjKyqq03HrMgQMHOOeccygtLeXEiROV\n2omIr2ZePpOZl88M9TBE6p2AHeVlGAZTp04lISGBGTNmuJbn5OS4/vzuu++SmJgIwIgRI0hLS6O4\nuJi9e/eSmZlJcnIynTp1onXr1mRkZGAYBkuWLGHkyJGuxyw+fWzj8uXLGTRoUKBejoiI1CBgDWXL\nli288cYbXHTRRfTt2xeAZ555hrfffpudO3ficDjo2rUrL774IgAJCQmMGTOGhIQEwsPDWbRoEQ6H\nA4BFixYxadIkCgsLGT58OMOGDQNg6tSpjB8/nvj4eDp06FDpCC8REQkenb5eJIAKCuD//g+uuCLU\nIxHxnk5fL1IH/fnPcPXV8NNPoR6JSOApUEQC5JdfzAtZATz1VGjHIhIMChSRAPnb36CszDyNyeLF\nainS8GkfikgA/PILxMSYZ+4FaNoUJk+Gf/wjtOMS8Yb2oYj44Gjh0YCu32onluJitRRp+BQo0ujs\n/nk3Hf/UkS9zvwzI+q19J4UVzivpdGpfijRsChRpdB7Z8AhOw8msDbMCsv6K7cSiliINnQJFGpXd\nP+9m3Z51GBik70u3vaV4aicWtRRpyBQo0qg8suERSsrMyxYWlRXZ3lI8tROLWoo0ZAoUaTSsdlJm\nmN/4TsNpa0upqZ1Y1FKkoVKgSKPh3k4sdraUmtqJRS1FGioFijQKFduJxa6WkpdnXrO9pnZiKS6G\np5+u1VOK1DlBuWKjSKhVaifOMGhihovVUlbfttrv9TudMGUKnDrl/WNOX9VapMHQTHlp8Hb/vJtL\nXrqEU6Wnv+2Pnwv/2AF39IN2ewGIDI8kY1oGidGJIRypSN2gmfIiHlRqJ5uehKI28O8ze8YDccSX\nSGOjQJEGrdK+k+PnwtdjwQiDb0bDsa6A/Ud8iTRGChSpVl5xHsVlxaEeht8e2fBI+fFvehKcpz/2\nzvByLeVU6Sm1FJFa0E55qdbwN4cT1zaO1298PdRD8cup0lOc3+58AEqOnsOBr2/FcDYzf+iMwPHt\nzZzrfIWIsw667i8i/tFOefFo68GtDF4yGKfh5JvffUNc27hQD6lWJk2Ct96CErfdKeHhMGYMvPlm\nyIYlUudop7zYbub6mRSWFFLqLGX2ptmhHk6t7N8PS5eWDxMwL371//4f7NkTmnGJNCQKFKnS1oNb\n2XFoBwYGpc5S3tn9DvuO7wv1sPz2xBOeZ7GXlsLjjwd3PCINkQJFqmS1E0t9bime2olFLUXEHgoU\nqcS9nVjqc0uprp1Y1FJEak+BIpVUbCeW+thSamonFrUUkdpToEg5VbUTS31sKU88YYaFN0pK1FJE\nakOBIuV4aieW+tZS/u//oHlzaNmy5ltkpHl/EfGP5qGIizXvpKCkoNr7NQ9vHpB5KdOmwT33QJ8+\ntq5WRHykeShSazW1E0sgWkp6OrzyCsyYYetqRSSIFCgCmO1kW/a2KvedVFTqLOXtr962dV/KzJlg\nGJCRAZ9/bttqRSSIdC4vAWD/if2c1/Y8r+/fxNGEfcf32bLZKz0dvvnG/POpU2a4bNpU69WKSJBp\nH4qEXP/+5VtJZCRs3gz9+oVuTCKNmfahSL3k3k4sVksRkfpFDUVCqmI7sailiISOGorUO1W1E4ta\nikj9o4YiIeOpnVjUUkRCQw1F6pXq2olFLUWkflFDkZCoqZ1Y1FJEgk8NpR4yDIPr37qe9T+uD/VQ\nPFq61GwTdvKmnVjUUkTqDzWUENq4ZyPXvnEt3dt355vffYPD4Qj1kMrJy4POnaFdO9i7F8LC7Fnv\njTfC+++b7aMmTqc5jv374dxz7Xl+Eamev9+bmikfIoZh8Pt1v6fMKCP7l2zez3yf63tcH+phlfP8\n8+YX+rFj8M47cOut9qz35ZchJ8f7+0dEQJcu9jy3iASOGkqIbNyzkZFpI8kvyQfggg4X1KmWkpcH\n55wDJ0+af+/Sxd6WIiJ1l/ah1CNWO7HCBHC1lLri+efLXzbXaikiIp6ooYRAxXZiqSstpWI7sail\niDQOaighZhgGWb9keXW/iu3EUldaSsV2YlFLEZHqKFBssuLbFXRb2I2ck9Xvbf733n+TeTSzyp/l\nleTx+3W/D2mjysuDefOgoIqLNublwUMPVR02IiIKFBs4DScz18+kzFnG05uf9ni/6tqJJdQtxVM7\nsailiIgnChQbrPx2Jbn5uZQZZby28zWPLaW6dmIJZUuprp2430ctRUSqokCpJaud5BXnAVBmVN1S\nvGknllC1lJraiUUtRUSqokCpJaudWIrLiqtsKd60E0soWoo37cT9vmopIlKRAqUWKrYTS1Ut5bWd\nr1FYWkjTsKZe3b478h3fHfkuaK9l8WIzTFq39u6WlQWrVwdteCJSD2geSi28+827TFgxoVKgAESG\nR/LjvT/SuVVnAErKSigo8eLX/9OaOJrQqlkr28Zak+xs+Owz3x7zq1+Z5/kSkYbF3+9NBYqfnIaT\nHs/34MdjP1b586ZhTZnadyqLfr3I9uc2DCgtNc9xJSJiN01sDLKK+04q8rQvxQ5/+QtcfrkZLCIi\ndYUCxQ+e9p1U5OmIr9rIz4ennoJdu2DjRltXLSJSKwoUP9TUTiyBaCn/8z/m5q6iIvj979VSRKTu\nUKD4yNt2YikpK7GtpeTnwzPPnDm094cf1FJEpO7QBbZ8VFRaxLltzqV1s9ZeP8aBPWcPttqJJT/f\nbCk7dkAduYyKiDRiOsqrnsjPN08p/8sv5Ze3aAErVsDgwaEZl4g0PHXuKK+DBw9y9dVX06tXL3r3\n7s3ChQsBOHr0KEOGDKFHjx4MHTqU48ePux4zb9484uPj6dmzJ+vWrXMt3759O4mJicTHx3Pfffe5\nlhcVFTF27Fji4+NJSUlh//79gXo5ATN2LKSn13y/iu3EYrWUBpCZIlLfGQGSk5Nj7NixwzAMwzh5\n8qTRo0cPY/fu3cbMmTONZ5991jAMw5g/f74xa9YswzAM4+uvvzb69OljFBcXG3v37jW6detmOJ1O\nwzAMo3///kZGRoZhGIZx3XXXGWvWrDEMwzBeeOEFY/r06YZhGEZaWpoxduzYSuMI4EustfR0wwgL\nM4zevQ3j9EutUl6eYbRubRhmbFS+tWhhGOvXB2/cItKw+fu9GbCG0qlTJ5KSkgBo2bIlF154IdnZ\n2axatYqJEycCMHHiRFasWAHAypUrGTduHBEREcTFxdG9e3cyMjLIycnh5MmTJCcnAzBhwgTXY9zX\nNXr0aDbWsz3UM2ea58PauxfcClklntqJRS1FROqCoOyU37dvHzt27GDAgAHk5uYSHR0NQHR0NLm5\n5uG3P/30EykpKa7HxMbGkp2dTUREBLGxsa7lMTExZGdnA5CdnU2XLl3MFxIeTps2bTh69Cjt27cv\n9/xz5sxx/XngwIEMHDgwEC/TJx9+CLt3m3+2AmHo0Mo71yse2eWJdcSX9qWI+MkwYOdO6Ns31CMJ\nuvT0dNK92fZeg4AHSl5eHqNHj2bBggW0alX+3FQOhyMo1093D5S6YuZMMywsVku59try96upnVh0\nxJdILRgGTJsGr7wC8+fDrFmhHlFQVfxF+8knn/RrPQGdh1JSUsLo0aMZP348o0aNAsxWcujQIQBy\ncnLo2LEjYDaPgwcPuh6blZVFbGwsMTExZGVlVVpuPebAgQMAlJaWcuLEiUrtpC5ybyeWqjZb5efD\n3LnenVIe4LvvNC9F6q7DBYdZ+8PaUA+jMitM0tLMvz/1FDz7bGjHVE8FLFAMw2Dq1KkkJCQwY8YM\n1/IRI0awePFiABYvXuwKmhEjRpCWlkZxcTF79+4lMzOT5ORkOnXqROvWrcnIyMAwDJYsWcLIkSMr\nrWv58uUMGjQoUC/HVhXbiaXivpRvvzVPANmmjXe3Zs1g69bgvQ4Rb/2c/zMDXh7AiLdH8HzG86Ee\nzhnuYWL95lZQoFDxl62HBrj56KOPDIfDYfTp08dISkoykpKSjDVr1hhHjhwxBg0aZMTHxxtDhgwx\njh075nrM3LlzjW7duhkXXHCBsXbtWtfyzz//3Ojdu7fRrVs345577nEtP3XqlHHLLbcY3bt3NwYM\nGGDs3bu30jgC+BL9kp5uHpXl6Yitmo74Eqlv/pP3H+P8BecbEU9FGMzBiJobZSz8dGGoh2X+Q5sy\nxTCioqr+xxgVZRjz54d6lCHh7/emJjYGWXJy9dcdadEC/vWvyvtSROqjn/N/JiU1hYMnDlLiLHEt\nj4qIYv6g+dwz4J7QDKyqZlKVqCiYPbvR7VOpcxMbpbKq9p1UpEOApaHwFCYABSUFPLzx4dBs/vI2\nTECbv3ykQAkiT/tOKqppXopIqK39YS3fHfZ8ierqwsQSklDxJUwsChWvKVCCxJt2YlFLkbpsyRdL\nuHHpjaSkprD758ofam/CxBLUUPEnTCwKFa9oH0qQ3H47LF3q/WV7Cwvhm2+gZ8/AjkvEF0u+WMId\n791BYWkhDhy0ad6GLVO2kHB2AuBbmLgLyj6Vv/8d7r/fvJiQv8LDYfVqGDLEvnHVQbqmvAd1JVAK\nC8HtPJg1CguD01N0ROoE9zCxuIfK2VFn+xUmloCHSk4ODBhg/teb2cIVNW8OCQnm5oaWLe0fXx2i\nQPHAnzfm1ClztnmzZgEalEg9U1WYWKxQufLcK1nzwxpKnX58WbvZc+8eurbrWqt1eORvqDSiMAEd\n5WWr0aPNTVQiUn2YABgYnDh1gg/3f0jb5m0Jc4T59TxREVH84co/BC5MADp3howM87/hXp55qpGF\nSW2ooVTw5ZfmLzCGAV98AT16BHBwInVcTWHizoGDVs1a0TSsKccKj1FmlHn9PFERUTyQ8gBPX2PP\n5bJr5G1TaaRhooZik1mzzH12JSXw2GOhHo1I6PgSJmA2lZNFJykuK6ZdZDuvm0rQwwS8ayqNNExq\nQw3FjdVOCk//+2neXC1FGidfw8SdL00lJGHizlNTaeRhooZiA6udWNRSpDEqKClgyqopfoUJmE0l\nrziPuDZxnN3ibI9NJeRhAlU3lUYeJrWhQDntyy/Na7s7nWeWlZXBe+/B99+HbFgiQRcVEcWbN71J\nZHikX4934KBd83a8NfotMqZlVBkqdSJMLO6h0rSpwqQWFCinVWwnFrUUaYzG9BrDa6Ne8zlUHDho\nH9merVO3Et8hnnPbnFspVOpUmFisUPnd7xQmtVDjPpSysjLCwvw7DLAu8GZbYMV9JxVpX4rUB5v3\nbybnZA5je4+1bZ3Lvl7GpBWTvD7Kyz1M3B04cYABLw/gWOExZl42s26FiVTi7z6UGg/Ejo+PZ/To\n0UyePJmEhAS/BlfXeWonFqulvPNO8MYk4osNezYwMm0khmFwougEv73kt7asd0yvMQA1hkp1YQJw\nbptz2TZtG5v3b+a2i26zZWxS99TYUH755RfS0tJ47bXXKCsrY8qUKYwbN47WrVsHa4y1UlPS1tRO\nLGopUldZYVJQYp7wMDI8kr8N+5ttoQLVN5WawkTqn6CceiU9PZ3bbruNY8eOccstt/D444/TvXt3\nn580mGp6Y4YPhw8+KL8zviphYXDjjWopUrdUDBNLsEJFYdIwBeyw4dLSUlauXMmoUaOYMWMGDz74\nIHv27OGGG25g+PDhfg22rvjyS1i/vuYwAfOIrxUrdMSX1B2ewgSgsLSQGWtn8NL2l2x7voo76hUm\nUlGN+1B69OjBwIEDeeihh7jssstcy2+++WY+/PDDgA4u0H74Abp08S5QAJo0MR+jzV4SatWFicUK\nFcD2fSoT3p1Ay6YtFSZSTrWbvMrKypg7dy6zZ88O5phsVVdOXy9iF2/CxF0gNn9t+vcrnHfeRZzf\nrZ9t65S6I2D7UPr3789nn33m98BCTYEiDYmvYWKxNVTS0+G66yA6Gj79FDp1qv06pU4JWKDcf//9\nlJSUMHbsWFq0aOFafvHFF/s+yhBQoEhD4W+YWGwJlfR0+PWvzUviRkTAOecoVBqggAXKwIEDcTgc\nlZZv2rTJ5ycLBQWKNBR9/tGHr3K/womXO/2q0KppK47NOkZYEz8mK7uHiUWh0iDpio0eKFDqkTvv\nhLvugosuCvVI6qS9x/Yy4OUBHCk8gtPwPVRaRrRk/YT1pMSm+P7kVYWJRaHS4AQ0UN577z12797N\nqVOnXMvqy456BUo9sXkzDBwIV18NGzeGejR1lr+hErAwsShUGpSAzUO54447WLZsGQsXLsQwDJYt\nW8b+/fv9GqSIRzNnmpfJ3LoVtm8P9WjqrK7tupIxLYMOkR1o4vDu3K4BDxMwz0/000+QkgKHDvn+\nPNIg1NhQEhMT+fLLL7nooovYtWsXeXl5DBs2jI8//jhYY6wVNZR6YPNm85QF+fngcKileMHbphKU\nMHGnptIgBKyhREaas2KjoqLIzs4mPDycQ/oNROw0c6YZJtDgWkpRaRFf/ecr29frTVMJepiAmkoj\nV2OgXH/99Rw7doyZM2dyySWXEBcXx7hx44IxNqnPSkq8u9/mzfD11+WXnToFDz1k/5iCrKi0iOFv\nDSfpH0m887X9J4GrLlRqFSYFBTBsmO9hYikpgawsuPVW/x4v9ZZPR3mdOnWKU6dO0bZt20COyVba\n5BUC69bBhAmwZw9ERVV/3wEDYNu2yssjI+Gjj+CSSwIzxgCzwmTrwa0UlhYSGR7J4lGLuaXXLbY/\nV8XNX7UKE8szz8Dcuf6HSosWsHYtXHGF/2OQkLH9KK9//etfrvknhmFUmoty0003+THM4FOgBJlh\nQGIifPstzJtnbs7yxH3fSUX1eF9KxTCxBCNUCkoK2DBhQ+3CxOJvqChM6j3bA2XSpElVTmi0vPrq\nqz4/WSgoUIJs7Vq4+WYzJNq0Mbene2opntqJpR62FE9hYglkqGT/ks0vRb9w4dkX2rdSX0NFYdIg\naGKjBwqUILLaibVPJCoK5sypuqVU104s9ayl1BQmlkCGSkB4GyoKkwZDExs9UKAEkXs7sXhqKTW1\nE0s9aSnehomlwYWKwqRB0cRGCS3DgN//vnLjKCmBF14ov6yqI7s8qQdHfPkaJmBeq2TiiokBOfor\nIB59FB57rOrNlwoTOU0TG8UeVbUTS8WWcuONsHo1NG9e83qdTsjLg/374dxz7R2zDfwJE3f1vqko\nTBokf783a7xiY8WJjR06dNDERinPUzuxWC3F2pfy4otmwHgrIsK8tGYdNGvDLLYc2EJRWZFfjy8s\nLWTcv8ZxUfRFXHDWBTaPLgAefdT87x//aF7CVGEibmoMlBtuuKHcxEaHw8G0adOCMTapLz74APbt\n8/zzggLzt9rf/c5sKR07mrcG4L8u/i8Wf7GY4rJiDHz/jS4qIooh5w+hW/tuARhdgDz6qPn/r3dv\nc0a8yGkeN3lt27aNLl260LlzZwAWL17MG2+8Qc+ePZkzZw4dOnQI6kD9pU1eAVbxyC5Pqjviq577\n+j9fc8WrV3Di1AmfQsUKk+VjlhPepMbf7USCxvad8nfccQfNmjUDYPPmzTz88MPceeedtGnThjvu\nuMP/kUrDUlM7sVgtxd+Z13VYr469+Hjyx7Rp3gYHnuduuasxTLZuhULf98mIhJLHQHE6nbRv3x6A\npUuXcsdBriYoAAAgAElEQVQddzB69Gj++Mc/kpmZGbQBSh1W076TioqKKh/xFQK5eblMWjGJnJM5\ntq3Tl1CpMUxefNHcLzFkiEJF6hWPgVJWVkbJ6RP8bdiwgauvvtr1s9LS0sCPTOq+48fNW9u23t2a\nN4fPPw/pkHPzckl5OYU3v3yTAS8PCHqoeBUm999vHt22fbtCReoVj/tQ5s6dy/vvv89ZZ53FwYMH\n2b59O02aNCEzM5NJkyaxZcuWYI/VL9qHcpphwKuvwvjx5lFTjZAVJtknsylxlhDeJJzOLTuTMS2D\nzq062/Y8nvapeB0m7gHSvLk5qXP9enOSp0gQBGSm/NatWzl06BBDhw6lRYsWAHz//ffk5eVx8cUX\n+z/aIFKgnLZ2LVx3HaSmwpQpoR5N0FUME0uwQsWvMLEoVCTIdC4vDxQolD8SKzoaDh5sVC3FU5hY\nAh0qhSWFDOs+zL8wsShUJIgCduoVaQDcj8TKz4clS0I6nGCqKUwASp2l5OTlBGSfypYpW3jwsgdr\nFyZgnoJG+1SkjlNDaeiqmifSSFqKN2HiLlBNxSNvw8SdmooEgRqKVK2qeSKNoKX4GiYQuKZSJX/C\nBNRUpE5TQ2nIqpvF3oBbyn/y/8OAfw7wKUzcWU1l239to1PLTvYP8MsvoU8f8/+Pv5o2NU9l85e/\n2DcukdPUUKSy6maxN+CWsvXgVr/DBMymkpufy8cHAnRG7YQEGDvW85Usa9KkiXkG53vvtXdcIrWk\nhtJQeXOOrQbcUuZ/PJ+nNz9NQYnvp3qJiojikSse4Q9X/SEAIzutrAxuvx1WrfLtdDRNmkCHDubF\nyeLiAjY8adzUUKQ8b86x1YBbysNXPMzjVz1OVIRvLSAoYQIQFgZvvAEjRnjfVBQmUsepoTRE3p4B\nGBp0SwHfmkrQwsSdt01FYSJBpIYiZ3h7BmBo0C0FvG8qIQkT8K6pKEyknlBDaYiSkswjiZp48fuC\n02leLCknwIfJhlh1TcXrMMnNNS9527Kl/QP01FQUJhICOvWKB3U+UA4cgM6d7d3k9NZbkJ3t/f3b\ntIHf/ta+5/fTqu9WcWnspZzd4uyArL+qUPE6TL77Di69FDp1gi1boF07+wdYMVQUJhIiChQP6nSg\nFBZCTAw8+CA89lioRxNS8z+ez+xNs+nSugufTvs0KKHiU5hcdhkcO2bO/zj//MCHyrvvQuvWChMJ\nCQWKB3U6UP76V3jkEbOd/PQTtGoV6hGFhPuXfESTiKCEyiMbH+Hpq5/2LUysz1GzZoEPleeegzFj\nFCYSEnVup/yUKVOIjo4mMTHRtWzOnDnExsbSt29f+vbty5o1a1w/mzdvHvHx8fTs2ZN169a5lm/f\nvp3ExETi4+O57777XMuLiooYO3Ys8fHxpKSksH///kC9lMAoLISnnjKvYuh0wsKFoR5RSFTcDFXi\nLOHgLwdJeTmFn/N/DshzPnzFw/xwzw/+hQmY/8/27IHLLzd/ZrewMHjoIYWJ1DsBC5TJkyezdu3a\ncsscDgcPPPAAO3bsYMeOHVx33XUA7N69m6VLl7J7927Wrl3LXXfd5UrH6dOnk5qaSmZmJpmZma51\npqam0qFDBzIzM7n//vuZNWtWoF5KYPzjH3D6ipgUFMD8+XDyZGjHFGSedpQHI1S6te9W/R08hYkl\n0KEiUg8FLFCuvPJK2lWxOaCqGrVy5UrGjRtHREQEcXFxdO/enYyMDHJycjh58iTJyckATJgwgRUr\nVgCwatUqJk6cCMDo0aPZuHFjoF6K/ax24n4t9kbWUmqaHxLQUNm6Fc49Fz72cGqVmsLEolARKaeK\nCzQE1vPPP8/rr79Ov379eO6552jbti0//fQTKSkprvvExsaSnZ1NREQEsbGxruUxMTFknz56KTs7\nmy5dugAQHh5OmzZtOHr0KO3bt6/0nHPmzHH9eeDAgQwcODAwL85b7u3EYrWUe+9t8PtSvJ1s6B4q\ntu1T2brVPFNvfj4MG2ZeyfKKK8783NswsbiHSqD2qYgEWHp6Ounp6bVeT1ADZfr06cyePRuAxx9/\nnAcffJDU1NSAP697oIRcVe3EYrWUBnzEl6/n2LI1VNzDBCqHiq9hYlGoSD1X8RftJ5980q/1BHWm\nfMeOHXE4HDgcDqZNm8a2bdsAs3kcPHjQdb+srCxiY2OJiYkhKyur0nLrMQcOHACgtLSUEydOVNlO\n6pyq2omlge9L8feEjbZs/qoYJhYrVNLT/QsTS1ER/PADjBzp3/hEGoCgBkqO22zsd99913UE2IgR\nI0hLS6O4uJi9e/eSmZlJcnIynTp1onXr1mRkZGAYBkuWLGHk6X+wI0aMYPHixQAsX76cQYMGBfOl\n+Ke6dmJpoPtSMo9k8sjGR/w6+y+cCZWHNzzs+4M9hYklPx+uvx4GD67dVRDDw+HOO/1/vEg9F7B5\nKOPGjePDDz/k8OHDREdH8+STT5Kens7OnTtxOBx07dqVF198kejoaACeeeYZXnnlFcLDw1mwYAHX\nXnstYB42PGnSJAoLCxk+fDgLT3/ZFhUVMX78eHbs2EGHDh1IS0sjrorDLOvUPJS//hUef7z6QAHz\n1B4NcF7K7E2zeW7rc36Fit+X560pTNxFRZnB8t57vp1SHswg+uc/4bbbfHucSB2kiY0e1JlAKSyE\nc86B48drvm9UFDz6aIPcl+JPqAQlTCz+hIrCRBqYOjexUSr4xz+8/4IqKIB58xrkvpSnrn6KBy99\n0OvrlAQ1TMB87997zwwVb65TojARcQn6YcONltMJl1zi/f2bNYMTJ0K+2Wt15mraNm/LZV0us22d\nT139FECNTcXvMNmxw78wsVihMmoUrFjh+RcBhYlIOdrkJR6lfZXGlJVTcDgcvP+b9xkYN9DW9Ve3\n+cvvMAH47DMYOND3/SDuoqJgwwZ45x148cXK61KYSAOmTV522roVPv881KOwlWHA+vXmeQe9YYVJ\nYWkhBSUF/PqtX5O+L93WMXna/FWrMAHo3x9Wr/b+0roVRUWZp5C/9FLzJI133FF+XQoTkSopUCoq\nLYVbbjHP9Op0hno0tjAMuO8+c7rF2LE1h4p7mFiCFSq1DhPLr37lX6hYYWIdhu5wlA8VhYmIRwqU\nitLSzH0XP/9sXpOinrPCJDXVzMc1a6oPlarCxBLQUBnwAE2NMDo3O6v2YWLxNVQqhonFCpVZs+DV\nVxUmIh5oH4q70lLzlOHW1Q67djVnP3tzKd06yD1M3HcBREXBddfB0qXmmdIt1YWJu6iIKHv3qZSV\nwa23svSHFfwqN5JOaz+Giy6yZ90AH34Iw4dXv0/FU5iINELah2IHq51Y6nFL8RQmYP69YlPxNkzA\n5qZyOkxYvZqxO0vplHMSrroKdu2q/botNTUVhYmILdRQLBXbiaUetpTqwsSd1VRuenwp096b7FWY\nlHt8bZuKW5hUGmibNrB5c+CbisJEpBI1lNqq2E4sdbCl5OTAp59W/TNvwwTMn//v+6WMvy2CwuIi\nn8dRq6ZSXZiA+f8i0E1FYSJiKzUU8NxOLHWopWRlQXIyHD0Ky5bBiBFnfuZLmJQTkQ/xq+HmW6GJ\n70e2XdDhAr69+1vvH1BTmLgLVFO55RZ4+22FiUgV1FBqw1M7sdSRlmKFyX/+Y54t/dZbzV+woRZh\nAlDSAjKHw/I0cHr/kXDgoF3zdrw71of3xpcwgcA1ldxchYmIzdRQamonlhC3FPcwcT/kNzLSzEOn\n0/ylu7S0Fk8SVgTD7of+f6/xrg4ctG3eli1TtnDh2Rd6t35fw8RdIJqKiFRJDcVfNbUTSwhbiqcw\nAfMkxrfeagbJZZf5fzmPiKZlODr8AIlv1njfoIcJBKapiIitGneglJbCww9DXl7N983Lg5kzgz57\nvrowsRQWwoQJcM895llHIiN9+82iaTODHvFhrNl4khatqp9G71eYAOzbZwZybc6vVVhonrVZROqk\nxh0o//qXechU06be3fbvN89CGyTehInFCpU7phcR3mUnhHv5xR12Ctpn8v6GY1zbO4UPbv+AFhEt\nqryr32EC0K2beaJFfytUZCQMGAB/+Yt/jxeRgGvc+1AyM81NML4YMcLcnxJgvoSJuyZNT9HkpsmU\nbr0TsvtDaTWnHTkdJhG/vYZunc/ikymf0C6yHVsObOHaN64lv+TM6d9rFSbu3n3XPHVJoQ9zXiIj\noV8/WLcOmjf3/7lFxCu6YqMH9fH09f6GiUt4Adw0HjLu9Rwqp8OEqVdA819oGtaU89udX2Wo2BYm\nFl9CRWEiEnTaKd+ATJxoHtXqV5iAGSDL02DMaIj5rPLmrwphAlBcVsyeY3tI+yoNgMvPvdy1+cvW\nMAG48UZ4882aN38pTETqFTWUOuiLL8wDmn75xc8VROTDNY/CpQuhtBks+eBMU6kiTMA8jcrIC0by\nxk1v0MRx5veMXbm7aNm0Jee3O7+Wr6oK1TUVhYlIyGiTlwf1MVDADJVLLy+hMD8MX4qkI6KQ8CGz\nKUn+85mFVqhkpUD7770Ok6CoKlQUJiIhpU1e9VRhSWGV/+O+DVuKc9IV0Owk4OWhyhH5hA2ZTddh\nq8pfBTG8CMZfCwNn+x4mO3aYBy8ESsXNXwoTkXpLgRJC3x7+lpi/xDBl5RScxpnQeOfrd5i8cjJF\nZ2+DyVd5FyqnN3OVJv+Zg78cJLZVbOVQufK/fQuTzZvhiivMIwS+/rqWr7YaVqiEhSlMROoxBYpN\njh6Fv//d+3mP3x7+lstSL+P4qeO8s/sdpq6c6gqVpV8vPRMwnXbVHCru+0yAU6WnyM3LZWrfqZWu\n127xKkysU72fOGEGS6BD5YsvFCYi9ZgCxQZHj8Kll8KMGXD77TWHinuYGBjkl+SXC5U3bnqD5Jhk\nIsNPbwaqLlQqhIkDB22at+GTaZ+wYNgC7ux3Z6VQ8TpM8k/PQzGM4IRKr14KE5F6TIFSS1aY7NsH\nxcWwcmX1oVIxTCzuodI0rCnrxq+j3zn9qg8VD2GyZcoWEs5OwOFw8Ochfy4XKj6HiSVYoSIi9ZYC\npRYqhgmYW4g8hYqnMLH4FCrhhdWGicU9VJo4mvgXJhaFiohUQ4cN+6mqMHEXFQUjR8Ibb5hnvK8p\nTNy1iGjBLQm3kDoyleKyYoYuGcrnP31+5hK9/+ll3novAzyHiTvDMPhw/4dcdd5V/oWJO4fDPJ38\nxx+bm6lEpEHRPBQPAhEoNYWJxQqVP/ztW6541bswsdQYKqd5EyY18iVMXE+sUBFpqBQoHvj6xhgG\nPPaYOR3i8ccr/9zbMLE0j3RS1uP/UTJqLDh8O/V9TaESsjCxKFREGiQFige+vDGGAQ88AC+9ZP59\nxgyYO/fMz30NE5eIfLhgJYy+HRy+vd1REVFM7zedPw/9M6dKT7lC5VTpqdqHidMJ7drV4hwvp11w\nAXzrwzXlRaRO00z5WnIPk4IC8/a3v5ltBWoRJmBes/27kfCvN8Bw+DgugwExAwBoHt7ctaO+dbPW\ntQsTMHfupKb6f40SgBYtziSwiDRqaihUDhN3UVFmU4mIgHnz/AiTcpwweSCc95FX944Mj+SVka9w\na+9byy0vLivmZNFJOkR1qM1gzli+3Lw6ly/XKAEzTFavNs9kKSINhhqKn6oLEzjTVAoKzLOC+Dvv\nrknTQsKu/AucW7swAWjqCKeDo5oLZ/nq5pvh9dd9ayoKExGpoFEHSk1hYikogBdegMsvh4svhqbN\nfLtQSWSUk/vuDaPv7ctoHlFzIlUXJpSWwqhR5lUj9+/3aRzV8iVUFCYiUoVGGyjehonFCpUuvfZT\nGr3N+2u2R+TTZMAiHvjDz6RP2kRix0Sah3sOlRrD5KabYONGOHzYvMZ6sENFYSIiHjTKQPE1TCwF\nBbD0tbNwxm6GzjtqDpWIfEh+nsJfzWBAajLHTx1n00TPoeJ1mBQUmJdzDHaoKExEpBqNMlB+/3vf\nw8SlpAV8djec+2H1oXI6TBj8CE7KyM3LJfnlZPKK86oMFZ/CxBLMUFGYiEgNGl2gGAasXQtFRbVY\nSVlT2DMUJgypOlTcwoTTRwmXGWUcP3WcI4VHaNG0hStUmoU18y9MXGMJQqgoTETEC40uUBwOGD/e\n++uWVMkZBkmvQkRh5VCpIkzAnPW+7vZ1rnkjVqgMPn8wr4581b8wsQQyVN5913x+hYmI1KDRzUMx\nDDjvPMjKMv/sn1JovwfuvcD8a0kkvL4espPh0ueqDJMPbv+Ay8+93Ien8DJM3IWFwVlnQUaG+SJF\nRPygU694UNUb8+OPkJICR44YGD7OXG/SxKBFu3xKplzCqRbfn/lBSSTsGQQ93gtNmFgUKiJSS5rY\n6INu3eCt1Xsg6gjgy5ySUowW/+H9fx9h7o13lL8SYkQhXGBDmABMnQobNvh31IC1+Sslxb8TPoqI\n+KlRBsp3h79j7L/7YUxNgaijeBcqpdDyZ5g2gJs+6MfIC0by9NVPe7xmu99hAnDZZebOHn81barL\n6YpI0DW6TV6GYRD711hyTuaY1yY5ej68/CkUtAfCPKzldJj81wBocxAHDrq268qP9/7IX7b+hcc3\nPU5ByZk2UaswsSxaBDNn+t5SIiPNQFq92gwWEREfaZOXlxwOB08NfOrMHJD2e2BadU2lfJiAedbf\np69+GoAHLn2gXFOxJUwA7roL/vQn8+yU3lKYiEgINbpAAZh68VSev+75M9dq9xgqlcMkMjySl0e8\nzG8Sf+O61wPJ9/H0gW5EFcMHLe6sfZhYfAkVhYmIhFij2+TlLvX/UrlnzT1nLqtbbvOX4VWYUFYG\nY8fCmjUUFxXQtGkkPPccTJ9u34uoafOXwkREbKTDhj2o6Y3xGCpNSn0Kk3Jf9pFBDBWFiYjYTIHi\ngTdvTKVQyYsGRxm0OAz4GCaWYISKwkREAkCB4oG3b0ylUDnNrzBxPTiAoWIYChMRCQh/AyU8AGOp\nl6ZePBWgXKjUKkzAvKTugw+af7YrVO66y7wW/MaN8OabChMRqTPUUCqwmgpQuzBxF4imIiISINrk\n5YE/b0zaV2lEhEUw+sLRZxb6GyYWhYqI1BMKFA/8fWMqmTcPnnyydhdSadIEPv4YLr209uMREQkQ\nzZQPtN/8Btq0MUPBH5GRcMUV0LevveMSEakjFCjeOu8885TwZ53le6hERkL//vDBBzpho4g0WAoU\nX8TF+R4qChMRaSQCFihTpkwhOjqaxMRE17KjR48yZMgQevTowdChQzl+/LjrZ/PmzSM+Pp6ePXuy\nbt061/Lt27eTmJhIfHw89913n2t5UVERY8eOJT4+npSUFPbbeenb6vgSKgoTEWlEAhYokydPZu3a\nteWWzZ8/nyFDhvD9998zaNAg5s+fD8Du3btZunQpu3fvZu3atdx1112uHULTp08nNTWVzMxMMjMz\nXetMTU2lQ4cOZGZmcv/99zNr1qxAvZTKvAkVhYmINDIBC5Qrr7ySdu3alVu2atUqJk6cCMDEiRNZ\nsWIFACtXrmTcuHFEREQQFxdH9+7dycjIICcnh5MnT5KcnAzAhAkTXI9xX9fo0aPZuHFjoF5K1aoL\nFYWJiDRCQZ0pn5ubS3R0NADR0dHk5uYC8NNPP5GSkuK6X2xsLNnZ2URERBAbG+taHhMTQ3Z2NgDZ\n2dl06dIFgPDwcNq0acPRo0dp3759peedM2eO688DBw5k4MCB9rwgK1QGDDAvu+t0KkxEpN5JT08n\nPT291usJ2alXHA4Hjtpc5tYH7oFiO/dQOX5cYSIi9U7FX7SffPJJv9YT1KO8oqOjOXToEAA5OTl0\n7NgRMJvHwYMHXffLysoiNjaWmJgYsrKyKi23HnPgwAEASktLOXHiRJXtJCisULn3XoWJiDRaQQ2U\nESNGsHjxYgAWL17MqFGjXMvT0tIoLi5m7969ZGZmkpycTKdOnWjdujUZGRkYhsGSJUsYOXJkpXUt\nX76cQYMGBfOlVBYXZ15dUWEiIo1UwE69Mm7cOD788EMOHz5MdHQ0Tz31FCNHjmTMmDEcOHCAuLg4\nli1bRtu2bQF45plneOWVVwgPD2fBggVce+21gHnY8KRJkygsLGT48OEsXLgQMA8bHj9+PDt27KBD\nhw6kpaURFxdX+QXadeoVEZFGQufy8kCBIiLiG53LS0REQkqBIiIitlCgiIiILRQoIiJiCwWKiIjY\nQoEiIiK2UKCIiIgtFCgiImILBYqIiNhCgSIiIrZQoIiIiC0UKCIiYgsFioiI2EKBIiIitlCgiIiI\nLRQoIiJiCwWKiIjYQoEiIiK2UKCIiIgtFCgiImILBYqIiNhCgSIiIrZQoIiIiC0UKCIiYgsFioiI\n2EKBIiIitlCgiIiILRQoIiJiCwWKiIjYQoEiIiK2UKCIiIgtFCgiImILBYqIiNhCgSIiIrZQoIiI\niC0UKCIiYgsFioiI2EKBIiIitlCgiIiILRQoIiJiCwWKiIjYQoEiIiK2UKCIiIgtFCgiImILBYqI\niNhCgSIiIrZQoIiIiC0UKCIiYgsFioiI2EKBIiIitlCgiIiILRQoIiJiCwWKiIjYQoEiIiK2UKCI\niIgtFCgiImILBYqIiNhCgdKIpKenh3oIdYbeC5PehzP0XtReSAIlLi6Oiy66iL59+5KcnAzA0aNH\nGTJkCD169GDo0KEcP37cdf958+YRHx9Pz549WbdunWv59u3bSUxMJD4+nvvuuy/or6O+0T+YM/Re\nmPQ+nKH3ovZCEigOh4P09HR27NjBtm3bAJg/fz5Dhgzh+++/Z9CgQcyfPx+A3bt3s3TpUnbv3s3a\ntWu56667MAwDgOnTp5OamkpmZiaZmZmsXbs2FC9HREQI4SYvKxQsq1atYuLEiQBMnDiRFStWALBy\n5UrGjRtHREQEcXFxdO/enYyMDHJycjh58qSr4UyYMMH1GBERCQEjBLp27WokJSUZl1xyifHSSy8Z\nhmEYbdu2df3c6XS6/n733Xcbb7zxhutnU6dONZYvX258/vnnxuDBg13LN2/ebFx//fWVngvQTTfd\ndNPNx5s/wgmBLVu20LlzZ37++WeGDBlCz549y/3c4XDgcDhseS6jQhMSEZHACMkmr86dOwNw9tln\nc+ONN7Jt2zaio6M5dOgQADk5OXTs2BGAmJgYDh486HpsVlYWsbGxxMTEkJWVVW55TExMEF+FiIi4\nC3qgFBQUcPLkSQDy8/NZt24diYmJjBgxgsWLFwOwePFiRo0aBcCIESNIS0ujuLiYvXv3kpmZSXJy\nMp06daJ169ZkZGRgGAZLlixxPUZERIIv6Ju8cnNzufHGGwEoLS3ltttuY+jQofTr148xY8aQmppK\nXFwcy5YtAyAhIYExY8aQkJBAeHg4ixYtcm0OW7RoEZMmTaKwsJDhw4czbNiwYL8cERGx+LXnpZ5Y\ns2aNccEFFxjdu3c35s+fH+rhhNR5551nJCYmGklJSUb//v1DPZygmjx5stGxY0ejd+/ermVHjhwx\nBg8ebMTHxxtDhgwxjh07FsIRBk9V78UTTzxhxMTEGElJSUZSUpKxZs2aEI4wOA4cOGAMHDjQSEhI\nMHr16mUsWLDAMIzG+bnw9F7487lwGEbD3GtdVlbGBRdcwIYNG4iJiaF///68/fbbXHjhhaEeWkh0\n7dqV7du30759+1APJeg++ugjWrZsyYQJE/jyyy8BeOihhzjrrLN46KGHePbZZzl27Jhr7lNDVtV7\n8eSTT9KqVSseeOCBEI8ueA4dOsShQ4dISkoiLy+PSy65hBUrVvDqq682us+Fp/di2bJlPn8uGuyp\nV7Zt20b37t2Ji4sjIiKCW2+9lZUrV4Z6WCHVQH93qNGVV15Ju3btyi3zNO+poavqvYDG99no1KkT\nSUlJALRs2ZILL7yQ7OzsRvm58PRegO+fiwYbKNnZ2XTp0sX199jYWNeb1Bg5HA4GDx5Mv379+Oc/\n/xnq4YRcbm4u0dHRAERHR5ObmxviEYXW888/T58+fZg6dWq50x41Bvv27WPHjh0MGDCg0X8urPci\nJSUF8P1z0WADxa55LA3Fli1b2LFjB2vWrOGFF17go48+CvWQ6gw75z3VR9OnT2fv3r3s3LmTzp07\n8+CDD4Z6SEGTl5fH6NGjWbBgAa1atSr3s8b2ucjLy+Pmm29mwYIFtGzZ0q/PRYMNlIrzVw4ePEhs\nbGwIRxRaVc39acw8zXtqjDp27Oj68pw2bVqj+WyUlJQwevRoxo8f75py0Fg/F9Z7cfvtt7veC38+\nFw02UPr160dmZib79u2juLiYpUuXMmLEiFAPKyQ8zf1pzDzNe2qMcnJyXH9+9913G8VnwzAMpk6d\nSkJCAjNmzHAtb4yfC0/vhV+fi4Adi1YHrF692ujRo4fRrVs345lnngn1cEJmz549Rp8+fYw+ffoY\nvXr1anTvxa233mp07tzZiIiIMGJjY41XXnnFOHLkiDFo0KBGdXioYVR+L1JTU43x48cbiYmJxkUX\nXWSMHDnSOHToUKiHGXAfffSR4XA4jD59+pQ7LLYxfi6qei9Wr17t1+eiwR42LCIiwdVgN3mJiEhw\nKVBERMQWChQREbGFAkVERGyhQBFxExYWRt++fV23//7v/w7o8/3v//4vzz77bECfQyRYdJSXiJtW\nrVq55uwEWllZGWFhYUF5LpFgUEMRqcGJEyfo2bMn33//PQDjxo0jNTUVME+m98ADD9C7d28GDx7M\n4cOHAfjxxx+57rrr6NevH1dddRXfffcdAJMmTeLOO+8kJSWFhx56iMWLF3PPPfcA8PPPP3PzzTeT\nnJxMcnIyn3zyCQBz5sxhypQpXH311XTr1o3nn3/eNbbXX3+dPn36kJSUxIQJE6pdj0jABXjOjEi9\nEhYW5prclZSUZCxbtswwDMNYv369cemllxpvv/22cd1117nu73A4jLfeesswDMN46qmnjLvvvtsw\nDMO45pprjMzMTMMwDOPTTz81rrnmGsMwDGPixInGDTfcYDidTsMwDOO1115zPWbcuHHGxx9/bBiG\nYXLY2nwAAAJHSURBVOzfv9+48MILDcMwr0tx+eWXG8XFxcbhw4eNDh06GKWlpcZXX31l9OjRwzhy\n5IhhGIZrEp6n9YgEWtCv2ChSl0VGRrJjx45KywcPHsyyZcu4++672bVrl2t5kyZNGDt2LAC33347\nN910E/n5+XzyySfccsstrvsVFxcD5gkHb7nllipPOrhhwwa++eYb199PnjxJfn4+DoeDX//610RE\nRNChQwc6duzIoUOH+Pe//82YMWNc17hp27atx/UUFBQQFRVVm7dGpEYKFBEvOJ1OvvnmG1q0aMHR\no0c555xzKt3HMAwcDgdOp5N27dpVGUyAxy92wzDIyMigadOmlX7mviwsLIzS0lIcDkeV16uobj0i\ngaR9KCJe+Otf/0qvXr148803mTx5MqWlpYAZNO+88w4Ab731FldeeSWtWrWia9euLF++HDC/4N1b\njTv3QBg6dCgLFy50/f2LL77wOB6Hw8E111zDO++8w9GjRwE4duxYlevZuXOnPy9ZxGcKFBE3hYWF\n5Q4bfvTRR/n+++9JTU3lueee44orruCqq65i7ty5ALRo0YJt27aRmJhIeno6s2fPBuDNN98kNTWV\npKQkevfuzapVq1zP4b65y/2aGwsXLuTzzz+nT58+9OrVixdffLHKx1gSEhJ47LHH+NWvfkVSUpLr\nehUV1/PSSy/Z/0aJVEGHDYvUQjAPMxap69RQRGqhMV3RT6QmaigiImILNRQREbGFAkVERGyhQBER\nEVsoUERExBYKFBERsYUCRUREbPH/AbkNhO+a5TmjAAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Fit a linear model:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"formula = 'S ~ C(E) + C(M) + X'\n", | |
"lm = ols(formula, salary_table).fit()\n", | |
"print lm.summary()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: S R-squared: 0.957\n", | |
"Model: OLS Adj. R-squared: 0.953\n", | |
"Method: Least Squares F-statistic: 226.8\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 2.23e-27\n", | |
"Time: 20:52:27 Log-Likelihood: -381.63\n", | |
"No. Observations: 46 AIC: 773.3\n", | |
"Df Residuals: 41 BIC: 782.4\n", | |
"Df Model: 4 \n", | |
"==============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"------------------------------------------------------------------------------\n", | |
"Intercept 8035.5976 386.689 20.781 0.000 7254.663 8816.532\n", | |
"C(E)[T.2] 3144.0352 361.968 8.686 0.000 2413.025 3875.045\n", | |
"C(E)[T.3] 2996.2103 411.753 7.277 0.000 2164.659 3827.762\n", | |
"C(M)[T.1] 6883.5310 313.919 21.928 0.000 6249.559 7517.503\n", | |
"X 546.1840 30.519 17.896 0.000 484.549 607.819\n", | |
"==============================================================================\n", | |
"Omnibus: 2.293 Durbin-Watson: 2.237\n", | |
"Prob(Omnibus): 0.318 Jarque-Bera (JB): 1.362\n", | |
"Skew: -0.077 Prob(JB): 0.506\n", | |
"Kurtosis: 2.171 Cond. No. 33.5\n", | |
"==============================================================================\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Have a look at the created design matrix: " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"lm.model.exog[:5]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"array([[ 1., 0., 0., 1., 1.],\n", | |
" [ 1., 0., 1., 0., 1.],\n", | |
" [ 1., 0., 1., 1., 1.],\n", | |
" [ 1., 1., 0., 0., 1.],\n", | |
" [ 1., 0., 1., 0., 1.]])" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Or since we initially passed in a DataFrame, we have a DataFrame available in" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"lm.model._data._orig_exog[:5]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th>Intercept</th>\n", | |
" <th>C(E)[T.2]</th>\n", | |
" <th>C(E)[T.3]</th>\n", | |
" <th>C(M)[T.1]</th>\n", | |
" <th>X</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td><strong>0</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>1</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>2</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>3</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>4</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": [ | |
" Intercept C(E)[T.2] C(E)[T.3] C(M)[T.1] X\n", | |
"0 1 0 0 1 1\n", | |
"1 1 0 1 0 1\n", | |
"2 1 0 1 1 1\n", | |
"3 1 1 0 0 1\n", | |
"4 1 0 1 0 1" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We keep a reference to the original untouched data in" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"lm.model._data.frame[:5]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th>Unnamed: 0</th>\n", | |
" <th>S</th>\n", | |
" <th>X</th>\n", | |
" <th>E</th>\n", | |
" <th>M</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td><strong>0</strong></td>\n", | |
" <td> 0</td>\n", | |
" <td> 13876</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>1</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 11608</td>\n", | |
" <td> 1</td>\n", | |
" <td> 3</td>\n", | |
" <td> 0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>2</strong></td>\n", | |
" <td> 2</td>\n", | |
" <td> 18701</td>\n", | |
" <td> 1</td>\n", | |
" <td> 3</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>3</strong></td>\n", | |
" <td> 3</td>\n", | |
" <td> 11283</td>\n", | |
" <td> 1</td>\n", | |
" <td> 2</td>\n", | |
" <td> 0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>4</strong></td>\n", | |
" <td> 4</td>\n", | |
" <td> 11767</td>\n", | |
" <td> 1</td>\n", | |
" <td> 3</td>\n", | |
" <td> 0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": [ | |
" Unnamed: 0 S X E M\n", | |
"0 0 13876 1 1 1\n", | |
"1 1 11608 1 3 0\n", | |
"2 2 18701 1 3 1\n", | |
"3 3 11283 1 2 0\n", | |
"4 4 11767 1 3 0" | |
] | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Influence statistics" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"infl = lm.get_influence()\n", | |
"print infl.summary_table()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"=============================================================================================================\n", | |
" obs endog fitted Cook's student. hat diag dffits ext.stud. dffits dfbeta\n", | |
" value d residual internal residual slope\n", | |
"-------------------------------------------------------------------------------------------------------------\n", | |
" 0 13876.000 15465.313 0.104 -1.683 0.155 -0.722 -1.723 -0.739 0.376\n", | |
" 1 11608.000 11577.992 0.000 0.031 0.130 0.012 0.031 0.012 0.000\n", | |
" 2 18701.000 18461.523 0.001 0.247 0.109 0.086 0.244 0.085 0.000\n", | |
" 3 11283.000 11725.817 0.005 -0.458 0.113 -0.163 -0.453 -0.162 -0.074\n", | |
" 4 11767.000 11577.992 0.001 0.197 0.130 0.076 0.195 0.075 0.001\n", | |
" 5 20872.000 19155.532 0.092 1.787 0.126 0.678 1.838 0.698 0.297\n", | |
" 6 11772.000 12272.001 0.006 -0.513 0.101 -0.172 -0.509 -0.170 -0.083\n", | |
" 7 10535.000 9127.966 0.056 1.457 0.116 0.529 1.478 0.537 -0.312\n", | |
" 8 12195.000 12124.176 0.000 0.074 0.123 0.028 0.073 0.027 0.000\n", | |
" 9 12313.000 12818.185 0.005 -0.516 0.091 -0.163 -0.511 -0.161 -0.082\n", | |
" 10 14975.000 16557.681 0.084 -1.655 0.134 -0.650 -1.692 -0.664 0.367\n", | |
" 11 21371.000 19701.716 0.078 1.728 0.116 0.624 1.772 0.640 0.284\n", | |
" 12 19800.000 19553.891 0.001 0.252 0.096 0.082 0.249 0.081 0.000\n", | |
" 13 11417.000 10220.334 0.033 1.227 0.098 0.405 1.234 0.408 -0.259\n", | |
" 14 20263.000 20100.075 0.001 0.166 0.093 0.053 0.165 0.053 -0.000\n", | |
" 15 13231.000 13216.544 0.000 0.015 0.114 0.005 0.015 0.005 0.000\n", | |
" 16 12884.000 13364.369 0.004 -0.488 0.082 -0.146 -0.483 -0.145 -0.077\n", | |
" 17 13245.000 13910.553 0.007 -0.674 0.075 -0.192 -0.669 -0.191 -0.106\n", | |
" 18 13677.000 13762.728 0.000 -0.089 0.113 -0.032 -0.087 -0.031 -0.000\n", | |
" 19 15965.000 17650.049 0.082 -1.747 0.119 -0.642 -1.794 -0.659 0.388\n", | |
" 20 12336.000 11312.702 0.021 1.043 0.087 0.323 1.044 0.323 -0.219\n", | |
" 21 21352.000 21192.443 0.001 0.163 0.091 0.052 0.161 0.051 -0.000\n", | |
" 22 13839.000 14456.737 0.006 -0.624 0.070 -0.171 -0.619 -0.170 -0.097\n", | |
" 23 22884.000 21340.268 0.052 1.579 0.095 0.511 1.610 0.521 0.252\n", | |
" 24 16978.000 18742.417 0.083 -1.822 0.111 -0.644 -1.877 -0.664 0.406\n", | |
" 25 14803.000 15549.105 0.008 -0.751 0.065 -0.199 -0.747 -0.198 -0.116\n", | |
" 26 17404.000 19288.601 0.093 -1.944 0.110 -0.684 -2.016 -0.709 0.437\n", | |
" 27 22184.000 22284.811 0.000 -0.103 0.096 -0.034 -0.102 -0.033 0.000\n", | |
" 28 13548.000 12405.070 0.025 1.162 0.083 0.350 1.167 0.352 -0.246\n", | |
" 29 14467.000 13497.438 0.018 0.987 0.086 0.304 0.987 0.304 -0.209\n", | |
" 30 15942.000 16641.473 0.007 -0.705 0.068 -0.190 -0.701 -0.189 -0.109\n", | |
" 31 23174.000 23377.179 0.001 -0.209 0.108 -0.073 -0.207 -0.072 0.001\n", | |
" 32 23780.000 23525.004 0.001 0.260 0.092 0.083 0.257 0.082 0.040\n", | |
" 33 25410.000 24071.188 0.040 1.370 0.096 0.446 1.386 0.451 0.213\n", | |
" 34 14861.000 14043.622 0.014 0.834 0.091 0.263 0.831 0.262 -0.177\n", | |
" 35 16882.000 17733.841 0.012 -0.863 0.077 -0.249 -0.860 -0.249 -0.133\n", | |
" 36 24170.000 24469.547 0.003 -0.312 0.127 -0.119 -0.309 -0.118 0.002\n", | |
" 37 15990.000 15135.990 0.018 0.878 0.104 0.300 0.876 0.299 -0.189\n", | |
" 38 26330.000 25163.556 0.035 1.202 0.109 0.420 1.209 0.422 0.186\n", | |
" 39 17949.000 18826.209 0.017 -0.897 0.093 -0.288 -0.895 -0.287 -0.138\n", | |
" 40 25685.000 26108.099 0.008 -0.452 0.169 -0.204 -0.447 -0.202 0.003\n", | |
" 41 27837.000 26802.108 0.039 1.087 0.141 0.440 1.089 0.441 0.168\n", | |
" 42 18838.000 19918.577 0.033 -1.119 0.117 -0.407 -1.123 -0.408 -0.175\n", | |
" 43 17483.000 16774.542 0.018 0.743 0.138 0.297 0.739 0.295 -0.164\n", | |
" 44 19207.000 20464.761 0.052 -1.313 0.131 -0.511 -1.325 -0.515 -0.207\n", | |
" 45 19346.000 18959.278 0.009 0.423 0.208 0.216 0.419 0.214 -0.098\n", | |
"=============================================================================================================\n" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"or get a dataframe" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df_infl = infl.summary_frame()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df_infl[:5]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th>dfb_Intercept</th>\n", | |
" <th>dfb_C(E)[T.2]</th>\n", | |
" <th>dfb_C(E)[T.3]</th>\n", | |
" <th>dfb_C(M)[T.1]</th>\n", | |
" <th>dfb_X</th>\n", | |
" <th>cooks_d</th>\n", | |
" <th>dffits</th>\n", | |
" <th>dffits_internal</th>\n", | |
" <th>hat_diag</th>\n", | |
" <th>standard_resid</th>\n", | |
" <th>student_resid</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td><strong>0</strong></td>\n", | |
" <td>-0.505123</td>\n", | |
" <td> 0.376134</td>\n", | |
" <td> 0.483977</td>\n", | |
" <td>-0.369677</td>\n", | |
" <td> 0.399111</td>\n", | |
" <td> 0.104186</td>\n", | |
" <td>-0.738880</td>\n", | |
" <td>-0.721753</td>\n", | |
" <td> 0.155327</td>\n", | |
" <td>-1.683099</td>\n", | |
" <td>-1.723037</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>1</strong></td>\n", | |
" <td> 0.004663</td>\n", | |
" <td> 0.000145</td>\n", | |
" <td> 0.006733</td>\n", | |
" <td>-0.006220</td>\n", | |
" <td>-0.004449</td>\n", | |
" <td> 0.000029</td>\n", | |
" <td> 0.011972</td>\n", | |
" <td> 0.012120</td>\n", | |
" <td> 0.130266</td>\n", | |
" <td> 0.031318</td>\n", | |
" <td> 0.030934</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>2</strong></td>\n", | |
" <td> 0.013627</td>\n", | |
" <td> 0.000367</td>\n", | |
" <td> 0.036876</td>\n", | |
" <td> 0.030514</td>\n", | |
" <td>-0.034970</td>\n", | |
" <td> 0.001492</td>\n", | |
" <td> 0.085380</td>\n", | |
" <td> 0.086377</td>\n", | |
" <td> 0.109021</td>\n", | |
" <td> 0.246931</td>\n", | |
" <td> 0.244082</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>3</strong></td>\n", | |
" <td>-0.083152</td>\n", | |
" <td>-0.074411</td>\n", | |
" <td> 0.009704</td>\n", | |
" <td> 0.053783</td>\n", | |
" <td> 0.105122</td>\n", | |
" <td> 0.005338</td>\n", | |
" <td>-0.161773</td>\n", | |
" <td>-0.163364</td>\n", | |
" <td> 0.113030</td>\n", | |
" <td>-0.457630</td>\n", | |
" <td>-0.453173</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>4</strong></td>\n", | |
" <td> 0.029382</td>\n", | |
" <td> 0.000917</td>\n", | |
" <td> 0.042425</td>\n", | |
" <td>-0.039198</td>\n", | |
" <td>-0.028036</td>\n", | |
" <td> 0.001166</td>\n", | |
" <td> 0.075439</td>\n", | |
" <td> 0.076340</td>\n", | |
" <td> 0.130266</td>\n", | |
" <td> 0.197257</td>\n", | |
" <td> 0.194929</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 11, | |
"text": [ | |
" dfb_Intercept dfb_C(E)[T.2] dfb_C(E)[T.3] dfb_C(M)[T.1] dfb_X cooks_d dffits dffits_internal hat_diag standard_resid student_resid\n", | |
"0 -0.505123 0.376134 0.483977 -0.369677 0.399111 0.104186 -0.738880 -0.721753 0.155327 -1.683099 -1.723037\n", | |
"1 0.004663 0.000145 0.006733 -0.006220 -0.004449 0.000029 0.011972 0.012120 0.130266 0.031318 0.030934\n", | |
"2 0.013627 0.000367 0.036876 0.030514 -0.034970 0.001492 0.085380 0.086377 0.109021 0.246931 0.244082\n", | |
"3 -0.083152 -0.074411 0.009704 0.053783 0.105122 0.005338 -0.161773 -0.163364 0.113030 -0.457630 -0.453173\n", | |
"4 0.029382 0.000917 0.042425 -0.039198 -0.028036 0.001166 0.075439 0.076340 0.130266 0.197257 0.194929" | |
] | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now plot the reiduals within the groups separately:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"resid = lm.resid\n", | |
"plt.figure(figsize=(6,6));\n", | |
"for values, group in factor_groups:\n", | |
" i,j = values\n", | |
" group_num = i*2 + j - 1 # for plotting purposes\n", | |
" x = [group_num] * len(group)\n", | |
" plt.scatter(x, resid[group.index], marker=symbols[j], color=colors[i-1],\n", | |
" s=144, edgecolors='black')\n", | |
"plt.xlabel('Group');\n", | |
"plt.ylabel('Residuals');" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAF8CAYAAADhOe01AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVHX+x/HXcBPRvKaogyspGJrkZRPxVxqlVFaiZZlU\nopVtq13M2rJ7Wibd26x1a13czC5qlmKlrGaLWm24q1QGa02KCoiaksRVLnN+fwwzgoJcgrnA+/l4\n8NiZcxk+Zx82bz7nfM/3mAzDMBAREWkgL1cXICIinkkBIiIijaIAERGRRlGAiIhIoyhARESkURQg\nIiLSKE4PkMzMTC655BLOO+88Bg0axKJFiwDIzc0lOjqa/v37c9lll3H8+HHHPvHx8YSGhhIWFsbG\njRsdy3fs2EF4eDihoaHMnj3b2YciItKqOT1AfH19eeWVV0hLS+Prr7/mL3/5C//73/949tlniY6O\n5scff2TMmDE8++yzAKSnp7Ny5UrS09NJSkpi1qxZ2G9dmTlzJgkJCVgsFiwWC0lJSc4+HBGRVsvp\nAdKjRw+GDBkCQPv27RkwYADZ2dmsW7eOadOmATBt2jTWrl0LQGJiIrGxsfj6+hIcHExISAgpKSnk\n5OSQn59PREQEAHFxcY59RESk+fm48pfv27eP1NRURowYweHDhwkMDAQgMDCQw4cPA3Dw4EEiIyMd\n+wQFBZGdnY2vry9BQUGO5Wazmezs7GqfbzKZnHAUIiItT30mKXHZRfSCggImTZrEq6++yllnnVVt\nnclkarIvf8MwPPbnySefdHkNqt/1dbTG+j259pZQf325JEDKysqYNGkSU6dOZeLEiYCt6zh06BAA\nOTk5dO/eHbB1FpmZmY59s7KyCAoKwmw2k5WVVW252Wx24lGIiLRuTg8QwzC47bbbGDhwIPfee69j\neUxMDMuWLQNg2bJljmCJiYlhxYoVlJaWkpGRgcViISIigh49etChQwdSUlIwDIPly5c79hERkebn\n9GsgX375Je+88w7nn38+Q4cOBWzDdB966CEmT55MQkICwcHBrFq1CoCBAwcyefJkBg4ciI+PD4sX\nL3ac3lq8eDHTp0+nuLiYK6+8kiuuuMLZh9OsoqKiXF3Cb6L6XcuT6/fk2sHz668vk9GQE14exmQy\nNeh8noiI1P+7U3eii4hIoyhARESkURQgIiLSKAoQERFpFAWIiIg0igJEREQaRQEiIiKNogAREZFG\nUYCIiEijKEBEWqjk5GTNxCDNSgEi0gJt27aNSy65hA0bNri6FGnBNBeWSAsUOTqSlCMpDPAfQFpq\nmh6uJg2iubBEWqlt27axa/cuuB4yj2WqC5Fmow5EpIWJHB1JSvsU+AEYBAP2qwuRhlEHItIKObqP\nEuAAcExdiDQfdSAiLYij+9gKTAI+AKLVhUjDqAMRaWWqdR/9gL7AINSFSLNRByLSQlTrPm4Bzgby\ngDdQFyINog5EpBU5rfs4u3JFR9SFSLNRByLSAtTYfdipC5EGUgci0krU2n3YqQuRZqIORMTDjbx4\nJF9nfw3ZwAxODxCwdSGLgWAY4D+A9G/SnVmieBh1ICKtRPQl0QzuNBjvEO+T4WEAOwBr5fuO4BXu\nRVibMK68/ErXFCotjjoQEQ/366+/Yg42U3BTwckA2Q2sAK4BBlcuy4O2CW3Z/9N+unXr5pJaxTOo\nAxFpJf686M9Y+1qrdx/JQCS2i+pVuhDreVYWPrfQBVVKS6QORMTD9T6nN0d+PoJPGx8AykvLKW1T\nCncBS8Avz8+xrqK0grZ+bfnl2C8urFjcXX2/OxUgIh7u+PHjFBYWAmAYBqPGjGLfsH0QBuyDwM2B\npGxLwcfHFiIBAQF07tzZZfWK+9MpLJFWolOnTpjNZsxmMzt27OBoyVE4t3JlMBS2LWTr1q2ObRQe\n0lScHiC33norgYGBhIeHO5bNmzePoKAghg4dytChQ6uNU4+Pjyc0NJSwsDA2btzoWL5jxw7Cw8MJ\nDQ1l9uzZTj0GEXdkGAZ/euRPFPxfAVS5T7Dg/wp46PGHKC8vd11x0iI5PUBuueUWkpKSqi0zmUzc\nd999pKamkpqayrhx4wBIT09n5cqVpKenk5SUxKxZsxxt1cyZM0lISMBisWCxWE77TJHWZt26dRwq\nOHSy+7ALhl/b/Mr777/virKkBXN6gIwaNarGFrqm822JiYnExsbi6+tLcHAwISEhpKSkkJOTQ35+\nPhEREQDExcWxdu3aZq/dmQzD4MmHH+buGTOwWq117yCtWm3dh526EGkOPq4uwO61117j7bff5oIL\nLuCll16iU6dOHDx4kMjISMc2QUFBZGdn4+vrS1BQkGO52WwmOzu7xs+dN2+e43VUVBRRUVHNdQhN\nxjAMHr7/fpLefJMOwIyiIv7+zjt4eemSldSs1u7DLvhkFzJ16lRnliYeIDk5meTk5Abv5xYBMnPm\nTJ544gkAHn/8ce6//34SEhKa5LOrBognqBoem4uKaANclZjIjJtvVohIjerqPuzsXUhsbKxjRJYI\nnP7H9fz58+u1n1t8G3Xv3h2TyYTJZGLGjBls374dsHUWmZmZju2ysrIICgrCbDaTlZVVbbnZbHZ6\n3U3t1PDoCrQHPi0qYk9liOh0lpyqzu7DLljXQqRpuUWA5OTkOF6vWbPGMUIrJiaGFStWUFpaSkZG\nBhaLhYiICHr06EGHDh1ISUnBMAyWL1/OxIkTXVV+k6gpPOwUInImDz/5MMVexfh+5ovvpjP/FFuL\neWTeI64uWVoIp/exsbGxbNmyhaNHj9K7d2/mz59PcnIy33zzDSaTiXPOOYc333wTgIEDBzJ58mQG\nDhyIj48PixcvdjzHYPHixUyfPp3i4mKuvPJKrrjiCmcfSpM5U3jY2UNEp7PkVI89+BiHDh2q9/a6\nD0Saiu5Ed7H6hEdVBcBVAQH0mzBBISIizUJ3onuAhoYH6HSW1N/u3btdXYK0cAoQF3p87twGhYdd\n1RC5Y9q05ipPPFhqaioDBgxgy5Ytri5FWjAFiAt9t2MHA6xWOjVi33bA+eXl7Pr2W7c/TSfON/ex\nuZh+Z+KBRx9wdSnSgilAXGjFxx9zdNgwpvn7U9GA/QxgTps2fN2vH0lbtzoGFoiArfv44t9fYNxk\nkP5TuroQaTa6iO5iRUVFTIiOJnDnTpaVlOBdx/b28Piyb182ffUVnTo1pn+Rluyyqy7jM+MzjBEG\nfAPDfx7O9i+2u7os8SC6iO4hAgICSNy0icP16EQUHlIXR/cxrPI//vNRFyLNRh2Im6irE1F4SH1U\n6z7s1IVIA6kD8TBn6kQUHlIfp3UfdupCpJmoA3EzVTuRv5SUUAE8pfCQeqix+7BTFyINoA7EQ9k7\nkczwcMJMJsKAf/XurfCQM6q1+7BTFyLNQAHihoqLi8n75RduBO4HCvLzyc/Pd3VZ4sbmPjaXksgS\n8K1lAy8oHFmo+0KkSSlA3MyxY8cYO3IkVxw4wIuGwVxg1tGjXDJiRLWp7UXs6uw+7NSFSBPTNRA3\nYg+Py/fvJ760lEKgDOgMvOTtzV+7d+dfKSn07t3bxZWKO7nsqsv4bP9nGOH1+Le+G4a307UQObP6\nfnfqsWRu4tTwyAXGYJt991/A/RUVcOQIl4wYoRCRavr8rg+jy0dD7sllhmFw9MhRzu5+dvWZCrpD\nz8Cezi9SWiR1IG6gtvC4AugG/BVbiPRGnYjUz8aNG7n88sv54IMPuO6661xdjniY+n53KkBc7Ezh\nEY/tEdcvoRCR+jMMg8HDB7OrYhfBRcHs+d8ePTdGGkTDeD1AfcIDbCOxZgKXAJnYTmfNrDydpQvr\ncqpNmzaxN2cvxMDRsqN89NFHri5JWih1IC40+oILOO+771hcVlZreFR1aicyz9ub93v1Yvf+/ZqR\nV4Aq3UfwLggHLBD8H3Uh0jDqQDzAlGnTSPL15RvqDg+o3omkAqvbtCF26lSFhzg4uo/zKheEqAuR\n5qMOxMWej49n4aOPcodh8Cy1h0dVLwJPA7fceSevvPaaAkSAGroPO3Uh0kDqQDzAsWPHeG/pUm73\n8qp3eAD8CXjUZOKTjz4iKyurGSsUT3Ja92GnLkSaiToQFxp9wQUM+u47/lJWVu/wqGqetzcrzGb+\nt2+fupBWrtbuw05diDSAOhAPMGXaNNb7+rK/EfseAT5o04YpN9+s8JDauw87dSHSDNSBuNhfFi3i\nhYcfJrmoiOB67nMEuCQggOtmz2beM88oQFq5GruPCuBzIIqTEyyqC5F6UgfiIe685x4eiI8nKiCA\nffXYXuEhp6qx+/gO+BLYUWWZuhBpYupA3MRfFi3i+blz2VJS4uhEDgMngN9Vvj8CXOzvz+Q5cxQe\n4jBkxBC+PfYt9KlcYAX+A4wGkoEIcDwjORvO4Rz27t7r/ELFY2gyRQ8zfuJEnnrsMS4qKeELbCOy\nLgFKgM+As4FRwBHDYPJNNyk8xOH2uNvJPpjteP/tt9+yqdsmykaU4Zvhy2i/0UQMj3Cs79qlqyvK\nlBZIHYgbOHDgAJeMGME9P/+MT0UF8dj+YLwP6Ao8ALQDbgJCgLmdOvHZl18ycOBA1xUtbqmsrIze\n/XpzeMxhCAYOQafVnTh44CBt27Z1dXniIdz2Gsitt95KYGAg4eEnxxrm5uYSHR1N//79ueyyyzh+\n/LhjXXx8PKGhoYSFhbFx40bH8h07dhAeHk5oaCizZ8926jE0parhMbuigquBcuAeYDZwM/Actpm6\nJwNTgefz8hh74YWkp6e7rG5xT8uXL6cwoBDHedAeUNarjDfefMOVZUlLZTjZ1q1bjZ07dxqDBg1y\nLHvggQeM5557zjAMw3j22WeNuXPnGoZhGGlpacbgwYON0tJSIyMjw+jXr59htVoNwzCM4cOHGykp\nKYZhGMa4ceOMDRs2nPa7XHB4DbJ//36jb48exp+9vQ0DjH1gnAPGn8EwTvl5G4yeYKRVvl9uMhk9\nO3Uy0tLSXH0Y4iZKS0uNwN6BBtMxmFfl548Ync7uZBQVFbm6RPEQ9f3udHoHMmrUKDp37lxt2bp1\n65g2bRoA06ZNY+3atQAkJiYSGxuLr68vwcHBhISEkJKSQk5ODvn5+URE2M7rxsXFOfbxJNdccQXX\nHjnC7IoK9mO75jG78udUU4HngbFAOnCzYTAnL4/Lo6I84jSdNL/Tug87dSHSTNziIvrhw4cJDAwE\nIDAwkMOHDwNw8OBBIiMjHdsFBQWRnZ2Nr68vQUFBjuVms5ns7GxqMm/ePMfrqKgooqKimv4AGumh\nefO4Z/p0xhQXM4vaw8Pu5sr/HQv8A3jd359HnnxSF9SFsrIyHpn3CAVjCmpcX/h/hTz1zFP88Y4/\n6lqInCY5OZnk5OQG7+cWAVKVyWRq0i/EqgHibq6fPJmff/6Z6++6i6c5c3jY3QwYwCTgvvvuY+ad\ndzZrjeIZau0+7Kp0IXPunePM0sQDnPrH9fz58+u1n1vcSBgYGMihQ4cAyMnJoXv37oCts6j6wKSs\nrCyCgoIwm83VJhHMysrCbDY7t+gmsH//fl58+mme8vLi3gbsNxXbc0H+/pe/6EK6nOw+RtbcfdjZ\nu5Di4mInVSYtnVsESExMDMuWLQNg2bJlTJw40bF8xYoVlJaWkpGRgcViISIigh49etChQwdSUlIw\nDIPly5c79vEk144bx6Sff2aO1Vrj+reBRbXsOxV0DUSAenQfdroWIk2tOa/k12TKlClGz549DV9f\nXyMoKMhYunSpcezYMWPMmDFGaGioER0dbfzyyy+O7Z955hmjX79+xrnnnmskJSU5lv/3v/81Bg0a\nZPTr18+4++67a/xdLji8Blm1cqUR2Lat8U0No67+BkZvMPqDsaCG9T+B8buAAGPx66+7+jDExc7p\nf47h38vf6HB+hzp/2vZua5zd42xXlyxurr7fnbqR0MU+WLWKu6dP55/FxQyuXLYE2wOjPsd2A+El\n2DqORyvX7wEuDQjgoeef1zUQ4d///jc///xzvbfv1KkTo0ePbsaKxNPV97tTAeIGqobIdk6GR0jl\n+hxOhsgUFB4i0rwUIHhOgIAtRG6/6SbOKi/nX5wMD7scbDNzH/Px4ek//1nhISLNxm2nMpGaHc/N\npZ2XV43hAdAT28Sqnby8yG3A6QoRkebidveBtEZL3niDp++/ny2lpTWGh11PYFtpKZe88AIAj7rx\nPS4i0vIpQFzMHh6fFxWdMTzsegL/KipSiIiIyylAXKih4WFXNURMJhOPPPlkc5UoIlIrXUR3of8b\nMoTfp6WxqLycxkze8pSXF2/37IklM1PzYYlIk9FFdA+wev16Vvn58Ri2+a0aYhHwirc3n27erPAQ\nEZdQgLjQo3PmMMAwWAvMo3qIGMBDwB+AilP2ex14BRjl5cWcO+5w6y5LRFouBYgL+fr54WUy8Snw\nISdDxMD2ONvN2O46n87JEHkdeAnYCPh6eeHr6+vkqkVEbHQNxIUqKiq47aabOPDxxywtKuJq4Fog\nH/gCW0i0AWKwXTgfjq3z2Ag81LYtpSNHsnr9etq0aeOiIxCRlkh3ouP+AQLVQyShqIj/A7pju2nQ\n/tzGImAc8D3wJfCowkNEmpECBM8IELCFyK033si2Dz+kS0UFmzgZHnZFwHhgv5cXYRdfzIcbNig8\nRKRZaBSWB/Hy8qJzly60hxrDAyAA+BjbqayOnTrh46NbeETEtRQgLmYYBvfdeSdfvv02WyoqagwP\nuwDgn1Yrh//5T6bfcAMVFaeOzxIRcR4FiAvZw+OLZcvYWFR0xvCwCwDWFRWRs2GDQkREXEoB4kJz\n7723QeFhVzVEbrvxxuYqT0TkjBQgLvTT7t30MQzOasS+/kBIRQU//fijRwwUEJGWRwHiQu8lJlIU\nEcGNbdtS3oD9rMBdbdrw7bnnsn7LFk1lIiIuoQBxIX9/fz5KSqKgASFiD4/Uc8/ln9u20aFDh+Yu\nU0SkRgoQF2tIiCg8RMSdKEDcQH1CROEhIu5GAeImzhQiCg8RcUcKEDdSU4goPETEXWkuLDdUUlLC\ntVdcQfvt2+lqtfKNwkNEnEiTKeK5AQK2EJk0bhy/5OaSpPAQESdSgODZAQK2qU6sVive3t6uLkVE\nWhHNxtsCmEwmhYeIuC23CpDg4GDOP/98hg4dSkREBAC5ublER0fTv39/LrvsMo4fP+7YPj4+ntDQ\nUMLCwti4caOryhYRaZXcKkBMJhPJycmkpqayfft2AJ599lmio6P58ccfGTNmDM8++ywA6enprFy5\nkvT0dJKSkpg1axZWq9WV5YuItCpuFSDAaefd1q1bx7Rp0wCYNm0aa9euBSAxMZHY2Fh8fX0JDg4m\nJCTEEToiItL83CpATCYTY8eO5YILLmDJkiUAHD58mMDAQAACAwM5fPgwAAcPHiQoKMixb1BQENnZ\n2c4vWkSklXKr56J++eWX9OzZk59//pno6GjCwsKqrTeZTGecebamdfPmzXO8joqKIioqqqnKbVZW\nq5VZt95K7tGjvPPRR/j5+bm6JBFpoZKTk0lOTm7wfm4VID179gSgW7duXHPNNWzfvp3AwEAOHTpE\njx49yMnJoXv37gCYzWYyMzMd+2ZlZWE2m0/7zKoB4imsViszbr6ZPYmJdDYMJl99Nas++UQhIiLN\n4tQ/rufPn1+v/dzmFFZRURH5+fkAFBYWsnHjRsLDw4mJiWHZsmUALFu2jIkTJwIQExPDihUrKC0t\nJSMjA4vF4hi55cmqhsf6oiJWFRfDF18w+eqrKS0tdXV5IiIObnMjYUZGBtdccw0A5eXl3HTTTTz8\n8MPk5uYyefJkDhw4QHBwMKtWraJTp04ALFy4kKVLl+Lj48Orr77K5ZdfXu0zPe1GwlPDo13l8lJg\nctu2cNFF6kREpNnpTnQ8K0BqCw87hYiIOIvuRPcgdYUHgB/odJaIuBUFiIvVJzzsFCIi4k4UIC7U\nkPCwU4iIiLtQgLjQnbfe2qDwsKsaIlNiYjzmOo+ItCwKEBcqyM+nHdCY+Xa9gfaGQWFBQRNXJSJS\nPwoQF/rHypW0v/RSrg0IoKQB+1UAcf7+HB42jDUbN57x7nwRkeaiAHEhHx8f3luzpkEhYg+PI8OG\nkbhpEwEBAc1dpohIjRQgLtaQEFF4SH2Vl5fz2GOPUVLSkN5WmlJruDapAHED9QkRhYc0xHvvvccz\nzzzD35b8zdWltEqvv/4Xhg270NVlNDvdie5GysvLufGaayj4/HM+KirCv3K5wkMaory8nN+F/I6c\nc3Po/E1nDu4/iL+/f907uhGr1cr+/fs555xzXF1Kg5WVlXHWWT05caKUdeveZfz48a4uqcF0J7oH\nqqkTUXhIQ7333nvk++XDSCgNLPW4LsRqtXLrrbMICQll1aoPXF1Og7344oucONEPeJ0//OF+V5fT\nrNSBuKGqnUhnq1XhIfXm6D6icuAcIAc6r/GcLsQeHqtX76Kw8Dnatr2Ot956jcmTr3d1afVysvv4\nCPg/oA/r1r3hcV2IOhAPZu9EOkVHc2z4cIWH1Juj+wiuXNDTc7qQ6uGxAbiI4uJ/Mn363R7TiZzs\nPkZje9xSfIvuQtSBuDnDMHSfh9TLad2HnQd0IaeHR4cqa7+lbdvL3b4Tqd59jK5cWo4ndiHqQFoI\nhYfU12ndh52bdyFnDg+AwR7RiVTvPlYB19HSuxB1ICItQK3dh52bdiF1h0dV7tuJVO8+RgFBwM/A\n50AkntaFqAMRaUVq7T7s3LALaVh4gDt3ItW7jzeAQmwdyExacheiDkTEw9XZfdi5URfS8PCoyr06\nkZq7j7uBm4BzgY14WheiDkSklaiz+7Bzoy7khRdeYuXKLWcIjwLgI6CmL7HBFBdv4Kab4ti5c2ez\n1lkfNXcfdwG9gZtpyV2IOhARDxcSFkJ2QTZ+3fzq3LY0t5Szys7iyMEjTqisdunp6Vx44Vjy8p7H\nMG4+ZW0BMA74DtsX8QKg6mASK/7+MwgP38u//vUp7do15Gk6Tetk9/EBtu6jD7bu46HKLTKxdSEb\nsHUh57Bu3Ztu34XU97tTASLi4bZs2cLPP/9c7+07derE2LFjm7Gi+klLS+Oii6JPCRF7eJwLLATG\nAuM5GSLuEx4AH3/8MTExExy12bqpbKB9la3+ALwDnAAMhg+/kO3btzm91oZQgKAAEXF31UNkIifD\n42/YzrAfBS7FFiJP4e9/u9uEB8DRo0f529/+RkVFBQsWLKK09H5Odh92ti7ktttuJDg4mIsuuoio\nqCjnF9sAChAUICKeIC0tjQsvHENeXldgJLbwANgLhGAPEW9vH4YOPYvk5PVuER5V/fWvf2XWrIeB\nLKp3H3Z/oG/ff7Nnzy4nV9Y4uoguIh6hT58+9OrVGxjKyfC4AwgDVgJnA59jGAVceOEIt5vWxzAM\nHnxwAbbOo6bwAHicvXv38MUXXzixsuanABERlykoKODii8eRkTEYeLty6R3AbuAL4F7sIWK1fsWS\nJUk8+OBjbnVm4Y033qCgwD7yqja2EVnTps10UlXOoVNYIuIS9vBITz+XkpKqncdubKOW2gPfA9HA\nn4EbgKMEBFzKrFnjef75BS6f6scwDDp0CKKgoOrIq9rYroVs27aRiy66yAnVNV59vzt9nFCLiEg1\n9QsPgEHAJmwhAnADRUWfs3jxpQAuD5E1a9ZQUJCDLej+WI89OnLPPX9i586vm7ky51AHIiJO9+ij\nj/Pii2soLf2ucklN4VHVqZ3IHkymc9m2bQsXXui6R8ceO3aMl156CavVWu99xo4d6xbDqM+kWUZh\nVVRUUFhYSIcODZl2wHUUICLuKTc3l5Ejx/LjjxcCJZw5POzsIbIQX9+/EBc3giVLXnf5aayWqMlG\nYcXGxvLrr79SWFhIeHg4AwYM4Pnnn2+SIptCUlISYWFhhIaG8txzz7m6HBGpB39/fzp0OAvbDXbf\nUXd4wMnTWfdTXm6hV68eCg8XqzNA0tPT6dChA2vXrmXcuHHs27eP5cuXO6O2OlVUVHDXXXeRlJRE\neno677//Pv/73/9cXZaI1OGZZ+LZseMH4DxgM6eHx9fYZrPNPWX5IGArhtGWp59+kq+++qr5i5Va\n1Rkg5eXllJWVsXbtWsaPH4+vr6/bpP727dsJCQkhODgYX19fpkyZQmJioqvLEpE62E6RtAeSqDk8\nYipfj6XmEPknJpMPfn51z/8lzafOUVh33HEHwcHBnH/++YwePZp9+/bRsWNHZ9RWp+zsbHr37u14\nHxQUREpKSrVt5s2b53gdFRXl9lMIiLQGN998I6+//nfy8lYD06ussYfHW9imNXkQW4h8BnSp3KYC\nL694hg8fxcCBA51XdAuWnJxMcnJyg/dr8CgswzCoqKjAx8f1I4A//PBDkpKSWLJkCQDvvPMOKSkp\nvPbaa4Auoou4s927dxMZeSl5eQuxhUjV8LiycisDW4hsxhYiHfHyuonhw3/m888/dru70u2sViv5\n+flu88d2Q/3m+0Beeumlah8GOD7QZDJx3333/dYafzOz2UxmZqbjfWZmJkFBQS6sSETqKywsjK+/\n/rwyRPYAb1I9PMA2y+3z2DsRk6kPw4f/6tbhAbBw4XMsXfoOFst3eHt7u7qcZlPrNZD8/HwKCgoo\nKCggPz/f8d7+2h1ccMEFWCwW9u3bR2lpKStXriQmJqbuHUXELYSFhfHGGy8Dr3B6eNjZQ2Q0bdp8\nwerVy9w6PPLz83nuuVfIyanggw/c69G7Tc3jbyTcsGED9957LxUVFdx22208/PDDjnU6hSXi3r7+\n+muio2MoKHiLmsOjKgM/vwcJDt7Mv//9GV26dKlje9dYsCCehQu/p7h4Gr1730tGxi6P60Ka7EbC\n4uJiEhISSE9Pp7i42HE6a+nSpU1TaTNSgIi4r4aFh517h0h+fj69evWjoGArcC7t21/IkiX3MGXK\nFFeX1iBNdiPh1KlTOXz4MElJSURFRZGZmUn79nXd8CMiUrv//Oc/jQgPABOlpc+zb98YRo4cy/Hj\nx5upwsZ59dXXqaiIxjYVvYmCgnk8+OBTVFRUuLq0ZlFngPz00088/fTTtG/fnmnTprF+/frThsqK\niDTE11+AVw0SAAAgAElEQVRvp7y8IzC8EXubKC2NYf/+n8jKymrq0hrNfu2juPjxKkuj+eWXTi32\nWkidAWK/Uadjx47s2rWL48ePN+j5yyIip7rrrlnMnj2FgIBLgYZ+n3xBQMAkPvnkIwYNGtQc5TVK\n9e7DrmV3IXUGyO23305ubi4LFiwgJiaGgQMH8uCDDzqjNhFpoUwmE/HxT3H33RMbGCJfEBBwLYmJ\n77nVjLandx8ZwIeVr1tuF+Lxo7DORBfRRdybYRg8/PATvPbaWoqKPge6nWFr9wwPqDry6t3KJdcD\n64F92I5po0eNyGqyUVjz58+v9qF2TzzxxG8ozzkUICLur34h4r7hUX3kVRiwC9u081cAgcBzgOFR\nI7KabBRWu3btaN++Pe3bt8fLy4v169ezb9++pqhRRKQep7PcNzygpmsfTwF/Ap4G/o7teFrmtZAG\nn8I6ceIEl112GVu2bGmumpqMOhARz1FzJ+Le4ZGfn0/PnsEUFi7CFiA/AXdjuwbSDpgJFFcuM2jT\nZgpvvbXA7buQZnsmemFhIdnZ2Y0qSkSkNvZOBOC11y6lqOgpAgLucNvwANuM4L/7XV9KS18G4ODB\ngxQX348tPAAewWQKo0+fnXh7+wIdOXDgoKvKbXJ1Bkh4eLjjtdVq5ciRIx5x/UNEPE/VEHn55RtJ\nTPzYbcMDbHN5paf/B4Bdu3YxYkQ0cFeVLXrj5zediRPb88orLe+JqXWewqp6vcPHx4fAwEB8fX2b\nu64moVNYIp7JMAyOHz9O586dXV1KvV111fUkJY3Aav0TcBzYCwwDMmnbdgj79++mW7czjTJzH795\nFFZu7qlPAavO3eagqYkCREScwd59FBfvwXb66k5gNbYQaUebNncyc6bndCG/OUCCg4MdH3LgwAHH\nXwK//PILffr0ISMjo2krbgYKEBFxhurdRyYwGPg9tqG89+NpXchvHsa7b98+MjIyiI6O5pNPPuHY\nsWMcO3aMTz/9lOjo6CYtVkTEU+3atYt//WsbVuvMyiXPAjOwPePkRaAQ6I3VOoWFC190VZnNos5r\nIIMGDeL777+vc5k7UgciIs2t5u5jN9AdmAyMwNO6kCa7kbBXr14sWLDA0ZE888wzmM3mJilSRMST\n/fjjj6xfvxpf3+/x978TL68YbM937165xRPAAtq0+QP+/s9SVhbAyy8vclm9Ta3ODuTYsWPMnz+f\nbdu2ATB69GiefPJJXUQXkVbv+PHjvP/++1itVn755Rfmz3+B8nILJwME/PyuYdw4L6KjLwUgIiKC\n4cMbM4298zTZXFieTAEiIs4yY8advP12O8rKnj9lzfd07BhNdvZPtGvXrsZ93c1vDpDZs2fz6quv\nMn78+Bo/fN26db+9ymamAJHf4sCBA5jNZo+YPVVcKzMzk/79B1NSYr/2UV1AwGSefHIEDz54v/OL\na4TfHCA7duzg97//PcnJyTV++MUXX/ybi2xuChBprKSkJMZPGM+Eayaw8t2VChE5o9O7jwpsNxN2\nrXzvWV1Is5zCys3NJSsri/PPP/83FecsChBpjKSkJCbFTqIopoiAlADGDRmnEJFa1dx9LADeAdIA\n278bT+pCmmwUVlRUFL/++iu5ubn8/ve/Z8aMGcyZM6dJihRxN47wmFQE5VB0dREbvtnADTfd0KKm\n4ZamM3/+s1RUzOBkeOQBr2ILjhWO7YqKnmDhwhcpLCx0fpHNpM4AOX78OB06dOCjjz4iLi6O7du3\n89lnnzmjNhGnqhYeB7A9kfR9hYjULjs7m7fe+jtlZQHA4sqfqdgeKLUImAu8Xrl8K4WFbVm8+E2X\n1dvU6pyNt6KigpycHFatWsWCBQuA6k8mFGkJTguP/2KbzugLbCESW8SGT2whotNZUtUtt9xOefkR\n4AilpSdYtSqZ8vL/AqH4+PRi5Mi19OvXv3LrK+jXr68Lq21adQbIE088weWXX86FF15IREQEe/bs\nITQ01Bm1iThFjeFxC9ABGAdsQCEiNTKbzSxZ8rrj/bx5C/D1nUh5uS0wysvj2bt3Fv/61z9b5L8X\n3QcirdoZw8POwBYiWUAsBHyiC+tyury8PMzmEAoLvwTsHYdB+/ajeeONP3LTTTe5srwGabKL6D/8\n8ANjxozhvPPOA+C7775znMoS8WT1Cg8AE7ZOJAhdE5FavfLKa1it4zgZHmB/FvrcuS3rWeh2dQbI\n7bffzsKFC/Hz8wNsTyh8//33m70wkeZksVgYP2E8RdfUER52NYTIp//+lEcff9RJFYs7y8vL48UX\nX6W4+LEa1l5KXl53VqxYUcM6z1ZngBQVFTFixAjHe5PJ1ORPJJw3bx5BQUEMHTqUoUOHsmHDBse6\n+Ph4QkNDCQsLY+PGjY7lO3bsIDw8nNDQUGbPnt2k9UjL97vf/Y4LR1+Izz996g4Pu6ohsgy887y5\n7trrmrtU8QA1dx92LbcLqTNAunXrxk8//eR4v3r1anr27NmkRZhMJu677z5SU1NJTU1l3LhxAKSn\np7Ny5UrS09NJSkpi1qxZjvNyM2fOJCEhAYvFgsViISkpqUlrkpatTZs2jLl4DNZCa/3Cw84eIsHQ\nPbA7ISEhzVajeIYzdx92LbMLqTNAXn/9de644w5++OEHevXqxSuvvMJf//rXJi+kpgs2iYmJxMbG\n4uvrS3BwMCEhIaSkpJCTk0N+fj4REREAxMXFsXbt2iavSVqutLQ0nnj8Caw3WusfHnYm4CrYX7yf\nRx57pDnKEw9y5u7DrmV2IXUO4+3Xrx+bN2+moKAAwzBo3749q1atIjg4uEkLee2113j77be54IIL\neOmll+jUqRMHDx4kMjLSsU1QUBDZ2dn4+voSFBTkWG42m8nOzq7xc+fNm+d4HRUVRVRUVJPWLZ6p\nS5cuePl7YV1lhduAgBo2+hVoT81/Zm0B6yGrRzzWQJpPXl4eL7zwMsXFrwD/rmPrthw9WsGKFSvc\nbkRWcnJyjfMe1qXWACkoKODNN99kz549DBo0iD/+8Y8kJiby6KOPEhISwg033NCgXxQdHc2hQ4dO\nW/7MM88wc+ZMnnjiCQAef/xx7r//fhISEhp4KDWrGiAidj/99BPWEiuEAW8DcVQPkT3A+8AgIIbq\nIbIV+B7oDF9//bWTKhZ3dOjQIUJCBlBa+kY99+hGTs7RZq2pMU7943r+/Pn12q/WAImLi6NDhw6M\nHDmSjRs38tZbb+Hv7897773HkCFDGlzgpk2b6rXdjBkzHFPIm81mMjMzHeuysrIICgrCbDaTlZVV\nbbmekigNMWrUKOKfjefh+Q/DQKqHyB7gIyAW253o6zgZIluB74AuEGwEs26t+z/WQJrPueeey7ff\nfunqMlzHqEV4eLjjdXl5udGtWzejqKiots1/k4MHDzpev/zyy0ZsbKxhGIaRlpZmDB482Dhx4oSx\nd+9eo2/fvobVajUMwzAiIiKMr7/+2rBarca4ceOMDRs2nPa5Zzg8EcMwDCP+2XiDthj8HoMeGEzG\noB0Gt2IwD4NHMTgHgyEYXILB2Rj0xwgODTYKCwtdXb5Is6jvd2etHUjVO2y9vb0xm820bdu2WUJs\n7ty5fPPNN5hMJs455xzefNM22djAgQOZPHkyAwcOxMfHh8WLFzvm4Vq8eDHTp0+nuLiYK6+8kiuu\nuKJZapOW7aG5DwHYOpEgYC1wM/C7yg18gRuB5cCPgNnWeaR9k0ZAQE0XTkRaj1qnMvH29q72H0hx\ncbEjQEwmE7/++qtzKvwNNJWJ1NdtM25j6fKl1cOjqjLgbQjID+DQgUOcddZZTq5QxHn0THQUIFI/\nmzZtYuLkiRRdW1Q9PE4AftiG7QKUQcCqAMZHjOfdZe9qHixpsZpsLiyRlqzW8MgGXgY2YptMEcAX\niiYX8fF/PuamaTe1qPH8Io2hAJFW64zh8R5wFbCf00PkeoWICChApJWyWCxcNf4qiibWEh4TgPOx\nPVyulhBJ3JrI408+7tS6RdyJAkRapd69exN5YSRtv2kL1sqFVcPDPitFW2oOkQzwKfBhYsxEZ5Yt\n4lZ0EV1arYKCAvqE9iG3cy78H7CC6uFRVTG2obx9gGBgNby37D1iY2OdVq+Is2gUFgoQqV15eTnX\nXH8Nm3dvpvjXYjgGTOLM8+EVA8uAX4CR0On7TnyR/IXjYWsiLYVGYYmcwU8//cT6T9ZT3L8Y8qg7\nPMB2Omsa0BkogaK2RST8o2nmbBPxROpApNWKj4/nkScfgeupOzyqKgb+AUHtg/gp/SfatGnTTBWK\nuIY6EJEz2LdvH0/HP93w8ABbJ3ILHCs5xosvv9gM1Yl4BgWItEpnn302If1DaLO3zcmRVQ3xM5iK\nTERGRNa9rUgLpQCRVql9+/Z8nvQ5fhY/+JiGhcgB4B145blXGDNmTDNVKOL+FCDSKpWVlTH99umU\nn10Oh4H1VA+RE8BqIOOUHQ8AK4ER8OCjD/L99987p2ARN6QAkVZpz549JH2SRPGoYtuNgjmcDJET\nwLtAOdVDxB4e1wJRUNKuhH8s+4fTaxdxFxqFJa3W6tWribs9juIbim1Dc98BugM/A12AXKAv8F9g\nFLANW3gEQ9s1bRnVZxQff/Qxfn5+rjkAkWaiUVgidbjuuut4e8nbtF3Z1nZz4PXAbqAjtmlNegI7\ngQuAz7HdrR6s8BCxUwcird7q1auZOmMqJQEl0A04CIQDFwNHsE1hMgz4D/h19yPqvCiFh7Ro6kBE\n6unyyy+nR2AP22mrquEBtlNaU7F1IsOh/FA59919n8JDBAWItHL5+fmMHjuag+0O2kZjVQ0Puyoh\nYh1h5dop1/L55587vVYRd6MAkVbLHh7pZemUZpbWHB52VUKkaHAR4yeNV4hIq6cAkVapsLCw/uFh\nV0OIJCcnN3utIu5KASKt0pEjR/jfrv9RmlHP8LCzh8gOKPMqY+sXW5uvSBE3pwCRVqljx450OruT\n7bG19Q0Pu+5AHFhLrQwMG9gM1Yl4BgWItEolJSWcKDmBqYupcR/gD34Bfhw6cqhpCxPxIAoQaZV6\n9erFv7f+m05fdcL0TQND5FcIeDeAx+Y8xl2z7mqeAkU8gAJEWq2wsDC+2vJVw0KkMjwevfdRHnno\nkeYtUMTNKUCkVWtQiCg8RKpRgEirV68QUXiInMapAfLBBx9w3nnn4e3tzc6dO6uti4+PJzQ0lLCw\nMDZu3OhYvmPHDsLDwwkNDWX27NmO5SdOnOCGG24gNDSUyMhI9u/f77TjkJbnjCGi8BCpkVMDJDw8\nnDVr1jB69Ohqy9PT01m5ciXp6ekkJSUxa9Ysx0ReM2fOJCEhAYvFgsViISkpCYCEhAS6du2KxWJh\nzpw5zJ0715mHIi1Q1RDhv8BHQJrCQ6Q2Tg2QsLAw+vfvf9ryxMREYmNj8fX1JTg4mJCQEFJSUsjJ\nySE/P5+IiAgA4uLiWLt2LQDr1q1j2rRpAEyaNInNmzc770CkxQoLC2PT+k14b/aGIiARboy5UeEh\nUgMfVxcAcPDgQSIjIx3vg4KCyM7OxtfXl6CgIMdys9lMdnY2ANnZ2fTu3RsAHx8fOnbsSG5uLl26\ndKn22fPmzXO8joqKIioqqvkORDxeQUEBd9x9B97neVNxVQXsg/dWvcfNN93MxRc39I5DEc+QnJzc\nqGl5mjxAoqOjOXTo9JurFi5cyPjx45v619WpaoCInElBQQFRl0WRVp5G6VWlYALOgaKJRVw54UrW\nJ65XiEiLdOof1/Pnz6/Xfk0eIJs2bWrwPmazmczMTMf7rKwsgoKCMJvNZGVlnbbcvs+BAwfo1asX\n5eXl5OXlndZ9iNRX1fAoubLEFh52ChGRGrlsGG/Vp13FxMSwYsUKSktLycjIwGKxEBERQY8ePejQ\noQMpKSkYhsHy5cuZMGGCY59ly5YBtifKjRkzxiXHIZ7vjOFhVyVEtmzZ4vQaRdyRUx9pu2bNGu65\n5x6OHj1Kx44dGTp0KBs2bABsp7iWLl2Kj48Pr776KpdffjlgG8Y7ffp0iouLufLKK1m0aBFgG8Y7\ndepUUlNT6dq1KytWrCA4OLj6wemRtlKHeoVHVRkQsDZAnYi0aPX97tQz0aXVanB42ClEpIXTM9FF\nzqCoqKhx4QHVTmdt27at2WoUcXcKEGmVDh06xPfffk9JWAPDw64XGGcZfPb5Z01em4inUIBIq9S3\nb182JW2i3cftYG8Ddz4BASsDiB0Xy7wn5jVHeSIeQQEirdaoUaPYsG4D7dY1IEQqw2PKmCn8/c2/\nYzI18oFUIi2AAkRatQaFiMJDpBoFiLR6NYaIAXwF/FL5XuEhchoN4xWptG3bNsbFjKNwfCGkAQeA\nMiAWAjYqPKT10H0gKECk4bZs2cKYcWOoOLsCpgLfAp/BdROvY9X7qxQe0iroPhCRBrJarSz5xxJ8\ne/jawsMPGA6MheStyezd29DhWiItmwJEBFt4xN0ax5ov11ASW2ILD7vhkHtBLpGjItmzZ4/LahRx\nNwoQafWqhkfR5KLq4WHf5vdWhYjIKRQg0qrVJzwc2ypERKpRgEir1ZDwcOyjEBFxUIBIq9SY8HDs\nqxARARQg0krt3r2b95a/R9GYhoWHnXWolV/9fuXPi/7c9MWJeAgFiLRKAwcOZMmSJbT9oC0ca+DO\nVvD/1J9hfYbxXPxzzVKfiCdQgEirddutt/HaC6/R9t0GhEhleAxpN4TNGzYTEBDQrDWKuDMFiLRq\nDQoRhYdINQoQafXqFSIKD5HTKEBEqCNEFB4iNVKAiFSqMUQUHiK18nF1ASLu5LZbbwPg7gfupji2\nGP+vFR4itVGAiJzCHiJ3/PEOhoxUeIjURs8DEalFSkoK4eHhCg9pdfRAKRQgIiKNoQdKiYhIs1KA\niIhIoyhARESkUZwaIB988AHnnXce3t7e7Ny507F83759tG3blqFDhzJ06FBmzZrlWLdjxw7Cw8MJ\nDQ1l9uzZjuUnTpzghhtuIDQ0lMjISPbv3+/MQxERafWcGiDh4eGsWbOG0aNHn7YuJCSE1NRUUlNT\nWbx4sWP5zJkzSUhIwGKxYLFYSEpKAiAhIYGuXbtisViYM2cOc+fOddpxiIiIkwMkLCyM/v3713v7\nnJwc8vPziYiIACAuLo61a9cCsG7dOqZNmwbApEmT2Lx5c9MXLCIitXKbGwkzMjIYOnQoHTt2ZMGC\nBVx00UVkZ2cTFBTk2MZsNpOdnQ1AdnY2vXv3BsDHx4eOHTuSm5tLly5dqn3uvHnzHK+joqKIiopq\n9mMREfEkycnJJCcnN3i/Jg+Q6OhoDh06dNryhQsXMn78+Br36dWrF5mZmXTu3JmdO3cyceJE0tLS\nmqSeqgEiznXdVVdx8eWXc/c997i6FBE5g1P/uJ4/f3699mvyANm0aVOD9/Hz88PPz/Zc0WHDhtGv\nXz8sFgtms5msrCzHdllZWY6OxGw2c+DAAXr16kV5eTl5eXmndR/iOjt37mT9+vVs3rSJP9xxB23a\ntHF1SSLSxFw2jLfqXY5Hjx6loqICgL1792KxWOjbty89e/akQ4cOpKSkYBgGy5cvZ8KECQDExMSw\nbNkyAFavXs2YMWOcfxBSq1lxcTwJhJeV8cyCBa4uR0Sag+FEH330kREUFGT4+/sbgYGBxhVXXGEY\nhmGsXr3aOO+884whQ4YYw4YNMz755BPHPv/973+NQYMGGf369TPuvvtux/KSkhLj+uuvN0JCQowR\nI0YYGRkZp/0+Jx+eVNqxY4fREYwCMP4NRidfX6OkpMTVZYlIPdX3u1NzYUmTixw0iGvS0rAPrB4N\nRD32GE89/bQryxKRetJkiihAXGHnzp1c+vvfkw20q1z2NTDO15dD+fm6FiLiATSZorjErLg4HuJk\neABEomshIi2ROhBpMqd2H/uArsBZqAsR8STqQMTpqnYfFcAVwJ8q16kLEWl51IFIkzi1+3gPeBnI\nAHYCfVAXIuIp1IGIU53afTwFPAfcASys3EZdiEjLog5EfrOauo+/AluBY8C5qAsR8STqQMRpHn/k\nEX4FugMB2LqOeYAJOBu4BTgPW7iMAY6XlfH++++7plgRaTJuMxuveK45999PSN++APxgsZC7ZQuX\nlpXxDdALeAj4m7c3k2Jj6XDWWZi8vLjkkktcWbKINAGdwpImU1FRwXl9+vB6djajgRBgFPAu8Iiv\nL8diY3mzcv4yEXFfOoUlTrdy5UrOzstjDPAPoC+wCdgN3FdWxupVq/ToYZEWRB2INIlTu49QYCXw\nOZCGuhART6IORJzq1O5jILZhu3cBG1EXItISqQOR36y27iOycv1C1IWIeBJ1IOI0K1euJO/IEXKx\ndRz9ORkeVC7bAPwZ6F1Wxj/eeUddiEgLoGG88pu18fXloksuYaXVyr+2bGF9WVm19R2AOSYTf+nW\njSFDhjDR25vi4mLXFCsiTUansKTJvPnGG6z5059IKiw8bd2vQD9/f7alphIWFub84kSk3vRAKRQg\nzlRaWkqo2cyKo0cZWbnsK6B35Q/AQm9v0saP5901a1xTpIjUi66BiFP9Y+lSBhQXO8KjGLgOuLfK\nNndVVLAxKYndu3c7v0ARaXLqQOQ3q6n7WASsB74FkoDBlcvVhYi4v/p+d+oiuvxmb/3jH5QeP85/\ngf8CpUA8trvQNwO3AdMqtzUqKliRmMgTP/zAueee65qCRaRJKEDkNzsnOJjrpk/nx8r33+3axfAd\nOxhaXs65wLPe3nwVE8PZXbsCcKeXF35+fi6rV0Sahk5hSZMqLi4mpFcvPjl+nKGVy1728uLL6Gg+\nTEpyaW0iUj+6iC4useTNNxleVuYID4A/Wq18tXUr3377rcvqEpGmpw5EmkxN3YeduhARz6EORJyu\npu7DTl2ISMujDkSaxJm6Dzt1ISKeQR2IONWZug87dSEiLYtTA+SBBx5gwIABDB48mGuvvZa8vDzH\nuvj4eEJDQwkLC2Pjxo2O5Tt27CA8PJzQ0FBmz57tWH7ixAluuOEGQkNDiYyM1OyuLlRcXMxz8+fz\nZA1zYFUVADxw4gRPzZ3rnMJEpFk5NUAuu+wy0tLS+Pbbb+nfvz/x8fEApKens3LlStLT00lKSmLW\nrFmO9mnmzJkkJCRgsViwWCwkVZ7+SEhIoGvXrlgsFubMmcNcfSm5zNK//x1rfj6fAgvq+DlqtbLm\nn//k+++/d1m9ItI0nHojYXR0tOP1iBEj+PDDDwFITEwkNjYWX19fgoODCQkJISUlhT59+pCfn09E\nRAQAcXFxrF27liuuuIJ169Yxf/58ACZNmsRdd93lzEORKs4fMoTbHnyQknps6wU86uVFp06dmrss\nEWlmLrsTfenSpcTGxgJw8OBBIiNPPoIoKCiI7OxsfH19CQoKciw3m81kZ2cDkJ2dTe/etnlefXx8\n6NixI7m5uXTp0sWJRyEAo0aNYtSoUa4uQ0ScrMkDJDo6mkOHDp22fOHChYwfPx6AZ555Bj8/P268\n8cam/vWnmTdvnuN1VFQUUVFRzf47RUQ8SXJyMsnJyQ3er8kDZNOmTWdc/9Zbb7F+/Xo2b97sWGY2\nm8nMzHS8z8rKIigoCLPZTFZW1mnL7fscOHCAXr16UV5eTl5eXo3dR9UAERGR0536x7X98kBdnHoR\nPSkpiRdeeIHExET8/f0dy2NiYlixYgWlpaVkZGRgsViIiIigR48edOjQgZSUFAzDYPny5UyYMMGx\nz7JlywBYvXo1Y8aMceahiIi0ek69kTA0NJTS0lJHpzBy5EgWL14M2E5xLV26FB8fH1599VUuv/xy\nwDaMd/r06RQXF3PllVeyaNEiwDaMd+rUqaSmptK1a1dWrFhBcHBw9YPTjYQiIg2mR9qiABERaQzd\niS4iIs1KASIiIo2iABERkUZRgIiISKMoQEREpFEUICIi0igKEBERaRQFiIiINIoCREREGkUBIiIi\njaIAERGRRlGAiIhIoyhARESkURQgIiLSKAoQERFpFAWIiIg0igJEREQaRQEiIiKNogAREZFGUYCI\niEijKEBERKRRFCAiItIoChAREWkUBYiIiDSKAkRERBpFASIiIo2iABERkUZRgIiISKMoQNxYcnKy\nq0v4TVS/a3ly/Z5cO3h+/fXl1AB54IEHGDBgAIMHD+baa68lLy8PgH379tG2bVuGDh3K0KFDmTVr\nlmOfHTt2EB4eTmhoKLNnz3YsP3HiBDfccAOhoaFERkayf/9+Zx6KU3j6P0LV71qeXL8n1w6eX399\nOTVALrvsMtLS0vj222/p378/8fHxjnUhISGkpqaSmprK4sWLHctnzpxJQkICFosFi8VCUlISAAkJ\nCXTt2hWLxcKcOXOYO3euMw9FRKTVc2qAREdH4+Vl+5UjRowgKyvrjNvn5OSQn59PREQEAHFxcaxd\nuxaAdevWMW3aNAAmTZrE5s2bm7FyERE5jeEiV199tfHuu+8ahmEYGRkZRrt27YwhQ4YYF198sbFt\n2zbDMAzjP//5jzF27FjHPlu3bjWuvvpqwzAMY9CgQUZ2drZjXb9+/Yxjx45V+x2AfvSjH/3opxE/\n9eFDE4uOjubQoUOnLV+4cCHjx48H4JlnnsHPz48bb7wRgF69epGZmUnnzp3ZuXMnEydOJC0t7TfX\nYssQERFpDk0eIJs2bTrj+rfeeov169dXO+Xk5+eHn58fAMOGDaNfv35YLBbMZnO101xZWVkEBQUB\nYDabOXDgAL169aK8vJy8vDy6dOnS1IcjIiK1cOo1kKSkJF544QUSExPx9/d3LD969CgVFRUA7N27\nF4vFQt++fenZsycdOnQgJSUFwzBYvnw5EyZMACAmJoZly5YBsHr1asaMGePMQxERafVMhhPP84SG\nhlJaWuroFEaOHMnixYv58MMPefLJJ/H19cXLy4unnnqKq666CrAN450+fTrFxcVceeWVLFq0CLAN\n4506dSqpqal07dqVFStWEBwc7KxDERFp9ZwaIM6UlJTEvffeS0VFBTNmzPCoYb633norn376Kd27\nd4BloNwAAAb2SURBVGfXrl2uLqfBMjMziYuL48iRI5hMJv7whz9wzz33uLqseispKeHiiy/mxIkT\nlJaWMmHChGpDzj1BRUUFF1xwAUFBQXz88ceuLqfBgoOD6dChA97e3vj6+rJ9+3ZXl1Rvx48fZ8aM\nGaSlpWEymVi6dCmRkZGuLqtefvjhB6ZMmeJ4v3fvXp5++una//tt5CAqt1ZeXm7069fPyMjIMEpL\nS43Bgwcb6enpri6r3rZu3Wrs3LnTGDRokKtLaZScnBwjNTXVMAzDyM/PN/r37+9R//8bhmEUFhYa\nhmEYZWVlxogRIxwjAz3FSy+9ZNx4443G+PHjXV1KowQHB582qtJTxMXFGQkJCYZh2P79HD9+3MUV\nNU5FRYXRo0cP48CBA7Vu0yKnMtm+fTshISEEBwfj6+vLlClTSExMdHVZ9TZq1Cg6d+7s6jIarUeP\nHgwZMgSA9u3bM2DAAA4ePOjiqhomICAAgNLSUioqKjxqgEZWVhbr169nxowZHj0S0RNrz8vLY9u2\nbdx6660A+Pj40LFjRxdX1TifffYZ/fr1o3fv3rVu0yIDJDs7u9pBBwUFkZ2d7cKKWq99+/aRmprK\niBEjXF1Kg1itVoYMGUJgYCCXXHIJAwcOdHVJ9TZnzhxeeOEFx027nshkMjF27FguuOAClixZ4upy\n6i0jI4Nu3bpxyy23MGzYMG6//XaKiopcXVajrFixwnGrRW0891/YGZhMJleXIEBBQQHXXff/7d3d\nS1N/AMfxdyEUTKubSZGLwptyZpkrMRDKsAdCm6QXy1mUEKRd1D8Q0YV200UPRnRT9GgX3VQw6EF7\nUhR01oVdKOVwSkmJgUzHqq0L+R0qst929rOj+31eVzvbd/D53uyznXO+31Vy9uxZ0tPTrY6TkPnz\n5/Pq1SuGhoZ4/vz5nNnb6MGDB2RmZpKfnz8nv8H/o62tjZ6eHnw+H01NTbx48cLqSHH5+vUrfr+f\nuro6/H4/NpuN06dPWx0rYZFIhPv371NVVfXHcSlZIMuXLycYDBrHwWDQWD8if8eXL1/Yu3cvXq8X\nt9ttdRzTFi9ezO7du+nq6rI6Slza29u5d+8eq1atwuPx0NLSwv79+62OlbBly5YBYLfbqaiomDMX\n0bOyssjKymLjxo0AVFZW4vf7LU6VOJ/PR0FBAXa7/Y/jUrJAXC4X/f39BAIBIpEId+7coby83OpY\n/xuxWIza2lpycnI4duyY1XES9unTJz5//gzA5OQkjx49Ij8/3+JU8WloaCAYDDIwMEBzczMlJSVc\nu3bN6lgJmZiYYHx8HIBQKMTDhw9Zu3atxanis3TpUhwOB319fcDUdQSn02lxqsTdvn0bj8fzr+P+\n85Xos0FaWhoXLlxgx44dfPv2jdraWtasWWN1rLh5PB6ePXvG6OgoDoeDU6dOcfDgQatjxa2trY0b\nN26Ql5dnfPA2Njayc+dOi5PF5/379xw4cIBoNEo0GqWmpmbOLlSdi6dzR0ZGqKioAKZOCVVXV7N9\n+3aLU8Xv/PnzVFdXE4lEyM7O5sqVK1ZHSkgoFOLx48dxXXtK2XUgIiIys1LyFJaIiMw8FYiIiJii\nAhEREVNUICIiYooKRCRJIyMj7Nu3j+zsbFwuF5s3bzb+elkklalARJIQi8Vwu91s2bKFt2/f0tXV\nRXNz809/hAZTt6OKpBoViEgSWlpaWLBgAYcPHzaeW7FiBUePHuXq1auUl5ezbds2SktLGRsbw+12\ns27dOoqKioyt+k+ePMmZM2eM9+fm5jI4OEggEGD16tV4vV5ycnKoqqpicnLyr89RZDoqEJEk9Pb2\nsmHDhmlf7+np4e7du7S2tnLixAkKCgp4/fo1DQ0NxhYjvy72+/G4r6+P+vp63rx5w6JFi7h48eLM\nTETEBBWISBJ+/fCvr69n/fr1bNq0iXnz5lFaWsqSJUuAqRX6NTU1AGzdupXR0VFjy47pOBwOioqK\nAPB6vbx8+XIGZiFijgpEJAlOp/OnzfKampp48uQJHz9+BMBms/00/ncbP6SlpRGNRo3jcDhsPP6x\noGKx2JzcmkRSlwpEJAklJSWEw2EuXbpkPBcKhX47tri4mJs3bwLw9OlT7HY7GRkZrFy50ighv9/P\nwMCA8Z7BwUE6OjoAuHXrFsXFxTM1FZGEaS8skSR9+PCB48eP09nZid1ux2azceTIESYmJuju7ubc\nuXMAjI2NcejQId69e4fNZuPy5cvk5uYSDofZs2cPw8PDFBYW0tHRgc/nIxqNsmvXLlwuF93d3Tid\nTq5fv87ChQstnrHIFBWIyCwVCAQoKysz7tYSmW10CktkFtM1D5nN9AtERERM0S8QERExRQUiIiKm\nqEBERMQUFYiIiJiiAhEREVNUICIiYsp3apWm2vbvep0AAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now we will test some interactions using anova or f_test" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"interX_lm = ols(\"S ~ C(E) * X + C(M)\", salary_table).fit()\n", | |
"print interX_lm.summary()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: S R-squared: 0.961\n", | |
"Model: OLS Adj. R-squared: 0.955\n", | |
"Method: Least Squares F-statistic: 158.6\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 8.23e-26\n", | |
"Time: 20:52:28 Log-Likelihood: -379.47\n", | |
"No. Observations: 46 AIC: 772.9\n", | |
"Df Residuals: 39 BIC: 785.7\n", | |
"Df Model: 6 \n", | |
"===============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"-------------------------------------------------------------------------------\n", | |
"Intercept 7256.2800 549.494 13.205 0.000 6144.824 8367.736\n", | |
"C(E)[T.2] 4172.5045 674.966 6.182 0.000 2807.256 5537.753\n", | |
"C(E)[T.3] 3946.3649 686.693 5.747 0.000 2557.396 5335.333\n", | |
"C(M)[T.1] 7102.4539 333.442 21.300 0.000 6428.005 7776.903\n", | |
"X 632.2878 53.185 11.888 0.000 524.710 739.865\n", | |
"C(E)[T.2]:X -125.5147 69.863 -1.797 0.080 -266.826 15.796\n", | |
"C(E)[T.3]:X -141.2741 89.281 -1.582 0.122 -321.861 39.313\n", | |
"==============================================================================\n", | |
"Omnibus: 0.432 Durbin-Watson: 2.179\n", | |
"Prob(Omnibus): 0.806 Jarque-Bera (JB): 0.590\n", | |
"Skew: 0.144 Prob(JB): 0.744\n", | |
"Kurtosis: 2.526 Cond. No. 69.7\n", | |
"==============================================================================\n" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Do an ANOVA check" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from statsmodels.stats.api import anova_lm\n", | |
"\n", | |
"table1 = anova_lm(lm, interX_lm)\n", | |
"print table1\n", | |
"\n", | |
"interM_lm = ols(\"S ~ X + C(E)*C(M)\", df=salary_table).fit()\n", | |
"print interM_lm.summary()\n", | |
"\n", | |
"table2 = anova_lm(lm, interM_lm)\n", | |
"print table2" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 41 43280719.492876 0 NaN NaN NaN\n", | |
"1 39 39410679.807560 2 3870039.685316 1.914856 0.160964\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: S R-squared: 0.999\n", | |
"Model: OLS Adj. R-squared: 0.999\n", | |
"Method: Least Squares F-statistic: 5517.\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 1.67e-55\n", | |
"Time: 20:52:28 Log-Likelihood: -298.74\n", | |
"No. Observations: 46 AIC: 611.5\n", | |
"Df Residuals: 39 BIC: 624.3\n", | |
"Df Model: 6 \n", | |
"=======================================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"---------------------------------------------------------------------------------------\n", | |
"Intercept 9472.6854 80.344 117.902 0.000 9310.175 9635.196\n", | |
"C(E)[T.2] 1381.6706 77.319 17.870 0.000 1225.279 1538.063\n", | |
"C(E)[T.3] 1730.7483 105.334 16.431 0.000 1517.690 1943.806\n", | |
"C(M)[T.1] 3981.3769 101.175 39.351 0.000 3776.732 4186.022\n", | |
"C(E)[T.2]:C(M)[T.1] 4902.5231 131.359 37.322 0.000 4636.825 5168.222\n", | |
"C(E)[T.3]:C(M)[T.1] 3066.0351 149.330 20.532 0.000 2763.986 3368.084\n", | |
"X 496.9870 5.566 89.283 0.000 485.728 508.246\n", | |
"==============================================================================\n", | |
"Omnibus: 74.761 Durbin-Watson: 2.244\n", | |
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 1037.873\n", | |
"Skew: -4.103 Prob(JB): 4.25e-226\n", | |
"Kurtosis: 24.776 Cond. No. 79.0\n", | |
"==============================================================================\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 41 43280719.492876 0 NaN NaN NaN\n", | |
"1 39 1178167.864864 2 42102551.628012 696.844466 0\n" | |
] | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The design matrix as a DataFrame" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"interM_lm.model._data._orig_exog[:5]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th>Intercept</th>\n", | |
" <th>C(E)[T.2]</th>\n", | |
" <th>C(E)[T.3]</th>\n", | |
" <th>C(M)[T.1]</th>\n", | |
" <th>C(E)[T.2]:C(M)[T.1]</th>\n", | |
" <th>C(E)[T.3]:C(M)[T.1]</th>\n", | |
" <th>X</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td><strong>0</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>1</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>2</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>3</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td><strong>4</strong></td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 15, | |
"text": [ | |
" Intercept C(E)[T.2] C(E)[T.3] C(M)[T.1] C(E)[T.2]:C(M)[T.1] C(E)[T.3]:C(M)[T.1] X\n", | |
"0 1 0 0 1 0 0 1\n", | |
"1 1 0 1 0 0 0 1\n", | |
"2 1 0 1 1 0 1 1\n", | |
"3 1 1 0 0 0 0 1\n", | |
"4 1 0 1 0 0 0 1" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The design matrix as an ndarray" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"interM_lm.model.exog\n", | |
"interM_lm.model.exog_names" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 16, | |
"text": [ | |
"['Intercept',\n", | |
" 'C(E)[T.2]',\n", | |
" 'C(E)[T.3]',\n", | |
" 'C(M)[T.1]',\n", | |
" 'C(E)[T.2]:C(M)[T.1]',\n", | |
" 'C(E)[T.3]:C(M)[T.1]',\n", | |
" 'X']" | |
] | |
} | |
], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"infl = interM_lm.get_influence()\n", | |
"resid = infl.resid_studentized_internal\n", | |
"plt.figure(figsize=(6,6))\n", | |
"for values, group in factor_groups:\n", | |
" i,j = values\n", | |
" idx = group.index\n", | |
" plt.scatter(X[idx], resid[idx], marker=symbols[j], color=colors[i-1],\n", | |
" s=144, edgecolors='black')\n", | |
"plt.xlabel('X');\n", | |
"plt.ylabel('standardized resids');" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAF6CAYAAAAQzo/AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVGX7B/DvMDAwA+6JGyqKmpgpqKWmFqhYvoq5VVpa\nb1q5lO2mtlKameVramXma5ZWZlmWaZpLYO6aImW+pSkkKYg/wQUHWe/fHzgwAwwzZ5gNzvdzXXNd\nOszMuRnH+/s8zzlzjkZEBEREpDo+ni6AiIg8gwFARKRSDAAiIpViABARqRQDgIhIpRgAREQq5fYA\nSE1NRXR0NG644QZ07NgRCxcudHcJREQEQOPu7wGkp6cjPT0dERERyM7ORteuXfHtt98iPDzcnWUQ\nEame22cAjRs3RkREBAAgKCgI4eHhOHPmjLvLICJSPV9PbjwlJQWJiYno3r17yX0ajcaDFRERVV9K\nF3Q8thM4OzsbI0eOxIIFCxAUFGTxMxHhTQSvvPKKx2vwlhvfC74XfC8qvznCIwGQn5+PESNGYMyY\nMRg6dKgnSiAiUj23B4CIYPz48ejQoQOefPJJd2+eiIiucXsA7Nq1C59++ini4+MRGRmJyMhIbNq0\nyd1lVAtRUVGeLsFr8L0oxfeiFN+LqnH7YaC2aDQah9eziIjUypHeyW8CExGpFAOAiEilGABERCrF\nACAiUikGABGRSjEAiIhUigFARKRSDAAiIpViABARqRQDgIhIpRgAREQqxQAgIlIpBgARkUoxAIiI\nVIoBQESkUgwAqrGKiorw1ltvIS8vz9OlEHklBgDVWGvWrMFzzz2Hjz/+2NOlEHklXhGMaqSioiK0\nur4VTjU7hYbHG+Kf5H+g0+k8XRaRy/CKYETXrFmzBplFmUAUkFMnh7MAogpwBkA1Tsnov8cpoA2A\nU0DDTZwFUM3GGQARzEb/YdfuaMFZAFFFOAOgGqXc6N+EswCq4TgDINUrN/o34SyAqBzOAKjGsDr6\nN+EsgGowzgAIAJCTk+PpEjzC6ujfhLMAIgucAdQwaWlpaHt9W2yP346uXbt6uhy3sTn6N+EsgGoo\nzgAIr81+DTl+OXjuhec8XYpb2Rz9m3AWQFSCM4AaJC0tDa2vb42r46/CsNKAn3/8WTWzgHYd2+Hv\n7L/h28jX5mMLzhWgQWEDnPn7jBsq8x6ZmZmoX7++p8sgF3Gkd9r+3+Jk48aNw4YNGxAcHIzffvvN\n3Zuv0V6b/RqKOhcBdYGc7sWzgG2btnm6LLeY98Y8ZGRk2P34evXqubAa75OUlISu3brit19/Q3h4\nuKfLIS/h9hnAjh07EBQUhPvvv7/CAHDnDCAjIwMajQYNGza0+zk5OTn4+uuvMWbMGBdWplzJ6H/C\nVSAIQAFgWKyuWUB1YzQa8fDEhzHpkUno3bu3S7d1x5A7sHnfZgy5dQi+/epbl26LPKNa7APo06eP\n14y+ht0zDMNHDVf0nMUfLMbYsWOxZ88eF1XlmJLRf9C1O3xLZwHkfYxGI/re3hdr9q3B7YNvx86d\nO122raSkJPy882fIA4Ift/yI//3vfy7bFlUvHtkHkJKSgtjYWKszgFdeeaXk71FRUYiKinJ6Dbt3\n70bMnTEAgG3fb0OPHj1sPicnJwdNWzTFhVYX0CuoF3b+5Lr/tEqUG/2bcBbglUzNPyknCVcHXQWS\nAcM6A35c/6NLZgJ3DLkDW/K3oKhHEbS7tBhcZzBnATVAQkICEhISSv7+6quvKp4BeGUAuKOkXtG9\nsKdW8Si+15Ve2LFth83n/Gf+f/Dyxy/jyp1XYFhswNZ1W9GzZ09Xl2rTpCmT8NHhj5DXv/yFTzT7\nNYgujFbNvgBPSU1NxbKPliHulbhKH1eu+Zvm4CdcEwJJSUnoGd0TOZNzAD8AuUDA+wE4tOcQ9wXU\nMNViCcgb7N69G4ePHIZECCRCcOjXQ9i7d2+lz8nJycHM2TNx5ZYrgBbI6ZmDqS9MdVPF1qWlpeHj\nTz5GXo+Kr3olXQR7f9mLgwcPurkydXnhlRfwatyrlS4NWm3+ABAGGIcYnb4cNO2lacjtnlvc/AHA\nH8i/OR8zXp7htG1Q9aXKAJj6wlTk9MwBtLC7mS/+YDHym+YDjYv/LhGCxN8SPb4voNzaf1k1YF+A\niODZac/ilqhbkJ2d7elyyklJScFXa74C+sPq56jS5m/i5BAwrf0XdS2yuL+wWyH3BRAADwTA6NGj\nccstt+DYsWNo3rw5li9f7tbtm4/+TWzNAixG/yZeMAuwOvpPAWA2E6zOswARwdNTn8biVYtxKPsQ\nbut/m9eFwMuvvYzCLoVATyDxSPlBgV3N38SJIVBu9G/CWQBdo7ovgpnW/qWr5TY0BzVW9wWUrP0P\nv2L5g0J4dF/ApCmTsGzHMuTfll9651kAqwEMBNC29G7NQQ2ig6rXvgBT8//wyw9hHG0E9ID/Rn/c\noLkB27duR1CQtWmP+6SkpCC8UziuTroKGAAcBHpllx4goKj5m6viPoFya/9lcV9AjeNI71RVAJiO\n/DFOMhYv/5i71szLHhFUcuTPyAslyz8W9R7U4JbsWzxyRNCAfw1A0pEki/uyMvKRn9sHPtoENGji\nD41GU/KzBnUb4Pek3y3uqwoRQXp6Opo0aeKU1yv72hbN32D6gXeFwP3j7scXJ79AfvS1EC4EDB8Y\nsPW7rYiIiED0gGjlzd/kWghs3rAZvXr1UvRU8yN/rOERQTULdwLbYLH2X5aVJZ2ya/9leXJfwOYf\nNuPsqbMltw3fbICvjwHAahj01+O9/7xn8fOjvx51avN/avJkhDZvjvXr1zvlNc1fu8LmDwAaIHdg\nLn6X3z2+HGRa+8/vbjYD0wLGHkZMfWEqzpw5g8SDibh6gwPNHwCaA0W1i7Dxx42KnmZt7b8s7gsg\n1QRARWv/ZZXdF1Dh2n9ZXrAvwGTq1Fdx9eoMAAHIzo7D1Kmvoqio8ibgCFPz37ViBb4vLMS4u+92\nWghU2vxNvCQEStb+y9YYUbwvICMjAz/+8CMM3xmAZIUvngcYVhswst9IvBb3mqKnTntpGq62vgpk\nADhdye3/gLzWedwXoGKqWQKytvZfbvtm+wKsrv2X5eF9AQDwyy+/4NZbhyIn5y8AAQAEQUHd8dFH\nU3HXXXc5bTvmzX+L0Yi6APYDGKzX46Mvv8TgwYOr9No2m7/FEzy3HFRu7b8ss30BCQkJGDR0EIxD\njUArO178WvMf3mc4Pln2CXx8lI3T+t3eD6lnUu1+fKuWrfDj+h8VbYO8D/cBWLFnzx70ieqDwiGF\nFS//mCsEtOu0SNiWgNhhsbjU8BI019leNpFkwa3htyJ+c7xzilYoOjoW27ffAZFHze79AS1bPoeT\nJ39V3EQqUlHzN6lqCChu/iVP9EwIlFv7L8tsX0DPnj3tD4EqNn9SLwaAFdu3b8fMuTMhsO91NdDg\nhWdfwJEjR2A0Gu3eTuvWrZ062rZX+dG/ifNmAZU1f5OqhMCMF2dg4YqFypp/SXHXQsDnBuzbsQ++\nvq49ya3N0b9JmSOCbIYAmz9VAQNApSoe/ZtUfRZgT/M3cTQEHn/6cSz7dhmM9xgtM8yuAgH/rf4I\nuxKGxH2JLr/Sl83Rv0mZWQBQSQiw+VMVqTYACgsL8cEHH+Dee+9VdKbRj5YuhUajwYMPPaS0TK9h\nffRvUrVZgJLmb+JICIgIHp74MFZtWaUsBMya/674Xahb154KHXf+/Hk0atwI+lA9tHpb64lAzpkc\nxPSOwfpvS3eSlwsBNn9yAlUGQGFhIe6559/4/vsEhIU1xq5dm+0KgfcWLsRbM2ZAA+DZN97Ao48/\nXoWqPafy0b+JY7MAR5q/iVtCwM3NHyj+vP3000/Izc21+zmhoaHo2LGjxX0lIfAvIwz72fyp6hxa\nPREvo6SkgoICGTFijBgM/QS4IjrdUxIe3k0yMzMrfd67CxZIS4NBkgFJBiTUYJB3Fyyoaulud+DA\nAdHrmwmQI4BUciuSoKCb5Msvv1T0+vPeekvaBwRIVuUvbvW2FxCDn5/8+uuvdm+zqKhIxj8yXgyt\nDILpEMRZub0C8e/lLx0iOkhWVpbSt84qo9Eo0bdHy0MTH5LCwkKnvW5F4uPjRRegkzH/HuPybYmI\nXLhwweXbIM9xpJ1X2wAo2/xNjc5WCJg3f1Ojqq4hEB0dK8DtArxvx+0+adnyBikqKrL79Q8dOiTB\ntWrJNw40/0JAJvr7S89OneTSpUuKfi+bIeDC5t87urcERASIobVBHnzoQbsb8/nz52XNmjWKt3n2\n7Fm3NP9lS5eK1sdHVq5Y4fJtkWc4EgBuvyawM5iWfTZuTIPRuA6lh2JokJc3DydOPINevQaUWw4y\nLfskGI0INXu9UADxRiOiZxR/Iaa6LAf169cbLVokA/jVjkfXQr16/1L0+pGRkdiYkICBUVHA5csY\nZufzigA86u+PpOuvx6YdO1CrVi1F29VoNFj6wVJgIrBqdZnlIBct++Tk5GDAoAE4eOEgrg65CuQD\nq1evBiYA/13y30qXZjIzM9G/Z0+kJCfjyHPP4ZVZs+zebnBwsDPKr9RH//0vXnn8cXxTVIRJEyYA\nAMaMHevy7VI14IIgqhJbJVU88i+/5FF2JlDRyL/szZ6ZwJUrV2Tp0qVO/Z293cGDB+2eCZiP/C9e\nvFil7ZabCbh45K+P1AteNptpzIDNmcD58+clsl07eVankzRAwg0GiXvhBafVVlXLli6VEL1e/rz2\n73MUkKZ6PWcCNZAj7bxaBYB9zb98CMx94w2bzd/eEHjzzbcFgPz888+Kfq/8/HxFj/c29oSAM5u/\niXkI6Hro3Nf87QgB8+ZfdO09SPeiECjb/E03hkDNVKMDQFnzLw0BX9/HxVcTJIcVrF9bC4Hs7Gyp\nU6exAE9K9+797P6dDhw4IFptoHTtdouiNXhvU1kIuKL5mxQVFckjkx6RTt06ubf5VxICFTV/080b\nQsBa82cI1Fw1NgAca/6lIeCHyRIOg2QqDIGWZULgzTffFoPhLgHyxGAItWsWcODAAfHR1hJgtkDT\nUbp07emVITDzxRfl/YULbT6uohBwZfM358z3ze7mX0EInDt3zmrz94YQsNX8GQI1U40NgK1bt4qP\nj06AUwqbv+mWJzq0lFkKnzhDq5WOYWEiYj76/+3aj/9rcxZQ2vzfufacLK8MgbS0NKkbECANg4Ls\nOmLHPATc1fydSXHzNw+BVgapX7+2POPnZ7X5ezIErDX/HYC08IXsYQjUWI4EQLX41knfvn3x5JNP\nIzAwFsD/KXx2AfwwAj2QgWcUPGueVosvg4PxQ3w8AOC99z5Afn4fAKYv9NyP3347gR07yl9BDCj+\nhm73Hn1RVDgTwBPX7q0LyA4cOnQZ3W7qheJ/M8+bO3MmHhBBTGEh3l2wwObju3Tpgo0JCZhYqxYG\n+/mVHO1Tu3Ztl9VYVFSk6LxMlb3O7YNvx8ELB5ETm6PshOj+gHGUEZf8LiG7KB+2ThHYCMVHl62e\nPx+vvvhiFaq2j+lon205OWhndv9OAHf4Aad6AzG+gPmFT8MBbM3JwbQJE/DpypUur5G8jNNjqIqs\nlVRUVCRPPz1dAgM7C3DOzkF8vgQE3CUBfnVljo+P3SP/t7VaCWvSRE6dOiUiFY3+TbeKZwHlR/5l\nb94zE0hLS5N6er2cAeR/gN2zAJHimcD9o0a5fOSfm5srd8bESOsmTeTvv/+u0msVFhbKTb1ukoBu\nAYJXFIz+TbfnIYamkAd87Z9JumMmsH79ernO37/CkX+gHwRjr9V/HyTIykygvr+//Pjjjy6rkVzL\nkXZeLWYAQPGx4W+/PRsTJgxEYGB/2J4JFECvvw8333wZv/6+H0sbNcJ/tLbP3TJPq8Xi4GDE79uH\n5s2bA6ho9G9SfhZQ8ci/LPtmAkajESdPnrRZc1XMnTkT9xcVoQmA9oDdswCgeCbwyapVLh355+Xl\n4e7BgyE7d2JiRgaiu3fHqVOnHH49Hx8fxP8Yj45+HRGwIQB2niD2WjGA4WNgSAawrMD+pzUC8KXR\niFdffx1JSUk2H++I9u3bIyAoCDvMrvhmGvlfGQUg7NqdbYHse8rPBOJ9fFCrdm1cf/31LqmPvJTz\nc6hqbJVk30wgX/T6u+XWW++QnJwcERE5deqUhDVpIvO0WrtH/iKVjf7LzwIqH/m/J8CfimYCz0yZ\nIi2DgyU3N9eJ73Ap89G/qSilswBXMo38h+j1knutvv9otdK6ceMqzwSys7OlW89u9s8EnodoQjQS\n7qeRfDtH/qZbBiA3Ggzy4nPPuXTGd+zYMQlp0ED+q9GUH/mXvZnNBN7z8ZGWDRvKiRMnXFYbuZ4j\n7bzaBYCIrRAo3/xNKguBipq/iPmRP9b+fxcfEfThhx9W0vxPCOArwDC7l4PS09Olnl4vN+v18uGS\nJc55c8t4avJkecLfv9wvda9eL7NnznTJNu1VUfM33dweAs9DDG0NMuyuYXJj69Yyw44dwO5u/ibH\njh2ThrVri66y5m8WAv6+kMZ167L51wCqCQARayFgvfmbVBQC1pq/7dG/6bZUgNoCzLfy83ECTBWg\niQCJVkIgXG69rX/Jtp+ZMkWm+PvLLkBaNmyoaBaQnp5u8zEVjf69ZRZQWfN3ewhca/6jxoySgoIC\nOXfunHQKC7MrBNzd/EVEduzYIfo6etvN3ywEDHUMsmfPHrfUR66jqgAQKRsC6Tabv4kpBN728ZG3\nfHwqbP4i9oz+S2cBQLBAc4cAhRWM/hsIkHktICqaBRwToIHcPWqUiJSO/v+59oABgYF2zwI+/fRT\n0fho5LVZr1X6OGujf0/PAuxp/m4LgTLN38SeEPBU8w+sG2h/8zcLgaC6QQyBak51ASBSGgK+voF2\nNX+T48ePi15XT/S6evLXX3+V+3leXp7Urh0svr6DRKd7XDSYKL6YIDqzmxYTxMdnkuh0j4tW21U0\nmjoCnwfKhMA4AV6+9mdjBbOA4uZ/59BhJds2jf5ND7J3FvDpp5+Kvl7x6M/Q2GA1BCob/XtyFqCk\n+bs8BKw0f5PKQsATzf/AgQOONf8yIZCYmOiWesn5VBkAIsUhsG7dOrub/9WrV6Vfv1jR64eKXj9U\n+vWLLddcCwoK5MMPP5R33nlHxo8fL810OpkPyDtmt9cBMfj6yssvvyzvvPOOLF26VHT+9cxCwHz0\nb+oP5rOA8s2/7OjfdLM1Cyhp/pOv/Yd+xnoI2Br9e2IW4Ejzd1UI+Hfzr7T5m1QUAp5o/iIiu3fv\nFkMdg+BBBwPgAUhg3UDZv3+/22om51JtAChR2vyHCZArQK7o9cMqDAGR4nCJaNNGvrPSfGb4+cmE\nBx4oeXxycrJZCDxoNvo33UyzgO/KNX8Ry9H/EmhkKPSSY2MWUK75x1kPAXtG/56YBTxw110yMCBA\ncfM33d7UaqV1kyZ2DwKsyc7Olu59ust9D9xXafM3MQ8BTzV/ky1btoihrgMhcK35JyQkuL1mch4G\ngA3lm7+pf1gPgbVr10pkUJDVtd5zgNQPCJCUlJSS5yQnJ4ufrrYU7xjOrOBp8wSoW675m4/+F0Mj\nBjSQAMRIFAySY2UWYLX5WwmBBQsWiFajkWC93q6bRqORzz//3EX/IqU+eO89aWkwyAkHmn8OIP8y\nGOTu2FinNF6lr2EKgev8/DzW/E0UhwCbf41RbQJg48aNcv3110ubNm1kzpw5lgW5KACsN3/rIWBr\n9G9tFiAiMmTIPQLMsPKUK+LjU7/ceqtp9G9q/sBxAfJFj0ESBYP8VGYWYLP5VxACBQUFkp6erujm\njitWiZRes0FJCJia/12DB3v0lNvnzp2TVatWefyb3SIKQoDNv0apFgFQUFAgYWFhkpycLHl5edK5\nc2c5evRoaUEuCADbzb/iELA1+rc2Czhx4oQEBJRd+7e8+fj8RwYMKL/2/4ZF8zc9vjQE+hkM8uGS\nJfY3fyszAWfIysqSlStXOrXpKQkBb2n+3shmCLD51ziO9E7NtSe6zZ49e/Dqq69i06ZNAIA5c+YA\nAKZPnw7AwSvbVyI3NxeDBt2F3bt9kZPzBQCdjWfkQa8fhVtuKcC5lKPoe+IEYsx+KgDSATQp86xF\nWi1a3HcflnzyCe69dzy++ioEBQWvVrIdI/T6MOzevRERERF49vHHcfD9JdhfWAtG7AXQpszjC6DH\nULRHPP4O0iDHrwg5o3MAJVcUvAwYPjNg+mPT8dILLyl4YnkXLlxAr6heOH7iOB5+8GG8u+BdaDS2\nTo9mH9OlO38yGtHaymOuAhhhMCCwb198vnYtfH19nbLt6iA/Px85OTk2T8GxdetW3HnXnTAOMwIt\nzX6QDAR+F4gN327Abbfd5tpiyW0c6Z1u/19z+vTpknPsAEBISAj27dtn8Zi4uLiSP0dFRSEqKsqh\nbSlv/gCgQ07OF9i9exSCDHn4X48e+PPa9WBFBL//fRKpaWfRqU0bNGtY2n01AOrUqYOTJ09i7drv\nUFBw3MZ2DMjNfQ7Tpr2GFSsWY8F7i6EpqoP8Cps/APgiB9/iNwxFQXY88IjC5g8AtQDjfUa8Pu91\ntGrZCmPGjFH4AsVMzf+vwL+Q/2g+Pl71MQA4LQRM12TuayUE1Nz8AWDKlGdx4EAifvlle6Xvd//+\n/fHdV99ZhgCbf42RkJCAhISEKr2G2//n2NMgzAOgKu68czR279YqaP4mumvPuQeauj74YePXEBFM\nmjIJP6clAeOA42tP49mXXsbYMhfXnjhxCgoL/VG79kM2t1JUZMTmzZswZ04oBPVRgF2ouPmb+KIA\n3wIYBnwZDzx2RfG/oOaEBoF+gbj55puVPfEa8+afF5MHaADjaKPbQkDtzf/MmTP45JOV0GjqID4+\nHn379q308RYhcLMRgfvZ/GuKsoPjV1+tbMWhYm7/39OsWTOkpqaW/D01NRUhISEu2ZbBYIBG838A\nihx4dhE0mhwYDA1Lmv/KDSthHGUEAoCc0TmY8OQEALAIgSeemIyYmKhyr3bo0CGEhoaifv36Fvdv\n2dIKS5Z8hcIiW83fxBfAWmguDgPejYcoCAHNYQ3q7a6H3T/vRrt27Ww/oYyKmj8AQO+eEGgKdTd/\nAHjttTdRVPQg8vIi8OyzcTh4MNrme20KgdFjR2PNt2vY/KmUM3dC2CM/P19at24tycnJkpub69Kd\nwPn5+RIbe7cYDLcLkKPgyMIcMRhulyFD7pG8vDyZ8OgEMYQaBNPL7Eh7FKKvr5cVNq6mtOT996We\nTidtmjaVf/75p+T+pUs/EoOheZkdvvbe8kWjGSyauoF2XdVKM1Qj9YPryx9//OHQe5mVlSUdOncQ\n3S066ydOmwYxtDDI5CmTXbJjOEavV/UO39OnT0tAQD0B0gTIl8DAtrJt2za7n+8NRyiR6zjSO91+\nPQBfX1+8++67uP3229GhQwfcc889CA8Pd9m2vvnmM/TrVwcGw1AULyDYchUGw1D0718Xa9asxJSn\npliM/C00LJ0JrLRyNaUPFy/GrGeewf68PDx89iyibr4Zp0+fBgDs23cIQGsATR357aDR9IXmsga+\nCZWPhM1H/o6c793qyF9geVkG00zgu4/x2BOPOW1n/qOPP44Zb72F0BEjVDvyB0pH/0BjAL64cuUl\nPPtsnN3vs7N20lPN4fajgGxx9Cig3Nxc+Pv7V/izgoICDB9+H7Ztuwij8VuU7+QmCpq/uXOAfpUe\nS95ZYrEcZGr+P+XklCzuzNVqsbRRIyTs34/GjRvjnnsewMaNZ2E0fgfAYPfv6+PzLq67bh42bPgK\nd917F043P438W/PLPc5lzR8AkgB85wM8WQSYH5CSAxhWGfDvO//ttOWgCxcuICMjw6GlK6WWLFmG\n1q1bICYmxvaD3eTMmTMIC+uIq1ePojgAAKAAgYEdsG7dBzb3BVDN50jvrDZXBKtMZmYmGjcOwe7d\nuyv8uX0zAQebP1DhTKCi5g8AzxUWlswE0tPTsXr1Jxg4sBEMhjsB2HfNW1Pz37cvHt26dcO+nfvQ\nLLUZ/H72s3icS5t/EYAtgYB0B7aX2cHugpnAY489i6iof6GgQMGluByQmZmJJ598BuPGTUFhYaFL\nt6WE5ejfRPksgMhcjQiAuXPn4/LlQDz7bJzVx1QeAlVo/iZmIfDgvx+osPmbVCUEzJt/aGgoACA4\nOLhcCFS1+QPAm3PfxF/nKmj+APAbgLz2gHwDJGmBS2V+rgeMQ41Y/N5i7N27F1Vx8uRJfP31Wly8\n2BArV35apdeyZe7c+QBG4sKFBli9erVLt2Uv05E/eXlTK/jpaBw7lo74+Hi310XVX7VfAsrMzERI\nSBvk5OxFQEB/bN26Cr169bL6+PLLQShp/l9//Snef/99PDfrOeSOz7W/+ZvLAPAB8FURMNLGQ5Uu\nB1XU/C02nZGB7r274x/ff1D7fO0qNX8AuHjxInr37Y3juuPIvT23NASKAPwnEMheDyAK0D4GRCwF\nYvNKn2wsXgZ6+K6HMf/t+VVaBhoz5iGsXt0EBQUxaNx4HFJT/3DJfoDMzEw0b94WRuMvAP5CSMgU\npKT8Dq0d15J2pYkTn8Dy5b7Iy5tn5RErERm5FAcPVv69gJpoz549uHDhAgYOHOjpUjzOoeVzJ+2A\ndhqlJT366JMCjLl2ZMwS6dixh83nmB8dZDrax3RkybFjx6RBowaiuVOj/JS6r0DQGRLuB7lk5+E8\nb2q1JUcHFRQUyIgR94nB0F+AK2VOHbFIgoNDJTk5udLf7ezZszJs5DCHj/Yp68KFC9KxS0fx7+Ff\nevTPMAh0Xc3qSxP46gVPX/v5cxBDc4M88fQTVT7ypPi0GvUFOC+ASFBQX/noo+VO+d3KmjbtRQkI\neOja71QkQUG3yGeffeaSbdnL8sgf60eEKT0iqCaIj4+X6wwGCdbrZfUXX3i6HI9zpJ1X6wA4cuSI\naDR6AU6WnMsHaCgffPCBzedmZGRIrTrBUqtOIzl37pzFzxwKAbPmf1HhMZ22QsDe5u8qphDw6eoj\neAmCoEAB4i1/De2jgq46wXMQ/6b+Tmn+IiL33TdefH1fNNvWdmncOMyuQ0HT0tLk/tGj7bpOwPnz\n58VgqG9VQmaRAAAgAElEQVT2WRIBNktIyPV2nRbaVSZMeFx0uqft+BitkMjIPqo51NPU/H8C5DAg\njRgC6gqA06dPS1DtegKf+8r8R1giPtrasnv3bqvPzczMlPDO4aLrpRP/Xv4S3jlcsrKyLB6jKASu\nNf8wB5q/6TbE11dGDR8uImIRAj4+b3u0+ZscPHhQtDqNaFuWHf1bzgJ0dSH16tZyStMsO/o33eyZ\nBaSlpUl4y5Zyh6+vXReLsRz9m26enQWcPn1afH31AqwTYL+N227R6RqoYhZg3vxN/1gMARUFwOnT\np6VJ8yYCn4AyI7ZrswBtQwkICqgwBMybP14pbt5VCoFXIP7d/aVZaFNpqddLigPNf5GPj4QGB1s0\neVMIBAe39HjzFxG5f+RImaHRiC8qGP2X3B6VjtDJTYGBsnr16ipvs/zo375ZgKn5v+rnJwLbVwyr\nePTv+VnA7t275frru0nbtvbfli//2O11ulNFzZ8hUEwVAXD69GlpFtpMNKE6gW/Z0X/pLADXBUpg\n3UCLECjX/M2buCMhcK35d76ps1y8eFEW/Oc/0spgUBQCFTV/k7Nnz8rOnTud8r5WxcWLF0Xr4yP1\ndTrRoKLRf+ksQAO91PXzk+iePau0TWujf1uzgLLN33SrLAQqHv17xyyASlXW/BkCKggAU/PXRmsF\nfhWN/s1mAX4NBQNQEgJWm7+jIVCm+ZsoCYHKmn96erq0bNNSdAadfP/99057fx31119/ScOGoZWM\n/otvfn5Pyd13j5X/+7//q9L2rI/+rc8CrDX/ykKg8tG/52cBnpaXl+cV+xXsaf5qD4EaHQCm5u87\nwFfQ27eS0b/ZLCAkUDAGYqhtkNC2odabv9IQsNL8TewJAXuav19fP8HDEH0dvcdD4JNPPpGgoNvs\nmNSkSUBAPYtzHilla/Rf0SzAVvO3FgKVj/7VPQtIT0+X0LahMnjoYMnLy/NYHUqav5pDoMYGQHp6\nemnznwYbo/8ys4D7ILgOgptQefNXEAJ+YX5Wm79JZSFgd/M31eThEMjPz5cmTdoI8KwA39i8abW3\nycMPP+bw9myP/i1nAampqXY1/7IhkJSUZMfoX52zAFPz943yFUMHgwwe6pmT8DnS/NUaAo4EQLX4\nIlhSUhJ69O6Bq3ddBY77AntigMLFdrzacsDvbaDrFeB2lP82qzUC+G/1R+vs1tidsBt169Yt+dHx\n48cx5605mP/2fJtXZFo4fz7eefFFxBuNJRdketfHB/Ouuw7x+/aV+zLX2bNn0b13d5xpcab8eX1O\nA/ov9fjy0y8xePBgO38R5zAajRg9ejwuX7bnZHrFbrmlC2bNUn7VseTkZLRp0w5FRW8BqG/z8b6+\nM9Cwdi4mXr6El/PLnwvJmvlaLWbpDbiYIwgKusmOZwguXfoZ33+/DoMGDbJ7O9XR2bNn0aNPj9Lz\nSxUAhm8M6NuuL9Z+5d6T8UW0b4/b//wTbzr4/EUAXqtTBxlZWTX+S3KOfBGsWgQAAGzbtg1DRg6B\nMagIOK8F8gEUaAHUQfnOfhnwyQcggG8BMDUX8Cv3kpUTQLdJhw7SAYn7Eh36XQDLEPje0eZv4sEQ\ncJfjx4/j+ednobDQ9sfy6tVc7EhIwKDcTHxRpPwcQTN9fLC4Th385/33ERxs3+XVunfvjsDAQMXb\nqi7KNX8TD4XA0aNH0b9XL8y9eBFjFLaqzQDGBAbim02b0Lt3b9cU6EVqdAAAxSEQOyIWOSEFwLFQ\nIH8PgAYVPLIA8B0JBGwBdEbgISg50Waxa6cymHzvZLw15y2FT7a0cP58zJoxA4F16jje/E1shICI\nYOPGjYiJiYGfn9LUq142btyIe4cOxcG8PKvXDq7MaQBd/P2xaMUK3H333c4ur9qx2vxNqlEIqK35\nAyo4G2jfvn3xr/5Dgd9bVdL8AcAXKFgDZMegdmET6D/X23uizWLXmv/EURMx9425Va778aeewpJV\nq7D9wIGqNX8AaAbk3J2Du8fcjfXr11v8SEQw9YknMHLIENw7bBjyFSyJVEcDBw7E62+/jb4GA04q\nfO5pANEGA55+6SU2f9jR/AHAFzAON+KnYz9h2F3DXH5mVpMOHTpg665deK5OHXxqxzKOGpu/o6pN\nAIgInnlmBjZu/B+A3bDe/E18AaxBft5tqC8h9oeAWfN/+823nbZuOGzYMLRo0cLiPsXN36SCEDA1\n//hly3CisBDG+HhVhMDkKVPw3Jw5ikLA1PzHP/88pr3wgivLqxbsav4mXh4CbP7KVIslIFPzX7Lk\nRxiNW2G7+ZsrgF4/FvXrH0Sm5h/k3JtjfTnIRc3fmoGDB2LLqS0oHOHgeef/ALRrtDiXcQ6vv/IK\n4pctwxajEfVRevF0Q3Q0Pl+7tsYvB72/aBHmTp9ucQH5irD5W1LU/M154XKQ2pt/jd0HsG3bNgwY\n8C8UFf0FoLkDr1oAna4Dut0cjMN/J8I42lg+BNzc/AEgMTERt/W/DZf7XwY6KHzyZcDwmQHTH5uO\ni2fPWTR/E4aAJTZ/S3l5ebi+4/X4J+QfFNzmwEi+ANCv0ePOm+7EqhWrnF+gFRWFgNqbP1CD9wFE\nRUVh5MhRMBgegLLFfAAQ+Ps/i7CwOli/7ntMuGcCDKsMli/jgeYPAJGRkdi+dTtqba0FHFXwRDua\nP1B8OYOvjUYuB4HNvyK+vr5o06YN/M75AY5MQnMAzQUNOnfs7PTaKlN2OYjN33HVYgYAAIWFhbj3\n3nFYs+YYioq2wb7DegTAZLRvfwB79mxF3bp1i5eTnnsGS1YvKZ4JwDPN35yimYCdzd+c2mcCbP7W\n5eXlYdDQQdiVugs5w3IAe699Y/Y5fOkF5d/3cAbTTCA/Px9r2fxr7hKQSWFhIUaNehA//PAPjMb1\nqDwEBP7+T6FVq50lzb/kJ2YhAMCjzd/ErhBwoPmbqDUEPjUaMY7Nv1KKQ8ALmr/JiRMnkJ2djc6d\n3TsL8UY1PgCA0pnA+vWplYRAcfNv3XoXdu/eYtH8Sx4hghdefgEajQazXp3lFd8SrDQEqtD8TdQY\nAo8+/jjmzJrF5m+D3SHgRc2fLKkiAABbIWC7+XuzCkPg2n+6GVNmIKJTBO4ZOhQnCwvRyIHXvwqg\nnU6HZ+bOxRNPPOHEyr3TqVOnyh1+SxWzGQJs/l5NNQEAWAuB6t38TSxCoHlp83/x+ReRl5eHe2Jj\nUbRjB77KyYFOwesKgCn+/vilbVv8uHMn6tSp46pfgaopqyHA5u/1VHdR+IKCArn77vvFYIgWIFv8\n/Z+Q8PBu5c7iWR0dOnRIatWvJQENAmTm6zMtfpabmytDBwyQIXq95Np5ZsQiQB7195fuHTvKhQsX\nPPRbUXWQm5sr/Qf2F31HffE1oJ+BGBob5LVZr3m6NKqEI+282s4ATEwzgW+/3YqwsKbVeuRfVlJS\nEhITE/Hvf/+73M+UzAQ48ielSmYCf++CJlPDkX81oKolIHOFhYX48MMPMXr06BrT/O1hTwiw+ZOj\n8vLyMPr+0bipy02Y/tx0T5dDNqg2ANSsshBg8ydSD6//JvBXX32FG264AVqtFocOHXLnpmssnU6H\n1d9/D58+fXCXXo+8a/ez+RORLW4NgBtvvBFr167Frbfe6s7N1nhlQyAXbP5EZJtbA6B9+/Zo166d\nOzepGuYhcL1Ox+ZPRDZVi5PBkX1MIfD47Nls/kRkk9NP4h0TE4P09PRy98+ePRuxsbF2vUZcXFzJ\nn6OiohAVFeWk6mo+nU6Hp595xtNlEJGLJSQkICEhoUqv4ZGjgKKjozFv3jx06dKlfEE8CoiISDGv\nPwrIHJs8EZFnuTUA1q5di+bNm2Pv3r0YNGgQBg4c6M7NExGRGX4RjIioBqhWS0BERORZDAAiIpVi\nABARqZTNAMjOzkZhYSEA4M8//8S6deuQn5/v8sKIiMi1bO4E7tKlC3bu3ImsrCz06tULN910E3Q6\nHT777DPXFMSdwEREirlkJ7CIwGAw4JtvvsHkyZPx1Vdf4ciRIw4XSURE3sGufQB79uzBZ599hkGD\nBgEAioqKXFoUERG5ns0AeOedd/DGG29g2LBhuOGGG3DixAlER0e7ozYiInIhfhGMiKgGcKR3Wj0b\nqPmZO8u+sEajwbp16xwokYiIvIXVAHjm2imF165di/T0dIwZMwYiglWrVqFRo0ZuK5CIiFzD5hJQ\n165dcfDgQZv3Oa0gLgERESnmksNAjUYjTpw4UfL3kydPwmg0Kq+OiIi8is0rgs2fPx/R0dFo1aoV\nACAlJQUffvihywsjIiLXsusooKtXr+KPP/6ARqNB+/bt4e/v77qCuARERKSYI73TagBs27YN/fr1\nw9dff23xwhqNBgAwfPjwKpZrpSAGABGRYk49DPTnn39Gv3798P3335c0fXOuCgAiInIPfhGMiKgG\ncMlRQAsWLMClS5cgIhg/fjy6dOmCH3/80eEiiYjIO9gMgGXLlqF27drYvHkzMjMzsWLFCkyfPt0d\ntRERkQvZdTpoANiwYQPGjh2Ljh07urwoIiJyPZsB0LVrVwwYMAA//PAD7rjjDly6dAk+PrySJBFR\ndWdzJ3BhYSGSkpLQunVr1K1bF+fPn8fp06fRqVMn1xTEncBERIq5ZCewRqPB77//joULFwIArly5\ngqtXrzpWIREReQ2bM4CJEydCq9Vi27Zt+OOPP5CZmYkBAwbgl19+cU1BnAEQESnm1C+Cmezbtw+J\niYmIjIwEANSvXx/5+fmOVUhERF7D5hKQTqdDYWFhyd/PnTvHncBERDWAzU4+ZcoUDBs2DBkZGXj+\n+efRq1cvzJgxwx21ERGRC1W6D6CoqAh79uxB/fr1sW3bNgBAv379EB4e7tDGpk6divXr10On0yEs\nLAzLly9HnTp1LAviPgAiIsWcejZQk4iICBw+fLhKhZls2bIF/fr1g4+PT8m3iefMmWNZEAOAiEgx\nlxwG2r9/f6xZs8YpTTkmJqZk/0H37t3xzz//VPk1iYjIMTZnAEFBQTAajdBqtQgICCh+kkaDS5cu\nVWnDsbGxGD16NO69917LgjgDICJSzCWHgWZnZyt6wZiYGKSnp5e7f/bs2YiNjQUAvP7669DpdOWa\nv0lcXFzJn6OiohAVFaWoBiKimi4hIQEJCQlVeg23Xw/g448/xtKlS7Ft27aSGYVFQZwBEBEp5pIZ\ngDNt2rQJb731FrZv315h8yciIvdx6wygbdu2yMvLQ/369QEAPXv2xPvvv29ZEGcARESKOfUw0MzM\nzEqfaGrizsYAICJSzqkBEBoaWvKCp06dQr169QAAWVlZaNmyJZKTk6tecUUFMQCIiBRz6vcAUlJS\nkJycjJiYGKxfvx7nz5/H+fPnsWHDBsTExFS5WCIi8iyb+wA6duyII0eO2LzPaQVxBkBEpJhLjgJq\n2rQpZs2ahTFjxkBE8Pnnn6NZs2YOF0lERN7B5qkgVq1ahYyMDAwbNgzDhw9HRkYGVq1a5Y7aiIjI\nhew+DPTKlSsIDAx0dT1cAiIicoBLTga3e/dudOjQAe3btwcAJCUlYfLkyY5VSEREXsNmADz55JPY\ntGkTrrvuOgBA586dsX37dpcXRkRErmXXtR1btGhh8XdfX7eeQYKIiFzAZidv0aIFdu3aBQDIy8vD\nwoULHb4iGBEReQ+bO4HPnTuHJ554Alu3boWIYMCAAVi4cCEaNGjgmoK4E5iISDGXXBIyNTUVzZs3\nt7gvPT0djRs3Vl6hPQUxAIiIFHPJUUCtWrXCqFGjYDQaS+4bOHCg8uqIiMir2AyAG2+8EX369EGv\nXr3w119/uaMmIiJyA7sO53n00UcRERGB2NhYzJ0719U1ERGRG9h9PGevXr3w008/4a677sIff/zh\nypqIiMgNbO4ETktLQ5MmTUr+XlBQgN27d+PWW291TUHcCUxEpJhTzwa6cuVKjB07Fp9//nmFG3JV\nABARkXtYDQDTUT+XL1+GRqMpuV9ELP5ORETVk1svCm8PLgERESnn1CWgKVOmVPjCptH/woULHamR\niIi8hNXvAXTt2hVdu3ZFbm4uDh06hHbt2qFt27ZITExEXl6eO2skIiIXsLkE1L17d+zcuRN+fn4A\ngPz8fPTu3Rv79u1zTUFcAiIiUswlp4K4cOECLl26VPL3y5cv48KFC8qrIyIir2Lzi2DTp09Hly5d\nEB0dDRHB9u3bERcX54bSiIjIlSpdAioqKsKePXvQunVr7Nu3DxqNBjfffLPFF8OcXhCXgIiIFHPJ\n6aAjIiJw+PDhKhWmBAOAiEg5l+wD6N+/P9asWcOmTERUw9icAQQFBcFoNEKr1SIgIKD4SRqNxY5h\npxbEGQARkWIuWQJyppdeegnr1q2DRqNBgwYN8PHHH5e72hgDgIhIOZcFQFZWFo4fP46rV6+W3OfI\nyeAuX76MWrVqAQAWLVqEpKQk/Pe//7UsiAFARKSYU08FYbJ06VIsXLgQqampiIyMxN69e9GzZ0/8\n9NNPigs0NX8AyM7OxnXXXaf4NYiIyDlsBsCCBQtw4MAB9OzZE/Hx8fjjjz8wY8YMhzf4wgsvYOXK\nlTAYDNi7d2+FjzH/nkFUVBSioqIc3h4RUU2UkJCAhISEKr2GzSWgbt264ZdffkFERAT27t2LgIAA\ndOjQAUePHq3w8TExMUhPTy93/+zZsxEbG1vy9zlz5uDPP//E8uXLLQviEhARkWIuWQJq3rw5srKy\nMHToUMTExKBevXoIDQ21+vgtW7bYteF7770X//rXv+wulIiInEvRUUAJCQm4dOkS7rjjDuh0OsUb\nO378ONq2bQugeCfw/v37sXLlSsuCOAMgIlLMqUcBZWZmVvrE+vXrK9oQAIwcORJ//vkntFotwsLC\nsHjxYgQHB1sWxAAgIlLMqQEQGhpa8oKnTp1CvXr1ABQfEtqyZUskJydXveKKCmIAEBEp5tRTQaSk\npCA5ORkxMTFYv349zp8/j/Pnz2PDhg2IiYmpcrFERORZNvcBdOzYEUeOHLF5n9MK4gyAiEgxlxwF\n1LRpU8yaNQtjxoyBiODzzz9Hs2bNHC6SiIi8g82zga5atQoZGRkYNmwYhg8fjoyMDKxatcodtRER\nkQu59WRw9uASEBGRci5ZAvrzzz/x9ttvIyUlBQUFBSUbcuRcQERE5D1szgA6deqESZMmoUuXLtBq\ntcVP0mjQtWtX1xTEGQARkWIuOR10165dcfDgwSoVpgQDgIhIOZcEQFxcHBo2bIjhw4fD39+/5H5H\nvglsV0EMACIixVwSAKZvBJfFbwITEXkPr78kpD0YAEREyrnkKCAAOHLkCI4ePWpxScj7779fWXVE\nRORV7NoHsH37dvz+++8YNGgQNm7ciN69e2PNmjWuKYgzACIixZx6MjiTNWvWYOvWrWjSpAmWL1+O\npKQkXLhwweEiiYjIO9gMAL1eD61WC19fX1y8eBHBwcFITU11R21ERORCNvcBdOvWDVlZWXj44YfR\nrVs3BAYG4pZbbnFHbURE5EKKjgJKTk7GpUuX0LlzZ9cVxH0ARESKuWQfQL9+/Ur+3KpVK3Tu3Nni\nPiIiqp6sLgHl5OTAaDTi3LlzFtcHvnTpEk6fPu2W4oiIyHWsBsCSJUuwYMECnDlzxuLEb7Vq1cJj\njz3mluKIiMh1bO4DWLRoEaZMmeKuergPgIjIAS7ZB9CoUSNcvnwZADBz5kwMHz4chw4dcqxCIiLy\nGjYDYObMmahVqxZ27tyJbdu2Ydy4cZg4caI7aiMiIheyGQCmi8CsX78eDz/8MAYPHoz8/HyXF0ZE\nRK5lMwCaNWuGRx55BKtXr8agQYNw9epVFBUVuaM2IiJyIZs7ga9cuYJNmzahU6dOaNu2LdLS0vDb\nb79hwIABrimIO4GJiBTj9QCIiFTKJUcBERFRzeSRAJg3bx58fHwsvmFMRETu5fYASE1NxZYtW9Cy\nZUt3b5qIiMy4PQCefvppzJ07192bJSKiMuy6JrCzfPfddwgJCUGnTp0qfVxcXFzJn6OiohAVFeXa\nwoiIqpmEhAQkJCRU6TWcfhRQTEwM0tPTy93/+uuvY/bs2di8eTNq166NVq1a4ZdffkGDBg0sC+JR\nQEREinn1YaBHjhxBv379YDAYAAD//PMPmjVrhv379yM4OLi0IAYAEZFiXh0AZbVq1QoHDx5E/fr1\nLQtiABARKVatvgeg0Wg8tWkiIgK/CUxEVCNUqxkAERF5FgOAiEilGABERCrFACAiUikGABGRSjEA\niIhUigFARKRSDAAiIpViABARqRQDgIhIpRgAREQqxQAgIlIpBgARkUoxAIiIVIoBQESkUgwAIiKV\nYgAQEakUA4CISKUYAEREKsUAICJSKQYAEZFKMQCIiFSKAUBEpFIMACIilWIAEBGpFAOAiEilGABE\nRCrFACAiUim3BkBcXBxCQkIQGRmJyMhIbNq0yZ2bJyIiM77u3JhGo8HTTz+Np59+2p2bJSKiCrh9\nCUhE3L1JIiKqgFtnAACwaNEirFixAt26dcO8efNQt27dco+Ji4sr+XNUVBSioqLcVyARUTWQkJCA\nhISEKr2GRpw8JI+JiUF6enq5+19//XX06NEDDRs2BAC89NJLSEtLw7JlyywL0mg4SyAiUsiR3un0\nALBXSkoKYmNj8dtvv1kWxAAgIlLMkd7p1n0AaWlpJX9eu3YtbrzxRndunoiIzLh1H8C0adNw+PBh\naDQatGrVCkuWLHHn5omIyIzHloCs4RIQEZFyXr8ERERE3oMBQESkUgwAIiKVYgAQEakUA4CISKUY\nAEREKsUAICJSKQYAEZFKMQCIiFSKAUBEpFIMACIilWIAEBGpFAOAiEilGABERCrFACAiUikGABGR\nSjEAiIhUigFA1UJ2djZSUlI8XQZRjcIAoGphylNT0KdvHxQWFnq6FKIagwFAXu/UqVP4YvUXyCzM\nxBdffOHpcohqDF4Unrzegw8/iM+OfYb80Hw029EMfx//G1qt1tNlEXkVXhSeahzT6D+/ez7QCrio\nvchZAJGTcAZAXq1k9N83v/iOk+AsgKgCnAFQjWIx+jfhLIDIaTgDIK9VbvRvwlkAUTmcAVCNUeHo\n34SzACKn4AyAvJLV0b8JZwFEFjgDoBqh0tG/CWcBRFXm9gBYtGgRwsPD0bFjR0ybNs3dm6dq4JWZ\nr6AwshAIrORBGiD7lmxMe2kavx1M5CBfd24sPj4e69atw6+//go/Pz+cO3fOnZunauDUqVNY+clK\nFN5eCBy1/fiMrAysWrUKY8aMcX1xRDWMWwNg8eLFmDFjBvz8/AAADRs2dOfmqRowGo3of0d/FBYV\nAlfseEIvQOvHfQBEjnDrTuDIyEjceeed2LRpEwICAvD222+jW7dulgVxJzARkWKO9E6nzwBiYmKQ\nnp5e7v7XX38dBQUFyMrKwt69e3HgwAHcfffdOHnyZLnHxsXFlfw5KioKUVFRzi6TiKhaS0hIQEJC\nQpVew60zgIEDB2L69Om47bbbAABt2rTBvn370KBBg9KCOAMgIlLM6w8DHTp0KH766ScAwLFjx5CX\nl2fR/ImIyH3cuhN43LhxGDduHG688UbodDqsWLHCnZsnIiIz/CYwEVEN4PVLQERE5D0YAEREKsUA\nICJSKQYAEZFKMQCIiFSKAUBEpFIMACIilWIAEBGpFAOAiEilGABERCrFACAiUikGABGRSjEAiIhU\nigFARKRSDAAiIpViABARqRQDgIhIpRgAREQqxQAgIlIpBgARkUoxAIiIVIoBQESkUgwAIiKVYgAQ\nEakUA4CISKUYAEREKsUAICJSKQYAEZFKuTUARo0ahcjISERGRqJVq1aIjIx05+arnYSEBE+X4DX4\nXpTie1GK70XVuDUAvvjiCyQmJiIxMREjRozAiBEj3Ln5aocf7lJ8L0rxvSjF96JqfD2xURHBl19+\nifj4eE9snoiI4KF9ADt27ECjRo0QFhbmic0TEREAjYiIM18wJiYG6enp5e6fPXs2YmNjAQCTJk1C\nu3bt8NRTT5UvSKNxZjlERKqhtJ07PQBsKSgoQEhICA4dOoSmTZu6c9NERGTG7UtAW7duRXh4OJs/\nEZGHuT0AVq9ejdGjR7t7s0REVIbbA2D58uV45JFHKvzZpk2b0L59e7Rt2xZvvvmmmyvzLqGhoejU\nqRMiIyNx8803e7octxo3bhwaNWqEG2+8seS+zMxMxMTEoF27dhgwYAAuXLjgwQrdp6L3Ii4uDiEh\nISXfqdm0aZMHK3Sf1NRUREdH44YbbkDHjh2xcOFCAOr8bFh7LxR/NsRLFBQUSFhYmCQnJ0teXp50\n7txZjh496umyPCY0NFTOnz/v6TI84ueff5ZDhw5Jx44dS+6bOnWqvPnmmyIiMmfOHJk2bZqnynOr\nit6LuLg4mTdvnger8oy0tDRJTEwUEZHLly9Lu3bt5OjRo6r8bFh7L5R+NrzmVBD79+9HmzZtEBoa\nCj8/P4waNQrfffedp8vyKHHv/nmv0adPH9SrV8/ivnXr1uGBBx4AADzwwAP49ttvPVGa21X0XgDq\n/Gw0btwYERERAICgoCCEh4fj9OnTqvxsWHsvAGWfDa8JgNOnT6N58+Ylfw8JCSn5hdRIo9Ggf//+\n6NatG5YuXerpcjzu7NmzaNSoEQCgUaNGOHv2rIcr8qxFixahc+fOGD9+vCqWPMpKSUlBYmIiunfv\nrvrPhum96NGjBwBlnw2vCQAe/29p165dSExMxMaNG/Hee+9hx44dni7Ja2g0GlV/XiZNmoTk5GQc\nPnwYTZo0wTPPPOPpktwqOzsbI0aMwIIFC1CrVi2Ln6nts5GdnY2RI0diwYIFCAoKUvzZ8JoAaNas\nGVJTU0v+npqaipCQEA9W5FlNmjQBADRs2BDDhg3D/v37PVyRZzVq1KjkC4ZpaWkIDg72cEWeExwc\nXNLoHnroIVV9NvLz8zFixAiMHTsWQ4cOBaDez4bpvRgzZkzJe6H0s+E1AdCtWzccP34cKSkpyMvL\nwwBzC5UAAAIdSURBVOrVqzFkyBBPl+URRqMRly9fBgBcuXIFmzdvtjgKRI2GDBmCTz75BADwySef\nlHzg1SgtLa3kz2vXrlXNZ0NEMH78eHTo0AFPPvlkyf1q/GxYey8UfzZcsIPaYT/88IO0a9dOwsLC\nZPbs2Z4ux2NOnjwpnTt3ls6dO8sNN9yguvdi1KhR0qRJE/Hz85OQkBD56KOP5Pz589KvXz9p27at\nxMTESFZWlqfLdIuy78WyZctk7NixcuONN0qnTp3kzjvvlPT0dE+X6RY7duwQjUYjnTt3loiICImI\niJCNGzeq8rNR0Xvxww8/KP5suP1UEERE5B28ZgmIiIjciwFARKRSDAAiIpViABARqRQDgMiG1NRU\ntG7dGllZWQCArKwstG7dGqdOnfJwZURVwwAgsqF58+aYNGkSpk+fDgCYPn06JkyYgBYtWni4MqKq\n4WGgRHYoKChA165d8eCDD2LZsmU4fPgwtFqtp8siqhJfTxdAVB34+vpi7ty5GDhwILZs2cLmTzUC\nl4CI7LRx40Y0bdoUv/32m6dLIXIKBgCRHQ4fPoytW7diz549mD9/fsnJx4iqMwYAkQ0igkmTJmHB\nggVo3rw5pk6dimeffdbTZRFVGQOAyIalS5ciNDQU/fr1AwBMnjwZ//vf/3iNBqr2eBQQEZFKcQZA\nRKRSDAAiIpViABARqRQDgIhIpRgAREQqxQAgIlIpBgARkUr9P4n0nMp4CCDbAAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looks like one observation is an outlier." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"drop_idx = abs(resid).argmax()\n", | |
"print drop_idx # zero-based index\n", | |
"idx = salary_table.index.drop(drop_idx)\n", | |
"\n", | |
"lm32 = ols('S ~ C(E) + X + C(M)', df=salary_table, subset=idx).fit()\n", | |
"\n", | |
"print lm32.summary()\n", | |
"\n", | |
"interX_lm32 = ols('S ~ C(E) * X + C(M)', df=salary_table, subset=idx).fit()\n", | |
"\n", | |
"print interX_lm32.summary()\n", | |
"\n", | |
"table3 = anova_lm(lm32, interX_lm32)\n", | |
"print table3\n", | |
"\n", | |
"interM_lm32 = ols('S ~ X + C(E) * C(M)', df=salary_table, subset=idx).fit()\n", | |
"\n", | |
"table4 = anova_lm(lm32, interM_lm32)\n", | |
"print table4" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"32\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: S R-squared: 0.955\n", | |
"Model: OLS Adj. R-squared: 0.950\n", | |
"Method: Least Squares F-statistic: 211.7\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 2.45e-26\n", | |
"Time: 20:52:29 Log-Likelihood: -373.79\n", | |
"No. Observations: 45 AIC: 757.6\n", | |
"Df Residuals: 40 BIC: 766.6\n", | |
"Df Model: 4 \n", | |
"==============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"------------------------------------------------------------------------------\n", | |
"Intercept 8044.7518 392.781 20.482 0.000 7250.911 8838.592\n", | |
"C(E)[T.2] 3129.5286 370.470 8.447 0.000 2380.780 3878.277\n", | |
"C(E)[T.3] 2999.4451 416.712 7.198 0.000 2157.238 3841.652\n", | |
"C(M)[T.1] 6866.9856 323.991 21.195 0.000 6212.175 7521.796\n", | |
"X 545.7855 30.912 17.656 0.000 483.311 608.260\n", | |
"==============================================================================\n", | |
"Omnibus: 2.511 Durbin-Watson: 2.265\n", | |
"Prob(Omnibus): 0.285 Jarque-Bera (JB): 1.400\n", | |
"Skew: -0.044 Prob(JB): 0.496\n", | |
"Kurtosis: 2.140 Cond. No. 33.1\n", | |
"==============================================================================\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: S R-squared: 0.959\n", | |
"Model: OLS Adj. R-squared: 0.952\n", | |
"Method: Least Squares F-statistic: 147.7\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 8.97e-25\n", | |
"Time: 20:52:29 Log-Likelihood: -371.70\n", | |
"No. Observations: 45 AIC: 757.4\n", | |
"Df Residuals: 38 BIC: 770.0\n", | |
"Df Model: 6 \n", | |
"===============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"-------------------------------------------------------------------------------\n", | |
"Intercept 7266.0887 558.872 13.001 0.000 6134.711 8397.466\n", | |
"C(E)[T.2] 4162.0846 685.728 6.070 0.000 2773.900 5550.269\n", | |
"C(E)[T.3] 3940.4359 696.067 5.661 0.000 2531.322 5349.549\n", | |
"C(M)[T.1] 7088.6387 345.587 20.512 0.000 6389.035 7788.243\n", | |
"X 631.6892 53.950 11.709 0.000 522.473 740.905\n", | |
"C(E)[T.2]:X -125.5009 70.744 -1.774 0.084 -268.714 17.712\n", | |
"C(E)[T.3]:X -139.8410 90.728 -1.541 0.132 -323.511 43.829\n", | |
"==============================================================================\n", | |
"Omnibus: 0.617 Durbin-Watson: 2.194\n", | |
"Prob(Omnibus): 0.734 Jarque-Bera (JB): 0.728\n", | |
"Skew: 0.162 Prob(JB): 0.695\n", | |
"Kurtosis: 2.468 Cond. No. 68.7\n", | |
"==============================================================================" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 40 43209096.482552 0 NaN NaN NaN\n", | |
"1 38 39374237.269069 2 3834859.213482 1.850508 0.171042\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 40 43209096.482552 0 NaN NaN NaN\n", | |
"1 38 171188.119937 2 43037908.362615 4776.734853 0\n" | |
] | |
} | |
], | |
"prompt_number": 18 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" Replot the residuals" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"try:\n", | |
" resid = interM_lm32.get_influence().summary_frame()['standard_resid']\n", | |
"except:\n", | |
" resid = interM_lm32.get_influence().summary_frame()['standard_resid']\n", | |
"\n", | |
"plt.figure(figsize=(6,6))\n", | |
"for values, group in factor_groups:\n", | |
" i,j = values\n", | |
" idx = group.index\n", | |
" plt.scatter(X[idx], resid[idx], marker=symbols[j], color=colors[i-1],\n", | |
" s=144, edgecolors='black')\n", | |
"plt.xlabel('X[~[32]]');\n", | |
"plt.ylabel('standardized resids');" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAF8CAYAAADRtfwUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGXax/HvpJFMQlVpAYn0HggIIoKJEoosCMiuwoIo\niKjUtbyK60pYkAVFBURFUVlUiiuKIITQQyeoFKXXSAgQOiGZkDbP+wdMSJlMy/S5P9c1l2TmOefc\njMP8cp/nFI1SSiGEEEKUws/VBQghhHBvEhRCCCFMkqAQQghhkgSFEEIIkyQohBBCmCRBIYQQwiSn\nB0VKSgoxMTE0a9aM5s2bM2vWrBJjEhMTqVixIq1bt6Z169ZMnjzZ2WUKIYS4LcDZGwwMDOTDDz+k\nVatWZGRk0KZNG2JjY2nSpEmRcQ8//DDLly93dnlCCCGKcXpHUb16dVq1agVAWFgYTZo04ezZsyXG\nyXmAQgjhHpzeURSWnJzMnj17aN++fZHnNRoN27dvJzIykvDwcKZPn07Tpk1LjBFCCGE9q38RVy5y\n48YN1aZNG7V06dISr6Wnp6vMzEyllFLx8fGqQYMGJca4sHS3M2HCBFeX4DbkvbhD3os75L24w5bv\nTpcc9ZSbm8sTTzzBoEGD6NOnT4nXy5cvj1arBaBHjx7k5uZy5coVZ5cphBACF8xRKKUYNmwYTZs2\nZdy4cUbHpKWlFbRGu3btQilFlSpVnFmmEEKI25w+R7Ft2za+/fZbWrZsSevWrQGYMmUKp0+fBmDE\niBEsWbKETz/9lICAALRaLYsXL3Z2mR4lOjra1SW4DXkv7pD34g55L8pGo5RnHl6k0WjkyCghhLCS\nLd+dcma2EEIIkyQohBBCmCRBIYQQwiQJCiGEECZJUAghhDBJgkIIIYRJEhRCCCFMkqAQQghhkgSF\nEEIIkyQohBBCmCRBIYQQwiQJCiGEECZJUAghhDBJgkIIIYRJEhRCCCFMkqAQQghhkgSFEEIIkyQo\nhBBCmCRBIYQQwiQJCiGEECZJUAjh5g4fPsz8+fNdXYbwYQGuLkAIUbqDBw/SMbojN/Nvknw6mQn/\nmuDqkoQPkqAQwk0ZQuJ6p+uo+xTvfvougISFcDoJCiHcUJGQaKkA0A3USVgIl5A5CiHcjLGQAKD8\nnbCYOGmi6woUPkeCQgg3UmpIGEhYCBeQoBDCTZgNCQMJC+FkEhRCuAGLQ8JAwkI4kdODIiUlhZiY\nGJo1a0bz5s2ZNWuW0XFjxoyhQYMGREZGsmfPHidXKYTzWB0SBhIWwkk0SikrPplld/78ec6fP0+r\nVq3IyMigTZs2/PTTTzRp0qRgTHx8PLNnzyY+Pp6kpCTGjh3Lzp07ixau0eDk0oVwiMefeJz4w/Hk\n/TUPNDas4Dj4LfLj3NlzVK1a1e71Ce9iy3en0zuK6tWr06pVKwDCwsJo0qQJZ8+eLTJm+fLlDBky\nBID27dtz7do10tLSnF2qV8vNzSUzM9PVZQhg7qdzqZVbi8DNgWDt7z5pELIihAXfLpCQEA7j0vMo\nkpOT2bNnD+3bty/yfGpqKrVr1y74uVatWpw5c4Zq1aoVGRcXF1fw5+joaKKjox1Zrld54YVxHD16\ngi1bElxdis+rWrUqSVuTaP9Qe1I3p5LbOdeyziINQhaF8NWnX/HUU085vE7hmRITE0lMTCzTOlwW\nFBkZGfTv35+ZM2cSFhZW4vXirZFGU/JfTuGgEJZLSUlh4cLFaDRatm/fzoMPPujqknye1WEhISEs\nVPyX6IkTrZ/PcslRT7m5uTzxxBMMGjSIPn36lHg9PDyclJSUgp/PnDlDeHi4M0v0ahMm/If8/OHc\nvPkvXntNJkHdhSEsws+Em94NJSEhnMzpQaGUYtiwYTRt2pRx48YZHdO7d2++/vprAHbu3EmlSpVK\n7HYStklJSWHRou/IzX0FpZ5h797DbN++3dVlidvMhoWEhHABpx/1tHXrVjp37kzLli0LdidNmTKF\n06dPAzBixAgARo0aRUJCAqGhocybN4+oqKiihctRTzYZOvQlvv22Arm5UwHQaD6nQ4cf2LZttYsr\nE4VduHDh1m6oWoV2Q0lICDuw5bvT6UFhLxIU1ktJSaFhw1bcvHkYuOf2szlotQ1Yu3aRzFW4mSJh\n0ThXQkLYhUccHitcxzA3cSckAILIyvqnzFW4ocK7oYLmB0lICJeRjsJHGO8mDLyjq1BK8cMPP9C9\ne3ejR9J5qkuXLnHkyBE6duzo6lKEF5COQpTKeDdh4PldhVKKl197mQFDBvBw7MNkZGS4uiS7ufvu\nuyUkhEtJR+EDTHcTBp7bVRhC4vP/fY7uKR3lNpWjmV8zNq3d5FWdhRD2IB2FMMp0N2HgmV1FkZAY\noINQyO6RzQH9Aa/rLIRwFekovFxKSgp16zYiL28ZpoMCIIfAwG4kJq70iK6iREhoC78I5VZJZyFE\ncbZ8d8o9s73ciRMnqFOnIfn5r1k0XqOpw8mTp9w+KEyGBIDmdmex6lZnIWEhhO2koxAex2xIFBks\nnYUQhckchfB6VoUE3OksZM5CCJtJUAiPYXVIGEhYCFEmEhTCY2zbto2ZM2ai62dFSBhoILt7NvuT\n9/Puu+86pD4hvJXMUQiPoZRi+AvDWbR2EbondRBszcJQbl056mbUZXvidipVquSwOoVwZzJHIbya\nRqNh7py5DIgdgPY7Ldy0cEEJCSHKRIJCeBSrw0JCQogyk6AQDrdjxw5SU1Pttj6Lw0JCQgi7kKAQ\nDrVs2TIei4mhU5s2/Pnnn3Zbr9mwkJAQwm4kKITDLFu2jOcHDGBtdjZjLl0ipn1754SFhIQQdiVB\nIRzCEBIrs7JoC4zLz3daWEhICGFfcnissLviIVHYDH9/Zt19NxuTkqhTp47dtmk4dPbrxV9T/776\nEhJClELumS1czlRIGDgyLObPn0+fPn0kJIQohQSFcClLQsLAUWEhhDBNTrgTLmNNSIDj5iyEEPYn\nQSHKzNqQMJCwEMIzyK4nUSYZGRncVbkyC/Ly6G/jOp7x8+N8p04kJCbaszQhhBGy60k4XVhYGDNm\nzOCVkBBO2rD8EiAhLIxpM2fauzQhhJ3IrVBFmb04ciQAMa+9xsasLOpauNwSYFSFCqzevJnIyEiH\n1SeEKBsJCmEX1oaFhIQQnkOCQtiNpWEhISGEZ3H6HMXQoUOpVq0aLVq0MPp6YmIiFStWpHXr1rRu\n3ZrJkyc7uUJRFi+OHMkb771HTClzFhISQngep3cUzz77LKNHj+bpp58udczDDz/M8uXLnViVsKfS\nOgsJCSE8k9ODolOnTiQnJ5scI4e9er7iYbEbCQkhPJXbzVFoNBq2b99OZGQk4eHhTJ8+naZNmxod\nGxcXV/Dn6OhooqOjnVOksIghLB569VX0QUESEkK4QGJiIollPEfJJSfcJScn06tXL/74448Sr924\ncQN/f3+0Wi2rVq1i7NixHD16tMQ4OeHOcyxZsoRGjRqVOi8lhHAerzjhrnz58mi1WgB69OhBbm4u\nV65ccXFVoiz69+8vISGEB3O7oEhLSytIu127dqGUokqVKi6uSgghfJfT5ygGDBjApk2buHTpErVr\n12bixInk5uYCMGLECJYsWcKnn35KQEAAWq2WxYsXO7tEIYQQhchFAYUQwod4xRyFu1FKsWHDBgkl\nIYTPkqAwQSnFqOHD6REby+jhwyUshBA+SYKiFIaQ2L1oEcf1en5btEjCQgjhkyQojCgcEgk6HbWB\nBJ1OwkII4ZMkKIopHhIVbz9fEQkLIYRvkqAopLSQMJCwEEL4IgmK28yFhIGEhRDC10hQYHlIGEhY\nCCF8ic8HhbUhYSBhIYTwFT5/Zva3337L2KFDOZGbSyUblr8G1AsMZOZXXzFo0KAy1yOEEI5ky3en\nzwdFRkYGPR5+mMYHDvBZdrZVLZYeeD44mKNNmxK/aRNhYWFlrkcIIRxJLuFhg7CwMFZt2sThZs0Y\nUa4ceguXk5AQQvgKnwqKs2fPGr1ZkrVhISEhhPAlPhMUp0+fpk2bTrRvH83mzZtLvG5pWEhICCF8\njU8ExenTp2nfPoaLF8eQlfU9jz3W36awkJAQQvgirw+KwiGRnz8WeITMzMVWh4WEhBDCV3l1UJQM\nCQPrwiIPCQkhhO/y2sNjSw+JwjYQGvoU8fFL6Ny5c4lXDYfOpu3fT/XmzSUkhBAeT86juM2ykDAw\nHxYzZ8xg7LhxEhJCCI8nQYG1IWFgOiyEEMJb+PwJd7aFBJibsxBCCF/mVR1Fu3YP89tvTdHrP7Vx\nrf8lJGQM165dIigoqOxFCiGEm/H5juL99ycTEvIDsM6GpU8SEjKB996bJiEhhBCFeFVQdOrUiVWr\nfiA0dCDWhcVJQkJieO+9Nxg58kW71LJ48f/49ddf7bIuIYRwJa/a9WSwZcsWevR4gszMhUAXM2uy\nf0hcu3aNmjUjqFevCb//vh2NRmOX9QohRFn5/K4nA8s7C/uHBMD06TNRqjenTqWzZs0au61XCCFc\nwSs7CgPTnYVjQuLatWvUqlWfzMydwG80bz5DugohhNuQjqKY0jsLx4QE3Oom9PpeQH2gv3QVQgiP\n5/SgGDp0KNWqVaNFixaljhkzZgwNGjQgMjKSPXv2lGl7JcPCcSFx7do1Zsz4iKysf95+xp/MzLd5\n9dU4uae2EMJjOT0onn32WRISEkp9PT4+nuPHj3Ps2DE+//xzXnyx7F/mhcMiOLizQ0ICincTBtJV\nCCE8m9ODolOnTlSuXLnU15cvX86QIUMAaN++PdeuXSMtLc0u2123bjlffTXdISFRspswkK7CG8XH\nx1OnXh1+//13V5cihMO53RxFamoqtWvXLvi5Vq1anDlzxi7rfuCBBxgw4Cm7rKs4492EgXQV3iQ+\nPp7+A/tz+t7TdHqkk4SF8HoBri7AmOK/eZd2xFBcXFzBn6Ojo4mOjnZgVaW7003sLGXEna6ia9eu\ncgSUBzOERNZfs6AWpN+dTqdHOrFlwxZatmzp6vKEKCExMZHExMQyrcPtgiI8PJyUlJSCn8+cOUN4\neLjRsYWDwpVMdxMG/Tl16t+sWbOGbt26Oas0YUfFQwKA5pCOhIVwX8V/iZ44caLV63C7XU+9e/fm\n66+/BmDnzp1UqlSJatWqubiq0pU+N1GczFV4MqMhYdAc0mPSZTeU8FpO7ygGDBjApk2buHTpErVr\n12bixInk5uYCMGLECB577DHi4+OpX78+oaGhzJs3z9klWuWzz+aSna2nfPm3zI5VKp/9+3eyZcsW\nue+FBzEZEgbSWQgv5tVnZjvDiRMn+OWXX6xapnv37lSqVMlBFQl7sigkCtsPFTZWKDUs/jtvHm3v\nv5/mzZvbv1ghLCB3uBPCjqwOCYNSwmLKv//NnP/8h9xy5Vi9ebN0HcIl5BIeQtjJhg0bbAsJKDJn\ncfToUeBWSMyfNo2dN28y4/p1unXu7HbzGUopXh01ivEvvyy/hIki3O6oJyHcQX5+PmgAfxtXEHDr\ni1ev1xeExEadjprAkwC3w8JdOgulFCOfe449ixeTB9y8eZMPPv5YDuUWgAUdRUZGxq1/NMCRI0dY\nvnx5weSzEN4qNjaWhfMWEvJdCJyzcuHDUH5NeRLXJvLj//5XJCQMngS36SwKh8RqnY41Oh1b58/n\n5ZEjpbMQgAVzFFFRUWzdupWrV6/SsWNH7r//foKCgliwYIGzajRK5iiEM/z0008MfHYgWU9mQQ0L\nFigUEgkrVhgNicK+A8ZVrOiyzqJ4SFS4/fxVoKtWy0NDhkhn4WUcMkehlEKr1fLjjz/y0ksv8f33\n37N//36bixSlO3bsGO++9y56vd7VpYjb+vTpY3lnYWVIgGs7i9JCAqAySGchClg0mb1jxw4WLFhA\nz549AeSLzAGOHTvGA50e4O333+bZ4c/Ke+xEmZmZpKenl/q6RWFhQ0gYuCIsTIWEgYSFKKDMSExM\nVL169VJTp05VSil1/PhxNXr0aHOLOZwFpXuMo0ePqirVqijN4xrFeJS2nlY9PfRplZ+f7+rSfMLj\n/R9XD3d52Oy4pUuXqpBKIYoRKOIKPZ5Cla9SXv3222/qnYkTVUOtVqWCUlY+FoOqXrGi2rdvn0P/\nvnq9Xr04dKh6QKtV1y2o6wqotlqtGvfii0qv1zu0NuF4tnx3ynkULmboJK4+cBXV+vbfJxu0/9PS\n/+H+zJs7Dz8/OYrZUQ4dOkSbB9ug8dewMX4j7dq1Mzm+xJxFoU6iTp06VK9alaV6PX+xsZ7+/v6o\n7t35YcUKG9dgmrKgkzBG5iy8h11PuOvVq1epK9ZoNCxfvtzGMu3DG4LCaEgYSFg4RZ+/9mFF+gr0\ngXo6Z3cmcW2i2WUKwqJtFuV33wqJqKgoAJYuXcoLf/87q7KyiLKylrjAQL4PD2djUhJVq1a1/i9j\ngTHPP88vCxZYFRIGhrB4eOhQpn/0kSPKE05g18nsV155hVdeeYW6desSEhLC888/z/DhwwkLC6Nu\n3bplLtbXmQwJgHKg+5uOJZuWyJyFgxw6dIg169aQ3zYf1Vrxy55f2LVrl9nlDHMW1Q5VKxISAH37\n9mXOggX0CAlhtxW1OCMkAPbt3k2L/HzCbFi2ItAsP599v/1m77KEmzO766lNmzb8VuyDYew5Z/Pk\njsJsSBTmRp2FXq9n+fLlPP74416x68HQTeQ/eOs8Ic0vGou7CnOs6SycFRIA6enpdO/UiVZHjjA7\nO9viSzPogeeDgznWrBkrExMJC7MlaoQ7cMjhsTqdjhMnThT8fPLkSXQ6nfXVCcDKkAC36iyWLFlC\n3759y3wTFHdQuJswsKarMMfSzsKZIQFQoUIFErZsYW+jRowqVw5LPk0SEsJsR5GQkMDzzz/Pfffd\nB0BycjKff/65y2++44kdhdUhUZiLOwu9Xk+L++4j6vRpTkdFkfjrrx7dVRTvJgzs2VWA6c7C2SFR\nmKWdhYSE93HY1WNv3rzJ4cOH0Wg0NG7cmHLlytlcpL14YlC8NOolvoz/kpzBOcZ7uWvAUeB+bl1n\nqLhU0Hyp4fChwzRs2NChtRb3v//9jw+GDWNrRgZNQ0P57OefiYmJcWoN9mI40inrpSwIKvZiHmg/\n1Vp0BJSljIWFK0PCwFxYSEh4J7sGxfr163n00Uf54YcfiqzY8Ftkv379ylhu2XhiUGRmZvJI90f4\n/ebv3HzsZtGwuAbMDYGbFaH1FeiZUzQsLkLIohA+m/EZgwcPdmrdhm7i/dOn6Q58A3zhwV1Fad2E\ngb27CigaFsvdICQMSgsLCQnvZdc5is2bNwPw888/8/PPP7NixQpWrFhR8LOwXmhoKBsSNtAyuCXB\n8cEU7CA2hITuHcg/CPvqwcogMPy/dGFIwK25ifJXrmDY2TgAOHfkiEfOVRibmyjOnnMVBoY5i+ig\nILcJCTA+ZyEhIYqTE+5coEhn8eBN+PJ2SKh/3B5xFQI7QuQJaJdDyGLXhUTxbsLAU7sKc92EgSO6\nCoCkpCTq1avH3Xffbdf1lpWhs4g8coRcjUZCwos55KinmTNnkp6ejlKKYcOGERUVxerVq20uUtzp\nLBrRCD7RFgsJgMqQuw321sP/Sy1zPpzjkpCAkt2EgSd2FYcOHWLF8hXk35MPf2Lyoe5SbNu6za5d\nBUD79u3dLiTgTmexr1EjCQlRgtkbF3355ZeMHTuW1atXc+XKFb7++msGDx7s8qOePN3Fixc5++c1\nyHsHGGdkRGXI20aA/yPs3LmHwYMHO/03d71ez8TXXuP9jIwSc+sBwL8yM4l79VWiPaSrOHv2LM0i\nm6E/YtkhxpoWGtLS0hxclfuoUKECm3/7DY1Gg7+/rXdsEt7IbFAYWpSVK1cyePBguSm8HSQnJ9O+\nfQyXL78CjDYxsjLZ2RuYP78r8DIff/yBU7+QS+smDAYAk253FZ5wBNSjjz7Kvl37XF2GWwsIkJte\nipLMzlE888wznD17lpMnT/L777+Tl5dHTEyMnJltI0NIXLr0Mnq9qZAo7CpabVeGDHnIaWFR2txE\ncZ46VyGEr3LIeRT5+fns27ePunXrUqlSJS5fvkxqaqrL7/PriUFhW0gYODcsDOdN7DCy26mwPPD4\n8yqE8CUOCQq9Xs+CBQs4deoUb7/9NqdPn+b8+fN2OxnJVu4eFFMmTKB5mzb07t274LkRI0Yyb94f\n5OZuwvgZdeb8BtzP4cOHaNSokb1KNap5RAT1//yT9haM3Qjktm3Lxl9+cWhNQoiyc0hQvPDCC/j7\n+7N+/XoOHz7MlStX6Nq1K7/++muZii0rdw6KlJQUmtavT/W77uLQ6dMF+33T09N56KFuHD3amuzs\nj7EuLE6g1T7C9On/5MUXn3dI3YW9O3UqV69csXh8eK1ajBozxoEVCSHswSFB0bp1a/bs2VPwX4DI\nyEj27XPtpKA7B8XIYcMI++YbdpYrx7CPP+bpp58ueM22sHBuSAghvJdDzqMICgoiP//OyUkXL16U\nm+iYkJKSwuKFC3k1N5e4jAwmvfEGeXl5Ba9XqFCBrVtX07DhHsqVG8md069LIyEhhHAts9/4o0eP\npm/fvly4cIE333yTjh07Mn78eGfU5pGmxsUxPD+fe4BooOaNGyxcuLDIGMvDQkJCCOF6Jnc96fV6\nduzYQZUqVVi/fj1w61j0Jk2alGmjCQkJjBs3jvz8fJ577jlef/31Iq8nJiby+OOPF9xJ74knnuCt\nt94qWrgb7npKSUmhVcOGHL55k3tuP7cReL5GjSJzFQbGd0Op2/+VkBBC2J9N353KjMjISHNDrJKX\nl6fq1aunTp06pXJyclRkZKQ6ePBgkTEbN25UvXr1MrkeC0p3upeGDlWvBwYqBQUPPajOYWFq/vz5\nRpe5fv26atHiAVWu3IsKViqIVHBYabX3qk8++czJfwMhhLez5bvT7K6nLl26sGTJErv99r5r1y7q\n169PREQEgYGBPPXUUyxbtsxYgNlle85imJt4JTe3yPMaMDpXYWDYDdWgwW7geeAcQUEdpZMQQrgN\ns0ExZ84c/va3vxEUFET58uUpX748FSpUsHmDqamp1K5du+DnWrVqkZqaWmSMRqNh+/btREZG8thj\nj3Hw4EGbt+cshecmiovG+FyFQYUKFXjrrX/g56cFFhISEszw4UMt3vaff/7p0lukCiG8m9kLu2Rk\nZNh1g5acURwVFUVKSgparZZVq1bRp08fjh49WmJcXFxcwZ+jo6OJjo62Y6WWM3QTh4t1EwaGruL5\nN95g4MCBJeYqlFK8/fa76PVTgUfIz6/HokWLLLpi7KVLl2jepAmzP/mEIc88U/a/jAfLyclhyuTJ\nDBs+vMgvI0L4ssTExLJf5dne+7/M2bFjh+rWrVvBz1OmTFFTp041uUxERIS6fPlykedcUHqpjM1N\nFH+YmqtYvny5CgtrqSD/9vANqmbNBio3N9fstse/+qpqFxCg6lWvbtF4b5Wdna36dO2qmgcFqXo1\naqjTp0+7uiQh3JIt351O/7bNzc1VdevWVadOnVLZ2dlGJ7PPnz+v9Hq9UkqppKQkVadOnRLrcZeg\nOH36tKoSHKwumAgJw2MDqPo1ahT5Qtfr9aphwygFPxQaqldhYZ3V119/bXLbFy9eVFW0WpUMKjos\nTP133jwH/23dkyEkeoeEqGxQ7/v7S1gIUQqPCAqllIqPj1cNGzZU9erVU1OmTFFKKTVnzhw1Z84c\npZRSs2fPVs2aNVORkZGqQ4cOaseOHSXW4S5BEff220obEKCaVqhg9tGkfHkFqFWrVhUsX7KbUBZ3\nFeNffVWNCA5WCtRG8MmuonhIGN5ACQshjLPlu7PU8yiumLnOT5UqVcq2z6uM3OU8ioyMDP7880+r\nlmncuDH+/v4opWjcuC1Hj/4T6FdslCIsLJpPPnnO6FzFpUuXaFSnDrt1Ourcfi4mLIxnPvrIZ+Yq\ncnJyeLJXL/RbtvB9VhZBxV7/wN+fT6pWZWNSksxZWGjBwgUEBATw5N+edHUpwkHseh5FnTp1VERE\nhKpTp47SaDSqSpUqqkqVKkqj0aiIiAhbw8xuTJTuMUrvJsx3FYW7CcPDl7qK0jqJ4g/pLCz3+dzP\nVchdISqkSkip5/0Iz2fLd6fZJZ577jm1cuXKgp/j4+PV8OHDrd6QvXl6UBifmyj+MD5XUXhuovhC\nvjBXYWlISFhYzhASjEYxCgkLL+aQoGjWrJlFzzmbpweF+W6i9K7CWDfhK12FtSEhYWFekZCIu/2Q\nsPBatnx3mj3hrmbNmkyePJnk5GROnTrFO++8Q3h4uNX7xcQdSilefTWOjIxXAB2QYeLRlmvX7mLR\nokXArbmJzz75hPE3bxpddzRQOyODBd9+6/C/h7OZm5Mw5eX8fF66cIGY9u1JSUlxWI2eZu4Xcxn7\nxliyBmbBXYVeuBuyBmbxwj9e4Ouvv3ZZfcI9mA2KRYsWceHCBfr27Uu/fv24cOFCwZeWsM3Zs2c5\ne/YkQUEvERRU3cyjBnl5fxAff+uijB9Mm8Zf9fqCCWxjJmRkMGn8eKOXDPFku3fvZuW6dbxrZUgY\njMzPp9yVK8yfN8/utXmiUkPCQMJC3Gb2xkUGmZmZhIaGOroei7nLUU/OZOxIp9J46xFQH8+axXvj\nx7NRp+M+K5bLBvpptYTGxLBg6VICAwMdVaJHMBsShV2CkIUhzPlwTpGbcAnP5JAbF23fvp2mTZvS\nuHFjAPbt28dLL71kW4WiTD6YNo1mOTkcBlabeXTy0q5i5JgxvPaf/xCj1XLKwmUkJIqyKiRAOgth\n/lpP48aNIyEhgccffxy4dRvUTZs2ObwwUVJQQAAhUVF8YOH4puXLk5mZScWKFR1al7ONvH1v7hgL\nOgsJiaKsDgmDQmGhlGLIkCEOq1G4H7O7ntq1a8euXbvkntnC7ZjbDSUhUdK9de8l9b5U9J1tu9qw\n3wY/ItIiOHH4hJ0rE87ikF1P9957L9u2bQNuHXUyffr0Mt/hTgh7MLUbSkLCuPWr11P5YGU0u81f\nxbk4v1/8uOv4Xaxbtc4BlQl3ZrajuHjxImPHjmXdunUopejatSuzZs3irrus6VvtTzoKYVC8s5CQ\nMO3YsWOnS1TqAAAgAElEQVR06NyBK+2uoKIs+zfk94sfd+25i6StSdx3nzWHEQh3Y8t3p9mgSElJ\nKXGdnPPnz1O9enXrK7QjCYqymfvlXE6cOsHUyVNdXYpdGMIiQafjFQkJs6wJCwkJ7+KQoAgICKB/\n//589dVXaLVagCLzFa4iQWE7nU5HzTo1uZl1k+OHj1OrVi1Xl2QXH8+axbh//IO+PXpISFjAkrCQ\nkPA+DpmjaNGiBZ06daJjx44cP37c5uKE+/h0zqfkhueiohRxk+NcXY7djBwzhm07dkhIWKhBgwbs\n2LyDKruqGJ2zkJAQBmaDAmDkyJHMnj2bXr168fPPPzu6JuFAOp2OSf+ZhO5BHTkP5LBg4QLOnDnj\n6rLspl27dhISVigtLCQkRGEWBQVAx44d2bBhA9OmTePw4cOOrEk4kKGboBoQCvpWeq/qKoT1ioeF\nhIQozuwcxblz56hRo0bBz3l5eWzfvp3OnTs7vDhTZI7Ceoa5iet/vX4rKAAyIXhOMMcOHvOauQph\nG8OchZ+fn4SEF7Plu7PUM7O/+eYbBg8ezMKFC41uyNVBIaxXpJswKNRVfDHnC1eVJtxAgwYN2Pfr\nPvz9/V1+VKNwL6XuetLpdADcuHGDjIyMgseNGze4ceOG0woU9lF4bqI4b5yrELYJDw+XkBAlWHz1\nWHcju56s8/4H7/P212+j61syKACC1gcxuOlg6SqE8HJ2PY9i9OjRRles0dw6MmLWrFm21mkXEhSW\nMzo3UZzMVQjhE+x6HkWbNm1o06YN2dnZ7N69m4YNG9KgQQP27NlDTk5OmYsVzvPpnE+5We1m6SEB\nEAq5LXLlCCghRAlmdz21b9+erVu3Fhybnpuby0MPPURSUpJTCiyNdBSW0el03FPzHnQDdaaDAiAT\nAmYHcOroKekqhPBSdj3qyeDatWukp6cXXATwxo0bXLt2zbYKhdNNnDgR3XUdfA2Yu2Cogrybebz4\n0ov8vFxOrBRC3GI2KN544w2ioqKIiYlBKcWmTZuIi4tzQmmirH766SdmfTYLBmG+mzBIh/VL1/Ph\njA/5x7h/OLI8IYSHMLnrSa/Xs2PHDurWrUtSUhIajYZ27doVOQHPVWTXk2k//fQTA58dSNaTWWDt\n/65roF2gZfKbkyUshPAyDrl6bKtWrdi7d2+ZCnMEZwXF1q1bGTDgWRYv/i8dO3Z0+PbspVXbVuwP\n3E9+93zbVrATKv9amUtpl/Dzs/hKL0IIN+eQq8d26dKFJUuW+ORv71u3bqV7936cOTOEbt36Ftzp\nzxOs+GkF1c5Vw3+Hv/UL74eKv1YkcX2ihIQQwnxHERYWhk6nw9/fn+Dg4FsLaTSkp6c7pcDSOLqj\nMIREZua3QFdgDaGhg1i9eqnHdBZnzpyh/UPtSWucRn4HCzuL/VAxsSKb12+mZcuWji1QCOF0Duko\nMjIy0Ov15ObmFly+o6whkZCQQOPGjWnQoAHTpk0zOmbMmDE0aNCAyMhIp98kqWRIAHQlM/Nbj+os\natWqRdLWJKodtrCzkJAQQhhh0SU8rl69yrFjx7h582bBc7ZeFDA/P59GjRqxbt06wsPDuf/++1m0\naBFNmjQpGBMfH8/s2bOJj48nKSmJsWPHsnPnzqKFO6ijMB4ShXlpZyEhIYRPcEhHMXfuXDp37kzX\nrl2ZMGEC3bp1K9Phsbt27aJ+/fpEREQQGBjIU089xbJly4qMWb58OUOGDAFunfB37do10tLSbN6m\npcyHBHhlZyEhIYQwwex5FDNnzuSXX36hQ4cObNy4kcOHDzN+/HibN5iamkrt2rULfq5Vq1aJs7yN\njTlz5gzVqhU9GaBwYEVHRxMdHW1zXZaFhMGdsCits8jMzCQ4OBh/fxsmkx3AEBbtH2pPGoU6CwkJ\nIbxaYmIiiYmJZVqH2aAIDg4mJCQEgJs3b9K4cWOOHDli8wYNFxU0p3hrZGw5e534Z11IGJQeFkop\nortG81CHh/hw+od2qdEeSoRF+XwJCSG8XPFfoidOnGj1OszueqpduzZXr16lT58+xMbG0rt3byIi\nIqzekEF4eDgpKSkFP6ekpJS4rlDxMWfOnCE8PNzmbZry22+/2RASBnfC4rfffit4NjExkQNHD/DZ\n559x4cIFu9ZbVoV3Q1XYWEFCQghhnrLCxo0b1bJly1R2drY1ixWRm5ur6tatq06dOqWys7NVZGSk\nOnjwYJExK1euVD169FBKKbVjxw7Vvn37EuuxsvRSJSUlKa32bgUbFSgbHhtVaOg9KikpSSmllF6v\nV1EPRCn6ocp1KKfGvjzWLnXaW1pamjp16pSryxBCOJkt352lHvV05coVkwFTpUoVm8Np1apVjBs3\njvz8fIYNG8b48eP57LPPABgxYgQAo0aNIiEhgdDQUObNm0dUVFSRddjzqKfExER69vwrOt33QLQ1\nS6LV/o2VK/9X0Npt3LiRXn/vRebwTLgBIV+EkHw8mapVq9qlViGEKAu7XsIjIiKiYIWnT5+mcuXK\nwK1DZevUqcOpU6fKXnEZ2PvwWOvDomRIKKVo+2BbdtfcDbf35pRbXY4XOrzAjPdn2K1WIYSwlV0P\nj01OTubUqVPExsayYsUKLl++zOXLl1m5ciWxsbFlLtbdREdHs3Ll92i1fwUSzYwuGRJwK2yO/HkE\nmt8Zmf1ANp/P/dzt5iqEEMJSZk+4a968Ofv37zf7nLM56oQ7852F8ZAw1k0YSFchhHAXDjnhrmbN\nmkyePLmgw3jnnXccdgSSO4iOjmbSpPFAT0p2Fomg+QuTJr1R4pwNY92EgXQVQghPZjYoFi1axIUL\nF+jbty/9+vXjwoULLFq0yBm1uYRSim+++wY66SCwcFgk3vr5oUy+/d+3RRJZKcWrb75KZodM4+9o\nRdA31zNl2hTH/wWEEMLOLLrWkzty1K6n9evX8/jgx28dtXQaWKCF3DgIjIO/6+BeCJ0byvJvl/PI\nI48AxY50Ki16rzvmCCilFEuWLKFLly4FBxwIIURpHHLjoiNHjjB9+nSSk5PJy8sr2NCGDRtsr9QO\nHBEUSimiHohib629d+YZkoHvy8FfsyHi9nO/Q+vU1vy249ZJdqXNTRRn77kKpRTjx7/NBx98TL16\nddm+fa2EhRDCJIcERcuWLXnxxReJiooquG6RRqOhTZs2tldqB44IiiLdhKmdcvo7XYVGo6F7n+7k\nDMgxvyMvHYJ+DCIlOaXMXYUhJD766Cd0uvUEBU2lbt3NEhZCCJMcEhRt2rQpcnkKd+GIoIh6IIo9\n6XugvgWDj0NUxSiGPzOc/7z/H4u34a/xZ8F/F9ChQweb6yweElAVUAQFvSJhIYQwySFBERcXxz33\n3EO/fv0oV65cwfNlOTPbHhwRFK+/+Tqp51ItHh9eI5xpU4zfeMlRjIdEwasSFkIIkxwSFIYztIvz\ntjOzPYHpkCgYJWEhhCiVQ4LCXflaUFgWEgWjJSyEEEY5LCj279/PwYMHi9wK9emnn7a+QjvypaCw\nLiQKlpKwEFbLyclBo9EQGBjo6lKEgzhsjmLTpk0cOHCAnj17smrVKh566CGWLFlSpmLLyleCwraQ\nKFhawkJYpc9f+xBcLpjF3y52dSnCQRwSFM2bN2ffvn1ERUWxb98+0tLS+Pvf/866devKVGxZ+UpQ\n7N69mzZt2gIHgCY2rEERGHg/I0dG8+GH0+1cnfAmBw4coG3HtmjQ8Puvv1O/viWH/wlP45BrPYWE\nhODv709AQADXr1+natWqRe4+JxyrdevWvPzy62i1TwGXrFxaERT0Ovfdp+df/3rTEeUJLzL+7fHk\nts8lt20u/5zwT1eXI9yI2aBo27YtV69eZfjw4bRt25bWrVvz4IMPOqM2j7Zw4UJ27NhR5vVoNBqm\nT5/CCy88hlb7KJaHxa2QiIhYx44d61x+OLNwbwcOHGDdhnXkt80n7/48fl75M8ePH3d1WcJNWHXU\n06lTp0hPTycyMtKRNVnEnXc9fTT7I16Pex1NnoZVy1fRuXPnMq9TKcWrr77JnDnxt+cq7jY1WkJC\nWKX3E72Jz4gn/8F8AAK2BNCvWj++W/CdiysT9uaQXU+PPvpowZ/vu+8+IiMjizwnivpo9ke88e83\nyBqUhe5xHT1692Dz5s1lXq/lnYX7hcTncz9n586dri5DlKJwN2EgXYUorNSgyMrK4vLly1y8eJEr\nV64UPJKTk0lNtfzsZV9iCAndQB1UBuri5LBwv5CYOGki4/45ji49urBt2zZXlyOMGP/2eHLa5UBQ\noSeDkbkKUaDUXU8zZsxg5syZnD17lpo1axY8X758eZ5//nlGjRrltCKNcbddTyVCorCToF2mdfBu\nKPcMiXc/fffWe5IGoT+Hsnrlajp27Ojq0sRtBw4c4P6H7ifrpayiQQFwE0I+DZEjoLyMQw6P/eij\njxg9enSZCnMEdwoKkyFh4OCwCAp6131DovztJ49LWLib4nMTxclchfdxyBxFtWrVuHHjBgCTJk2i\nX79+7N6927YKvZBFIQEO3Q0VGNjY/UMCoD5k9sqkW89ushvKDRibmyhO5ioEWBAUkyZNonz58mzd\nupX169czdOhQXnjhBWfU5vYsDgkDB4XF/PkfuX9IGEhYuA2jcxPFyVyFwIKgMNysaMWKFQwfPpy/\n/OUv5ObmOrwwd2d1SBg4ICwGDBjgGSFhIGHhcgcOHGBV/Cry6+TDRUw+8u7LY+mPS6Wr8GFm5yh6\n9uxJeHg4a9euZc+ePQQHB9O+fXv27dvnrBqNcuUcRU5ODpWqVCIrNgta2bYOv5V+tA1qS9LWJPsW\n5yIWh0RhMmfhMj/88APj/m8ceqW3aLyfxo9PZnxCr169HFyZcDSHTGZnZmaSkJBAy5YtadCgAefO\nneOPP/6ga9euZSq2rFw9mb1582Yee/wxMntnQl3rlvVP8uee/feQtDWJe++91zEFOpFNIWHgY2GR\nlpbGXXfdRUBAgKtLET5K7kfhZLaEhbeFREZGBnfdcxc5f8mB5ratw3+pPw9Xe5j1q9fbtzg3k5eX\nR0T9CJ55+hkm/3uyq8sRPsohRz2J0nXu3Jn4ZfGELg+Fk+bHe1tIAISFhZEQn4B2rRaSrV8+cHMg\ntXW1WfTNIrvX5m6++eYbLuddZsasGVy7ds2h21JKMXHiJNLT0x26HeEbnBoUV65cITY2loYNG9K1\na9dS/7FERETQsmVLWrduTbt27ZxZotUsDQtLQmL9+vUM6t+fzMxMB1XrGDExMaxYugLtUuvCInBz\nIOEp4SRtTaJqVWvus+F58vLyeDPuTW7G3kTfUM/0Dxx7yff4+Hji4t7mgw9mOXQ7wjc4NSimTp1K\nbGwsR48e5dFHH2Xq1KlGx2k0GhITE9mzZw+7du1yZok2MRcWlobEgN69uf7zz/SMifH6sPClkIBb\n3URGSAZEQFaHLId2FbdOxowDpvD++zO5fv26Q7YjfIdTg2L58uUMGTIEgCFDhvDTTz+VOtbV8w/W\nKi0srAmJJTody3JyqPvHH14dFr4WEoZuIqNDxq0nquDQriI+Pp4zZ3KA18nP786HH37kkO0I3+HU\nyezKlStz9epV4FYQVKlSpeDnwurWrUvFihXx9/dnxIgRDB8+vMQYjUbDhAkTCn6Ojo4mOjraYbVb\nqvAEt/9F60LCcGEPPfBccDAnW7Rg5caNhIaGOq1+e9i4cSN/6fsXdH11EFH0Nb+Nftx79l6fCQmA\nefPmMWbaGDIGZNx58gqEzg/lTPIZKlWqZLdtKaVo2rQdhw+PB/oBRwgLe4gzZ45TsWJFu21HeI7E\nxEQSExMLfp44caL1v4grO+vSpYtq3rx5iceyZctUpUqVioytXLmy0XWcPXtWKaXUhQsXVGRkpNq8\neXOJMQ4o3W42bdqkQiqEqOq1q6s///yz1HHr1q1T92i1ahMoVeyRD+rZ4GD18P33q4yMDCdWbx9v\nvPGG8gtE8QyKuFuPgE4ovyCN2rdvn6vLc5rc3FxV/d7qRd4HwyPk/hD1z3/9067bW7FihQoLa6kg\nv+DjFBIySE2YMMmu2xGey5bvTqd+2zZq1EidO3dOKXUrDBo1amR2mbi4ODV9+vQSz7tzUCil1O+/\n/14QeMaYCglPD4vc3FzVoGZN9T4o7e2wCOyEighEjQgMVGNGjHB1iU7z1VdfqbBGYSVCgjgUY1Ch\nFUPV1atX7bItvV6vGjduq+CHYh+lwyos7G517do1u2xHeDZbvjudOkfRu3dv5s+fD8D8+fPp06dP\niTE6na7gIoSZmZmsWbOGFi1a2GX7v//+O8uWLbfLusxp0aIFNWrUMPqasd1NxvgBX9y86XFzFosW\nLaJGejr/AFbkQvA3EL4TknIhLjeXb+bP5+zZs64u0+FKzE0UZ+e5ivj4eFJSsoHi/64ayVyFKBsH\nBFapLl++rB599FHVoEEDFRsbW/CbVGpqqnrssceUUkqdOHFCRUZGqsjISNWsWTM1ZcoUo+uytnS9\nXq9at+6kQkOrqPT09LL9RcrAkk7CkzsLQzexoVD9f4C6VOjnfwQF+URXYbKbsHNXcaebWFLKx0i6\nCnGLLV/7PnNm9oYNG+jd+wX0+ta8+WYr3nprvAOrM27jxo08+Ze/mO0kjCk8wb1q0yZCQkIcUWKZ\nffPNN3zx0kskZmSgKWXMeaBpcDD7T5woclMsb5KXl0fterU5/8j5EhP6xYWsDOHl7i+X6WztlStX\n8uST48nM3EtpBzOGhAzm//6vEXFxb9m8HeH55BIepVBK0abNw+zZMxxoS1jYw5w9e4Ly5a29MFHZ\nTHzrLZZ98AGbsrKsviQSQDwwIDiY3w8fpk6dOvYur8zy8vJoWqcOn509S4yZsS8HBZH/7LPMnDPH\nKbU527x583jh9RfIeSzH/OArELwxmHMp52w6AkoVHOn0BvCEiZFyBJSwLSh84spkGzdu5OjR88AA\nIID8/C7MnDnb6V3Fv/79b86dOUP3778nQaezKiwSgGdCQ1m9bp1bhgTcmpvIuniR68AyM2Mb5eQw\n7ssvef3tt72yq7iReYOm9ZrCEcvGB7UK4uLFizYFxZ25ib5mRt6Zq5CuQljD6zuKot3E4NvPHnJZ\nV6HX63lp6FD+sCIsEoCnQ0NZvm4dDzzwgKNLtNnCb77huy+/tHi8JiCAaR9/TKNGjRxYlfe7//6H\n+eOPywQFNTM7Ni8vFX//g1y9ekGuYOujZNeTEYa5iczMgxRuoEJCBvLmmy1cMldhTVh4SkiYMnfu\nV7Rp04qoqChXl+KVtm7dSmpqqsXjQ0ND6dmzJxpNabNIwptJUBRjvJswcF1XAZaFhTeExPnz57n3\n3rq0aHE/v/6aKF9OQriYXGa8mKJzE8U1KZircAU/Pz8++eorWvz1r3TXarlR7HVvCAmAyZPfw8/v\nWY4cOVvkMgJCCM/htR2F6W7CwLVdBRjvLLwlJM6fP0/duk3JytoPrCMq6kvpKoRwMekoCjHdTRi4\ntquAkp3F93hHSMCtbkKvHwzUBAZKVyGEh/LKjsKybsLA9V0F3OksFn73HWs2bvT4kCjaTRgOf/1a\nugohXEwms2/btm0bDz30EFrtECw5VSQnZylTp77FK6/8w85VWkcpxdWrV6lSpYpL67CHUaNe4Ysv\n8sjOnlno2TxCQ5vw88+fExNj7pQ8IYQjSFDcdunSJZM3RTKmY8eONGnSxB6l+Tzj3YSBdBVCuJIE\nhXALxrsJA8d2FXv37qVFixb4+/vbfd1CeAMJCuFyprsJA8d0FcnJydSv34AvvviCZ54ZYrf1CuFN\n5Kgn4XJFj3QqjWOOgHr77SkoFc348ZPIy8uz67qLO3/+PE888SQ5ORZc9E8IDydBIezm/PnzfPXV\nPLKzXzczMoDMzH/x6qtxdusKk5OT+f77H9DrF5ORUZtvv11gl/WWZtKkd1m69Efmz//aodsRwh3I\nridhN2+99TbvvvspISEPmR2rVB43bqwgKSmJdu3alXnbTz/9PIsX30Nu7jtAItWrP0dKymGHXPju\nzu61z7nnntc4c+YIQUFBdt+OEI4gcxTCpU6ePMm+ffssHq/RaIiNjSU0NLRM201OTqZJkzbcvHkU\nuAuAsLAYPvroGYfMVYwc+TJffqknO3sGYWFd+eCDvzF8+HN2344QjiBBIXxS0W7CwDFdxZ1u4gBQ\nA9jGPfcMkq5CeAyZzDZjy5Yt/Hf+f11dhrAjw9xEbu7LxV6JdshcxaRJ76LXP82tkADoSFZWA5mr\nEF7NZzqKDRs20KtfL1Sg4p1/vsM/xrn2LGxhH8a7CQP7dhUluwkD6SqE55COohSGkND11ZE1KIu3\n/vMWH8740NVliTIqvZswsG9XUbKbMJCuQng3r+8oCocEEbefvAbahVomj58snYUHM91NGNinqyi9\nmzCQrkJ4BukoijEaEgCVQDdQJ52FBzPfTRjYp6sovZswkK5CeC+v7ShKDYnCpLPwWE8//TwLFhxD\nrx9uweidVK8eb3NXYb6bMJCuQrg/WzoK+5+N5AYsCgko0lkAEhYepH79ujz2WAawwqLxFSo8TF5e\nnk1BYb6bMLjTVch5FcKbeF1HYXFIFCadhShFfn4+oaHl8fevSkBAmNnx2dmXuO++Ghw6tMcJ1Qlh\nPZ/vKGwKCZDOQpTK39+fQ4cOkJmZafEy3nDjKSEK86qO4oFOD/DLzV/Q/0Vv20r3gHa9lquXr8o+\nZiGEV3L7o56+//57mjVrhr+/P7t37y51XEJCAo0bN6ZBgwZMmzbN4vX/sPgHql+sjv92G25acxxC\nN4WydvXaEiHhoVkqhBB24dSgaNGiBUuXLqVz586ljsnPz2fUqFEkJCRw8OBBFi1axKFDhyxaf3h4\nOLu27aLakWrWhcVxCF0RypqVa3jwwQeLvLR+/XruqX4P69evt3x9QgjhRZwaFI0bN6Zhw4Ymx+za\ntYv69esTERFBYGAgTz31FMuWLbN4G1aHhZmQ6P1Eby63vkzv/r0lLIQQPsntJrNTU1OpXbt2wc+1\natUiKSnJ6Ni4uLiCP0dHRxMdHQ3cCYt2HduRRhr5D+Yb35gFIaHrp4M6oKupo3f/3ixfspxHH320\nTH9HIYRwlsTExDLfTdLuQREbG8v58+dLPD9lyhR69epldnlr7qFcOCiKMxsWVoQEcCss+kpYCCE8\nS+FfogEmTpxo9TrsHhRr164t0/Lh4eGkpKQU/JySkkKtWrVsXpfRsLA2JAwkLIQQPshl13oq7Uii\ntm3bcuzYMZKTk8nJyeG7776jd+/eNm+nxJyFrSFhUCgsZM5CCOELnBoUS5cupXbt2uzcuZOePXvS\no0cPAM6ePUvPnj0BCAgIYPbs2XTr1o2mTZvy5JNP0qRJkzJtt3BYaJdrbQ8JAwkLIYQP8aoT7sxJ\nS0vjypUrJYLHqpAo7E/QLtXKbighhMeQe2bbYOfOnTza/VHrQ8LgT9D+qGV9wnoeeOCBMtcjhBCO\n5PZnZrtaeno6p0+fLvJcUFDQrSOtcm1cae6tN75cuXJlL1AIIdyQTwXFP154gZ7R0ej1d64FFRUV\nxZqVawhdEQrHrVzh7YnxtfFrad26tX2LFUIIN+EzQXHy5EmWLV2KX1oaP/74Y5HXHnzwQevDolBI\ndOjQwf4FCyGEm/CZOYphAwdS6/vvaZeXxxsREew7cQI/v6I5uX37drr27ErmXzKhvomVSUgIITyU\nzFGUwtBNjMvL4zEg+NKlEl0FWNhZSEgIIXyMTwTFO2+9xci8PCoDGiAuI4OJr71WZK7CwGRYSEh4\npXffeYe3X39dLicvRCm8PigKdxMGproKKCUsJCS80sS33uK/U6awYvZsXhs7VsJCCCO8fo7CMDcx\nsVBQAKyEUucqDArmLFplErpXQsLbTHzrLb778EM26nQEAl20Wh4ZNoz3Zs606uKUQngSmaMoxlg3\nYWCuq4A7nUWdlDoSEl6mcEhUA6oA63Q6Nnz5pXQWQhTj1R1Fad2EgSVdhfA+xUOisCtIZyG8m3QU\nhZjqJgws6SqEdzEVEiCdhRDGeG1HYa6bMJCuwneYC4nCpLMQ3ko6ittOnjzJN999R+28PH4Ak48s\nIC01VboKL2dNSIB0Ft5k7969NLnvPrklQBm43T2z7SEzM5NeXbqwysh5EsZ0AvzlN0avNXnCBKtC\nwsAQFl2+/JLX/fx4d8YMR5UoHGTv3r10f/hhRqSnM6B3bxYtl1sC2MJrdz0JYRDTrh319+3j85wc\nrP11QAGvBgaSWK8evx48KLugPIghJD5OT+cJYDPQX6v1+bCQXU8+asuWLWRlZbm6DLf109q1/N6g\nAWPKlcOafx4KeCswkLX33svqLVskJDxI8ZAA6Aws0ekY0FvuTGktCQoPN+ujWcQ8GkOXHl0kLEpR\nsWJF1mzbxq769S0OC0NI/HzvvWzYuZO7777b0WUKOzEWEgYSFraRoPBgsz6axfhJ48l/MZ/d6bsl\nLEywJiwkJDyXqZAwkLCwngSFhzKEhG6gDqrAzV43JSzMsCQsJCQ8lyUhYSBhYR0JCg9UJCQq337S\nT8LCEqbCQkLCc1kTEgYSFpaTo548jNGQKEwPwT8HE1UhinWr1hESEuL0Gj3B9evX6dqxI+2OH2dW\ndjYgIeGpDh8+THT79laFRGGGo6GWrllDx44d7V2e25Gjnryc2ZAA6SwsVLyz+KeEhMfKyckhPz+f\nUBuXDwFQips3b9qxKu/icx2FUsojD3O0KCQKk87CIobOIuvmTQkJD7Z9+3b6dO3K15mZdLdiuV+A\nniEhfLF4Mb1793ZUeW7Flu9OnwkKvV7PsGEj+eOPg2zY8DMVKlRwYHX2ZXVIGEhYWCQ7Oxu9Xi/v\nj4ezNix8MSRAgqJUer2eZ555gR9+OER+fhMaNz7A5s2rPCIs9u7dS1SbKNQLCqrasAI9BM0LYvRT\no5n+7nS71yeEO7E0LHw1JEDmKIwqHBI6XTzZ2XM4fLglnTv3ID093dXlmdWyZUue+vtTaNdoIcf6\n5fEwQrIAAA1xSURBVP13+XOX5i7Gjh5r/+KEcDMPPvggP61Zw9OhoSSUMsaXQ8JWXh0UxUMCygN+\nZGd/7DFh4efnx7f//ZbHOzyO9n/WhYX/Tn+qHqxK0tYkateu7bgihXAjpsJCQsI2Tg2K77//nmbN\nmuHv78/u3btLHRcREUHLli1p3bo17dq1s2lbxkPCwPvDQkJC+DJjYSEhYTunBkWLFi1YunQpnTt3\nNjlOo9GQmJjInj172LVrl9XbMR0SBt4bFhISQhQNi/eRkCgLpwZF48aNadiwoUVjbZ1jtywkDLwv\nLCQkhLjjwQcfZNnatXxw110SEmXglnMUGo2GLl260LZtW+bOnWvxctaFhIH3hIWEhBAldejQgTMX\nL0pIlIHd73AXGxvL+fPnSzw/ZcoUevXqZdE6tm3bRo0aNbh48SKxsbE0btyYTp06lRgXFxdX8Ofo\n6GgWLlxqZUgYGMJiJJ079+DXXzcREOC+N/8zhMWgZwax7H/L0P1Nh/9uCQkhSuOJJ9naS2JiIomJ\niWVah0vOo4iJieH9998nKirK7NiJEycSFhbGK6+8UuR5Y8cCjxv3OnPnbkSnWwNUsrKqfIKDhxEZ\nmcK2bWvw9/e3cnnn0+v1DHpmED+u/pEqwVUkJIQQZnnUeRSlFarT6bhx4wZw697Xa9asoUWLFhat\n88MPpzJ4cAe02q7ANSuquRUSLVueZsOGnz0iJOBOZ/HO/70jISGEcBindhRLly5lzJgxXLp0iYoV\nK9K6dWtWrVrF2bNnGT58OCtXruTkyZP069cPgLy8PP7+978zfvz4koWXkopKKV58cRzffLPDws7i\nTkhs3LgCrVZrh7+pEEK4J7mEx22Wh4WEhBDCt3jUridH0mg0fPrpDDO7oSQkhBDCEl4ZFGAuLCQk\nhBDCUl4bFFBaWEhICCGENbxyjqK4wnMWen0jWrZMlZAQQvgkmcw2QSnF6NGv8vvvB0lI+EFCQgjh\nkyQohBBCmCRHPQkhXCI/P9/VJQgHkqAQQpTJnM/nUOXuKjbdEkB4BgkKIYTN5nw+h1f++QrpHdN5\ntPujEhZeSoLCBymleHX0aAY8/jg5OTbciFsI7oSEbqAO7oeMHhkSFl5KgsLHKKUY9+KLbP7qKzLW\nruWp3r0lLITVioREldtPNpSw8FYSFD7EEBI7vvmGNTodP2Rlkbdli4SFsIrRkDCQsPBKEhQ+onhI\nVAKCgCU6nYSFsJjJkDCQsPA6EhQ+wFhIGEhYCEtZFBIGEhZeRYLCy5kKCQMJC2GOVSFhIGHhNeTM\nbC9mSUgUlgP012oJ6NSJxcuXExQU5IwyhZtbvHgxQ0cOJWtQluUhUdhRCI0P5bedv9GoUSO71yes\nI2dmiwLWhgRIZyGMq1atGuQDGbYt73fdj1BtKOXLl7drXcJ5JCi81P+NHWtVSBgUDosBjz8uXZsg\nJiaGpd8tJeSHEDht3bJ+v/hx9567SdqWRM2aNR1ToHA4CQovlXb2LHcDITYsGwDUyM8n7fx5CQoB\nQLdu3awOi8IhERER4dD6hGNJUHipLxctIjQmhn5aLdlWLKcHXipXjv2NGxO/aRN+fvIREbdYExYS\nEt5FvgW8VGBgIAuXLkVrRVgYQuKPxo1ZtXkzFSpUcHSZwsNYEhYSEt5HgsKLWRMWEhLCUqbCQkLC\nO0lQeDlLwkJCQljLWFhISHgvOY/CR+Tm5jKwb190Gzfyo05HudvPS0iIsli9ejV9n+xLdpNs7j4t\nIeEJ5DwKUSpjnYWEhCgrQ2fRLKeZhIQXk47CxxTuLGrl57NfQkIIn2LLd6cEhQ/Kzc1lUL9+nE1N\nZWViooSEED5EgkJYTCmFUkrOkxDCx7j9HMVrr71GkyZNiIyMpF+/fly/ft3ouISEBBo3bkyDBg2Y\nNm2aM0v0SImJiVYvo9FovDIkbHkvvJW8F3fIe1E2Tv2m6Nq1KwcOHGDfvn00bNiQ//znPyXG5Ofn\nM2rUKBISEjh48CCLFi3i0KFDzizT48g/gjvkvbhD3os75L0oG6cGRWxsbMFvse3bt+fMmTMlxuza\ntYv69esTERFBYGAgTz31FMuWLXNmmUIIIQpx2b6Hr776iscee6zE86mpqdSuXbvg51q1apGamurM\n0oQQQhQSYO8VxsbGcv78+RLPT5kyhV69egHwzjvvEBQUxMCBA0uM02g0Fm/LmrHebuLEia4uwW3I\ne3GHvBd3yHthO7sHxdq1a02+/t///pf4+HjWr19v9PXw8HBSUlIKfk5JSaFWrVolxskRT0II4RxO\n3fWUkJDAe++9x7JlywgODjY6pm3bthw7dozk5GRycnL47rvv6N27tzPLFEIIUYhTg2L06NFkZGQQ\nGxtL69ateemllwA4e/YsPXv2BCAgIIDZs2fTrVs3mjZtypNPPkmTJk2cWaYQQojClAdatWqVatSo\nkapfv76aOnWqq8txqTp16qgWLVqoVq1aqfvvv9/V5TjVs88+q6pWraqaN29e8Nzly5dVly5dVIMG\nDVRsbKy6evWqCyt0HmPvxYQJE1R4eLhq1aqVatWqlVq1apULK3SO06dPq+joaNW0aVPVrFkzNXPm\nTKWUb34uSnsvbPlceFxQ5OXlqXr16qlTp06pnJwcFRkZqQ4ePOjqslwmIiJCXb582dVluMTmzZvV\n7t27i3w5vvbaa2ratGlKKaWmTp2qXn/9dVeV51TG3ou4uDj1/vvvu7Aq5zt37pzas2ePUkqpGzdu\nqIYNG6qDBw/65OeitPfCls+Fx52aK+dZlKR8dGK/U6dOVK5cuchzy5cvZ8iQIQAMGTKEn376yRWl\nOZ2x9wJ877NRvXp1WrVqBUBYWBhNmjQhNTXVJz8Xpb0XYP3nwuOCQs6zKEqj0dClSxfatm3L3Llz\nXV2Oy6WlpVGtWjUAqlWrRlpamosrcq2PPvqIyMhIhg0bxrVr11xdjlMlJyezZ88e2rdv7/OfC8N7\n8cADDwDWfy48Lijk3Imitm3bxp49e1i1ahUff/wxW7ZscXVJbkOj0fj05+XFF1/k1KlT7N27lxo1\navDKK6+4uiSnycjI4IknnmDmzJmUL1++yGu+9rnIyMigf//+zJw5k7CwMJs+Fx4XFJaeZ+EratSo\nAcA999xD37592bVrl4srcq1q1aoVnPB57tw5qlat6uKKXKdq1aoFX4rPPfecz3w2cnNzeeKJJxg8\neDB9+vQBfPdzYXgvBg0aVPBe2PK58LigkPMs7tDpdNy4cQOAzMxM1vx/e/cSCu0XxwH8K/dy2RDG\nTDTKwsTDlMzCQo2aScwo1CzYsHDbIJSszQJp7EhDU5SFmgWRN4sZyiWFYmEhuYWNZjWLMXT+C5n+\nb3hymdfQ8/2spnmefp1zOtNvzvOcy58/KCwsjHCpIstiscDlcgEAXC5X6MehRDc3N6HPbrdbEX1D\nCIGWlhYUFBSgq6sr9L0S+8VbbfGpfhHmF+3fYnl5WeTn54u8vDxht9sjXZyIOT09FZIkCUmShE6n\nU1xb2Gw2kZWVJWJjY4VarRbT09Pi7u5OGI1GRU2DFOJlWzidTtHU1CQKCwtFUVGRsFqt4vb2NtLF\n/Oc2NjZEVFSUkCTpr+mfSuwXr7XF8vLyp/rFrz24iIiIvseve/RERETfi4mCiIhkMVEQEZEsJgoi\nIpLFREFERLKYKEjRLi8vodVq4fP5AAA+nw9arRYulwupqamorq5+d6zo6Gjo9frQwi6z2Yzi4mLo\ndDq0tLQgGAwCAMbGxqDT6SBJEiorK3FxcQEAOD09RXFxcWgl8cbGBgoKChSx/oF+Nk6PJcUbGRnB\nyckJJicn0draCq1WC4PBgNHRUSwuLr47TnJycmgBJPC0dUJSUhIAoL6+HrW1tWhsbITH44HBYEBC\nQgImJibg8XgwPz//apzz83NUV1fj8PAwTLUl+jiOKEjxuru7sb29DYfDgc3NTfT29oZl19XnJBEM\nBnF/f4+0tDQAQEVFReiEx7KyMlxdXb0Zg//j6CdgoiDFi4mJwfDwMHp6euBwOBAdHf3insfHRwwO\nDqK0tBQmkwkLCws4Pj7GwMCA7O7FJpMJGRkZSExMhNlsfnHd6XSiqqoqrPUhCjcmCiIAKysrUKlU\nbz7iub6+hkqlwu7uLoaGhjA3N4eGhgao1WpkZ2e/GXd1dRU3NzcIBAKhvYaezc7OYm9vD319fWGt\nC1G4xUS6AESRdnBwgLW1NWxtbaG8vBw2m+3FPRqNBp2dnQCeNqZ0u93vjh8fH4+6ujrs7OyEDs9Z\nW1uD3W7H+vo6YmNjw1MRon+EIwpSNCEE2tvbMT4+Do1Gg76+PvT29n75vAK/3x/apfPh4QFLS0so\nKSkBAOzv76OtrQ2Li4uh9xZEPxlHFKRoU1NTyM3NhdFoBAB0dHRgZmYGXq/3S3H9fj+sVisCgQCE\nEDCZTGhubgYA9Pf3w+/3o76+HgCQk5OjiKM56ffi9FiiV3i93i9Pj/2s/8c5OztDTU0Np8dSRPHR\nE9Er4uLicHR09KEFdykpKdDr9X8dDPMRzwvuMjMzATwtuLNYLEhPT/9UPKJw4YiCiIhkcURBRESy\nmCiIiEgWEwUREclioiAiIllMFEREJIuJgoiIZP0HzgSQffn1b38AAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 19 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" Plot the fitted values" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"lm_final = ols('S ~ X + C(E)*C(M)', df = salary_table.drop([drop_idx])).fit()\n", | |
"mf = lm_final.model._data._orig_exog\n", | |
"lstyle = ['-','--']\n", | |
"\n", | |
"plt.figure(figsize=(6,6))\n", | |
"for values, group in factor_groups:\n", | |
" i,j = values\n", | |
" idx = group.index\n", | |
" plt.scatter(X[idx], S[idx], marker=symbols[j], color=colors[i-1],\n", | |
" s=144, edgecolors='black')\n", | |
" # drop NA because there is no idx 32 in the final model\n", | |
" plt.plot(mf.X[idx].dropna(), lm_final.fittedvalues[idx].dropna(),\n", | |
" ls=lstyle[j], color=colors[i-1])\n", | |
"plt.xlabel('Experience');\n", | |
"plt.ylabel('Salary');" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAF8CAYAAADo0k1PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4U2Ubx/FvOoCGUXYZBUEoIBtZBVHKkqFSFZShIAiK\nqCgqSxFoQYYKKqAIKCgiUIYyXhkypGWXLcgsWEYXQ2abjrR53j9CSkvTNglJ03F/rivXBWc+J9Dz\n632e55yjUUophBBCiIfk4uwGCCGEyB8kUIQQQtiFBIoQQgi7kEARQghhFxIoQggh7EICRQghhF04\nLFASEhJo2bIljRs3pm7dunz88ccA3Lhxg06dOlGrVi2efvppbt26lbrO1KlT8fHxoU6dOmzevDl1\n+qFDh2jQoAE+Pj68//77qdMTExPp1asXPj4++Pr6cvHiRUcdjhBCiGw4LFCKFCnC9u3bOXr0KMeO\nHWP79u3s2rWLadOm0alTJ86ePUuHDh2YNm0aACdPnmT58uWcPHmSTZs28fbbb2O6RWbo0KEsWLCA\nsLAwwsLC2LRpEwALFiygTJkyhIWF8cEHHzB69GhHHY4QQohsOPSSl1arBSApKYmUlBRKlSrFunXr\neO211wB47bXXWLNmDQBr166lT58+uLu7U61aNWrWrEloaCjR0dHcvXuXFi1aANC/f//UddJuq0eP\nHmzbts2RhyOEECILbo7cuMFg4PHHH+f8+fMMHTqUevXqceXKFby8vADw8vLiypUrAERFReHr65u6\nrre3N5GRkbi7u+Pt7Z06vXLlykRGRgIQGRlJlSpVjAfi5oanpyc3btygdOnSqctrNBpHHqIQQuRL\ntjxExaEViouLC0ePHiUiIoIdO3awffv2dPM1Gk2OnPCVUvJRigkTJji9DbnlI9+FfA/yXWT+sVWO\njPLy9PTkmWee4dChQ3h5eRETEwNAdHQ05cuXB4yVx+XLl1PXiYiIwNvbm8qVKxMREZFhummdS5cu\nAZCcnMzt27fTVSdCCCFyjsMC5fr166kjuOLj49myZQtNmjShe/fuLFq0CIBFixbx/PPPA9C9e3eC\ngoJISkoiPDycsLAwWrRoQYUKFShRogShoaEopVi8eDH+/v6p65i2tWrVKjp06OCowxFCCJENh/Wh\nREdH89prr2EwGDAYDPTr148OHTrQpEkTXn75ZRYsWEC1atVYsWIFAHXr1uXll1+mbt26uLm5MWfO\nnNTLYXPmzGHAgAHEx8fTrVs3unTpAsCgQYPo168fPj4+lClThqCgIEcdTr7g5+fn7CbkGvJdGMn3\ncJ98Fw9Pox7mglkeoNFoHuqaoBBCFDS2njflTnkhhBB2IYEihBDCLiRQhBBC2IUEihBCCLuQQBFC\nCGEXEihCCCHsQgJFCCGEXUigCCGEsAsJFCGEEHYhgSKEEMIuJFCEEELYhQSKEEIIu5BAEUIIYRcS\nKEIIIexCAkUIIYRdSKAIIYSwCwkUIYQQdiGBIoSw2rZt2wgPD3d2M0QuI68AFkJYJTY2lopVKuLb\n2pct67c4uznCAeQVwEKIHDFr9ixSvFPYvW83R44ccXZzRC4iFYoQwmKxsbFUeqQSd3vfRROuoYOm\ng1Qp+ZBUKEIIh5s1exYpj6RAeVCPK6lSRDpSoQghLJK2OqG8cZomVKqU/EgqFCGEQ6WtTkykShFp\nSYUihMhWbGwsXk280PXUQZH086RKyX+kQhFCOMR13XVafdXKbJiAVCniPgkUIUSWXPWuhP0VBncy\nWcAdElomMOrTUTnaLpH7SKAIIbL0/Zzvcb3jmq7v5EFSpQiQPhQhxD1HY45yJfYKnWt2Tp1mbmRX\nZqQvJf+w9bzp5oC2CCHykKMxRwkMCSQ0IpQpHaakm/f93O/RJetwPe6a/Yb0sHXfVo4fP06DBg0c\n1FqRm0mgCFFAHYk+QmBIIPsj9zPqiVEseXEJWndtumWeevIpPvv4M4u3qXleQ7ly5ezdVJFHyCUv\nIQogpRT+Qf60r96eIU2H4OHu4ewmiVzE1vOmBIoQQoh05D4UIYRZ13XXnd0EUUBIoAiRTx2KOkT3\nZd3x+9kPgzI4uzmiAJBAESKfORh1kOeWPYd/kD9P13iag28exEUjP+rC8WSUlxD5yMSQicw/NJ+P\n23zMypdWUsTNzLNShHAQ6ZQXIhc6duwYjz32GO7u7latF3U3itIepSVIxEORTnkh8omYmBiat2zO\n3HlzrV63UvFKEibCaSRQhMhlJk+bjMHbwIRJE0hISMgwPzQilO7LuhNxJ8IJrRMicxIoQuQiMTEx\nLFi4gOTuySSVT+KHH39InbcvYh9dl3TlpZUv0c2nG+W0cke6yF2kD0WIXGTY8GH8cOAHEp9OhCgo\ntaYUfx36izHBYzh1/RSftPmEAY0HUNitsLObKvIxuVM+ExIoIq+IiYnh0VqPEv9GPJQwTiu6qigf\nDP6AKm2qMKDxAAq5FnJuI0WBIIGSCQkUkVekq05M7lUpURejKFJEOttFzpBRXkLkYTExMczfNJ/E\n1onpZ1QiQ1+KELmVVChCONmuS7voO78vl/WXQWtmAalSRA6TCkWIPGbXpV10/KUjfVf1JeavGEjO\nZEEHVik6nY7hwz9Er9fbfdui4JFAEcIJbsTf4K0/3qJvg748e+lZ47O2SmS+fFzruEzvS3kY3303\nl5kzv2bRol/sul1RMMklLyGcRCnFlStXMozsykzRVUWZOmQqw94dZpf963Q6KlWqwe3b4yhf/ksi\nIs5a/agXkT/JJS8hHMzWX0xik2LNTtdoNEyeNpmkkklwETie9SfO075VynffzUWvfwJ4G52uhlQp\n4qFJhSKEhXr07kHLZi0ZNWKURcsHXwgmMCQQ7xLeLH5hsdllvvzqS3bs3mFxG4pqizL/u/mUKJFN\nOZON+9XJn0BDYCfly/eXKkUAch9KpiRQhD0cO3aMFm1a4O7mTuSFyCxP6MEXggkIDiDiTgTjnhrH\nKw1fwc0ld70p4ssvvyIgYA863arUacWKdeTrr/swePAgJ7ZM5AYSKJmQQBH20NW/K5uTNlPkWhFG\nPz+a8Z+ON7tczxU9+fvK34x7ahx9G/TNdUECaauTnUDNNHOkShFGEiiZkEARD+vYsWP4+vkS/3Y8\n3IZiS4plWqWcuHqC2mVr58ogMXn33WV8/30dDIYmGeZJlSJAOuWFcJjR40aT2DIR3IGyYHjUwDez\nvjG7bL3y9XJ1mEyfnsScOU9iMJh/UnFs7ATGjv1M7ksRNpFAESILx44dI2RnCIamhtRpuqd0TDo2\niVu3bzmxZbbR6X6gSJERgHcmSzwpI76EzeSSlxBZMPWdGHwN6aYXOlyIj5t9TMC4AOc0zAYZR3Zl\nRvpSCjq55CWEnaVWJ80MGeYlVU1ixtczuHPnjhNalrVdu6BTJzh8OP30+/edZBUmIFWKsJXDAuXy\n5cu0a9eOevXqUb9+fWbNmgVAQEAA3t7eNGnShCZNmrBx48bUdaZOnYqPjw916tRh8+bNqdMPHTpE\ngwYN8PHx4f3330+dnpiYSK9evfDx8cHX15eLFy866nBEAZTad2KuSySbvhRn2LkTOnaEfv2gd29o\n0CD9/M8/n4FSYXh6ds32k5wcxeTJM5xzICLPctglr5iYGGJiYmjcuDGxsbE0bdqUNWvWsGLFCooX\nL86HH36YbvmTJ0/St29fDhw4QGRkJB07diQsLAyNRkOLFi349ttvadGiBd26deO9996jS5cuzJkz\nh3/++Yc5c+awfPlyVq9eTVBQUPoDlEtewgbpRnZldtXnetYjvnLK+fPw5psQHg6ffmoMFHNXqvbu\n3cutW5b3+5QtW5bmzZvbsaUir7D1vOmw4SgVKlSgQoUKABQrVozHHnuMyMhIwPwjLNauXUufPn1w\nd3enWrVq1KxZk9DQUB555BHu3r1LixYtAOjfvz9r1qyhS5curFu3jsDAQAB69OjBu+++66jDEfmc\nUoot/26h7SNtKexWOP3IrsykqVIyuy8lJ5QqBa++avxk1eXRqlWrnGuUKJByZHzjhQsXOHLkCL6+\nvuzevZvZs2fzyy+/0KxZM2bMmEHJkiWJiorC19c3dR1vb28iIyNxd3fH2/v+iJTKlSunBlNkZCRV\nqlQxHoibG56enty4cYPSpUun239AQEDqn/38/PDz83PcwYo8RSnFn+f/JCA4gLtJd1nTaw3xkfEE\nhwRjeMuQ+SPl79E11/HljC8Z/t5wp1UppUvDwIFO2bXIJ4KDgwkODn7o7Tg8UGJjY+nZsyczZ86k\nWLFiDB06lPHjjb/NjRs3jo8++ogFCxY4tA1pA0UIMAbJpnObCAgJIDYplgltJ9Czbk9cNC58ufBL\nkuOTcfvash+PRBIJDQ2lU6dODm1zSAgULgxpfu8Swi4e/EXbdOXHWg4d5aXX6+nRowevvvoqzz//\nPADly5dHo9Gg0WgYPHgw+/fvB4yVx+XLl1PXjYiIwNvbm8qVKxMREZFhummdS5cuAZCcnMzt27cz\nVCdCmBNyMYSRW0byUauPOD70OC/Xe9n4ThJg5MiR6BP1Fn+SEpMcGibBweDnB4MGwY0bDtuNEA/N\nYYGilGLQoEHUrVuX4cOHp06Pjo5O/fPq1atpcG8oSvfu3QkKCiIpKYnw8HDCwsJo0aIFFSpUoESJ\nEoSGhqKUYvHixfj7+6eus2jRIgBWrVpFhw4dHHU4Ip9p+0hbjg09li5IchtTkLzxhvGS1unT0K2b\ns1slROYcNspr165dPPXUUzRs2BCNRgPAlClTWLZsGUePHkWj0VC9enXmzZuHl5dX6vyFCxfi5ubG\nzJkz6dy5M2AcNjxgwADi4+Pp1q1b6hDkxMRE+vXrx5EjRyhTpgxBQUFUq1Yt/QHKKK8CTSmF3qCn\nkGshZzfFKomJ8PTTxqqkb19wy71PcxH5kDwcMhMSKAWTUor1YesJCA7gtUavMaylfd5yaC2dTsfh\nw4dp06aNU/YvhC3kTnkhMAbJ/878j+Y/NGfsX2P55MlPeKfFO05rz/Tp39CuXUeioqLMzlcKrl3L\n4UYJ4SBSoYh8IzYpFr+f/Ug2JDOh7QT86/g7tX/kzp07VK5ck4SEVgwaVI25c2emzlMKtm2DgAAo\nWRL++MNpzRQiA7nklQkJlIJl58WdPFH1iVzR0T5x4hSmTTtJfPx0ihSpy/nz/1CxYiW2bjUGyX//\nwfjx0KsXuLo6u7VC3CeBkgkJFOEMpuokNnYHUIdChT5k4MAUEhJmEhpqDJKXX5YgEbmTBEomJFDy\nF4MysPb0Wv69+S8ftf7I5u2Ye6KCPd2vTn69NyWGIkXqsmPHKR5/3EuCRORq0ikv8jWDMvD7qd95\nfN7jTNoxiTpl69i8rZMnT1LeqzzHjx+3Ywvvu3PnDl9++Q3x8Z+mmVoBg2EACxZMkTAR+ZZUKCLX\nW3N6DROCJ+Du4s6EthN4ttazqfc22cK/pz//2/k/urTqwoY1G+zYUmNne//+QSxdWtvMO9tjUvtS\nKlWqZNf9CmFPUqGIfOvE1RNMbj+ZA28c4Lnazz1UmJw8eZLNWzej+iuCQ4LtVqUoBRs3QvPmySxd\n2hiDobyZpYxVysSJn9tln0LkNlKhiALFv6c/6++sJ+WJFFz2utC5SOeHrlL27IHhw0Gng3r1fmfd\nutUkJCzOZGmpUkTuJxWKyNMMysCey3scug9TdZLSLMW4z6YGu1UpI0fCrl132LDhLRISxmaxpFQp\nIv+SCkU4lUEZWHVyFRNDJlKsUDFCBoRQ2K2wQ/aVtjoxsVeVAuZGdmVGqhSRu8mw4UxIoOROaYOk\naKGiTGg7ga41uz5U/0hWTp48SdPWTUl4OwHS5lUSeMzxIHRHaOqTr81RCtavN76LpGzZjPNjY2Px\n8noEne4VwCfb9ri4LOTNN9vy/fe55530QpjkulcAC5GVL3Z/wZrTa/iy05d0qdnFYUFi8vH4j9G3\n0N8PEwPGC76FILFlIqPHjTZbpShlfCxKYCDo9bB4sflAMRgMvP76ABISkoCzFrSoDS1aPG77AQmR\nC0mFIpwiMTmRQq6FHB4kYKY6uQXMdYUhKVAKs1WKUvC//xmDJDkZJkyA558HF+l1FAWAXPLKhASK\ncxmUwenP1crQd7K6MBwrDfVvQo8EIGNfysmT8Morxkek+PtLkIiCRUZ5iVwlxZDC0uNLqTenHgci\nDzitHQ+O7OIWcMIFVAiccoWbxskPjviqWxcOH4YXXpAwEcJS8qMishQbG0tSUpLFy6cNku8OfMes\nLrNoVqmZA1uYtY/Hf0xSjST4D4gCNhQGw1DAB1Leg/8VgYtF4Tok1Ehg9LjRqevmwNU4IfIV6ZQX\nWerm341qj1Tjl4W/ZLvsiasn6LGiB2W1Zfm227d0qN4hR/pIspIQn8CjSY/CHtAn6bkUdg2lPjbO\nVJ/Av73xvPUX5Sp9l7q8EMI20ociMrV37146du+IIdHAqWOnqFatWpbLxybFsi9iX64IEnMGDHiL\nJUtKk5w8JXWai8sSevXaztKlPzqxZULkLtIpnwkJFNu1ad+GPcX24HrXlT7V+1hUpeRWFy9epHbt\nZiQmRgHuaebcpEgRH06c2M+jjz7qrOYJkatIp7ywq71793Lk+BFUY0Vyi2RWrlrJhQsXSDYk88vf\nv7Dp3CZnN9EqEyZMxWAYTPowAShFcvI7jBs3xdxqQggrSIUizDJVJ6qp8btzDXGlZb2WXK11lUrF\nK/F5x8/x9fZ1cistc/HiRerUaUJCwlnAzF2JUqUIkY5UKMJu0lYnJilPprAvfh+Tmk8iZEBIrg0T\ngwFWroQPP7w/bcKEqaSkDMF8mIBUKULYhwSKyGDk2JHEt4qHtG8WdAGX8y5smG/fF1LZi8EAK1ZA\nw4YwfTp07GicfvHiRZYvX4Fen/XrgpOTh/P772v4999/c6C1QuRPEigiHXPViUnavpTcZO1aY5B8\n9ZUxTPbtg27djPMmTJhKcnIvjA/vuprFR49e/4pUKUI8BOlDEQDoU/T8e/NfBr08KF3fyYPcgt1y\n3YivBQugcmXo3DnjzYgNG7YgPPyCxdvy9q7MqVNH7NtAIfIYGTacCQmUrOlT9Cw+tpjPdnxGbY/a\n7Bi7A91QXfrLXWnpoMj3RSy6L8VagwcPZdiwt2jUqJFdtyuEsI50ygur6FP0LDi8gNrf1mbp8aUs\nen4Rd4PuZuw7eZAWkpsmM37ieLu2Jzg4mIULf2T48E/Nzk9JMb6PRH43ECL3kgqlgHpx+YvcTbrL\nhLYTaFO1DXv37qVtx7bo++izDhQAHbitdCPsdJjdqpTmzdtx8GBvPDwmsWPHGpo1Mz7/KyUFli+H\nSZOgdGnjI+VLl7bLLoUQmZAXbAmr/Pz8z5QoXCL17xcvXuSRRx+BUMvWd6nlwoULF+wSKMHBwZw6\ndRkYREJCMiNHBrJ16/8ICjIGSZkyMHs2dOggD2wUIjeTCiWfU0rlyudqpWWsTgYArwEJeHjU5KOP\ndrF9ezUCAiRIhMhp0oci0klKSWL+ofk0mdeE2KRYZzcnU/erk1fuTSlCQsLH7Nz5Pjt3Gu8nkTAR\nIm+QQMlnklKSmHdwHj6zffj91O98/8z3FCtUzNnNytSIEZOIixtP2quvSg1i//5DHDp00HkNE0JY\nTS555SMbwzYy5I8h1CtfjwltJ+Tax6OA8T3t48ad4vPPPVCqCg+OBNBovqNt201s3/4/5zRQiAJM\n7kPJREEKlH+u/kNcUhwtvVs6uymZSk6GJUvgs8/gypWj3L0bA3Qxs6SxLyXtiC8hRM6QQMlEQQqU\n3O7iRWMHe5Uq4O9/lE8/7Ulc3GkyG2woVYoQziGd8gVEQnIC3+3/jsu3Lzu7KVbz9oZFi2D7dliy\n5APi4saR1ch1pQYRGnqEgwelL0WIvEACxYmUUjz7/LNs2bIl22UTkhP4dv+31JxVk43nNpKYkpgD\nLYTly1cRHBxsl225usITT5gb2ZUZ44ivkSMD7bJ/IYRjySUvJ9q2bRudn+1MTZ+anPr7lNn7RRKS\nE/jx8I9M2zWNJhWbMP6p8TSv3DxH2hcbG0vFitUpVaoc4eHHcXXN7hZ60Oth8WJjeLz2mvllXnih\nF+vXb8HDo1K22zMYkoiNDePixYtUrVrV2kMQQthA7pTPY5RSjPhkBCndUojcH8n69et59tlnMywX\ncSeCzec3s6b3GppVytnO6dmz52AwtOfmzUusXLmS3r17Z7qsXg+//AKTJ0P16sY73DPz449ziI6O\ntrgd7u7uVKlSxZqmCyGcQCoUJ9m2bRv+/fyJeyMOTkPtU7UzrVKcITY2lkqVanD37l9ABFWqfGC2\nSjEY4KefjEHy6KMwYQI8+aRz2iyEsA/plM9DTNVJXOs447/AY8ZK5Nc1vzq7aalmz55DSko7oB7w\nNDdverJy5coMy2k0cOqUsTrZulXCRIiCTCoUJ0hXnZgiXQ/lTpXjyqorTq9S0lcn9e5N/TPTKkUI\nkb9IheJkSikiIiIsWm7EJyOIeyIu/bfvBvH741m/fr3jGmmh9NWJydNcv+5rtkoRQgiQCsVuVq9e\nTe8+vbkQfoGKFStmuty2bdvo3r87ujd08GAhctL5fSnmqxOTGLy923PhglQpQuRnUqE4kcFgYOTY\nkaSUTWHS1MyHN5mqE10rM2EC8BhE3ox0apVivjox8eLWLfN9KUIIIRWKHaxevZr+H/QntmcsHj94\ncP70ebNVitm+kwc5sUrJujoxkb4UIfI7qVCcxFSdxLaOheKQ0tBYpcQlxTFjzwx6reoFmBnZlRkn\nVilZVycmmY/4EkIUbFKhPKTU6mRArPEyViy4HXKjVJdStK3elvFPjaeBVwPLqhOTHKxSDAZwcbG0\nOjGRKkWI/EzulHeCdNWJ6bxfDAx1DLSLbsfyUctTl/35l5+JvxZPoemFLNr2Gd0Zzpw5Q506dRzQ\nckhIgAULYPp02LsXfvttETqdjhIlxlqwtiIi4iwbNmzgueeec0j7hBB5j1QoDyFDdWISCx7z0/el\n6PV6dDqdxdt2cXGhePHidm6xMUh+/BGmTYMmTYx3tjdrBpGRkRw4cMCqbbVt25ZSpUrZvY1CCOeS\n96FkwlGBYjAYqFW/Fucbn4faGecX2lqIQU0GMWfWHLvvWylFcnIy7u7uVq0XHAyvvgqPPw7jxxuD\nRAghHiSd8jls7dq1XNFdgVrm5yf5JvHzop+tegiipb76aiZPPNHJ6n9wHx9YuxbWrZMwEULYn1Qo\nNsiuOjFxRJUSFxdHpUo1SEx0448/fqZjx45227YQQoBUKDkqu+rExBFVyrfffk9y8pMkJn7BiBEB\nGf7R4+Nh5kw4fNhuuxRCCItIoFgpdWSXdyxcAMKz+FwDvZc+y7vnrREXF8eUKdPR6cYDvTh37jrb\ntm0DjEHyzTdQo4bxFbtarV12KYQQFpNhw1ZKTEykapWqlLhbAs5asEJZ7HYviak6gQYAxMWN58MP\npzBwYAe+/FJDy5awfr1x9JYQQuQ06UPJI0x9J3fubMEUKJCCVtuali3X8tVXFWjc2JktFELkF7mu\nD+Xy5cu0a9eOevXqUb9+fWbNmgXAjRs36NSpE7Vq1eLpp5/m1q1bqetMnToVHx8f6tSpw+bNm1On\nHzp0iAYNGuDj48P777+fOj0xMZFevXrh4+ODr68vFy9edNThOEyvXv0JDg7OdrkHqxMjV3S697lx\noyeNGuX90BRC5HHKQaKjo9WRI0eUUkrdvXtX1apVS508eVKNHDlSff7550oppaZNm6ZGjx6tlFLq\nxIkTqlGjRiopKUmFh4erGjVqKIPBoJRSqnnz5io0NFQppVTXrl3Vxo0blVJKfffdd2ro0KFKKaWC\ngoJUr169MrTDgYf40IKDg5Wrq4eqX9839VjNiY2NVcWLV1NwWoF64JOsihatrbZs2ZKDLRdC5Ge2\nnjdz7Gzr7++vtmzZomrXrq1iYmKUUsbQqV27tlJKqSlTpqhp06alLt+5c2e1d+9eFRUVperUqZM6\nfdmyZWrIkCGpy+zbt08ppZRer1dly5bNsN/cHCjNm7dTsEAVLfqY2rRpk9llYmOV6tZtu4IbZsLE\n9FmiGjV6IstQEkIIS9l63syRTvkLFy5w5MgRWrZsyZUrV/Dy8gLAy8uLK1euABAVFYWvr2/qOt7e\n3kRGRuLu7o63t3fq9MqVKxMZGQkYHxdSpUoVANzc3PD09OTGjRuULl063f4DAgJS/+zn54efn58j\nDtMqISEhnDx5CehPXJyWESMCePrpp1M78OPiYM4cmD7dwI0bd4BrQGaPOenFuXMT2bZtm9yXIoSN\nlFIcPXqUJgVwVEtwcLBFl96z4/BAiY2NpUePHsycOTPDs6k0Gk2OvPMjbaDkFiNHBhIXNw7jP8FL\nhIdPZPPmzXTu3Bml4KmnjEOA+/b9hfnz15OcnNXj4l2JixvPiBEBHDnSwenvpBcir1FK8c7gwcxd\nuJAvp03jo9Gjnd2kHPXgL9qBgYE2bceh96Ho9Xp69OhBv379eP755wFjVRITEwNAdHQ05cuXB4yV\nx+XLl1PXjYiIwNvbm8qVK6d7V7tpummdS5cuAZCcnMzt27czVCe50f3q5JV7U+4HglIKjcb43K2f\nfopjwYJR6HSDgahsPk9y5syl1PtShMhtrl+/zqZNm5zdjAxMYXIkKIjjwJyJE5nx+efOblae5LBA\nUUoxaNAg6taty/Dhw1Ond+/enUWLFgGwaNGi1KDp3r07QUFBJCUlER4eTlhYGC1atKBChQqUKFGC\n0NBQlFIsXrwYf3//DNtatWoVHTp0cNTh2FX66sTkJcLDb6eObiteHE6fPo27uzuengPx9GyWzacl\nhQsns3fvfqcckxBZuXbtGi2fbEn3Ht2Z/e1sZzcnVdow+VOnox4QrNNJqNjKXp04D9q5c6fSaDSq\nUaNGqnHjxqpx48Zq48aN6r///lMdOnRQPj4+qlOnTurmzZup60yePFnVqFFD1a5dO10n9cGDB1X9\n+vVVjRo11LBhw1KnJyQkqJdeeknVrFlTtWzZUoWHh2dohwMP0SbBwcGqaNEaCvRmOteXZTviS4i8\n5urVq+qqFZ69AAAgAElEQVTROo8qdz93xfsobTmtmjV7lrObpQwGgxr6+uvKV6tVtx/4YbwE6lGt\nVk1PM1CoILH1vCk3Nuawpk2f4fDhiUBTM3NTKFq0Ab/99jWdO3fO6aYJYXfXrl3D9ylfLle4jL6t\n3vjeoJugXapl2vhpDHt3mFPapR6oTEqYWeYy4KfV8vb48QWuT0Xeh5KJ3BQoY8ac5vPPy2EcrZXZ\n1cYg6tefybFje6RzXeRpZsPExImhYkmYmBTUUMl1d8qLjNau/Q7YSdZfe/q+FCFyo02bNnHmzJlM\n52cZJgClQNdXx5iJY3K0T8WaMAGogvSpWEMCJYeEhIRw+fJG4Nlslkw/4kuI3Gbx4sW80PsFfJ/0\n5eTJkxnmZxsmJjkcKtaGiYmEiuXkkped3bkDc+fCO+9A0aL3p7/66kCWL1+Ou7unBVsxEB9/lVOn\nTlGnTh2HtVUIay1evJghw4cQ3yceTYwGzx2e7A7eTd26dQErwiStHLr89f333zPtgw84nphocZik\ndRGo6+bGmg0b6NSpk72bl6tIH0omcipQbt+GWbOMny5dYMYMuHeLDQDx8fHpHoSZHVdX19R7dITI\nDdKGCeWM0zTH74dKuXLlrA8TkxwIlejoaNq1bEn/6Gg+SU62al0D8GaRIpytW5cNISEUK1bMIW3M\nLSRQMmHLF5OQkIBGo6Fw4cLZLps2SLp2hU8/hVrZvMlRiLzGXJiYmELlydZPsvHERpJfSbYuTEwu\nAwvg33//pXr16vZodgYxJ0/ye6tWDLhzB0vfQVfQwgSkU96uevToz6uvvmnRsocPw7lzsGcP/PKL\nhInIf7IKEwDVQHH7qduE7AyhZFxJXP624bQSC9oNWj4d/6ljwuTGDfj0Uyo8+SQDnn2W5ypWZIpb\n9k+eKohh8jCkQnnA8ePHadmyE0ql8Pffu6klCSEKsOzCJJ3T4J7iTnKNZLgOytvCn7tY0C7R8uEb\nHzIp0D6vy07133/w9dfw/ffw4ovwySdQvbpFl78KcphIhWIno0dPJDFxJHr9+4wd+1nq9Fu3jB8h\nCgqrwgSgDujL6im2qBhl1pfBNdQ1+3UcFSb//QdjxxovGVy9CocOwQ8/wL3qp2LFimwPDeWXTCqV\nghwmD0MCJY3jx48THLwTg+EtUlKG8ccfGzlw4BwTJkDNmrBli7NbKETOsDpMTLwgtnUsSYlJlDpa\nKutQcUSYXL9urEJq1TL++dAhmD8fqlXLsGhmoSJhYjsJlDRM1QkUBTxJTPyNNm28iIiA0FB46SVn\nt1AIx9PpdLw+6HXi21sZJveoBorYarFUq1qNcv+UMx8q9g6T69fh44+hdm1jf8nhwzBvntkgSevB\nUJEweTgSKPekrU5MlPIF2jF69Flq1HBe24TISVqtliW/LsFjqwfEWL++5oiGUpGlWLp4KaG7QjOG\nij3D5No1GDPGGCS3bsGRI8YbwR55xOJNpA2VloUKSZg8BAmUe9JXJyaFSEnxT9eXIkRB8PLLL/Pz\nvJ/xCPIwvizUQpojGkrvK83enXvx8fGhatWq6UPFXmFy7RqMHg116hjvJj5yxNjxXrWqTZszhYrf\nO+9ImDyEbEd5paSk4OpqQedaLmXJaAXTyK74+POkDxSA2xQpUlNGfIlcb8eOHURHR9OrVy+7bO/s\nf2d5Y/Eb7IjZAclA8ayXfzBM0rp06RIt27Tk5t2bjHxvpO1hcu0aTJ8OP/4IvXoZqxMbQ0RkzmGj\nvHx8fBg5cqTZZ/bkF+arExNP9Pr3pEoRudrWrVvp6t+VgW8PZP4P8x9qW2eun6Hf6n48sfAJOjbp\nyE+NfsJjQdaXv7IKE4CqVauyf/d+Fny7wLYwuXoVRo0yXtqKjYWjR2HOHAmT3Ca7F6bcvn1bzZs3\nT7Vq1Uq1aNFCzZ07V92+fduml684Q3aHeOzYMeXh4aUg1swLr0yfW6pIkbLqzJkzOdRqISy3ZcsW\npS2pVQxEMQzlUcZDzZs/z+rtnL52Wr3y2yuq7Bdl1aSQSepW/K3UecuXL1ceJT0Ub6EISP/R+GtU\nGa8y6uzZs/Y8LKMrV5QaMUKpUqWUeucdpS5ftv8+RAYWRIP59axZePv27apSpUrKw8ND9e/fX4WF\nhdm005yU3RfTtWtP5eIyPYswMX5cXSeqnj375VCrhbBMujAxneStDJVT106pvr/1VWW/KKs+C/lM\n3U4w/wujuVBxWJjExCj10UfGIHn3XQmSHOawQNHr9WrNmjXK399fNWrUSM2YMUNFR0erlStXKh8f\nH5t2mpOy+mKOHTum3NyKKtit4Gg2nxDl5qaVKkXkGmbDxIpQOXn1pOqzqo8q90U5NXnH5EyDJK20\noeKQMImOVurDD41BMmyYUhER9tu2sJitgZLtw2xq1aqFn58fo0aNonXr1qnTe/bsSUhIiIMuxOWM\nc+fOUaVKDQyGoRYt7+JSk3PnzknnvHC6rVu34v+SP7oXdGBuhGwZiO8bz/CPhwPw5hv3n0136top\nJu2YxNZ/t/KB7wfMe3YexQtn0+N+z8svvwxA/8H9KaYtlmmfidViYuDLL+Gnn+DVV+H4cahc+eG3\nK3JUlqO8UlJSmDx5MuPHj8/JNtlVbnoFsBD2kG2YpPUfeCz14Jup39Dm+TZM2jGJbf9u48NWH/JO\n83csDpIHLVy4kIYNG9KsWTOb1k8VEwNffAE//wz9+hmHAleq9HDbFA/NYY+vb968OQcOHLC5Yc4m\ngSLyE6vCxOQWuF51RVtHy9h2Y3m7+ds2BwlAcHAwL3TtSkUvL/7at48KFSpYv5HoaGOQLFoE/fsb\nR3BJkOQaDhs23KZNG95991127tzJ4cOHUz9CiJxlU5gAlISUyino5+gpdarUQ4fJS888w+8JCfSO\niqK9ry8xMVbcTh8dDcOHQ716xr+fOAHffCNhkk9kW6H4+fmh0WR8W8727dsd1ih7kgpF5BeNmjXi\nH/d/MHQx2LaBA1B8d3FuXr9p083KpjBZodPR7t60ie7uBFWqlH2lEhUFn38OixfDgAEwciRUrGjT\nYQjHkzc2ZkICJe8Y9tZbvPH22zRs2NDZTcmVwsPDadmmJf81+Q9DcytDJQyKrS/Glo1b8PX1tXrf\n5sLEJMtQiYw0BsmvvxqDZNQosOUSmchRDg2UP/74g5MnT5KQkJA6La901Eug5A07duygvZ8f3dq1\nY922bc5uTq5lU6g4MExMMoRK2iAZONBYkUiQ5BkO60MZMmQIK1asYNasWSilWLFiBRcvXrSpkUJk\nJnDkSGYrxaG9ezl06JCzm5NrVa9endBdoZQ5UgbNPxa8uD0HwgRgvF5P76goejdrRtygQdCgARQq\nBKdOwYwZEiYFRLYVSoMGDTh+/DgNGzbk2LFjxMbG0qVLF3bt2pVTbXwoUqHkfjt27GBgt26cjotj\nrkbDFqlSsvR3zN+M3jiaLae3oK4rVNVM/n/nUJikFQ8sK1GCZ3ftonyDBlbvU+QODqtQPDw8AOM7\nEiIjI3Fzc7NuVIcQ2QgcOZJP4+JwB97IZ1VKYmIi//zzj122dTTmKC8uf5EuS7rwdJ2nOT74OGU3\nlcXlgJkfYyeECYAHEBEfj99zz8l5ogDKNlCeffZZbt68yciRI2natCnVqlWjT58+OdE2kYfp9XqL\nltuxYwcXTpzg1Xt/LwKMSUggcNQoh7UtpyQmJtLNvxuNH2/MypUrbd7O0ZijvLD8Bbou6cqTVZ/k\n/Hvn+bDVh9T1qZt6+StdqDxkmOh0Op7p0oWZVoaJyXi9nuYREQzo3duGtUWeZs1zWuLj49XNmzdt\nesaLs1h5iMIO/vzzT+Xt5aXi4uKyXbZ9ixZq4QNP4owHVcnDQx08eDAHWusYCQkJqn3n9sqjoYfi\nTZRHSQ+1YsUKq7ZxOOqwej7oeVVxekX19d6vVVyS+e/z33//VeUqlVMuz7goXkEVK1lM7d2796Ha\n//nkyaqmVqsisntqqpnPZlDlihZVO3fufKg2COex9byZaR/Kb7/9lnr/iVIqw70oL774oqOzzi6k\nDyVnKaVo1aAB0adP8/7UqXw4cmSmyx5asIDrQ4bQISWFBx8qNzsP96WYKpO90XuJ948HVyAGPII8\nWDR/ES+99FKW6x+JPkJgSCD7I/cz+onRvNn0TTzcPbJcxzT6SxenY+umrTZVJg/6YsoUfpg8mWCd\nDkufqrUFeKVoUX7ftIk2bdo8dBuEc9h92PCAAQPM3tBo8tNPP1m9M2eQQMlZmzZt4qOePVkaF0cX\nT0/OR0Wh1WrTL3T0KEycyH9//ME5vZ6WZraTANTw8GDdzp00bdo0J5puF2bDxCSbUDkcfZjAkEAO\nRh1kVOtRFgVJWpGRkdy5c4fHHnvMDkdiNHfkSDy/+YaXk5PJ7lZICZP8w+bzpl3qo1ysABxirmEw\nGFTLevVU0L1LHz21WjXjiy/uLxAVpdQLLyhVsaI69847qq5Wq5KyuHQyS6NRz7Vv77wDslK6y1zj\nzDxSPgDFWxkvfx2MPKieW/qcqjSjkpq5b6bSJemceBT3XLig1JtvKlW6tNrTtq1q7uGR5eUvucyV\nv9h63pQbG4XdmKqTY3FxuALHgafTVinx8bBwIQwcSId27Xh1/34GZrG9vFSlZFmZPOhepTJ+5nh2\nu+/mcPRhxjwxhsGPD7aqInGIixdhyhRYtQreegs+/BDKlMny8pdUJvmP3NgonEopRcCIEYy/FyYA\nDYA2ej1zv/vOOMHDA955hx0HD6Yb2ZWZvDLiy6owAagA8W/F8/Gxjyl/pzzn3zvPsJbDnBsmFy7A\nm2/C449D2bJw9ixMngxlygAw6pNPeGPsWPy0WiLTrCZhItKSGxuFXTxYnZhkqFKAXi+8wLYNG/Au\nUiTb7SYaDJyOjeXixYtUrVrVMY1/CFaHSVpWdNQ7THi4sSL5/XcYOhQ++CA1RMxJW6mcRMIkv7L1\nvJntGxsfvLGxTJkycsOSSMdUnXz9QJhA+irFNOJr9rx5REVFWbx9d3d3qlSpYr8G29Hoj0ez+/Ru\nEvsnWhcmYKxUesbTp28fGjZsSO3atR3SRrPCw40VyOrV8PbbEBYGpUtnu9qoTz4BoM1nnxHn4iJh\nItLJNlCee+65dDc2ajQaBg8enBNtE3nE3tmzmXr6NH6ZzB+v0/H05Mm89c47aLVaypcvT/ny5XOy\niQ7zxqA3WPTrIpJOJqEaWPkbnR60u7R0er4TNWrUcEwDH/Tvv8YgWbvWqiBJa9Qnn1C2fHnq1q9v\nl+HJIv/I9JLX/v37qVKlChXvvbNg0aJF/Prrr9SpU4eAgADKZFEW5yZyycuxVEoKBzw9cY2LI6tu\n85e0WloFBGR5X0pedeLECdq0a8Ptp25bHip60P6mpVP9Tqxatgo3t2x/t3s4DwbJ8OFWB4koOOze\nKT9kyBAKFy4MGB+PMWbMGN566y08PT0ZMmSI7S0V+cqfW7YwEGiczXLjdTq+nDwZnU6XE83KUfXq\n1WPX9l0UPVMU7lqwggVhsnfvXuLj4x++cefPw+uvQ4sW4O1trEgmTpQwEQ6RaaAYDAZK3/tPt3z5\ncoYMGUKPHj347LPPCAsLy7EGilzkv//S/dXUd/JGXBzRQEQWn1JA/cTE+yO+nOjKlSsMGDSA6Oho\nu2xv7+W9fHTkI4r3L47HIQ/I6lmQFoTJD/Pm4demDf6dOtkeKufOGd9D0rIlVK1qDJLAQChVyrbt\nCWGBTOvslJQU9Ho97u7ubN26lfnz56fOS05OzpHGiVxi3z7jyejGDeOf7z1B4datW1y/dYvpJUsy\n3cJNVTp40HHttMCVK1fwfdKXCEMEf7X5i9BdoamXda215/IeAkMCOX39NJ+0+YS1vddyrts54+Uv\nZebyl4VhMvGDD/jbYGDSoUP4d+rE2i1bUgfHZOvcOfjsM/jjDxg2zPj3kiVtOj4hrJbZHY+fffaZ\natWqlXruuedU48aNVUpKilJKqbNnz6rWrVvbdBelM2RxiAWKwWBQCxYsUElJSZavtGePUp07K1W1\nqlLff69UQoLjGpgDYmJiVDWfasq9vbsiAOXW0U1VebSKioqKsmo7uy/tVp1+6aSqfl1VzTs4TyUm\nJ6ab/88//6iS5UoqTQ/N/Tvkx6K0dbTKv6e/0uv1Zrc7f+5c5e3hoc7eu/tcD6pvkSKq0xNPKJ0u\nm7vnw8KUeu01pcqUUSogQKk89hBXkbvYet7Mcq09e/ao33//XcXGxqZOO3PmjDp06JBNO3MGCRSj\njRs3KkAtXLDAshVGjTIGydy5eT5IlMoYJqaPNaGy6+Iu1fGXjuqRrx9R8w/OzxAkaaULFRvCRFka\nKmfPKtW/v1JlyyoVGChBIuzC1vOmRY9eyctklNf9JwA3P3GCDV5enL58GXd396xXunwZvLyMr3HN\n40yXuSKrRKJ/KuN7Wtx2uVHx34qZXv7adWkXgSGBnLtxjrFPjqV/o/4Ucs3+ezGN/oovHE8X3y7Z\nXub6Kz4eHzPbSQZeK1KEa02b3r/8dfas8dLWxo3w3nvGj6enJV+HENmy+9OG8wsJlPt3sR+Pi6NT\nsWK8OnMmA19/3dnNyhHZhYmJuVDZeXEngSGBnL95nk+f/JT+jfrj7ppNED/g5MmTLFm2hMAJgTaF\niYkpVArXrcv82rVx27IF3n/f2E8iQSLsTAIlEwU9UEzVyYcnTvAysAMYaKpS9u+HL7+EBQuyfNxG\nXmVpmJiYQmXWylnM/mc24TfDUysSa4PEEpaGiYkBiAV+q1qV3vv34+HlZfc2CQESKJkq6IGStjox\njRF/z8OD0dWrU1mng7FjoX//fHFpKy1rw8REc0uDi6sLXzzzBcOeGuaQIAHrw8TE7OUvIexMAiUT\nBTlQHqxOTBKAgBIlmBQdjfuDL7/KB65evUrLNi2tDhMT192uVDpfif2791OhQgW7t+/48eM0btSI\nw0rRyIb1k4HWhQrR9p13+PKrr+zdPCEc9/h6kXf9+eef3L1wgZ4PTC8CHDAY+DUoyBnNcri9e/cS\nGRWJvpH1YQKQ0jCFK9euOOyJ2nXr1qV/r168r9USZ8P681xcuOrpyTvvvWf3tgnxMKRCyacyq05M\n0vWlZDfiKw+a9sU0Jn01CV1fHVjTZ30XtEu0fDzsYz795FOHtS8lJYXBr75K+Lp1rNfpKGrhet+5\nuPBlmTIE799PtWrVHNY+UbBJhSLuCwkh5JdfzFYnJk8B1eLi+HXx4pxsWY4ZM2oM4z4ch3apFm5b\nuFIOhQmAq6srP/76K0+0bUuoqyuW/OhKmIjcTiqU/CQ4GAIDUZcvMyQlhY4XLpitTkzye5UCMPXz\nqQSuCCSxW2LWL2vIwTAB4MQJmDgRFRzMyooV+ensWVbFx2daqUiYiJwkFUpBFhwMfn7wxhswYACb\nZ85k97VrmVYnJvm5SlFKse3fbWwsv5Hi/sUpFFIo80olJ8Pkn3+gVy9o3x6aNkVz/jw9Dh2igr8/\nz2TSpyJhIvIKqVDyuqgo6NgRxoyBvn3BzY02jRujOX4cX5fsf1/4x2DgbPnynLfTk3edTSnFX+F/\nERASwNW4q4x7ahy96/dm+vTp5vtUrAiTK1euULRoUYoVK2Z9w/75x/jY+B074KOPjK/bTbOdzPpU\nJEyEM8iw4Uzk9kC5dOkSFStWfLhLTkqlPgEYYOnSpURGRlq8uqenJ2+++abt+7eTdevW0apVK8qV\nK2f1ukoptoVvIyA4gGu6a4x/ajy96/fG1eX+e3kzdNRbESZnzpyhXatWVK5Qgc27d1PK0sfAHz9u\nDJKdO2HECGOQFDV/YevBUPlZwkQ4ic3nTZueAJaH5OZD1Ol0qkKpUmrqZ59lv7DBoFSah3TmN1M/\nn6rci7qrR2s/qq5evWrxegaDQW0+t1m1XtBa1Z5dWy05tkQlpyRnuR+tl1bxBkpbQasmTZ6U7T5O\nnz6tKpcurRZqNOr9woVVs8ceUzdu3Mh6pb//VqpHD6W8vJSaPt3if7vk5GQ1oHdvVatwYfVIuXIq\nPDzcovWEsCdbz5u592xrJ7k5UL756ivVvHBhVa5YMXXnzh3zCxkMSm3ZotQTTyg1dGjONjCHpJ7k\nP0S5+1kWKgaDQf157k/V6sdWqs63ddTSY0uzDJIH9wdYHSYKlAGyDpWjR5V68UWlKlRQasYMpeLi\nLGpTWsnJyeqLzz+XMBFOk+sCZeDAgap8+fKqfv36qdMmTJigKleurBo3bqwaN26sNmzYkDpvypQp\nqmbNmqp27drqzz//TJ1+8OBBVb9+fVWzZk313nvvpU5PSEhQL7/8sqpZs6Zq2bKlunDhgtl25NZA\n0el0qmLJkuoIqN5abcYqxWBQavNmY5DUqqXUr78qlWzZCTMvSRsmBKCYkHWoGAwGtSlsk/L90Vc9\n9u1jVgVJWufOnct2mQfDxPQxGypHjij1wgvGIPnqK5uCRIjcItcFyo4dO9Thw4fTBUpAQICaMWNG\nhmVPnDihGjVqpJKSklR4eLiqUaOGMhgMSimlmjdvrkJDQ5VSSnXt2lVt3LhRKaXUd999p4be+409\nKChI9erVy2w7cmugfPPVV+qFokWVAnUC0lcpBoNSXbooVbu2UkuW5MsgUcpMmARkHioGg0FtDNuY\nGiTLji+zKUgslVmYPBgqfatXV4nPPKNUxYoSJCLfyHWBopRS4eHhGQJl+vTpGZabMmWKmjZtWurf\nO3furPbu3auioqJUnTp1UqcvW7ZMDRkyJHWZffv2KaWU0uv1qmzZsmbbkBsDJW11YjpBZahS/v47\n3waJUlmEyQOhUr12dbXswDLV8oeWqu53dVXQ8aCHDpI9e/YonypV1M6dO83Ozy5M0obKLVDTvbzU\njYiIh2qTELmJrefNrG71cojZs2fzyy+/0KxZM2bMmEHJkiWJiorC19c3dRlvb28iIyNxd3fH29s7\ndXrlypVTRy9FRkZSpUoVANzc3PD09OTGjRuULl06wz4DAgJS/+zn54efn59jDs5C8+fOxVevp3Ga\naeN0OvymTeOd996jePHi0LCh09rnaKmjrV7RQYlMFtKAvq2eC3cv0H9pf+a8NIfXfV/HRfNwt07t\n3bsX/06deDcujhe7dOH3TZto06ZN6vwzZ87QoXVrJt28ycBsRrloMDb/8q1bPN2pk3Wjv4TIRYKD\ngwkODn7o7eTojY1Dhw4lPDyco0ePUrFiRT766KMc2W9AQEDqx9lhEh8fz+cTJzI+Lv0tbHWBDgYD\n382a5ZyG5RCLwsREA6q4Qh1RTB04lf+u//dQ+zaFyS9xcYwHltwLFdNDIK0JkzRN5OvERJ7491+e\nfuIJbt68+VBtFMIZ/Pz80p0nbZWjgVK+fHk0Gg0ajYbBgwezf/9+wFh5XL58OXW5iIgIvL29qVy5\nMhERERmmm9a5dOkSAMnJydy+fdtsdZLbzP/+e96Kj09XnZiM0+n4ato07t69m+PtyglWhYmJBpLb\nJnO54mV8n/Tl2rVrNu07bZh0uTetE/dDJTg4mHatWzPCijBJ00S+Tkyk7rlz9PH3t6l9QuQHORoo\n0Wnuxl69ejUNGjQAoHv37gQFBZGUlER4eDhhYWG0aNGCChUqUKJECUJDQ1FKsXjxYvzv/cB2796d\nRYsWAbBq1So6dOiQk4dik8SNG3ly1ChGJiaanZ+fq5SwsDA+Hv0xOn8rwsTk3uWvy/rLjPlkjNX7\nNhcmJqZQefnZZ+nQsSM/e3hgSx10Etji5sZrb71lw9pC5A8Ou1O+T58+hISEcP36dby8vAgMDCQ4\nOJijR4+i0WioXr068+bNw+vea0ynTJnCwoULcXNzY+bMmXTu3BmAQ4cOMWDAAOLj4+nWrRuz7p1s\nExMT6devH0eOHKFMmTIEBQWZvZs4N90pv7FfP/5ZuTLTQAHjicmvWDHOR0UZ+1LykfEB45kxf4ax\nQrHy6SXm3vluiazCJK0tQF+tlqGtW9Nh+3bapKTgmsXyaZ0AOnl4MP2HH+j7yisWt02I3EoevZKJ\n3BIo8fHx1KhUiQ23bpm93JVWH62WRp98wpixY3OkbTlpXMA4vvjzC5I6JWHpGdvRYWJyDdBrNGxp\n0oTvTp1iY3w8ZbJZR8JE5EfytOHcQinYvBlSUtJNnj93LmV0OqKBjdl8mut0TJ86NV/1pSilWHdm\nHesrrqdk55IU2loIYrNfL6fCBKAccEopRpw+Te3nnqODVpvl5S8JEyHSy/Fhw/mWUrB+PQQGQmKi\n8c/3hjUDaAwGvJs2xdLeEd/Chbl9+7bTL3tt2LCBkiVL0rp1a5vWNwVJYEggBmVgQtsJ+NfxJ4CA\nbC9/2RomR44csTpMTDoAS3U6+v7xB88+/zwd1qxhm06XoVKRMBHCDHvcBJObOfwQDQal1q1TqmlT\npRo2VOq335RKSXHsPnPIsmXLlEdJD6X11Krt27dbta7BYFCrT61Wjec2Vo3nNlarT61WKYb038u4\nCeOUtqJWMSLjjY1uHd1UlUerqKioKKvbvX//flVWq1XbsrgpMatPCKhyWq3as2ePGv3BB6qRVquu\np5n/D6iKHh5qya+/Wt02IfICW8+bEihm7NmzRx04cMCyhdetU6pRI6V+/z1XB4nBYFCbN29WyRbe\nfb9s2TLlUcpDMRTFACwOlRRDivr95O+q8dzGqsncJmrNqTWpj9Exx1yoPEyYmAQHB9sUKqYw2bp1\nq1LK+L2lDRUJE1EQSKBkwtovRq/Xq1qVK6sG1aurFEsCIiUlVweJUsaT4rBhHykXl8KqR49Xsw2V\ndGFiqhqyCZUUQ4r67eRvqtH3jVSTuU3U2tNrswyStNKGij3CxCQ4OFh1KVw4XXVhTZiYmEKlgVYr\nYSIKBAmUTFj7xSxevFi1KVZMNStWTK1ater+DINBqaQkO7fO8UxhotU2URChtNoOWYaK2TDJIlRM\nQdLw+4bq8XmPq3Wn11kcJGl9Ov5T5ap1VRWqVLBLmKjdu5V6+mkV7+WlPihUSP1lY5iYGAwGNTUw\nUPIQomUAACAASURBVK0ICnr4tgmRy0mgZMKaL8ZUnWwD9QcYqxS93ng5q1EjpX76yXENdYD0YfLf\nvXNnXKahkmWYPBAq2/7apladWKUazGmgms5rqv535n82BYlSxvd/9OvZUz3i5qbKFS+u/v77b9sP\nevdupTp1UuqRR5SaP1+pxMRsL39lFyZCFDQSKJmw5otZvHixerJYMWW49yTZEUWKqJvVqinVpIlS\na9caq5Q8wnyYqExDxaIwMX3eRmne1ajaM2qrP878YXOQKHU/TNprtSoOVBCoCp6e1ofKrl1Kdeyo\nVLVqSv3wg1KJielmZxYqEiZCZGRroMiNjfckJydTr1o1vo+MpP29abeBT728mBkZiYurpfdNO59S\nivffH8mCBX+h020FzD3jTIdW252uXSvy4otdGfzuYOJ7x4OXhTu5Ah5LPdiwZoPND9xMSUlhYO/e\nRG7YwP90OrT3pi8Hhnt68ueOHTTM7qnLu3ZBQACcPw9jx0L//lCokNlFQ0JC6NmtG8t1OtoDO4Ce\nWi3L1q3LE4/uESKnyI2NDykoKAiv27dpl2ZaCWBfXByr16xxVrPMio6OZt++fWbnWRYmAFp0unX8\n73+X6TfgTeJftiJMALwg/oV4nnn+GZsee51ZmAD0Ar65fZvOTz3FsWPHzG9g507o2NEYIH36wNmz\nMHhwpmEC0LZtW1Zt2EAvrZYvkTARwt6kQsF8dWLyB/BJ9eocPXcOFxfn529ERAQtWvhx48Z/rFix\niO7du6fOszxM0tKBSweocxR6Jlj/K8YWqH27NqePn7Z4lazCJC2zlcqOHcabRy9cMFYk/fqBu7tV\nTQ4JCeHVl17i52XLJEyEMEMqlIdgrjoxeQYodO0aq1evzulmZWAKk6tX3yIxcQu9e7/BunXrAFvD\nBEALhm1wpjGsKgIGy9ujOaah1NlSrF5h+XdjaZhA+krl/MKF0L49DBwIr74Kp0/D669bHSZgrFQu\nXbkiYSKEnRX4CiWr6sQkN1QpacMkJWXEvakH8fB4hqCgHzAYDLz0Uj+Sk88D5a3fgeYO1PeGbnfB\nw4LFj2koubMku0N289hjj1m0C2vCJK0rgM7FBbeAAKqMGWNTiAghLCcVio2yqk5MnF2lmA8TgGbE\nx6+nd+83SE5OpnXrNnh4vAskW75xTQrUXwZvV4MWccZH7ma3Sg6GCRi7dg4YDLSYMYNjp05ZsaYQ\nIicV6EBJTk5m0pgxBMTGosliOQ0QEBtL4MiRGAxWXBOyg8zDxMQYKv37v8OwYYNo3vwuhQt/RLbX\nrlKDpD4a3w955FR5NvZcT9Hfi8L5LFazIUwALly4QNDq1QRaGSYmLwI14uNZMHeuDWsLIXJCgb7k\ntXz5cl7v25dBbm5ZBgqAAuYlJ7Ny9ep0HeGOlH2YpHWQwoWH07Tpr+zdWwylNgB9yfBAaU0K1F8O\nT02C+NIQ4ol7xF7CzhzlkUceYffu3XR+tjNxz8VBjQdWtTFMTFavXs1br7zCxvh4HrdivWTgFQ8P\nbjdrxprNmylSpIjV+xZCWE5esJWJrL6YsLAwNmzYYNX2unfvTvXq1e3RtCxZFyYmejSaKbhU+YYU\nEiGqPSSvAdzuBUkQtJ0EurIQPAEuLofSy3CvoaeGrgZ7gvdQqlQps6HysGFiYm2oSJgIkfMkUDKR\nW97YaA3bwsTkILi1hxfvQqgHRLWDOr2g7ZR7QRIA/7YH1yFQeikM0kFhKLStEI/eedRsqGji7BMm\nJqt//51f+/RhUVJSlm8CljARwjkkUDKRFwOlQ4dnCA4ujcGw2MYt/A6uPWGkgkQN3C4J24MgvJNx\ntuub98PEdI7+f3t3Hh5VYe9//D2ThUzCDhIh8RIKYUmICRICiFBks2oFAVmCsgi2FygK0kpbvSri\nFePSWrDQikZF2aE/EVt2FET8CRVxBSS1oAQJFQIKZCQk871/DBkSkkAyTBIgn9fzzPPAmTlnzjke\n582ZOUsuhM4O5U/T/8S4ceMAvFG59SZCQ0MDExMz2LABpk7l+N69TPnuO35x+nSJeyqKiUjVUVBK\ncTkG5ZNPPqFbt5v44Yc/A3eUb2TnvyCxPfT5wXv4bz7wWhgc6Al5b0DQ+BJjEr40nH6d+jHv1XlF\nDo3+9NNPqVmzJj/5yU/8XyAzWL/ee0Li4cPwyCMwZAhvrFhR4tdfiolI1VJQSnE5BgW8UencuSdu\n92xg8IVHcOZBwkzoNgWH24M1tLPByANed0FmQ6h/pMwxuWhmsG6dNyTZ2d6QDB4Mha6Ldu5vKoqJ\nSNXz93NT95SvYm63m7CwMByOoseZ7d69mzxHU3AEg7kp9WxDZx4kLIBuj8KJAwS966R5XnMyv88k\nZ1gOhOP9rzzcDf9/P3SgXDHZsWMHNWvWJDY2tuwLVRCSqVPh2DF4+OFiISnQv39/mD+fm++8k7fc\nbv6gmIhctqr1eShVbffu3UT9VxSjfzm6yPktzz67lmHDQzlt/4CO70PoNcCSoiM78yBxLvyqDbSb\nDSuPwbf55N96mv25+4muE034gnDIOfP6YKAr5YrJu+++S58bbuCnKSl88cUXF14gM1izBq6/HiZN\ngvvug88+81688TxXa+7fvz9/nT+fbkFBionI5cyvi95fRiprEY8cOWKzZ88u222DzWzXrl1W76p6\n5vi5wyKaR9ioe0bZRx/l24ABZjXCsi0ocorxu3Dv/UfGYtRwGSw2nKeNpFeM+5obI7sbMQuNkEbG\nTU7f/UocfR1Wp34du3fSvRYeHW5MOed+Jg9i4bHhljo8tdT53bRpk10VEWHrweY7HNa4bl37/PPP\nS14Yj8ds1Sqzjh3N4uLMFi0yK+O96wv7/PPPze12l3s8EQksfz83FZQAOHLkiLVs2c5CQ6MsNfXu\nC0bFF5MBDu8H/OhEC4pYbi7XUXv22Xw7csRtXXt0NVc7l/EIZ6OSHGLcF2mMvNFoutFgb/GYDHBY\n3avq2hdffGEej8cmPzC5aFTKGZOCG1GVGBWPx2zlyrMhWbzYrIxBFZFLl4JSiooOytmY/MbguIWH\ndztvVIrEZGyi0eZvRs1vjZ6TLLxZQxt1zyjLz883t9sblbDrws5G5fcYLUK9eyoXiEmBIlGZ5F9M\nikXls8+8IUlJMYuPV0hErjAKSikqMihFY+I587l7otSoFMSEHu2M1v/PqHXA+NlE4yGXLxgFX3/9\nmPuj/eWDv1jYb8PM+Stn0T2VGi4juP4FY1KgICrOYKffMSl4vAP2UVCQuWNjzZYsUUhErkD+fm7q\nsGE/ZWdn07lzL/bt60lu7tNQ5GpgJwkPv4V+/Zozb95LOJ1Odu/eTUrn/+a46344kQJdnob2cyDE\nXXTCpyD0o1BCO4TSKbYTv7/+90z976l8ePRD3Le5vYdR/OfMo+2ZZfzUQZ3NddiycQtxcXElzq+Z\nsWnTJrp161bqD/B33HILC0+e5EJ3CdkMDK1Th7VbthAfH1+m9SUilw+dh1KKigjK+WNS4GxUBgz4\nH4bduZvTzkToXhCSH0t/Aw+ErQ1jaNuhpL+QTm5uLn1u7VM0KgXLV4aYXEh5YlJggcPBb+rUYd17\n7ykqIlcYBaUU5V0xZsZDD03D5arBww//rtjzZYtJATdO53Y8np/AtWlw24vnD0lhpyBiSQSDbhxU\nalSqKiYFFBWRK5OCUoryrBgzY/Lk3zFnzhrgNJMmDeKJJ6b6ni9fTAqcAueNEPcRDDxVtlEKjRq+\nMJxxQ8bxbNqz/Pjjj76o/BjzI3Xeu7iYeDweGtWrx2M//MCv/JoC/BZY06oVH+8u+z3lReTSpjs2\nXqSzMVlLTs4GcnLe4U9/WspDD00F/I0JQA3wrIMv28LfanhvrFJWx8C+Nzq27whAWFgYa/+xluR6\nydR+t/ZFxQTA6XTyQno6j4eFsdeP8TcAr0REMHPOHL/nQUSuHLr0CufGZD3QAOBMVLw3Bw4JcbJv\nn5vc3Ccp324GQAR45kNYG+/FGsuy1g+Ba5GLl2e/zKBBg3yDw8LCWL9qPcePH6dBgwblnI9zmDEw\nJIQejRuTuW8fe80o651eNgCpEREsW7mSbt26Xdx8iMgVodrvoZQWE69Gvj2VnJxTJCdHExY2Em8V\nyijoFCQ/A/e1hQRH2dZ4oZgMHTq02NPBwcGEh/tzI90zzGD5crjuOpg6lXrPPceexYvp7HLxSRlG\nV0xEpCTVOijnj0kBb1RmzVpOly4pXHfdfwgOfpQLfncVdAo6zIb7muNsM43UoFSSd19H2Kqw8496\ngZjk5eWRevvtxDVrxtdff12OpQU8HnjjDW9Ipk3zXgX4o4+gXz8GDhrErNde46YLREUxEZFS+Xne\ny2WjtEX0eDw2adIUCw9PMjhc2nl8hR6HrEaNIda48Q6D/YbjrwZ5xV8X9KPRYZZxf7QxrLcR3cQi\natez/fv324kTJ6zD9R0srEOY8eg519eaijEOc9Vz2cKFC0uc59OnT9vg226zn4WH2zNBQdYsMtL2\n7dt34ZWQn2/2t7+ZJSaaXXed2YoV3sumlGDZ0qUW6XLZxyWshPVgV0VE2KZNm8q8/kXk8uNvGqpl\nUMofk4JHnsGDRpzLuCbcCO5/NirBbqPDn8+E5FajyRojpJnRJdicvZ3WpGkTy8zMLD0q5YiJ+8wM\nzbhQVApCcu21Zu3bnzckhZUUFcVEpPpQUEpR0oqZPPl3fsTk7J4KITFGlyBvVGr0NVJmGJOjzoTk\nnwb/8cWkIBpBfYKsSdMmlpWVVTwqfsTEzheV/HyzZcvMEhLMkpPN3nqrTCEprHBUFBOR6kVBKcW5\nK8bj8VhcXLIFBd1b6Ppb5Xl4DOcoI9plPIzxgMMYdrXR5IMzzxePCVMxhmPhtcN919oqiEqNhBp+\nx6RYVP79b7OlS83atvWG5O9/L3dIClu2dKk1crkUE5Fqxt+gVMsTG9PSnuHBB5/AbCxQnsOADYIn\nQPt06HkKQoHTwGvhcPAmyJsNIddDyn7olXd2sl9BxFsRrPn7Grp06eKb2smTJxly5xCGpw5nyJAh\nxd4tLy+POwcM4IcNG3gjJ4fz3XJqpdPJT5xOmsXHU2P6dLj5ZnCU9/Dm4tasWUPdunXp2LHjRU9L\nRC4POlO+FOeuGDOjadNWZGb2x2wNcDMwnQtGJTgH2t8CXd6Hb6Pho29h2CnvcwVROZAPnfPLFJML\nKU9MCrzpdHJ/w4a8s20bTZs2LfN7iYgUpjPly8jhcPDOO6to0GARDsedwCrgQUo9ljfYDR3/BBMb\nQbNPcCz6JbX+kUPYEQccO/OaEGBEDgw5VWUxAejn8TDpyBFu7Nix/IcUi4hcpGq3h1Jg3bp13HRT\nf8weBhZSbE8l2A3JL3gvM58ZDptqQNZQHM6n2bRxJf/88J88nPYwOcNyoG4Jb+xnTADGjhzJv5Yu\n5e9ud5ljUtgfg4L481VX8dm//kVERIQfUxCR6kx7KOXw5ZdfMuSuIVivkxD+GJBKkT2VuGUwsTk0\nfRfm3wiL60HWUKiZBjeeZMCQAfTr24/Hf/c44QvCz+6pFLiImAAkX389GQ4HB/xYtlzgvdBQ2sbH\nExbmT45ERPxT7fZQzIzomGgOxh7EuhpkAy+5IOdRfHsqje8Ac0LWXGAL0Ncbk1/kQB1wvO2g2aFm\nfLX7K/743B+L7qlcZEwK/HX2bJ76zW/4wO0msozj5AJDXS7yrr+eZStXEhoa6vf7i0j1pT2UMnI4\nHEx7dBphO8LgMFAfuMdddE/l4NJSY8J/IOyzMB5/5HEAJt8/+eyeyo7AxIT8fMbWrctHtWuz3+nk\n2zKMopiISFWrdkEBGDN6DM8/8zyuBa5SorKa0mLiWujipT+/xLBhw3zTm3jfRFo3bg5vwfgxY/2P\nSX4+zJ8P8fEwaxb15s3jw5kz6RwezlfnGU0xEZFLwkWd/XIZON8ivpT+krnqu4wJZ04+vA8j3GXw\nR4PpRs1w4/4zz433ns0+f/78ItPIy8uzuwYOtB7h4bYd7BqXy16YPbt8M5mXZzZvnlmrVmZdupit\nW1fkhMS/zJpl/xUebv8q4aTGU2D9XS67rWdPO3XqVPneV0SkBP6moVoHxew8USlnTE6e+YDPKE9U\nTp82e/11s5YtzW64wWz9+lLPbC8pKoqJiFQEBaUUZVkxxaLyG4wHyh8TK2tUTp82e+01s9hYs65d\nzTZsKNMlUgpHRTERkYrib1B0x0a8v6kA3PvAvbiHuaHhmSdK+c0kPz+fUUOG8O2qVbyVk8O5t7pq\nAbztdtPj178G4JfjxnmfyMuDBQvg8cehSRN44QXo3r3Ml0gZO348AD0eeIC2ZgTpNxMRuYQoKGcU\ni4rHv5gUKBwVR34+v6hVC/73f70hefFFb0j8MHb8eIKcTt7bsIEX589XTETkklHtzkO5kPSX07n3\ngXvB8DsmhR0C3A4HoS1a0GTOHL9DIiJSWfw9D0V7KOcYM3oMERERhISEMHDAQN9wf2ICEAkcMKNT\nZib/s2sXv1RQROQKpT2UMnrqySd55bHH+OjUqTLHpLAvgWudTja+9x6dO3e+6PkREakoOlO+gg0d\nNoxTdeqQ7iz/KssDHnG56HHDDbRr1y7wMycicglQUMqoadOmvLN1K39s2JDnyxGVPOBOl4sfOnTg\njTVrdMFGEbliKSjlEBMTU66oKCYiUp1UWFBGjx5NZGQkCQkJvmHZ2dn07t2bli1b0qdPH44dO3vd\n9yeffJLY2Fhat27N2rVrfcO3b99OQkICsbGxTJw40Tf81KlTDBkyhNjYWDp16lRpN5Qqa1QUExGp\nbiosKHfffTerV68uMiwtLY3evXuzZ88eevbsSVpaGgA7d+5k8eLF7Ny5k9WrVzN+/HjfD0Ljxo0j\nPT2djIwMMjIyfNNMT0+nQYMGZGRkcP/99/Pb3/62ohalmAtFRTERkeqowoLStWtX6tWrV2TYihUr\nGDlyJAAjR45k+fLlALz55pukpqYSEhJCTEwMLVq0YOvWrRw8eJDjx4+TkpICwIgRI3zjFJ7WwIED\n2bBhQ0UtSolKi4piIiLVVaWeh3Lo0CEiI723i4qMjOTQoUMAfPvtt3Tq1Mn3uujoaA4cOEBISAjR\n0dG+4VFRURw44L2P4YEDB7jmmmsACA4Opk6dOmRnZ1O/fv1i7zt16lTfn7t37073AJ0LUhCVGzt2\nhMOHGefxKCYictnZuHEjGzduvOjpVNmJjQ6HA0cZr2F1sQoHJdAKR+XVY8dopJiIyGXm3H9oP/bY\nY35Np1KP8oqMjCQrKwuAgwcP0qhRI8C757F//37f6zIzM4mOjiYqKorMzMxiwwvG+eabbwDIy8vj\n+++/L3HvpDIURKX3ffcpJiJSbVVqUPr27cvcuXMBmDt3Lrfffrtv+KJFi8jNzWXv3r1kZGSQkpLC\n1VdfTe3atdm6dStmxuuvv06/fv2KTWvZsmX07NmzMhelmJiYGNKeeUYxEZFqq8IuvZKamsqmTZs4\nfPgwkZGRTJs2jX79+jF48GC++eYbYmJiWLJkCXXr1gVg+vTpvPzyywQHBzNjxgxuuukmwHvY8KhR\no3C73dxyyy3MnDkT8B42PHz4cHbs2EGDBg1YtGgRMTExxRcwQJdeERGpLvz93NS1vEREpAhdy0tE\nRKqUgiIiIgGhoIiISEAoKCIiEhAKioiIBISCIiIiAaGgiIhIQCgoIiISEAqKiIgEhIIiIiIBoaCI\niEhAKCgiIhIQCoqIiASEgiIiIgGhoIiISEAoKCIiEhAKioiIBISCIiIiAaGgiIhIQCgoIiISEAqK\niIgEhIIiIiIBoaCIiEhAKCgiIhIQCoqIiASEgiIiIgGhoIiISEAoKCIiEhAKioiIBISCIiIiAaGg\niIhIQCgoIiISEAqKiIgEhIIiIiIBoaCIiEhAKCgiIhIQCoqIiASEgiIiIgGhoIiISEAoKCIiEhAK\nioiIBISCIiIiAaGgiIhIQCgoIiISEAqKiIgEhIIiIiIBoaCIiEhAKCgiIhIQCoqIiASEgiIiIgGh\noIiISEAoKCIiEhAKioiIBISCIiIiAaGgiIhIQCgoIiISEAqKiIgEhIJSjWzcuLGqZ+GSoXXhpfVw\nltbFxauSoMTExHDttdfSrl07UlJSAMjOzqZ37960bNmSPn36cOzYMd/rn3zySWJjY2ndujVr1671\nDd++fTsJCQnExsYyceLESl+Oy43+hzlL68JL6+EsrYuLVyVBcTgcbNy4kR07drBt2zYA0tLS6N27\nN3v27KFnz56kpaUBsHPnThYvXszOnTtZvXo148ePx8wAGDduHOnp6WRkZJCRkcHq1aurYnFERIQq\n/MqrIAoFVqxYwciRIwEYOXIky5cvB+DNN98kNTWVkJAQYmJiaNGiBVu3buXgwYMcP37ct4czYsQI\n3zgiIlIFrAo0a9bMkpKSrH379jZnzhwzM6tbt67veY/H4/v7hAkTbN68eb7nxowZY8uWLbMPP/zQ\nevXq5Rv+7rvv2s9//vNi7wXooYceeuhRzoc/gqkCW7ZsoXHjxnz33Xf07t2b1q1bF3ne4XDgcDgC\n8l52zp6QiIhUjCr5yqtx48YAXHXVVfTv359t27YRGRlJVlYWAAcPHqRRo0YAREVFsX//ft+4mZmZ\nREdHExUVRWZmZpHhUVFRlbgUIiJSWKUHJScnh+PHjwNw8uRJ1q5dS0JCAn379mXu3LkAzJ07l9tv\nvx2Avn37smjRInJzc9m7dy8ZGRmkpKRw9dVXU7t2bbZu3YqZ8frrr/vGERGRylfpX3kdOnSI/v37\nA5CXl8edd95Jnz59SE5OZvDgwaSnpxMTE8OSJUsAiIuLY/DgwcTFxREcHMzs2bN9X4fNnj2bUaNG\n4Xa7ueWWW/jZz35W2YsjIiIF/Prl5TKxatUqa9WqlbVo0cLS0tKqenaqVNOmTS0hIcGSkpKsQ4cO\nVT07leruu++2Ro0aWdu2bX3Djhw5Yr169bLY2Fjr3bu3HT16tArnsPKUtC4effRRi4qKsqSkJEtK\nSrJVq1ZV4RxWjm+++ca6d+9ucXFxFh8fbzNmzDCz6rldlLYu/NkuHGZX5q/W+fn5tGrVivXr1xMV\nFUWHDh1YuHAhbdq0qepZqxLNmjVj+/bt1K9fv6pnpdJt3ryZmjVrMmLECD777DMApkyZQsOGDZky\nZQpPPfUUR48e9Z37dCUraV089thj1KpVi8mTJ1fx3FWerKwssrKySEpK4sSJE7Rv357ly5fzyiuv\nVLvtorR1sWTJknJvF1fspVe2bdtGixYtiImJISQkhKFDh/Lmm29W9WxVqSv03w4X1LVrV+rVq1dk\nWGnnPV3pSloXUP22jauvvpqkpCQAatasSZs2bThw4EC13C5KWxdQ/u3iig3KgQMHuOaaa3x/j46O\n9q2k6sjhcNCrVy+Sk5N58cUXq3p2qtyhQ4eIjIwEIDIykkOHDlXxHFWt559/nsTERMaMGVPkskfV\nwb59+9ixYwcdO3as9ttFwbro1KkTUP7t4ooNSqDOY7lSbNmyhR07drBq1SpmzZrF5s2bq3qWLhmB\nPO/pcjRu3Dj27t3Lxx9/TOPGjfn1r39d1bNUaU6cOMHAgQOZMWMGtWrVKvJcddsuTpw4wR133MGM\nGTOoWbOmX9vFFRuUc89f2b9/P9HR0VU4R1WrpHN/qrPSznuqjho1auT78LznnnuqzbZx+vRpBg4c\nyPDhw32nHFTX7aJgXdx1112+deHPdnHFBiU5OZmMjAz27dtHbm4uixcvpm/fvlU9W1WitHN/qrPS\nznuqjg4ePOj78xtvvFEttg0zY8yYMcTFxTFp0iTf8Oq4XZS2LvzaLirsWLRLwMqVK61ly5bWvHlz\nmz59elXPTpX597//bYmJiZaYmGjx8fHVbl0MHTrUGjdubCEhIRYdHW0vv/yyHTlyxHr27FmtDg81\nK74u0tPTbfjw4ZaQkGDXXnut9evXz7Kysqp6Nivc5s2bzeFwWGJiYpHDYqvjdlHSuli5cqVf28UV\ne9iwiIhUriv2Ky8REalcCoqIiASEgiIiIgGhoIiISEAoKCKFBAUF0a5dO9/j6aefrtD3e+utt3jq\nqacq9D1EKouO8hIppFatWr5zdipafn4+QUFBlfJeIpVBeygiF/D999/TunVr9uzZA0Bqairp6emA\n92J6kydPpm3btvTq1YvDhw8D8NVXX3HzzTeTnJxMt27d+PLLLwEYNWoUY8eOpVOnTkyZMoW5c+dy\n7733AvDdd99xxx13kJKSQkpKCu+//z4AU6dOZfTo0dx44400b96c559/3jdvr732GomJiSQlJTFi\nxIjzTkekwlXwOTMil5WgoCDfyV1JSUm2ZMkSMzNbt26dde7c2RYuXGg333yz7/UOh8MWLFhgZmbT\npk2zCRMmmJlZjx49LCMjw8zMPvjgA+vRo4eZmY0cOdJuu+0283g8Zmb26quv+sZJTU219957z8zM\nvv76a2vTpo2Zee9L0aVLF8vNzbXDhw9bgwYNLC8vzz7//HNr2bKlHTlyxMzMdxJeadMRqWiVfsdG\nkUuZy+Vix44dxYb36tWLJUuWMGHCBD799FPfcKfTyZAhQwC46667GDBgACdPnuT9999n0KBBvtfl\n5uYC3gsODho0qMSLDq5fv55du3b5/n78+HFOnjyJw+Hg1ltvJSQkhAYNGtCoUSOysrJ4++23GTx4\nsO8eN3Xr1i11Ojk5OYSHh1/MqhG5IAVFpAw8Hg+7du0iIiKC7OxsmjRpUuw1ZobD4cDj8VCvXr0S\nwwSU+sFuZmzdupXQ0NBizxUeFhQURF5eHg6Ho8T7VZxvOiIVSb+hiJTBc889R3x8PPPnz+fuu+8m\nLy8P8IZm6dKlACxYsICuXbtSq1YtmjVrxrJlywDvB3zhvZrCCgehT58+zJw50/f3Tz75pNT5cTgc\n9OjRg6VLl5KdnQ3A0aNHS5zOxx9/7M8ii5SbgiJSiNvtLnLY8IMPPsiePXtIT0/nD3/4AzfcTgCT\nQQAAALFJREFUcAPdunXjiSeeACAiIoJt27aRkJDAxo0beeSRRwCYP38+6enpJCUl0bZtW1asWOF7\nj8JfdxW+58bMmTP58MMPSUxMJD4+nhdeeKHEcQrExcXx0EMP8dOf/pSkpCTf/SrOnc6cOXMCv6JE\nSqDDhkUuQmUeZixyqdMeishFqE539BO5EO2hiIhIQGgPRUREAkJBERGRgFBQREQkIBQUEREJCAVF\nREQCQkEREZGA+D9H9ZBbVRwusgAAAABJRU5ErkJggg==\n" | |
} | |
], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"From our first look at the data, the difference between Master's and PhD in the management group is different than in the non-management group. This is an interaction between the two qualitative variables management,M and education,E. We can visualize this by first removing the effect of experience, then plotting the means within each of the 6 groups using interaction.plot." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"U = S - X * interX_lm32.params['X']\n", | |
"\n", | |
"plt.figure(figsize=(6,6))\n", | |
"interaction_plot(E, M, U, colors=['red','blue'], markers=['^','D'],\n", | |
" markersize=10, ax=plt.gca())" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAF2CAYAAAB9MK81AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1clfUd//HXQVHzBgMrKNAswbsgNBWZy4WZtxWSVkbL\n+341XWa5VdtqS7eR/la5NZfVr6kju6HUQluKlIqWSxS1NKmkvAXNbkCjUBD4/v644iCCcpDDuc6B\n9/Px4IFcXBd8rtPpevO9vjeXwxhjEBERqYWf3QWIiIhvUGCIiIhLFBgiIuISBYaIiLhEgSEiIi5p\nbncBDcHhcNhdgoiITzrXwNlG28Iwxnjs4/HHH/fo7/OVD70uel30mvjW61KbRhsYIiLiXgoMERFx\niQLDDeLi4uwuwSvpdamZXpfq9JrUzNteF4dx5caVj3E4HC7djxMRkUq1XTsb5SipswkKCqKgoMDu\nMuolMDCQ/Px8u8sQkSaoSbUwGkPLozGcg4h4p9quL+rDEBERlygwRETEJQoMERFxiQLDDfz8/Bg3\nbpzz69LSUi6++GJuvvlmG6sSEXEvBYYbtGnTht27d3Py5EkA3n33XcLCwrSmlYg0KgoMNxk5ciTv\nvPMOAK+99hqJiYkazSQijYoCw03Gjh1LSkoKxcXF7Nq1i/79+9tdkoiIWykw3CQqKor9+/fz2muv\nceONN9pdjoiI2zWpmd4NLT4+nt/+9rds2LCBb775xu5yRETcSoHhRpMnTyYwMJCrrrqKjIwMu8sR\nEXEr3ZJyg4rRUKGhodx3333ObRolJSKNidaS8jGN4RxExDtpLSkREXELBYaIBxUUFJCQMM3nl9mX\npkmBIeIhBQUFDB36KCtWPMTQoY8qNMTnKDBEPKAiLLKykoAryMpKUmiIz1FgiDSwqmER+NPWQIWG\n+BwFhkgDqjksKig0xLcoMEQayLnDooJCQ3yHAuMM9Z3joDkSAq6GRQWFhvgGBcZpjDHMvPvu877o\n1/f4/Px8brnlFtq2bUvnzp157bXXzuvniP0mTXqUrKyHqD0sKgSSlfUQkyY92pBlidSLAuM0a5Yv\nh6VLSX/zTVuO//Wvf02rVq34+uuveeWVV5g6dSrZ2dnn9bPEXosXJ9G375OAqy2GAqKinmTRoqSG\nLEukfkwjdLbTOtfplpeXmwdiY005WJ/Ly+v0O+t7/A8//GBatGhhcnJynNvGjx9vfve737l8DuJd\n8vPzTd++Uw3kGzDn+Mg3QUFTTUhIvgkNNeaXvzTmxReNyckxpo5vI5F6qe36ohbGT9YsX87wnTtx\nAMN27qxzK6G+x+/Zs4fmzZsTHh7u3BYdHc3u3bvr9HPEewQGBpKenkTfvo9y9pZGAX37PsoXXyRx\n+HAgGRkQFwcZGXDdddCpE4wbBwsXwpdfWvEiYhcFBlbfw5qnn2ZoUREAw4qKSHvqKZf7Iup7PMAP\nP/xAQEBAlW3t2rWjsLDQ5Z8h3icwMJB77knC37+m0LDCIj09icDAQBwOCA+Hu++Gl1+G3FxYtw5+\n8YvKzwoQsZMCg6qtA8BqJWzeTLqfHzgctX6s8fNj+ObNVY+vYyujbdu2fP/991W2HT9+nHbt2rnj\nFMUm6enw2GOBrF9/ZkujaljUxOGAiAj4P/8HXnmleoAMHFg1QPbuVYBIw2rygXFm66DCMCAtNhZT\nXn7O28+mvJw1sbEMPePn1rWV0bVrV0pLS/niiy+c2z7++GMiIyPreYZil61b4Ze/hOXL4ec/P/32\n1L5aw6ImZwZIXl5lcKxdC9deC5dfDuPHw6JFChBpAA3ei2KDs51WTdtXL11q0lq3rjEOVrdubdKW\nLTvn76rv8ae74447TGJiovnxxx/N+++/b9q3b2+ys7NdOjfxLp9/bkxIiDErVlTdnp+fb0aNmmry\n8/Pd/jvLy63f+8ILxiQmGnPppcZ07GjMuHHGLFxozJdfqhNdzq2260ujvPq4Ghinj2yq6YJf24in\n+h5/pvz8fJOQkGDatGljLr/8cvPaa6+5fG7iPfLyjOnc2Zh//9veOs4MkJAQYzp1Mmb8eGMWLTJm\n714FiFRV2/WlST9xL23ZMhwTJjDsjNtRp0tr3RrHSy8xbMyY6t+r5/HnQ0/c827Hjlmjm8aOhT/8\nwe5qqjIG9uyxRmBVfLRoYY3Kqvi44go7KxS71XZ9adKB8bvJk2m5dy/nevK2AYqvvJK5ixZV+159\njz8fCgzvdfIkDBsG0dHwzDNWn4M3qylAWrasGiCdO9tYoHicAsOF7b6kMZxDY1RWBrfdZv3F/uqr\n4OeDw0kqAmT9+soAadVKAdKUePyZ3pMnTyY4OJioqCjnti1bthATE0Pv3r3p168fW7dudX5vzpw5\nRERE0L17d9LT053bt23bRlRUFBEREcyYMcO5vbi4mLFjxxIREUFsbCwHDhxw9ymI1IkxMG0aFBZC\ncrJvhgVYLaJu3eBXv4KUFDhyBNLSIDa28nPnzjBxonWe+l+vCXJ3p8nGjRvN9u3bTWRkpHPbdddd\nZ9LS0owxxqxatcrExcUZY4zZvXu3iY6ONiUlJWbfvn2mS5cuzg7ifv36mczMTGOMMSNGjDCrV682\nxhjz7LPPmqlTpxpjjElJSTFjx46tVsPZTqsBTtfjGsM5NDaPP25Mnz7GfP+93ZU0rPJyYz791Jjn\nnjNm7FhjgoOtzv2JE435z3+M2b/f7gqlvmq7vrj9b6GBAwdWG1t+6aWXcvz4cQCOHTtGaGgoACtW\nrCAxMRF/f386d+5MeHg4mZmZHDlyhMLCQmJiYgAYP348qampAKxcuZIJEyYAMGbMGNauXevuUxBx\n2XPPWXMiVq2Cxj7H0uGA7t2rtkBWrYKYmMrPV1wBkyapBdJYNffEL5k7dy7XXnstv/3tbykvL+fD\nDz8E4PDhw8TGxjr3CwsLIy8vD39/f8LCwpzbQ0NDycvLAyAvL4+OHTtaxTdvTvv27cnPzycoKKjK\n75w1a5bz33FxccTFxTXQ2UlTtWwZ/PWv8P77cMkldlfjeQ4H9OhhfUydat2a++wzq+9j1Sp4+GFo\n06ZqH0inTvbWLFVlZGSQkZHh8v4eCYwpU6bwz3/+k1tuuYWlS5cyefJk3n333Qb9nacHhoi7rV9v\n9Vukp8OVV9pdjXeoKUA+/dQKkP/+F377W2jbVgHiTc78Y3r27Nnn3N8j3XNbtmzhlltuAeDWW29l\ny5YtgNVyOHTokHO/3NxcwsLCCA0NJTc3t9r2imMOHjwIQGlpKcePH6/WujhfBQUFJCRMO++nntX3\nePENO3ZY8yxefx169bK7Gu/lcEDPnlawvvEGHD1qBUffvpWfu3SBKVNgyRI47VIgXsojgREeHs6G\nDRsAWLduHV27dgUgPj6elJQUSkpK2LdvHzk5OcTExBASEkJAQACZmZkYY1iyZAmjRo1yHpOcnAzA\nsmXLGDx4sFtqrHik5ooVD53XozLre7z4hr174aabYMECGDTI7mp8S00B8vbbcM01sHKl9VkB4uXc\n3ct+xx13mEsvvdT4+/ubsLAws2jRIrN161YTExNjoqOjTWxsrNm+fbtz/6SkJNOlSxfTrVs350gq\nY4zJysoykZGRpkuXLmb69OnO7SdPnjS33XabCQ8PN/379zf79u2rVsPZTuts26s/6Mb62tX1fup7\nvDHGzJ8/3/Tp08e0bNnSTJw48az7NcB/MnHRV18ZEx5uzIIFdlfSOJWXG/PJJ8b861/G3HqrMRdd\nZMyVVxozebIxS5YYc/Cg3RU2frVdX5r8xL2KlkFWVhJVn79c+/LT7ji+wltvvYWfnx9r1qzhxIkT\nLF68uE7nJg2rsNC6537TTVDLbV5xE2MgO7vqTPT27av2gZw2NkbcQDO9z7H97Bd75x7nvOjX9/ia\n/PGPfyQ3N1eB4UWKi+HGG63bJc8/7/1LfjRW5eVVA2TDBgWIu3l8prevqP1iDxBIVlZSjX0S9T3+\nbBQG3qW8HCZMsC5MCxYoLOzk5weRkXDffdaQ5qNHITXVGniQmgq9e1d/Xoi4V5MMDNcu9hWqX/Tr\ne/y5OHRF8hrGwAMPWBPUXnkFmjWzuyI5XU0B8tZbcPXV8Oab1iKQChD3apK3pBISprFixUNAXdZy\n3gc8CSwApgF1P37UqCdJTV1wzr0ee+wx8vLydEvKC8yZY81o3rABLrzQ7mqkrsrLYffuqrewgoIq\nb19ddx38tOiE/ES3pGqweHESffs+SeXzlWtTQN++T5Kfn2SNgco/v+MXL06qdU+1MLzDwoXw//4f\nrF6tsPBVfn4QFQXTp1uPyf36a+tzVJT1OToaunaFe+6xVhg+fNjuir1fkwyMwMDTn69c20W/esd1\nfY+vSVlZGSdPnqS0tJSysjKKi4spKyury2mJm6xcCY89BmvWwGWX2V2NuEtNAbJsmXVba9ky63sV\nAfLaawqQGjXEWF67ne20ztxeff7EmR/nnk9R3+NP9/jjjxuHw1HlY/bs2S6fm7jH++9b4/+3bLG7\nEvG0sjJjPv7YmGeeMeaWW4wJCjKma1dj7rnHmFdftR6929jVdn1plFcfVwPDmHNd9F272Nf3+LpS\nYDScXbuMueQSY9assbsS8QZlZcZ89JEx//iHMQkJ1QPk8OGG/f35+flm1Cj3X0PORYHhwnZvmOnt\nKgVGw9i/35iwMGNeecXuSsRbnRkggYHGdOtmzL33GvPaa+4NkMpryt4Gu5bURIHhwnZj6v8fyFP/\ngRUY7vfNN8Z0727M3/9udyXiSxoqQDz5B+iZaru+NMlhtWdTUFDApEmPsnix6zOz3Xm8KzSs1r1+\n/BEGD7aGWc6da3c14svKy2HnzsphvBs3QnBw1WG8ISHn/hnuWmrofGlpEBe2+5LGcA7e4tQpGDXK\n+p944ULN4hb3KiuDXbtcD5CGWGqorhQYpwkKCvL5ZccDAwPJz8+3uwyfV14OEydCQYE1O7i5Rx4l\nJk1ZWVn1FkhIiBUe/foVMH/+o3z0UW2rRzRsaCgwRGrw8MPwwQfw3nvQurXd1UhTVBEgq1YV8NRT\nj3LsmCtLDUFDhoZmeouc4emnrSe+/fe/CguxT7Nm1oKJW7c+yrFjD+FaWIC1Pt1DTJr0aEOWVyMF\nhjQpL78M//ynNYvbTU/2FamX812qyJWlhtxNt6SkyVi92uq3WL/eelSoiLdwfQVse/sw1MKQJiEz\nE8aPt56boLAQb+Pa+nSeGVp7LgoMafQ++8waPrt4MfzsZ3ZXI1Kzc4eG/WEBCgxp5PLyYPhwa1Le\nTTfZXY3IudUcGt4RFqA+DGnECgrgF7+Au+6CRx6xuxoR11X2aTxE375PeiwsNA9DmqQTJ2DoUOjX\nzxpGq1nc4ms8sdTQmRQY0uSUlsKYMdC2LSxZYj04R0RqV9u1UwsiSKNiDEydCidPwtKlCgsRd1Jg\nSKPypz/Bxx/DunXQooXd1Yg0LgoMaTT+9S94/XXYtMm6HSUi7qXAkEbhjTesobMffAAXX2x3NSKN\nkwJDfN5778F991mfO3e2uxqRxktdguLTtm+HO++0OrivvtruakQaNwWG+KwvvrBmbz//vPX0MhFp\nWAoM8UlffQXDhsGsWTB6tN3ViDQNCgzxOd9/DyNGWEuV33OP3dWINB2a6S0+pbjYCosePaxhtFry\nQ8R9tDSINBplZXDHHda/U1KsR1yKiPtoaRBpFIyBGTPgu++sJ+cpLEQ8T4EhPiEpyZrBnZEBLVva\nXY1I06TAEK/34ovW0/I2bYL27e2uRqTpUh+GeLW33oJf/xo2boTwcLurEWnc1IchPmvjRrj3XqvP\nQmEhYj/NwxCvtHMn3HorvPoq9OljdzUiAgoM8UL798PIkTB/Ptxwg93ViEgFBYZ4lW++sZb8eOQR\nGDvW7mpE5HTq9Bav8cMPcP31MHQo/PWvdlcj0vRoprf4hJISuPlm6NjRGkarJT9EPK+2a6fbb0lN\nnjyZ4OBgoqKiqmyfP38+PXr0IDIykkceecS5fc6cOURERNC9e3fS09Od27dt20ZUVBQRERHMmDHD\nub24uJixY8cSERFBbGwsBw4ccPcpiIeVl8PkydCqlbVUucJCxEsZN9u4caPZvn27iYyMdG5bt26d\nueGGG0xJSYkxxpivv/7aGGPM7t27TXR0tCkpKTH79u0zXbp0MeXl5cYYY/r162cyMzONMcaMGDHC\nrF692hhjzLPPPmumTp1qjDEmJSXFjB07tloNDXBa0kDKy4158EFjrr3WmKIiu6sRadpqu3a6vYUx\ncOBAAgMDq2x77rnn+P3vf4+/vz8AF//00OUVK1aQmJiIv78/nTt3Jjw8nMzMTI4cOUJhYSExMTEA\njB8/ntTUVABWrlzJhAkTABgzZgxr16519ymIBz31FKSnw8qVcMEFdlcjIufikYl7OTk5bNy4kT/8\n4Q+0atWKp556ir59+3L48GFiY2Od+4WFhZGXl4e/vz9hYWHO7aGhoeTl5QGQl5dHx44dreKbN6d9\n+/bk5+cTFBRU5XfOmjXL+e+4uDji4uIa7gTlvCQnw7PPWkt+nPE3hoh4QEZGBhkZGS7v75HAKC0t\npaCggM2bN7N161Zuv/129u7d26C/8/TAEO/zzjvW0NmMDAgNtbsakabpzD+mZ8+efc79PTIPIyws\njNE/PUezX79++Pn58e233xIaGsqhQ4ec++Xm5hIWFkZoaCi5ubnVtoPV2jh48CBgBdHx48ertS7E\nu334ofW0vBUroHt3u6sREVd5JDASEhJYt24dAHv27KGkpISLLrqI+Ph4UlJSKCkpYd++feTk5BAT\nE0NISAgBAQFkZmZijGHJkiWMGjUKgPj4eJKTkwFYtmwZgwcP9sQpiJtkZ8Mtt8BLL0H//nZXIyJ1\n4u5e9jvuuMNceumlpkWLFiYsLMwsWrTIlJSUmLvuustERkaaa665xqxfv965f1JSkunSpYvp1q2b\nSUtLc27PysoykZGRpkuXLmb69OnO7SdPnjS33XabCQ8PN/379zf79u2rVkMDnJa4wcGDxnTqZMxL\nL9ldiYjUpLZrpybuiUfk58PAgdZ8i9/8xu5qRKQmmukttisqgiFDYMAAePJJu6sRkbNRYIitSkut\nPovAQPjPf8BPy12KeC2PLw0iUsEYuOceKCuDhQsVFiK+Tk/ckwbz6KOwezesWwc/TfIXER+mwJAG\n8cwz8Oab8MEH0KaN3dWIiDsoMMTtXnvNWiPqgw/goovsrkZE3EWBIW6Vng4PPABr18Lll9tdjYi4\nkwJD3GbrVrjrLutWVGSk3dWIiLtp3Iq4xZ49EB8P//43XHut3dWISENQYEi9HTkCw4dbz+GOj7e7\nGhFpKAoMqZfjx62wuPtumDLF7mpEpCFpprect5MnrbC4+mprGK2exS3i27Q0iDSIsjK4/XZo3twa\nRqtZ3CK+r7Zrp0ZJSZ0ZA7/+tXU76p13FBYiTYUCQ+rsz3+2htCuXw8tW9pdjYh4igJD6uT552HJ\nEti0CQIC7K5GRDxJgSEuW7bMal28/z4EB9tdjYh4mgJDXJKRAdOmwZo10KWL3dWIiB3UXSm1+ugj\na0TU669D7952VyMidlFgyDnt3Qs33ggLFsCgQXZXIyJ2UmDIWX39NQwbBo89Brfeanc1ImI3BYbU\nqLAQRo6EO++EqVPtrkZEvIFmeks1JSXWbagrr7SG0WrJD5GmQUuDSJ2Ul8MvfwnFxbB0KTRrZndF\nIuIpWhpEXGYMPPggHD5sDZ9VWIjI6RQY4vR//6+13MfGjdCqld3ViIi3UWAIAIsWwQsvWEt+XHih\n3dWIiDdSH4awciXcey9s2ABdu9pdjYjYRX0Yck6bNllPy3vnHYWFiJyb5mE0Ybt3w+jR8PLL0K+f\n3dWIiLdTYDRRBw9aj1f9+99h6FC7qxERX6DAaIK++85a8uM3v7FmcouIuKLWwCgvL2fJkiX8+c9/\nBuDgwYNs2bKlwQuThvHjj9Ys7lGj4IEH7K5GRHxJraOkfvWrX+Hn58e6dev47LPPyM/PZ+jQoWRl\nZXmqxjrTKKmanToFCQlw8cWweLGW/BCRquo9SiozM5MdO3bQ+6cHIQQFBXHq1Cn3VSgeYYw1Gsrh\ngBdfVFiISN3VGhgtWrSgrKzM+fU333yDn5+6PnzN734He/bA2rXg7293NSLii2q98k+fPp1bbrmF\nr7/+mj/84Q/8/Oc/5/e//70nahM3mTcP3n4b/vtfaN3a7mpExFe5NNP7008/Ze3atQAMHjyYHj16\nNHhh9aE+jEovvwx/+IM1Qa9jR7urERFv5pblzcvKyvjqq68oLS3F8dPN706dOrmvSjdTYFjS0mDi\nRFi3Dnr2tLsaEfF29e70nj9/PrNnz+aSSy6h2WnrXe/atcs9FUqDyMyE8eNhxQqFhYi4R60tjC5d\nurBlyxY6dOjgqZrqram3MD7/HOLirNFQN91kdzUi4itqu3bW2undqVMnAgIC3FqUNJy8PGsW95w5\nCgsRca9ab0ldccUVDBo0iBtvvJEWLVoAVgrNnDmzwYuTujl2zFofaupUq+9CRMSdag2MTp060alT\nJ0pKSigpKcEY4+z4Fu9x4gTEx8MNN8DDD9tdjYg0Ri4/QKmwsBCAdu3aNWhB7tDU+jBKS+G22+CC\nC6xhtJpXKSLno959GLt27aJ3795cddVVXHXVVfTp04dPPvnkrPtPnjyZ4OBgoqKiqn3v6aefxs/P\nj/z8fOe2OXPmEBERQffu3UlPT3du37ZtG1FRUURERDBjxgzn9uLiYsaOHUtERASxsbEcOHCgtlNo\n1IyBadOsRQX/8x+FhYg0IFOL2NhYs27dOufX69evNz/72c/Ouv/GjRvN9u3bTWRkZJXtBw8eNMOG\nDTOdO3c23333nTHGmN27d5vo6GhTUlJi9u3bZ7p06WLKy8uNMcb069fPZGZmGmOMGTFihFm9erUx\nxphnn33WTJ061RhjTEpKihk7dmy1Glw4rUbjj380pm9fY77/3u5KRMTX1XbtrPXv0aKiIgYNGuT8\nOi4ujh9//PGs+w8cOJDAwMBq22fOnMnf/va3KttWrFhBYmIi/v7+dO7cmfDwcDIzMzly5AiFhYXE\nxMQAMH78eFJTUwFYuXIlEyZMAGDMmDHOGehN0b/+BSkpsGoV+MCdQhHxcS6NkvrLX/7CuHHjMMbw\nyiuvcOWVV9bpl6xYsYKwsDCuvvrqKtsPHz5MbGys8+uwsDDy8vLw9/cnLCzMuT00NJS8vDwA8vLy\n6PjTGhfNmzenffv25OfnExQUVOVnz5o1y/nvuLg44uLi6lSzt3vjDZg7Fz74wFquXESkrjIyMsjI\nyHB5/1oDY9GiRTz++OOMHj0asFoQixYtcvkXFBUV8cQTT/Duu+86txkPdEifHhiNzdq1cN998N57\n0Lmz3dWIiK8684/p2bNnn3P/WgMjKCiI+fPnn3dBX375Jfv37yc6OhqA3Nxc+vTpQ2ZmJqGhoRw6\ndMi5b25uLmFhYYSGhpKbm1ttO1itjYMHD3LZZZdRWlrK8ePHq7UuGrPt2yExEZYuhTMabCIiDeqs\ngTFp0qQat1fMwXC1lREVFcXRo0edX19xxRVs27aNoKAg4uPjufPOO5k5cyZ5eXnk5OQQExODw+Eg\nICCAzMxMYmJiWLJkCffffz8A8fHxJCcnExsby7Jlyxg8eLDLJ+vrvvzSmr39/PNw3XV2VyMiTc1Z\nA+PGG2+sMibX4XBw6NAh5s2bV+WBSmdKTExkw4YNfPfdd3Ts2JE///nPVcLn9El/PXv25Pbbb6dn\nz540b96cBQsWOL+/YMECJk6cyIkTJxg5ciTDhw8HYMqUKYwbN46IiAg6dOhASkpK/V4BH3H0qLXk\nx+OPw093B0VEPMqliXtffvklc+bMYePGjTz44INMmTLFuUyIN2psE/e+/95aTDAhAf70J7urEZHG\nql7Pw/j0009JSkpi+/btPPTQQ4wbN47mzWvt9rBdYwqM4mIYORK6dYNnn9WzuEWk4Zx3YNx6661s\n376d3/zmN9x22200a9asyu0kb+5obiyBUVZmdXCXl8Prr8NpjyMREXG78w6Mzj+N16xpoUGHw8He\nvXvdU2EDaAyBYQxMnw67d8Pq1dCqld0ViUhj55ZHtPqaxhAYf/0rLFsGGzZA+/Z2VyMiTUG9H9Eq\nnvfii7B4MWzapLAQEe+hFoaXSU21Vp/duBHCw+2uRkSakvNe3nzfvn0NUpCc3caNcM898PbbCgsR\n8T5nDYxbb70VgOuvv95jxTRlu3ZZD0F69VXo08fuakREqjtrH0ZZWRlJSUns2bOHefPmVWmm6Jne\n7rV/vzXX4p//tB6xKiLijc7awkhJSaFZs2aUlZVRWFhIYWEhP/zwg/Pf4h7ffmst+fHwwzB2rN3V\niIicXa2d3qtWrWLkyJGeqsctfKXT+4cfYPBgq1WRlGR3NSLS1NV7HsaxY8eYPXs2GzduBKz10//0\npz/R3ovHe/pCYJw6BTffDKGh8O9/a8kPEbHfeY+SqjB58mQCAgJYunQpb7zxBu3atTvr0ufimvJy\nmDwZWrSAF15QWIiIb6i1hREdHc3HH39c6zZv4u0tjN/+FjZvhvR0aN3a7mpERCz1bmFccMEFvP/+\n+86vP/jgA1rrKnfennwS0tKsuRZ6GUXEl9S6NMjzzz/P+PHjOX78OACBgYEkJyc3eGGNUXKytUT5\npk0QGGh3NSIidePy0iAVgeHNnd0VvPGW1DvvwJQpkJEB3bvbXY2ISHVardYLbN4M8fHWbaj+/e2u\nRkSkZvXuw5D6+fRT69GqyckKCxHxbQqMeiooKCAhYRoFBQXVvpebC8OHw9/+BiNG2FCciIgbuXRL\natOmTezfv5/S0lLrIIeD8ePHN3hx58tTt6QKCgoYOvRRsrIeom/fJ0lPTyLwp97s/HwYOBAmTbKG\n0YqIeLt692Hcdddd7N27l169etHstIdKz58/331VupknAqMyLJKAQKCAvn0fJT09iZYtAxk6FGJj\n4amnGrQMERG3qXdg9OjRg+zs7Bqf7e2tGjowqoeF8zv06fMoF12UxMUXB5KcDH666SciPqLej2iN\njIzkyJEerOjsAAAY6klEQVQjXHbZZW4tzFedPSwAAtm2LYmAgEfJyUnCz0+TLUSk8ai1hREXF8dH\nH31ETEwMLVu2tA5yOFi5cqVHCjwfDdXCOHdYVNnTeXsqUDP0RMRH1PuWVEZGRo3b4+Li6lNXg2qI\nwHA9LJxHKDRExKdo4p6bJCRMY8WKh4Ar6nDUPkaNepLU1AVurUVEpCHUe+Lehx9+SL9+/Wjbti3+\n/v74+fkREBDg1iJ9weLFSfTt+yRQfb5FzQro2/dJFi/Wk5FEpHGoNTDuu+8+Xn31VSIiIjh58iQL\nFy5k2rRpnqjNqwQGBpKenkTfvo9Se2jodpSIND4uDfqMiIigrKyMZs2aMWnSJNLS0hq6Lq/kWmgo\nLESkcap1WG2bNm0oLi4mOjqahx9+mJCQEK9a2M/TKkLjbPMwFBYi0ljV2sJ46aWXKC8v51//+het\nW7cmNzeX5cuXe6I2r1VzS0NhISKNm0ujpIqKijh06BDdunXzRE315g1rSYmI+Jp6j5JauXIlvXv3\nZtiwYQDs2LGD+Ph491XowypaGqNGKSxEpPGrtYVxzTXXsG7dOgYNGsSOHTsAa7mQTz75xCMFng9v\ne4CSiIgvqHcLw9/fnwsvvLDqQVpRT0Skyan1yn/VVVfxyiuvUFpaSk5ODtOnT2fAgAGeqE1ERLxI\nrYExf/58du/eTcuWLUlMTCQgIIB//OMfnqhNRES8iNaSEhERwA3Pw9i6dStPPPFEtUe07ty5031V\nioiI16u1hdG1a1eeeuopIiMjq3R2d+7cuaFrO29qYYiI1F29WxgXX3yx5l2IiEjtLYz09HRef/11\nbrjhBlq0aGEd5HAwevRojxR4PtTCEBGpu3q3MJKTk/n8888pLS2tckvKmwNDRETcr9ZhtVlZWWzd\nupXk5GQWL17s/DibyZMnExwcTFRUlHPbQw89RI8ePYiOjmb06NEcP37c+b05c+YQERFB9+7dSU9P\nd27ftm0bUVFRREREMGPGDOf24uJixo4dS0REBLGxsRw4cKDOJy0iInVXa2AMGDCA7Oxsl39gTc/L\nGDp0KLt37+bjjz+ma9euzJkzB4Ds7Gxef/11srOzSUtLY9q0ac7m0NSpU1m4cCE5OTnk5OQ4f+bC\nhQvp0KEDOTk5PPjggzzyyCMu1yYiIufPpUe09urVi65duxIVFUVUVBRXX331WfcfOHBgtUX4hgwZ\n4ryd1b9/f3JzcwFYsWIFiYmJ+Pv707lzZ8LDw8nMzOTIkSMUFhYSExMDwPjx40lNTQWsxRAnTJgA\nwJgxY1i7du15nLaIiNRVrX0Y7n663qJFi0hMTATg8OHDxMbGOr8XFhZGXl4e/v7+hIWFObeHhoaS\nl5cHQF5eHh07drSKb96c9u3bk5+fT1BQUJXfM2vWLOe/4+LiiIuLc+t5iIj4uoyMDDIyMlzev9bA\ncOd8i6SkJFq0aMGdd97ptp95NqcHhoiIVHfmH9OzZ88+5/4eW3b2P//5D6tWreKVV15xbgsNDeXQ\noUPOr3NzcwkLCyM0NNR52+r07RXHHDx4EIDS0lKOHz9erXUhIiLu55HASEtL48knn2TFihW0atXK\nuT0+Pp6UlBRKSkrYt28fOTk5xMTEEBISQkBAAJmZmRhjWLJkCaNGjXIek5ycDMCyZcsYPHiwJ05B\nRKTJq/WWVF0lJiayYcMGvv32Wzp27Mjs2bOZM2cOJSUlDBkyBICf/exnLFiwgJ49e3L77bfTs2dP\nmjdvzoIFC3A4HAAsWLCAiRMncuLECUaOHMnw4cMBmDJlCuPGjSMiIoIOHTqQkpLi7lMQEZEaaLVa\nEREB3PDEPREREVBgiIiIixQYIiLiEgWGiIi4RIEhIiIuUWCIiIhLFBgiIuISBYaIiLhEgSEiIi5R\nYIiIiEsUGCIi4hIFhoiIuESBISIiLlFgiIiISxQYIiLiEgWGiIi4RIEhIiIuUWCIiIhLFBgiIuIS\nBYaIiJc61/O17aDAEBHxQsYYZt59t1eFhgJDRMQLrVm+HJYuJf3NN+0uxUmBISLiZYwxrHn6aeYV\nFpL21FNe08pQYIiIeJk1y5czfOdOHMCwnTu9ppWhwBAR8SIVrYuhRUUADCsq8ppWhgJDRMSLnN66\nALyqleEw3hBbbuZwOLwijUVEamUMHDgAW7ZgMjOZ+eKLzCssdAYGgAFmxsYy73//w+FwnO0n1Vtt\n187mDfabRUSkum+/ha1brY8tW6yPZs2gf3/WtG7N8JISzoyE01sZw8aMsaNqqw61MEREGkhREezY\nURkMW7bAN99A374QE1P5ERpqtSIGDGDe5s3VAgM808qo7dqpwBARcYeyMsjOrhoOn38OV11VNRy6\ndQO/6t3HacuW4ZgwgWE/dXbXJK11axwvvdRgrQwFhoiIu53W7+D82LEDLrusajhER0OrVi79yN9N\nnkzLvXtrbF04fy1QfOWVzF20yC2ncSYFhohIfX33XdU+h9P6HZzh0LcvXHih3ZXWiwJDRKQu6tDv\nQAOOWLKDAkNE5Gzq2e/Q2CgwRESgQfodGhsFhog0Tefqd+jXr7LfITDQ7kq9hgJDRBq/0/sdKkLi\n66+bRL+DOykwRKRxqa3foaL10K2b1aIQlykwRMR3nd7vUNFy2L5d/Q4NRIEhIr5D/Q62UmCIiHc6\ncaL6fAf1O9hKgSEi9lO/g09QYIiIZxkDBw9WDQf1O/gEBYaINKyz9TucHg7qd/AJCgwRcR/1OzRq\ntV073b44yuTJkwkODiYqKsq5LT8/nyFDhtC1a1eGDh3KsWPHnN+bM2cOERERdO/enfT0dOf2bdu2\nERUVRUREBDNmzHBuLy4uZuzYsURERBAbG8uBAwfcfQoiAla/w65dsHAh3HsvXHMNdOgA998Pe/bA\n0KGwciUUFMC6dTB3LoweDWFhCotGyu2BMWnSJNLS0qpsmzt3LkOGDGHPnj0MHjyYuXPnApCdnc3r\nr79OdnY2aWlpTJs2zZluU6dOZeHCheTk5JCTk+P8mQsXLqRDhw7k5OTw4IMP8sgjj7j7FESanor5\nDkuXwkMPwXXXWUt133orZGRAZCQ89xzk50NWFixYABMnQs+e6qRuQhrkltT+/fu5+eab2bVrFwDd\nu3dnw4YNBAcH89VXXxEXF8dnn33GnDlz8PPzc170hw8fzqxZs7j88su5/vrr+fTTTwFISUkhIyOD\n559/nuHDhzN79mz69+9PaWkpl156Kd98803Vk9ItKZFzO73foeKzn5/6HZq42q6dzT1RxNGjRwkO\nDgYgODiYo0ePAnD48GFiY2Od+4WFhZGXl4e/vz9hYWHO7aGhoeTl5QGQl5dHx44dreKbN6d9+/bk\n5+cTFBRU5XfOmjXL+e+4uDji4uIa4tRE6swY02DPZK5Rbf0OkyZZrQf1OzQ5GRkZZGRkuLy/RwLj\ndA6HwyP/s5weGCLewhjDzLvvZt6//90w/x9UzHc4fdTS559Djx5WOAwdCo89pvkOAlT/Y3r27Nnn\n3N8jgVFxKyokJIQjR45wySWXAFbL4dChQ879cnNzCQsLIzQ0lNzc3GrbK445ePAgl112GaWlpRw/\nfrxa60LEW61ZvhyWLiV95EiGjRlTvx/mynyHSZM030HcxiOPkIqPjyc5ORmA5ORkEhISnNtTUlIo\nKSlh37595OTkEBMTQ0hICAEBAWRmZmKMYcmSJYwaNaraz1q2bBmDBw/2xCmI1JsxhjVPP828wkLS\nnnqq7v1s+fmwZg385S9w880QEgKxsfDyy1YH9WOPWQHy+eewZAlMn26twaSwEHcxbnbHHXeYSy+9\n1Pj7+5uwsDCzaNEi891335nBgwebiIgIM2TIEFNQUODcPykpyXTp0sV069bNpKWlObdnZWWZyMhI\n06VLFzN9+nTn9pMnT5rbbrvNhIeHm/79+5t9+/ZVq6EBTkuk3lYvXWrSWrc2Bszq1q1N2rJlZ9+5\nqMiYTZuM+fvfjUlMNKZLF2PatTNm0CBjHnnEmOXLjTl0yJjycs+dgDR6tV07NXFPxAOMMcwcMIB5\nmzfjAAwwMzaWef/7H47ycvj006q3lj77zBqyeuZzpdXvIA1IM71FvEDasmU4JkxgWFFR5TZ/fxzh\n4Qw7dKhqv0O/ftCrl24licd5xbBakabMlJez5s9/Zt5pYQEw7NQpZgJDDxzAoYEb4gM80ukt0uSU\nlsL69fDAA6wJDmb4J59w5iBaBzDswAHS16+3o0KROlNgiLjLjz/CW2/BhAnWCKaHHsJ06MCayy5j\n6Fma+cOKis5vxJSIDRQYIvXxzTeweDGMGgWXXmqtsdSvnzWzOiuLNT16MPyLL6q1Lio4gGE7d5L+\n5puerFrkvKjTW6Su9u6F1FRYsQI++siaPZ2QACNHVlt76XeTJ9Ny796zBgZYI6aKr7ySuYsWNWjZ\nIrXRKCmR+jLGajGkplofR49CfLwVEoMHazSTNBoKDJHzceoUvP9+ZUi0bAm33GLdeoqN1XwIaZQ0\nrFbEVT/8YC29kZoKq1ZBly5WKyItzVq8Tyu5ShOnFoY0bV9/DW+/bYXEhg1W6yEhwbrldNoS+yJN\ngW5JiZzpiy8qO6137YJhw6yQGDHCWsRPpIlSYIgYA9u2VfZHfPut1ReRkADXX2/1T4iIAkOaqFOn\nrFtMFS2J1q2tgEhIsJb89tMUJJEzqdNbmo7CQquDOjUVVq+Grl2tgHj3Xeje3e7qRHyeWhji2776\nqrLT+v33YcCAyk7ryy6zuzoRn6JbUtL47NlTeaspOxuGD7f6JEaMgPbt7a5OxGcpMMT3lZdDVlZl\np/WxY5Wd1nFx6rQWcRMFhvimkhLIyKhsSQQEVHZa9+unTmuRBqBOb/Ed339vdVanplbOrk5IgHXr\nrMeTioit1MIQex05AitXWiGxaRNce60VEjffbC0XLiIeo1tS4n0++8y6zZSaav17xAgrJIYPt249\niYgtFBhiv/Jy2LKlstO6sLCyP+K666BFC7srFBEUGGKX4mLrmdYVndZBQZUh0aePOq1FvJA6vcVz\njh+3lgVfscLqtI6MtIa/bthgzboWEZ+mFobUT15eZaf1hx/CL35R2WkdHGx3dSJSB7olJe5ljNVR\nXdEfkZNjPcs6IcFaJrxdO7srFJHzpMCQ+isvh82bK0PixAkrIEaNsjqt/f3trlBE3ECBIefn5Elr\nwlxqqnXL6eKLKzutr7lGjysVaYTU6S2uKyiwOq1TU60lwa++2mpFfPABhIfbXZ2I2EwtjKYuN7dy\nEl1mprWYX0IC3HQTXHKJ3dWJiAfplpRUZQzs3l0ZEnv3wo03WiExdCi0bWt3hSJiEwWGQFmZNeS1\notP61KnK5cEHDlSntYgA6sNouk6cgLVrrYB4+20ICbECYulS6NVLndYiUmdqYTQm+fnwzjtWSLz3\nnhUMFcNfr7zS7upExMvpllRjd/BgZX/E1q1w/fWVndYXXWR3dSLiQxQYjY0x8Mknlf0RBw5Y4ZCQ\nAEOGQJs2dlcoIj5KgdEYlJVZDxeqCIny8spJdNdeC83VFSUi9adOb1914oQ1ea6i0zoszAqIt96y\nJtSp01pEPEwtDDcwxuBwxwX8u+/gv/+1+iTee896bkRFp3XnzvX/+SIi51DbtVNPsaknYwwz7777\n/ANq/3545hkYNAiuuMIKi4QE2LfPegDRjBkKCxHxCrolVU9rli+HpUtJHzmSYWPG1H6AMbBzZ2V/\nRG6u9eyIBx+EG26A1q0bvmgRkfOgW1L1YIxh5oABzNu8mZmxscz73/9qvjVVWmot4FcREn5+lZ3W\nAwao01pEvII6vRvQmuXLGb5zJw5g2M6dpL/5ZmUro6gI0tOtgPjvf+Hyy62AePtt69Gl6rQWER+j\nFsZ5Or114QAMMLNPH+ZNm4Zj5UrrWRL9+lkhER9vBYaIiBfzqk7vOXPmcNVVVxEVFcWdd95JcXEx\n+fn5DBkyhK5duzJ06FCOHTtWZf+IiAi6d+9Oenq6c/u2bduIiooiIiKCGTNmePIUnE5vXQBWK2Pb\nNtJfeAHGjLE6s9euhenTFRYi0ih4LDD279/Piy++yPbt29m1axdlZWWkpKQwd+5chgwZwp49exg8\neDBz584FIDs7m9dff53s7GzS0tKYNm2aM/mmTp3KwoULycnJIScnh7S0NE+dBmC1LtY8/TRDi4qq\nbB8GpPn5Ye66C4KCPFqTiEhD81hgBAQE4O/vT1FREaWlpRQVFXHZZZexcuVKJkyYAMCECRNITU0F\nYMWKFSQmJuLv70/nzp0JDw8nMzOTI0eOUFhYSExMDADjx493HuMpZ7YuKpzelyEi0th4rNM7KCiI\n3/zmN3Tq1IkLLriAYcOGMWTIEI4ePUpwcDAAwcHBHD16FIDDhw8TGxvrPD4sLIy8vDz8/f0JCwtz\nbg8NDSUvL6/a75s1a5bz33FxccTFxbnlPCpaF/POaF1UGFZUxMynnmLo6NHumcwnItJAMjIyyMjI\ncHl/jwXGl19+yT/+8Q/2799P+/btue2223j55Zer7ONwONx2kT09MNzpbK2LCjWOmBIR8UJn/jE9\ne/bsc+7vscDIyspiwIABdOjQAYDRo0fz4YcfEhISwldffUVISAhHjhzhkp+eIx0aGsqhQ4ecx+fm\n5hIWFkZoaCi5ublVtoeGhnrqNMhYtYqW/frx4Tn2MUDxO+8oMESkUfFYYHTv3p2//OUvnDhxglat\nWvHee+8RExNDmzZtSE5O5pFHHiE5OZmEhAQA4uPjufPOO5k5cyZ5eXnk5OQQExODw+EgICCAzMxM\nYmJiWLJkCffff7+nToO5ixZ57HeJiHgTjwVGdHQ048ePp2/fvvj5+XHNNddwzz33UFhYyO23387C\nhQvp3Lkzb7zxBgA9e/bk9ttvp2fPnjRv3pwFCxY4b1ctWLCAiRMncuLECUaOHMnw4cM9dRoiIk2W\nJu6JiAjgZRP3RETEdykwRETEJQoMERFxiQJDRERcosAQERGXKDBERMQlCgwREXGJAkNERFyiwBAR\nEZcoMERExCUKDBERcYkCQ0REXKLAEBERlygwRETEJQoMERFxiQLDDeryEPWmRK9LzfS6VKfXpGbe\n9rooMNzA2/6jegu9LjXT61KdXpOaedvrosAQERGXKDBERMQljfaZ3iIiUnfnioTmHqzDYxphBoqI\n2E63pERExCUKDBERcYkCow4mT55McHAwUVFRZ93n/vvvJyIigujoaHbs2OHB6uxR22uSkZFB+/bt\n6d27N7179+avf/2rhyu0x6FDhxg0aBBXXXUVkZGR/POf/6xxv6b2fnHldWlq75mTJ0/Sv39/evXq\nRc+ePfn9739f435e8V4x4rKNGzea7du3m8jIyBq//84775gRI0YYY4zZvHmz6d+/vyfLs0Vtr8n6\n9evNzTff7OGq7HfkyBGzY8cOY4wxhYWFpmvXriY7O7vKPk3x/eLK69IU3zM//vijMcaYU6dOmf79\n+5v333+/yve95b2iFkYdDBw4kMDAwLN+f+XKlUyYMAGA/v37c+zYMY4ePeqp8mxR22sCTXMQQkhI\nCL169QKgbdu29OjRg8OHD1fZpym+X1x5XaDpvWdat24NQElJCWVlZQQFBVX5vre8VxQYbpSXl0fH\njh2dX4eFhZGbm2tjRfZzOBz873//Izo6mpEjR5KdnW13SR63f/9+duzYQf/+/atsb+rvl7O9Lk3x\nPVNeXk6vXr0IDg5m0KBB9OzZs8r3veW90iiH1drpzL+MmvqckGuuuYZDhw7RunVrVq9eTUJCAnv2\n7LG7LI/54YcfuPXWW3nmmWdo27Ztte831ffLuV6Xpvie8fPz46OPPuL48eMMGzaMjIwM4uLiquzj\nDe8VtTDcKDQ0lEOHDjm/zs3NJTQ01MaK7NeuXTtnc3vEiBGcOnWK/Px8m6vyjFOnTjFmzBjuuusu\nEhISqn2/qb5fantdmvJ7pn379tx4441kZWVV2e4t7xUFhhvFx8fz0ksvAbB582YuvPBCgoODba7K\nXkePHnX+ZbRlyxaMMdXuzzZGxhimTJlCz549eeCBB2rcpym+X1x5XZrae+bbb7/l2LFjAJw4cYJ3\n332X3r17V9nHW94ruiVVB4mJiWzYsIFvv/2Wjh07Mnv2bE6dOgXAvffey8iRI1m1ahXh4eG0adOG\nxYsX21xxw6vtNVm2bBnPPfcczZs3p3Xr1qSkpNhcsWds2rSJl19+mauvvtr5P/8TTzzBwYMHgab7\nfnHldWlq75kjR44wYcIEysvLKS8vZ9y4cQwePJgXXngB8K73SqNcS0pERNxPt6RERMQlCgwREXGJ\nAkNERFyiwBAREZdolJSIhzRr1oyrr77a+XViYiIPP/ywjRWJ1I1GSYl4SLt27SgsLLS7DJHzpltS\nIiLiEgWGiIecOHHC+YyH3r17s3TpUrtLEqkT3ZIS8RDdkhJfpxaGiIi4RIEhIiIu0S0pEQ9p3rx5\nlWefjxgxgieeeMLGikTqRoEhIiIu0S0pERFxiQJDRERcosAQERGXKDBERMQlCgwREXGJAkNERFyi\nwBAREZf8f1UWn9gr1HMzAAAAAElFTkSuQmCC\n", | |
"prompt_number": 21, | |
"text": [ | |
"<matplotlib.figure.Figure at 0x5244450>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAF2CAYAAAB9MK81AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1clfUd//HXQVHzBgMrKNAswbsgNBWZy4WZtxWSVkbL\n+341XWa5VdtqS7eR/la5NZfVr6kju6HUQluKlIqWSxS1NKmkvAXNbkCjUBD4/v644iCCcpDDuc6B\n9/Px4IFcXBd8rtPpevO9vjeXwxhjEBERqYWf3QWIiIhvUGCIiIhLFBgiIuISBYaIiLhEgSEiIi5p\nbncBDcHhcNhdgoiITzrXwNlG28Iwxnjs4/HHH/fo7/OVD70uel30mvjW61KbRhsYIiLiXgoMERFx\niQLDDeLi4uwuwSvpdamZXpfq9JrUzNteF4dx5caVj3E4HC7djxMRkUq1XTsb5SipswkKCqKgoMDu\nMuolMDCQ/Px8u8sQkSaoSbUwGkPLozGcg4h4p9quL+rDEBERlygwRETEJQoMERFxiQLDDfz8/Bg3\nbpzz69LSUi6++GJuvvlmG6sSEXEvBYYbtGnTht27d3Py5EkA3n33XcLCwrSmlYg0KgoMNxk5ciTv\nvPMOAK+99hqJiYkazSQijYoCw03Gjh1LSkoKxcXF7Nq1i/79+9tdkoiIWykw3CQqKor9+/fz2muv\nceONN9pdjoiI2zWpmd4NLT4+nt/+9rds2LCBb775xu5yRETcSoHhRpMnTyYwMJCrrrqKjIwMu8sR\nEXEr3ZJyg4rRUKGhodx3333ObRolJSKNidaS8jGN4RxExDtpLSkREXELBYaIBxUUFJCQMM3nl9mX\npkmBIeIhBQUFDB36KCtWPMTQoY8qNMTnKDBEPKAiLLKykoAryMpKUmiIz1FgiDSwqmER+NPWQIWG\n+BwFhkgDqjksKig0xLcoMEQayLnDooJCQ3yHAuMM9Z3joDkSAq6GRQWFhvgGBcZpjDHMvPvu877o\n1/f4/Px8brnlFtq2bUvnzp157bXXzuvniP0mTXqUrKyHqD0sKgSSlfUQkyY92pBlidSLAuM0a5Yv\nh6VLSX/zTVuO//Wvf02rVq34+uuveeWVV5g6dSrZ2dnn9bPEXosXJ9G375OAqy2GAqKinmTRoqSG\nLEukfkwjdLbTOtfplpeXmwdiY005WJ/Ly+v0O+t7/A8//GBatGhhcnJynNvGjx9vfve737l8DuJd\n8vPzTd++Uw3kGzDn+Mg3QUFTTUhIvgkNNeaXvzTmxReNyckxpo5vI5F6qe36ohbGT9YsX87wnTtx\nAMN27qxzK6G+x+/Zs4fmzZsTHh7u3BYdHc3u3bvr9HPEewQGBpKenkTfvo9y9pZGAX37PsoXXyRx\n+HAgGRkQFwcZGXDdddCpE4wbBwsXwpdfWvEiYhcFBlbfw5qnn2ZoUREAw4qKSHvqKZf7Iup7PMAP\nP/xAQEBAlW3t2rWjsLDQ5Z8h3icwMJB77knC37+m0LDCIj09icDAQBwOCA+Hu++Gl1+G3FxYtw5+\n8YvKzwoQsZMCg6qtA8BqJWzeTLqfHzgctX6s8fNj+ObNVY+vYyujbdu2fP/991W2HT9+nHbt2rnj\nFMUm6enw2GOBrF9/ZkujaljUxOGAiAj4P/8HXnmleoAMHFg1QPbuVYBIw2rygXFm66DCMCAtNhZT\nXn7O28+mvJw1sbEMPePn1rWV0bVrV0pLS/niiy+c2z7++GMiIyPreYZil61b4Ze/hOXL4ec/P/32\n1L5aw6ImZwZIXl5lcKxdC9deC5dfDuPHw6JFChBpAA3ei2KDs51WTdtXL11q0lq3rjEOVrdubdKW\nLTvn76rv8ae74447TGJiovnxxx/N+++/b9q3b2+ys7NdOjfxLp9/bkxIiDErVlTdnp+fb0aNmmry\n8/Pd/jvLy63f+8ILxiQmGnPppcZ07GjMuHHGLFxozJdfqhNdzq2260ujvPq4Ghinj2yq6YJf24in\n+h5/pvz8fJOQkGDatGljLr/8cvPaa6+5fG7iPfLyjOnc2Zh//9veOs4MkJAQYzp1Mmb8eGMWLTJm\n714FiFRV2/WlST9xL23ZMhwTJjDsjNtRp0tr3RrHSy8xbMyY6t+r5/HnQ0/c827Hjlmjm8aOhT/8\nwe5qqjIG9uyxRmBVfLRoYY3Kqvi44go7KxS71XZ9adKB8bvJk2m5dy/nevK2AYqvvJK5ixZV+159\njz8fCgzvdfIkDBsG0dHwzDNWn4M3qylAWrasGiCdO9tYoHicAsOF7b6kMZxDY1RWBrfdZv3F/uqr\n4OeDw0kqAmT9+soAadVKAdKUePyZ3pMnTyY4OJioqCjnti1bthATE0Pv3r3p168fW7dudX5vzpw5\nRERE0L17d9LT053bt23bRlRUFBEREcyYMcO5vbi4mLFjxxIREUFsbCwHDhxw9ymI1IkxMG0aFBZC\ncrJvhgVYLaJu3eBXv4KUFDhyBNLSIDa28nPnzjBxonWe+l+vCXJ3p8nGjRvN9u3bTWRkpHPbdddd\nZ9LS0owxxqxatcrExcUZY4zZvXu3iY6ONiUlJWbfvn2mS5cuzg7ifv36mczMTGOMMSNGjDCrV682\nxhjz7LPPmqlTpxpjjElJSTFjx46tVsPZTqsBTtfjGsM5NDaPP25Mnz7GfP+93ZU0rPJyYz791Jjn\nnjNm7FhjgoOtzv2JE435z3+M2b/f7gqlvmq7vrj9b6GBAwdWG1t+6aWXcvz4cQCOHTtGaGgoACtW\nrCAxMRF/f386d+5MeHg4mZmZHDlyhMLCQmJiYgAYP348qampAKxcuZIJEyYAMGbMGNauXevuUxBx\n2XPPWXMiVq2Cxj7H0uGA7t2rtkBWrYKYmMrPV1wBkyapBdJYNffEL5k7dy7XXnstv/3tbykvL+fD\nDz8E4PDhw8TGxjr3CwsLIy8vD39/f8LCwpzbQ0NDycvLAyAvL4+OHTtaxTdvTvv27cnPzycoKKjK\n75w1a5bz33FxccTFxTXQ2UlTtWwZ/PWv8P77cMkldlfjeQ4H9OhhfUydat2a++wzq+9j1Sp4+GFo\n06ZqH0inTvbWLFVlZGSQkZHh8v4eCYwpU6bwz3/+k1tuuYWlS5cyefJk3n333Qb9nacHhoi7rV9v\n9Vukp8OVV9pdjXeoKUA+/dQKkP/+F377W2jbVgHiTc78Y3r27Nnn3N8j3XNbtmzhlltuAeDWW29l\ny5YtgNVyOHTokHO/3NxcwsLCCA0NJTc3t9r2imMOHjwIQGlpKcePH6/WujhfBQUFJCRMO++nntX3\nePENO3ZY8yxefx169bK7Gu/lcEDPnlawvvEGHD1qBUffvpWfu3SBKVNgyRI47VIgXsojgREeHs6G\nDRsAWLduHV27dgUgPj6elJQUSkpK2LdvHzk5OcTExBASEkJAQACZmZkYY1iyZAmjRo1yHpOcnAzA\nsmXLGDx4sFtqrHik5ooVD53XozLre7z4hr174aabYMECGDTI7mp8S00B8vbbcM01sHKl9VkB4uXc\n3ct+xx13mEsvvdT4+/ubsLAws2jRIrN161YTExNjoqOjTWxsrNm+fbtz/6SkJNOlSxfTrVs350gq\nY4zJysoykZGRpkuXLmb69OnO7SdPnjS33XabCQ8PN/379zf79u2rVsPZTuts26s/6Mb62tX1fup7\nvDHGzJ8/3/Tp08e0bNnSTJw48az7NcB/MnHRV18ZEx5uzIIFdlfSOJWXG/PJJ8b861/G3HqrMRdd\nZMyVVxozebIxS5YYc/Cg3RU2frVdX5r8xL2KlkFWVhJVn79c+/LT7ji+wltvvYWfnx9r1qzhxIkT\nLF68uE7nJg2rsNC6537TTVDLbV5xE2MgO7vqTPT27av2gZw2NkbcQDO9z7H97Bd75x7nvOjX9/ia\n/PGPfyQ3N1eB4UWKi+HGG63bJc8/7/1LfjRW5eVVA2TDBgWIu3l8prevqP1iDxBIVlZSjX0S9T3+\nbBQG3qW8HCZMsC5MCxYoLOzk5weRkXDffdaQ5qNHITXVGniQmgq9e1d/Xoi4V5MMDNcu9hWqX/Tr\ne/y5OHRF8hrGwAMPWBPUXnkFmjWzuyI5XU0B8tZbcPXV8Oab1iKQChD3apK3pBISprFixUNAXdZy\n3gc8CSwApgF1P37UqCdJTV1wzr0ee+wx8vLydEvKC8yZY81o3rABLrzQ7mqkrsrLYffuqrewgoIq\nb19ddx38tOiE/ES3pGqweHESffs+SeXzlWtTQN++T5Kfn2SNgco/v+MXL06qdU+1MLzDwoXw//4f\nrF6tsPBVfn4QFQXTp1uPyf36a+tzVJT1OToaunaFe+6xVhg+fNjuir1fkwyMwMDTn69c20W/esd1\nfY+vSVlZGSdPnqS0tJSysjKKi4spKyury2mJm6xcCY89BmvWwGWX2V2NuEtNAbJsmXVba9ky63sV\nAfLaawqQGjXEWF67ne20ztxeff7EmR/nnk9R3+NP9/jjjxuHw1HlY/bs2S6fm7jH++9b4/+3bLG7\nEvG0sjJjPv7YmGeeMeaWW4wJCjKma1dj7rnHmFdftR6929jVdn1plFcfVwPDmHNd9F272Nf3+LpS\nYDScXbuMueQSY9assbsS8QZlZcZ89JEx//iHMQkJ1QPk8OGG/f35+flm1Cj3X0PORYHhwnZvmOnt\nKgVGw9i/35iwMGNeecXuSsRbnRkggYHGdOtmzL33GvPaa+4NkMpryt4Gu5bURIHhwnZj6v8fyFP/\ngRUY7vfNN8Z0727M3/9udyXiSxoqQDz5B+iZaru+NMlhtWdTUFDApEmPsnix6zOz3Xm8KzSs1r1+\n/BEGD7aGWc6da3c14svKy2HnzsphvBs3QnBw1WG8ISHn/hnuWmrofGlpEBe2+5LGcA7e4tQpGDXK\n+p944ULN4hb3KiuDXbtcD5CGWGqorhQYpwkKCvL5ZccDAwPJz8+3uwyfV14OEydCQYE1O7i5Rx4l\nJk1ZWVn1FkhIiBUe/foVMH/+o3z0UW2rRzRsaCgwRGrw8MPwwQfw3nvQurXd1UhTVBEgq1YV8NRT\nj3LsmCtLDUFDhoZmeouc4emnrSe+/fe/CguxT7Nm1oKJW7c+yrFjD+FaWIC1Pt1DTJr0aEOWVyMF\nhjQpL78M//ynNYvbTU/2FamX812qyJWlhtxNt6SkyVi92uq3WL/eelSoiLdwfQVse/sw1MKQJiEz\nE8aPt56boLAQb+Pa+nSeGVp7LgoMafQ++8waPrt4MfzsZ3ZXI1Kzc4eG/WEBCgxp5PLyYPhwa1Le\nTTfZXY3IudUcGt4RFqA+DGnECgrgF7+Au+6CRx6xuxoR11X2aTxE375PeiwsNA9DmqQTJ2DoUOjX\nzxpGq1nc4ms8sdTQmRQY0uSUlsKYMdC2LSxZYj04R0RqV9u1UwsiSKNiDEydCidPwtKlCgsRd1Jg\nSKPypz/Bxx/DunXQooXd1Yg0LgoMaTT+9S94/XXYtMm6HSUi7qXAkEbhjTesobMffAAXX2x3NSKN\nkwJDfN5778F991mfO3e2uxqRxktdguLTtm+HO++0OrivvtruakQaNwWG+KwvvrBmbz//vPX0MhFp\nWAoM8UlffQXDhsGsWTB6tN3ViDQNCgzxOd9/DyNGWEuV33OP3dWINB2a6S0+pbjYCosePaxhtFry\nQ8R9tDSINBplZXDHHda/U1KsR1yKiPtoaRBpFIyBGTPgu++sJ+cpLEQ8T4EhPiEpyZrBnZEBLVva\nXY1I06TAEK/34ovW0/I2bYL27e2uRqTpUh+GeLW33oJf/xo2boTwcLurEWnc1IchPmvjRrj3XqvP\nQmEhYj/NwxCvtHMn3HorvPoq9OljdzUiAgoM8UL798PIkTB/Ptxwg93ViEgFBYZ4lW++sZb8eOQR\nGDvW7mpE5HTq9Bav8cMPcP31MHQo/PWvdlcj0vRoprf4hJISuPlm6NjRGkarJT9EPK+2a6fbb0lN\nnjyZ4OBgoqKiqmyfP38+PXr0IDIykkceecS5fc6cOURERNC9e3fS09Od27dt20ZUVBQRERHMmDHD\nub24uJixY8cSERFBbGwsBw4ccPcpiIeVl8PkydCqlbVUucJCxEsZN9u4caPZvn27iYyMdG5bt26d\nueGGG0xJSYkxxpivv/7aGGPM7t27TXR0tCkpKTH79u0zXbp0MeXl5cYYY/r162cyMzONMcaMGDHC\nrF692hhjzLPPPmumTp1qjDEmJSXFjB07tloNDXBa0kDKy4158EFjrr3WmKIiu6sRadpqu3a6vYUx\ncOBAAgMDq2x77rnn+P3vf4+/vz8AF//00OUVK1aQmJiIv78/nTt3Jjw8nMzMTI4cOUJhYSExMTEA\njB8/ntTUVABWrlzJhAkTABgzZgxr16519ymIBz31FKSnw8qVcMEFdlcjIufikYl7OTk5bNy4kT/8\n4Q+0atWKp556ir59+3L48GFiY2Od+4WFhZGXl4e/vz9hYWHO7aGhoeTl5QGQl5dHx44dreKbN6d9\n+/bk5+cTFBRU5XfOmjXL+e+4uDji4uIa7gTlvCQnw7PPWkt+nPE3hoh4QEZGBhkZGS7v75HAKC0t\npaCggM2bN7N161Zuv/129u7d26C/8/TAEO/zzjvW0NmMDAgNtbsakabpzD+mZ8+efc79PTIPIyws\njNE/PUezX79++Pn58e233xIaGsqhQ4ec++Xm5hIWFkZoaCi5ubnVtoPV2jh48CBgBdHx48ertS7E\nu334ofW0vBUroHt3u6sREVd5JDASEhJYt24dAHv27KGkpISLLrqI+Ph4UlJSKCkpYd++feTk5BAT\nE0NISAgBAQFkZmZijGHJkiWMGjUKgPj4eJKTkwFYtmwZgwcP9sQpiJtkZ8Mtt8BLL0H//nZXIyJ1\n4u5e9jvuuMNceumlpkWLFiYsLMwsWrTIlJSUmLvuustERkaaa665xqxfv965f1JSkunSpYvp1q2b\nSUtLc27PysoykZGRpkuXLmb69OnO7SdPnjS33XabCQ8PN/379zf79u2rVkMDnJa4wcGDxnTqZMxL\nL9ldiYjUpLZrpybuiUfk58PAgdZ8i9/8xu5qRKQmmukttisqgiFDYMAAePJJu6sRkbNRYIitSkut\nPovAQPjPf8BPy12KeC2PLw0iUsEYuOceKCuDhQsVFiK+Tk/ckwbz6KOwezesWwc/TfIXER+mwJAG\n8cwz8Oab8MEH0KaN3dWIiDsoMMTtXnvNWiPqgw/goovsrkZE3EWBIW6Vng4PPABr18Lll9tdjYi4\nkwJD3GbrVrjrLutWVGSk3dWIiLtp3Iq4xZ49EB8P//43XHut3dWISENQYEi9HTkCw4dbz+GOj7e7\nGhFpKAoMqZfjx62wuPtumDLF7mpEpCFpprect5MnrbC4+mprGK2exS3i27Q0iDSIsjK4/XZo3twa\nRqtZ3CK+r7Zrp0ZJSZ0ZA7/+tXU76p13FBYiTYUCQ+rsz3+2htCuXw8tW9pdjYh4igJD6uT552HJ\nEti0CQIC7K5GRDxJgSEuW7bMal28/z4EB9tdjYh4mgJDXJKRAdOmwZo10KWL3dWIiB3UXSm1+ugj\na0TU669D7952VyMidlFgyDnt3Qs33ggLFsCgQXZXIyJ2UmDIWX39NQwbBo89Brfeanc1ImI3BYbU\nqLAQRo6EO++EqVPtrkZEvIFmeks1JSXWbagrr7SG0WrJD5GmQUuDSJ2Ul8MvfwnFxbB0KTRrZndF\nIuIpWhpEXGYMPPggHD5sDZ9VWIjI6RQY4vR//6+13MfGjdCqld3ViIi3UWAIAIsWwQsvWEt+XHih\n3dWIiDdSH4awciXcey9s2ABdu9pdjYjYRX0Yck6bNllPy3vnHYWFiJyb5mE0Ybt3w+jR8PLL0K+f\n3dWIiLdTYDRRBw9aj1f9+99h6FC7qxERX6DAaIK++85a8uM3v7FmcouIuKLWwCgvL2fJkiX8+c9/\nBuDgwYNs2bKlwQuThvHjj9Ys7lGj4IEH7K5GRHxJraOkfvWrX+Hn58e6dev47LPPyM/PZ+jQoWRl\nZXmqxjrTKKmanToFCQlw8cWweLGW/BCRquo9SiozM5MdO3bQ+6cHIQQFBXHq1Cn3VSgeYYw1Gsrh\ngBdfVFiISN3VGhgtWrSgrKzM+fU333yDn5+6PnzN734He/bA2rXg7293NSLii2q98k+fPp1bbrmF\nr7/+mj/84Q/8/Oc/5/e//70nahM3mTcP3n4b/vtfaN3a7mpExFe5NNP7008/Ze3atQAMHjyYHj16\nNHhh9aE+jEovvwx/+IM1Qa9jR7urERFv5pblzcvKyvjqq68oLS3F8dPN706dOrmvSjdTYFjS0mDi\nRFi3Dnr2tLsaEfF29e70nj9/PrNnz+aSSy6h2WnrXe/atcs9FUqDyMyE8eNhxQqFhYi4R60tjC5d\nurBlyxY6dOjgqZrqram3MD7/HOLirNFQN91kdzUi4itqu3bW2undqVMnAgIC3FqUNJy8PGsW95w5\nCgsRca9ab0ldccUVDBo0iBtvvJEWLVoAVgrNnDmzwYuTujl2zFofaupUq+9CRMSdag2MTp060alT\nJ0pKSigpKcEY4+z4Fu9x4gTEx8MNN8DDD9tdjYg0Ri4/QKmwsBCAdu3aNWhB7tDU+jBKS+G22+CC\nC6xhtJpXKSLno959GLt27aJ3795cddVVXHXVVfTp04dPPvnkrPtPnjyZ4OBgoqKiqn3v6aefxs/P\nj/z8fOe2OXPmEBERQffu3UlPT3du37ZtG1FRUURERDBjxgzn9uLiYsaOHUtERASxsbEcOHCgtlNo\n1IyBadOsRQX/8x+FhYg0IFOL2NhYs27dOufX69evNz/72c/Ouv/GjRvN9u3bTWRkZJXtBw8eNMOG\nDTOdO3c23333nTHGmN27d5vo6GhTUlJi9u3bZ7p06WLKy8uNMcb069fPZGZmGmOMGTFihFm9erUx\nxphnn33WTJ061RhjTEpKihk7dmy1Glw4rUbjj380pm9fY77/3u5KRMTX1XbtrPXv0aKiIgYNGuT8\nOi4ujh9//PGs+w8cOJDAwMBq22fOnMnf/va3KttWrFhBYmIi/v7+dO7cmfDwcDIzMzly5AiFhYXE\nxMQAMH78eFJTUwFYuXIlEyZMAGDMmDHOGehN0b/+BSkpsGoV+MCdQhHxcS6NkvrLX/7CuHHjMMbw\nyiuvcOWVV9bpl6xYsYKwsDCuvvrqKtsPHz5MbGys8+uwsDDy8vLw9/cnLCzMuT00NJS8vDwA8vLy\n6PjTGhfNmzenffv25OfnExQUVOVnz5o1y/nvuLg44uLi6lSzt3vjDZg7Fz74wFquXESkrjIyMsjI\nyHB5/1oDY9GiRTz++OOMHj0asFoQixYtcvkXFBUV8cQTT/Duu+86txkPdEifHhiNzdq1cN998N57\n0Lmz3dWIiK8684/p2bNnn3P/WgMjKCiI+fPnn3dBX375Jfv37yc6OhqA3Nxc+vTpQ2ZmJqGhoRw6\ndMi5b25uLmFhYYSGhpKbm1ttO1itjYMHD3LZZZdRWlrK8ePHq7UuGrPt2yExEZYuhTMabCIiDeqs\ngTFp0qQat1fMwXC1lREVFcXRo0edX19xxRVs27aNoKAg4uPjufPOO5k5cyZ5eXnk5OQQExODw+Eg\nICCAzMxMYmJiWLJkCffffz8A8fHxJCcnExsby7Jlyxg8eLDLJ+vrvvzSmr39/PNw3XV2VyMiTc1Z\nA+PGG2+sMibX4XBw6NAh5s2bV+WBSmdKTExkw4YNfPfdd3Ts2JE///nPVcLn9El/PXv25Pbbb6dn\nz540b96cBQsWOL+/YMECJk6cyIkTJxg5ciTDhw8HYMqUKYwbN46IiAg6dOhASkpK/V4BH3H0qLXk\nx+OPw093B0VEPMqliXtffvklc+bMYePGjTz44INMmTLFuUyIN2psE/e+/95aTDAhAf70J7urEZHG\nql7Pw/j0009JSkpi+/btPPTQQ4wbN47mzWvt9rBdYwqM4mIYORK6dYNnn9WzuEWk4Zx3YNx6661s\n376d3/zmN9x22200a9asyu0kb+5obiyBUVZmdXCXl8Prr8NpjyMREXG78w6Mzj+N16xpoUGHw8He\nvXvdU2EDaAyBYQxMnw67d8Pq1dCqld0ViUhj55ZHtPqaxhAYf/0rLFsGGzZA+/Z2VyMiTUG9H9Eq\nnvfii7B4MWzapLAQEe+hFoaXSU21Vp/duBHCw+2uRkSakvNe3nzfvn0NUpCc3caNcM898PbbCgsR\n8T5nDYxbb70VgOuvv95jxTRlu3ZZD0F69VXo08fuakREqjtrH0ZZWRlJSUns2bOHefPmVWmm6Jne\n7rV/vzXX4p//tB6xKiLijc7awkhJSaFZs2aUlZVRWFhIYWEhP/zwg/Pf4h7ffmst+fHwwzB2rN3V\niIicXa2d3qtWrWLkyJGeqsctfKXT+4cfYPBgq1WRlGR3NSLS1NV7HsaxY8eYPXs2GzduBKz10//0\npz/R3ovHe/pCYJw6BTffDKGh8O9/a8kPEbHfeY+SqjB58mQCAgJYunQpb7zxBu3atTvr0ufimvJy\nmDwZWrSAF15QWIiIb6i1hREdHc3HH39c6zZv4u0tjN/+FjZvhvR0aN3a7mpERCz1bmFccMEFvP/+\n+86vP/jgA1rrKnfennwS0tKsuRZ6GUXEl9S6NMjzzz/P+PHjOX78OACBgYEkJyc3eGGNUXKytUT5\npk0QGGh3NSIidePy0iAVgeHNnd0VvPGW1DvvwJQpkJEB3bvbXY2ISHVardYLbN4M8fHWbaj+/e2u\nRkSkZvXuw5D6+fRT69GqyckKCxHxbQqMeiooKCAhYRoFBQXVvpebC8OHw9/+BiNG2FCciIgbuXRL\natOmTezfv5/S0lLrIIeD8ePHN3hx58tTt6QKCgoYOvRRsrIeom/fJ0lPTyLwp97s/HwYOBAmTbKG\n0YqIeLt692Hcdddd7N27l169etHstIdKz58/331VupknAqMyLJKAQKCAvn0fJT09iZYtAxk6FGJj\n4amnGrQMERG3qXdg9OjRg+zs7Bqf7e2tGjowqoeF8zv06fMoF12UxMUXB5KcDH666SciPqLej2iN\njIzkyJEerOjsAAAY6klEQVQjXHbZZW4tzFedPSwAAtm2LYmAgEfJyUnCz0+TLUSk8ai1hREXF8dH\nH31ETEwMLVu2tA5yOFi5cqVHCjwfDdXCOHdYVNnTeXsqUDP0RMRH1PuWVEZGRo3b4+Li6lNXg2qI\nwHA9LJxHKDRExKdo4p6bJCRMY8WKh4Ar6nDUPkaNepLU1AVurUVEpCHUe+Lehx9+SL9+/Wjbti3+\n/v74+fkREBDg1iJ9weLFSfTt+yRQfb5FzQro2/dJFi/Wk5FEpHGoNTDuu+8+Xn31VSIiIjh58iQL\nFy5k2rRpnqjNqwQGBpKenkTfvo9Se2jodpSIND4uDfqMiIigrKyMZs2aMWnSJNLS0hq6Lq/kWmgo\nLESkcap1WG2bNm0oLi4mOjqahx9+mJCQEK9a2M/TKkLjbPMwFBYi0ljV2sJ46aWXKC8v51//+het\nW7cmNzeX5cuXe6I2r1VzS0NhISKNm0ujpIqKijh06BDdunXzRE315g1rSYmI+Jp6j5JauXIlvXv3\nZtiwYQDs2LGD+Ph491XowypaGqNGKSxEpPGrtYVxzTXXsG7dOgYNGsSOHTsAa7mQTz75xCMFng9v\ne4CSiIgvqHcLw9/fnwsvvLDqQVpRT0Skyan1yn/VVVfxyiuvUFpaSk5ODtOnT2fAgAGeqE1ERLxI\nrYExf/58du/eTcuWLUlMTCQgIIB//OMfnqhNRES8iNaSEhERwA3Pw9i6dStPPPFEtUe07ty5031V\nioiI16u1hdG1a1eeeuopIiMjq3R2d+7cuaFrO29qYYiI1F29WxgXX3yx5l2IiEjtLYz09HRef/11\nbrjhBlq0aGEd5HAwevRojxR4PtTCEBGpu3q3MJKTk/n8888pLS2tckvKmwNDRETcr9ZhtVlZWWzd\nupXk5GQWL17s/DibyZMnExwcTFRUlHPbQw89RI8ePYiOjmb06NEcP37c+b05c+YQERFB9+7dSU9P\nd27ftm0bUVFRREREMGPGDOf24uJixo4dS0REBLGxsRw4cKDOJy0iInVXa2AMGDCA7Oxsl39gTc/L\nGDp0KLt37+bjjz+ma9euzJkzB4Ds7Gxef/11srOzSUtLY9q0ac7m0NSpU1m4cCE5OTnk5OQ4f+bC\nhQvp0KEDOTk5PPjggzzyyCMu1yYiIufPpUe09urVi65duxIVFUVUVBRXX331WfcfOHBgtUX4hgwZ\n4ryd1b9/f3JzcwFYsWIFiYmJ+Pv707lzZ8LDw8nMzOTIkSMUFhYSExMDwPjx40lNTQWsxRAnTJgA\nwJgxY1i7du15nLaIiNRVrX0Y7n663qJFi0hMTATg8OHDxMbGOr8XFhZGXl4e/v7+hIWFObeHhoaS\nl5cHQF5eHh07drSKb96c9u3bk5+fT1BQUJXfM2vWLOe/4+LiiIuLc+t5iIj4uoyMDDIyMlzev9bA\ncOd8i6SkJFq0aMGdd97ptp95NqcHhoiIVHfmH9OzZ88+5/4eW3b2P//5D6tWreKVV15xbgsNDeXQ\noUPOr3NzcwkLCyM0NNR52+r07RXHHDx4EIDS0lKOHz9erXUhIiLu55HASEtL48knn2TFihW0atXK\nuT0+Pp6UlBRKSkrYt28fOTk5xMTEEBISQkBAAJmZmRhjWLJkCaNGjXIek5ycDMCyZcsYPHiwJ05B\nRKTJq/WWVF0lJiayYcMGvv32Wzp27Mjs2bOZM2cOJSUlDBkyBICf/exnLFiwgJ49e3L77bfTs2dP\nmjdvzoIFC3A4HAAsWLCAiRMncuLECUaOHMnw4cMBmDJlCuPGjSMiIoIOHTqQkpLi7lMQEZEaaLVa\nEREB3PDEPREREVBgiIiIixQYIiLiEgWGiIi4RIEhIiIuUWCIiIhLFBgiIuISBYaIiLhEgSEiIi5R\nYIiIiEsUGCIi4hIFhoiIuESBISIiLlFgiIiISxQYIiLiEgWGiIi4RIEhIiIuUWCIiIhLFBgiIuIS\nBYaIiJc61/O17aDAEBHxQsYYZt59t1eFhgJDRMQLrVm+HJYuJf3NN+0uxUmBISLiZYwxrHn6aeYV\nFpL21FNe08pQYIiIeJk1y5czfOdOHMCwnTu9ppWhwBAR8SIVrYuhRUUADCsq8ppWhgJDRMSLnN66\nALyqleEw3hBbbuZwOLwijUVEamUMHDgAW7ZgMjOZ+eKLzCssdAYGgAFmxsYy73//w+FwnO0n1Vtt\n187mDfabRUSkum+/ha1brY8tW6yPZs2gf3/WtG7N8JISzoyE01sZw8aMsaNqqw61MEREGkhREezY\nURkMW7bAN99A374QE1P5ERpqtSIGDGDe5s3VAgM808qo7dqpwBARcYeyMsjOrhoOn38OV11VNRy6\ndQO/6t3HacuW4ZgwgWE/dXbXJK11axwvvdRgrQwFhoiIu53W7+D82LEDLrusajhER0OrVi79yN9N\nnkzLvXtrbF04fy1QfOWVzF20yC2ncSYFhohIfX33XdU+h9P6HZzh0LcvXHih3ZXWiwJDRKQu6tDv\nQAOOWLKDAkNE5Gzq2e/Q2CgwRESgQfodGhsFhog0Tefqd+jXr7LfITDQ7kq9hgJDRBq/0/sdKkLi\n66+bRL+DOykwRKRxqa3foaL10K2b1aIQlykwRMR3nd7vUNFy2L5d/Q4NRIEhIr5D/Q62UmCIiHc6\ncaL6fAf1O9hKgSEi9lO/g09QYIiIZxkDBw9WDQf1O/gEBYaINKyz9TucHg7qd/AJCgwRcR/1OzRq\ntV073b44yuTJkwkODiYqKsq5LT8/nyFDhtC1a1eGDh3KsWPHnN+bM2cOERERdO/enfT0dOf2bdu2\nERUVRUREBDNmzHBuLy4uZuzYsURERBAbG8uBAwfcfQoiAla/w65dsHAh3HsvXHMNdOgA998Pe/bA\n0KGwciUUFMC6dTB3LoweDWFhCotGyu2BMWnSJNLS0qpsmzt3LkOGDGHPnj0MHjyYuXPnApCdnc3r\nr79OdnY2aWlpTJs2zZluU6dOZeHCheTk5JCTk+P8mQsXLqRDhw7k5OTw4IMP8sgjj7j7FESanor5\nDkuXwkMPwXXXWUt133orZGRAZCQ89xzk50NWFixYABMnQs+e6qRuQhrkltT+/fu5+eab2bVrFwDd\nu3dnw4YNBAcH89VXXxEXF8dnn33GnDlz8PPzc170hw8fzqxZs7j88su5/vrr+fTTTwFISUkhIyOD\n559/nuHDhzN79mz69+9PaWkpl156Kd98803Vk9ItKZFzO73foeKzn5/6HZq42q6dzT1RxNGjRwkO\nDgYgODiYo0ePAnD48GFiY2Od+4WFhZGXl4e/vz9hYWHO7aGhoeTl5QGQl5dHx44dreKbN6d9+/bk\n5+cTFBRU5XfOmjXL+e+4uDji4uIa4tRE6swY02DPZK5Rbf0OkyZZrQf1OzQ5GRkZZGRkuLy/RwLj\ndA6HwyP/s5weGCLewhjDzLvvZt6//90w/x9UzHc4fdTS559Djx5WOAwdCo89pvkOAlT/Y3r27Nnn\n3N8jgVFxKyokJIQjR45wySWXAFbL4dChQ879cnNzCQsLIzQ0lNzc3GrbK445ePAgl112GaWlpRw/\nfrxa60LEW61ZvhyWLiV95EiGjRlTvx/mynyHSZM030HcxiOPkIqPjyc5ORmA5ORkEhISnNtTUlIo\nKSlh37595OTkEBMTQ0hICAEBAWRmZmKMYcmSJYwaNaraz1q2bBmDBw/2xCmI1JsxhjVPP828wkLS\nnnqq7v1s+fmwZg385S9w880QEgKxsfDyy1YH9WOPWQHy+eewZAlMn26twaSwEHcxbnbHHXeYSy+9\n1Pj7+5uwsDCzaNEi891335nBgwebiIgIM2TIEFNQUODcPykpyXTp0sV069bNpKWlObdnZWWZyMhI\n06VLFzN9+nTn9pMnT5rbbrvNhIeHm/79+5t9+/ZVq6EBTkuk3lYvXWrSWrc2Bszq1q1N2rJlZ9+5\nqMiYTZuM+fvfjUlMNKZLF2PatTNm0CBjHnnEmOXLjTl0yJjycs+dgDR6tV07NXFPxAOMMcwcMIB5\nmzfjAAwwMzaWef/7H47ycvj006q3lj77zBqyeuZzpdXvIA1IM71FvEDasmU4JkxgWFFR5TZ/fxzh\n4Qw7dKhqv0O/ftCrl24licd5xbBakabMlJez5s9/Zt5pYQEw7NQpZgJDDxzAoYEb4gM80ukt0uSU\nlsL69fDAA6wJDmb4J59w5iBaBzDswAHS16+3o0KROlNgiLjLjz/CW2/BhAnWCKaHHsJ06MCayy5j\n6Fma+cOKis5vxJSIDRQYIvXxzTeweDGMGgWXXmqtsdSvnzWzOiuLNT16MPyLL6q1Lio4gGE7d5L+\n5puerFrkvKjTW6Su9u6F1FRYsQI++siaPZ2QACNHVlt76XeTJ9Ny796zBgZYI6aKr7ySuYsWNWjZ\nIrXRKCmR+jLGajGkplofR49CfLwVEoMHazSTNBoKDJHzceoUvP9+ZUi0bAm33GLdeoqN1XwIaZQ0\nrFbEVT/8YC29kZoKq1ZBly5WKyItzVq8Tyu5ShOnFoY0bV9/DW+/bYXEhg1W6yEhwbrldNoS+yJN\ngW5JiZzpiy8qO6137YJhw6yQGDHCWsRPpIlSYIgYA9u2VfZHfPut1ReRkADXX2/1T4iIAkOaqFOn\nrFtMFS2J1q2tgEhIsJb89tMUJJEzqdNbmo7CQquDOjUVVq+Grl2tgHj3Xeje3e7qRHyeWhji2776\nqrLT+v33YcCAyk7ryy6zuzoRn6JbUtL47NlTeaspOxuGD7f6JEaMgPbt7a5OxGcpMMT3lZdDVlZl\np/WxY5Wd1nFx6rQWcRMFhvimkhLIyKhsSQQEVHZa9+unTmuRBqBOb/Ed339vdVanplbOrk5IgHXr\nrMeTioit1MIQex05AitXWiGxaRNce60VEjffbC0XLiIeo1tS4n0++8y6zZSaav17xAgrJIYPt249\niYgtFBhiv/Jy2LKlstO6sLCyP+K666BFC7srFBEUGGKX4mLrmdYVndZBQZUh0aePOq1FvJA6vcVz\njh+3lgVfscLqtI6MtIa/bthgzboWEZ+mFobUT15eZaf1hx/CL35R2WkdHGx3dSJSB7olJe5ljNVR\nXdEfkZNjPcs6IcFaJrxdO7srFJHzpMCQ+isvh82bK0PixAkrIEaNsjqt/f3trlBE3ECBIefn5Elr\nwlxqqnXL6eKLKzutr7lGjysVaYTU6S2uKyiwOq1TU60lwa++2mpFfPABhIfbXZ2I2EwtjKYuN7dy\nEl1mprWYX0IC3HQTXHKJ3dWJiAfplpRUZQzs3l0ZEnv3wo03WiExdCi0bWt3hSJiEwWGQFmZNeS1\notP61KnK5cEHDlSntYgA6sNouk6cgLVrrYB4+20ICbECYulS6NVLndYiUmdqYTQm+fnwzjtWSLz3\nnhUMFcNfr7zS7upExMvpllRjd/BgZX/E1q1w/fWVndYXXWR3dSLiQxQYjY0x8Mknlf0RBw5Y4ZCQ\nAEOGQJs2dlcoIj5KgdEYlJVZDxeqCIny8spJdNdeC83VFSUi9adOb1914oQ1ea6i0zoszAqIt96y\nJtSp01pEPEwtDDcwxuBwxwX8u+/gv/+1+iTee896bkRFp3XnzvX/+SIi51DbtVNPsaknYwwz7777\n/ANq/3545hkYNAiuuMIKi4QE2LfPegDRjBkKCxHxCrolVU9rli+HpUtJHzmSYWPG1H6AMbBzZ2V/\nRG6u9eyIBx+EG26A1q0bvmgRkfOgW1L1YIxh5oABzNu8mZmxscz73/9qvjVVWmot4FcREn5+lZ3W\nAwao01pEvII6vRvQmuXLGb5zJw5g2M6dpL/5ZmUro6gI0tOtgPjvf+Hyy62AePtt69Gl6rQWER+j\nFsZ5Or114QAMMLNPH+ZNm4Zj5UrrWRL9+lkhER9vBYaIiBfzqk7vOXPmcNVVVxEVFcWdd95JcXEx\n+fn5DBkyhK5duzJ06FCOHTtWZf+IiAi6d+9Oenq6c/u2bduIiooiIiKCGTNmePIUnE5vXQBWK2Pb\nNtJfeAHGjLE6s9euhenTFRYi0ih4LDD279/Piy++yPbt29m1axdlZWWkpKQwd+5chgwZwp49exg8\neDBz584FIDs7m9dff53s7GzS0tKYNm2aM/mmTp3KwoULycnJIScnh7S0NE+dBmC1LtY8/TRDi4qq\nbB8GpPn5Ye66C4KCPFqTiEhD81hgBAQE4O/vT1FREaWlpRQVFXHZZZexcuVKJkyYAMCECRNITU0F\nYMWKFSQmJuLv70/nzp0JDw8nMzOTI0eOUFhYSExMDADjx493HuMpZ7YuKpzelyEi0th4rNM7KCiI\n3/zmN3Tq1IkLLriAYcOGMWTIEI4ePUpwcDAAwcHBHD16FIDDhw8TGxvrPD4sLIy8vDz8/f0JCwtz\nbg8NDSUvL6/a75s1a5bz33FxccTFxbnlPCpaF/POaF1UGFZUxMynnmLo6NHumcwnItJAMjIyyMjI\ncHl/jwXGl19+yT/+8Q/2799P+/btue2223j55Zer7ONwONx2kT09MNzpbK2LCjWOmBIR8UJn/jE9\ne/bsc+7vscDIyspiwIABdOjQAYDRo0fz4YcfEhISwldffUVISAhHjhzhkp+eIx0aGsqhQ4ecx+fm\n5hIWFkZoaCi5ublVtoeGhnrqNMhYtYqW/frx4Tn2MUDxO+8oMESkUfFYYHTv3p2//OUvnDhxglat\nWvHee+8RExNDmzZtSE5O5pFHHiE5OZmEhAQA4uPjufPOO5k5cyZ5eXnk5OQQExODw+EgICCAzMxM\nYmJiWLJkCffff7+nToO5ixZ57HeJiHgTjwVGdHQ048ePp2/fvvj5+XHNNddwzz33UFhYyO23387C\nhQvp3Lkzb7zxBgA9e/bk9ttvp2fPnjRv3pwFCxY4b1ctWLCAiRMncuLECUaOHMnw4cM9dRoiIk2W\nJu6JiAjgZRP3RETEdykwRETEJQoMERFxiQJDRERcosAQERGXKDBERMQlCgwREXGJAkNERFyiwBAR\nEZcoMERExCUKDBERcYkCQ0REXKLAEBERlygwRETEJQoMERFxiQLDDeryEPWmRK9LzfS6VKfXpGbe\n9rooMNzA2/6jegu9LjXT61KdXpOaedvrosAQERGXKDBERMQljfaZ3iIiUnfnioTmHqzDYxphBoqI\n2E63pERExCUKDBERcYkCow4mT55McHAwUVFRZ93n/vvvJyIigujoaHbs2OHB6uxR22uSkZFB+/bt\n6d27N7179+avf/2rhyu0x6FDhxg0aBBXXXUVkZGR/POf/6xxv6b2fnHldWlq75mTJ0/Sv39/evXq\nRc+ePfn9739f435e8V4x4rKNGzea7du3m8jIyBq//84775gRI0YYY4zZvHmz6d+/vyfLs0Vtr8n6\n9evNzTff7OGq7HfkyBGzY8cOY4wxhYWFpmvXriY7O7vKPk3x/eLK69IU3zM//vijMcaYU6dOmf79\n+5v333+/yve95b2iFkYdDBw4kMDAwLN+f+XKlUyYMAGA/v37c+zYMY4ePeqp8mxR22sCTXMQQkhI\nCL169QKgbdu29OjRg8OHD1fZpym+X1x5XaDpvWdat24NQElJCWVlZQQFBVX5vre8VxQYbpSXl0fH\njh2dX4eFhZGbm2tjRfZzOBz873//Izo6mpEjR5KdnW13SR63f/9+duzYQf/+/atsb+rvl7O9Lk3x\nPVNeXk6vXr0IDg5m0KBB9OzZs8r3veW90iiH1drpzL+MmvqckGuuuYZDhw7RunVrVq9eTUJCAnv2\n7LG7LI/54YcfuPXWW3nmmWdo27Ztte831ffLuV6Xpvie8fPz46OPPuL48eMMGzaMjIwM4uLiquzj\nDe8VtTDcKDQ0lEOHDjm/zs3NJTQ01MaK7NeuXTtnc3vEiBGcOnWK/Px8m6vyjFOnTjFmzBjuuusu\nEhISqn2/qb5fantdmvJ7pn379tx4441kZWVV2e4t7xUFhhvFx8fz0ksvAbB582YuvPBCgoODba7K\nXkePHnX+ZbRlyxaMMdXuzzZGxhimTJlCz549eeCBB2rcpym+X1x5XZrae+bbb7/l2LFjAJw4cYJ3\n332X3r17V9nHW94ruiVVB4mJiWzYsIFvv/2Wjh07Mnv2bE6dOgXAvffey8iRI1m1ahXh4eG0adOG\nxYsX21xxw6vtNVm2bBnPPfcczZs3p3Xr1qSkpNhcsWds2rSJl19+mauvvtr5P/8TTzzBwYMHgab7\nfnHldWlq75kjR44wYcIEysvLKS8vZ9y4cQwePJgXXngB8K73SqNcS0pERNxPt6RERMQlCgwREXGJ\nAkNERFyiwBAREZdolJSIhzRr1oyrr77a+XViYiIPP/ywjRWJ1I1GSYl4SLt27SgsLLS7DJHzpltS\nIiLiEgWGiIecOHHC+YyH3r17s3TpUrtLEqkT3ZIS8RDdkhJfpxaGiIi4RIEhIiIu0S0pEQ9p3rx5\nlWefjxgxgieeeMLGikTqRoEhIiIu0S0pERFxiQJDRERcosAQERGXKDBERMQlCgwREXGJAkNERFyi\nwBAREZf8f1UWn9gr1HMzAAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Minority Employment Data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"try:\n", | |
" minority_table = pandas.read_table('minority.table')\n", | |
"except: # don't have data already\n", | |
" url = 'http://stats191.stanford.edu/data/minority.table'\n", | |
" minority_table = pandas.read_table(url)\n", | |
"\n", | |
"factor_group = minority_table.groupby(['ETHN'])\n", | |
"\n", | |
"plt.figure(figsize=(6,6))\n", | |
"colors = ['purple', 'green']\n", | |
"markers = ['o', 'v']\n", | |
"for factor, group in factor_group:\n", | |
" plt.scatter(group['TEST'], group['JPERF'], color=colors[factor],\n", | |
" marker=markers[factor], s=12**2)\n", | |
"plt.xlabel('TEST');\n", | |
"plt.ylabel('JPERF');\n", | |
"\n", | |
"min_lm = ols('JPERF ~ TEST', df=minority_table).fit()\n", | |
"print min_lm.summary()\n", | |
"\n", | |
"plt.figure(figsize=(6,6));\n", | |
"for factor, group in factor_group:\n", | |
" plt.scatter(group['TEST'], group['JPERF'], color=colors[factor],\n", | |
" marker=markers[factor], s=12**2)\n", | |
"\n", | |
"plt.xlabel('TEST')\n", | |
"plt.ylabel('JPERF')\n", | |
"abline_plot(model_results = min_lm, ax=plt.gca());\n", | |
"\n", | |
"min_lm2 = ols('JPERF ~ TEST + TEST:ETHN',\n", | |
" df=minority_table).fit()\n", | |
"\n", | |
"print min_lm2.summary()\n", | |
"\n", | |
"plt.figure(figsize=(6,6));\n", | |
"for factor, group in factor_group:\n", | |
" plt.scatter(group['TEST'], group['JPERF'], color=colors[factor],\n", | |
" marker=markers[factor], s=12**2)\n", | |
"\n", | |
"abline_plot(intercept = min_lm2.params['Intercept'],\n", | |
" slope = min_lm2.params['TEST'], ax=plt.gca(), color='purple');\n", | |
"abline_plot(intercept = min_lm2.params['Intercept'],\n", | |
" slope = min_lm2.params['TEST'] + min_lm2.params['TEST:ETHN'],\n", | |
" ax=plt.gca(), color='green');\n", | |
"\n", | |
"\n", | |
"min_lm3 = ols('JPERF ~ TEST + ETHN', df = minority_table).fit()\n", | |
"print min_lm3.summary()\n", | |
"\n", | |
"plt.figure(figsize=(6,6));\n", | |
"for factor, group in factor_group:\n", | |
" plt.scatter(group['TEST'], group['JPERF'], color=colors[factor],\n", | |
" marker=markers[factor], s=12**2)\n", | |
"\n", | |
"abline_plot(intercept = min_lm3.params['Intercept'],\n", | |
" slope = min_lm3.params['TEST'], ax=plt.gca(), color='purple');\n", | |
"abline_plot(intercept = min_lm3.params['Intercept'] + min_lm3.params['ETHN'],\n", | |
" slope = min_lm3.params['TEST'], ax=plt.gca(), color='green');\n", | |
"\n", | |
"\n", | |
"min_lm4 = ols('JPERF ~ TEST * ETHN', df = minority_table).fit()\n", | |
"print min_lm4.summary()\n", | |
"\n", | |
"plt.figure(figsize=(6,6));\n", | |
"for factor, group in factor_group:\n", | |
" plt.scatter(group['TEST'], group['JPERF'], color=colors[factor],\n", | |
" marker=markers[factor], s=12**2)\n", | |
"\n", | |
"abline_plot(intercept = min_lm4.params['Intercept'],\n", | |
" slope = min_lm4.params['TEST'], ax=plt.gca(), color='purple');\n", | |
"abline_plot(intercept = min_lm4.params['Intercept'] + min_lm4.params['ETHN'],\n", | |
" slope = min_lm4.params['TEST'] + min_lm4.params['TEST:ETHN'],\n", | |
" ax=plt.gca(), color='green');\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: JPERF R-squared: 0.517\n", | |
"Model: OLS Adj. R-squared: 0.490\n", | |
"Method: Least Squares F-statistic: 19.25\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 0.000356\n", | |
"Time: 20:52:31 Log-Likelihood: -36.614\n", | |
"No. Observations: 20 AIC: 77.23\n", | |
"Df Residuals: 18 BIC: 79.22\n", | |
"Df Model: 1 \n", | |
"==============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"------------------------------------------------------------------------------\n", | |
"Intercept 1.0350 0.868 1.192 0.249 -0.789 2.859\n", | |
"TEST 2.3605 0.538 4.387 0.000 1.230 3.491\n", | |
"==============================================================================\n", | |
"Omnibus: 0.324 Durbin-Watson: 2.896\n", | |
"Prob(Omnibus): 0.850 Jarque-Bera (JB): 0.483\n", | |
"Skew: -0.186 Prob(JB): 0.785\n", | |
"Kurtosis: 2.336 Cond. No. 5.26\n", | |
"==============================================================================\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: JPERF R-squared: 0.632\n", | |
"Model: OLS Adj. R-squared: 0.589\n", | |
"Method: Least Squares F-statistic: 14.59\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 0.000204\n", | |
"Time: 20:52:31 Log-Likelihood: -33.891\n", | |
"No. Observations: 20 AIC: 73.78\n", | |
"Df Residuals: 17 BIC: 76.77\n", | |
"Df Model: 2 \n", | |
"==============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"------------------------------------------------------------------------------\n", | |
"Intercept 1.1211 0.780 1.437 0.169 -0.525 2.768\n", | |
"TEST 1.8276 0.536 3.412 0.003 0.698 2.958\n", | |
"TEST:ETHN 0.9161 0.397 2.306 0.034 0.078 1.754\n", | |
"==============================================================================\n", | |
"Omnibus: 0.388 Durbin-Watson: 3.008\n", | |
"Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.514\n", | |
"Skew: 0.050 Prob(JB): 0.773\n", | |
"Kurtosis: 2.221 Cond. No. 5.96\n", | |
"==============================================================================" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: JPERF R-squared: 0.572\n", | |
"Model: OLS Adj. R-squared: 0.522\n", | |
"Method: Least Squares F-statistic: 11.38\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 0.000731\n", | |
"Time: 20:52:31 Log-Likelihood: -35.390\n", | |
"No. Observations: 20 AIC: 76.78\n", | |
"Df Residuals: 17 BIC: 79.77\n", | |
"Df Model: 2 \n", | |
"==============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"------------------------------------------------------------------------------\n", | |
"Intercept 0.6120 0.887 0.690 0.500 -1.260 2.483\n", | |
"TEST 2.2988 0.522 4.400 0.000 1.197 3.401\n", | |
"ETHN 1.0276 0.691 1.487 0.155 -0.430 2.485\n", | |
"==============================================================================\n", | |
"Omnibus: 0.251 Durbin-Watson: 3.028\n", | |
"Prob(Omnibus): 0.882 Jarque-Bera (JB): 0.437\n", | |
"Skew: -0.059 Prob(JB): 0.804\n", | |
"Kurtosis: 2.286 Cond. No. 5.72\n", | |
"==============================================================================" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: JPERF R-squared: 0.664\n", | |
"Model: OLS Adj. R-squared: 0.601\n", | |
"Method: Least Squares F-statistic: 10.55\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 0.000451\n", | |
"Time: 20:52:31 Log-Likelihood: -32.971\n", | |
"No. Observations: 20 AIC: 73.94\n", | |
"Df Residuals: 16 BIC: 77.92\n", | |
"Df Model: 3 \n", | |
"==============================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"------------------------------------------------------------------------------\n", | |
"Intercept 2.0103 1.050 1.914 0.074 -0.216 4.236\n", | |
"TEST 1.3134 0.670 1.959 0.068 -0.108 2.735\n", | |
"ETHN -1.9132 1.540 -1.242 0.232 -5.179 1.352\n", | |
"TEST:ETHN 1.9975 0.954 2.093 0.053 -0.026 4.021\n", | |
"==============================================================================\n", | |
"Omnibus: 3.377 Durbin-Watson: 3.015\n", | |
"Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.330\n", | |
"Skew: 0.120 Prob(JB): 0.514\n", | |
"Kurtosis: 1.760 Cond. No. 13.8\n", | |
"==============================================================================" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAF6CAYAAAAavuPXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0VFW+L/DvqSlTJcGEQGISCBCBhJCBKYyXgoCIDNKA\n2gzqE1D0tQrqVV+rSyMtiILdQmN7r0hr26BwtUEbWngNNoUIjYABAiIimAgxgExJIFNN5/3BS0wg\nqTqVql3T+X7Wcq1A7dT+HQ9882PXOftIsizLICKikKfxdwFEROQbDHwiIpVg4BMRqQQDn4hIJRj4\nREQqwcAnIlIJoYG/bNky9O7dG1lZWVi2bJnIqYiIyAVhgX/kyBG888472LdvHw4dOoRNmzbh5MmT\noqYjIiIXhAX+sWPHkJ+fj/DwcGi1WgwfPhzr168XNR0REbmgE/XGWVlZeO6553Dp0iWEh4fjH//4\nBwYMGND4uiRJoqYmIgppbd0gQViH37NnTzzzzDO49dZbMXbsWOTl5UGjaT6dLMsh+9+LL77o9xp4\nfDw+NR5fKB+bLHu2E47QD21nzZqF/fv3Y8eOHWjXrh169OghcjoiInJC2JIOAPz888/o0KEDTp06\nhQ0bNuCrr74SOR0RETkhNPCnTp2KixcvQq/X409/+hNiYmJEThdQTCaTv0sQiscX3EL5+EL52Dwl\nyZ4uCrV1YknyeD2KiEhtPMlO3mlLRKQSDHwiIpVg4BMRqQQDn4hIJRj4REQqwcAnIlIJBj4RkUow\n8ImIVIKBT0SkEgx8IiKVYOATEakEA5+ISCUY+EREKsHAJyJSCQY+EZFKMPCJiFSCgU9EpBIMfCIi\nlWDgExGpBAOfiEglGPhERCrBwCciUgkGPhGRSjDwiYhUQufvAoiIlPjuwndYc3gNZMiKv2dKxhTk\nJuYKrCq4MPCJKCiUVZXh5S9eVhz4GkmDnI45DPwmuKRDREFhZJeRyOqQpXh8SkwKJmdMFlhR8GHg\nE1FQkCQJS29diih9lMuxRoMRS0YvgUZixDUlybKsfEHMmxNLEvw0NVHI+/yHz1FRV6F4fIeoDhjW\neZjAirxDlmXk/FcODv982Om4TrGdUDKvJCQD35PsZOAThaCEJQmotlRDr9W7HGuxW5ASk4LvH/3e\nB5V57p8n/4nJ6yaj2lrd4utGgxGrJq7CXb3u8nFlvsHAJ6Jm3tjzBp7/1/OthmJTRoMRb417CzOz\nZ/qgMs+56vLDdeEo6FIACVKLr8eGx+LPd/wZBq1BZJnCMPCJqJlaay1u/v3NipZ1kqOTUTq/FDpN\n8Fy056rLdyY1JhWl80uDdrnHk+wMziMmIqci9BF4cfiLLj/gNBqMWDxqcVCFPQCM7joaXW/q6vb3\nGQ1GvDb6taANe08JPepXXnkFvXr1Qu/evTF9+nTU19eLnI6Impjbd67LNfzYsFj8OuvXPqrIe9y5\nYqepm8Jvwp2ZdwqqKvAJC/zS0lKsXLkSRUVFOHz4MOx2O9auXStqOiK6jqsuP1i7+wbXd/mtrdk3\naOjutRqt6NIClrDAj4mJgV6vR01NDWw2G2pqapCcnCxqOiJqgbMuP1i7+wZNu3yjwYiBKQOd/vBS\ne3cPCNxaIS4uDk8++SQ6deqEiIgIjBkzBqNGjWo2prCwsPFrk8kEk8kkqhwiVWro8q+/YifYu/sG\nDV1+VX0V3pv0HnL+Kwc2h+2GccHc3ZvNZpjNZq+8l7CrdE6ePIkJEyZg586diI2NxZ133ompU6di\nxowZ1ybmVTpEPtHSFTvBeGVOa45dOIY6Wx1yE3Nx90d3Y/2x9TeEfmpMKkrmlQRl4F8vIK/S2b9/\nPwYPHoz4+HjodDpMnjwZu3fvFjUdEbXi+rX8UOnuG/Rs37Nxg7SFBQtvOK5g7u69TVjg9+zZE3v2\n7EFtbS1kWca2bduQmZkpajoicqLpWn6wr907kx6XjondJzYLfa7d/0JY4Ofk5ODee+9Fv379kJ2d\nDQB48MEHRU1HRE40dPkAQqq7b0nTLp/dfXO805ZIJWqttXj5i5fx0oiXQjrwAeDuj+7Gx99+jOTo\n5JBZu2/ArRWIiJo4cekEeqzogTWT14Tc8hUDn4joOgfPHkR2x+yQ20aBgU9EpBIBeVkmEREFFgY+\nEZFKMPCJiFSCgU9EpBIMfCIilQjtuy+IAtju07vxH+/+B2Qov+Li2aHP4ncjfyewKgplDHwiP+mT\n1AcxYTG4XHdZ0fgIXQTGdR8nuCoKZVzSIfKTcF04Ck2Fih7TJ0FCv5v7YWDKQB9URqGKgU/kRw/2\nfRAGrcHluAh9BF4b/ZoPKqJQxsAn8iMlXb4ECX2T+rK7J48x8In8zFWXz+6evIWBT+Rnzrp8dvfk\nTQx8ogDQWpfP7p68iYFPFABa6vLZ3ZO3MfCJAsT1XT67e/I2Bj5RgGja5bO7JxEY+EQBpKHL12v1\n7O7J6xj4RAEkXBeOxaMWY2TaSHb35HV8xCFRAJJlGZIk+bsMCkB8xCFRiGHYkwgMfCIilWDgExGp\nBAOfiEglGPhERCrBwCciUgkGPhGRSjDwiYhUgoFPRKQSDHwiIpUQFvjfffcd8vLyGv+LjY3F8uXL\nRU1HREQu+GQvHYfDgeTkZOzduxepqanXJuZeOkREbgv4vXS2bduGbt26NYY9ERH5nk8Cf+3atZg+\nfbovpiIiolboRE9gsViwceNGvPrqqze8VlhY2Pi1yWSCyWQSXQ4RUVAxm80wm81eeS/ha/iffvop\n3nrrLWzZsqX5xFzDJyJyW0Cv4X/44YeYNm2a6GmIiMgFoR1+dXU1OnfujJKSEkRHRzefmB0+EZHb\nPMlOPuKQiCiIBPSSDhERBQYGPhGRSjDwiYhUgoFPRKQSDHwiIpVg4BMRqQQDn4hIJYTvpUNEwcdu\ntaN0eymunLkCXbgOKQNT0K5zO3+XRR5i4BNRI2utFTsX7cS+FfvgcDgg22VIGgkOqwMpA1NQsLgA\nKfkp/i6T2oh32hIRAMBy1YJ3h72LC8cuwFZna3GMLkKHyasnI2Nyho+rowa805aIPPbxrz/G+WPn\nWw17ALDV2rDhng34+cjPPqyMvIWBT0S4dOISSj4vgb3O7nKsrd6Gna/s9EFV5G0MfCLC3hV74bA7\nFI2V7TKOrT+Guso6wVWRtzHwiQhle8rgsCoLfADQhmlx6cQlgRWRCAx8IlLc3Tf7Hpv730P+xcAn\nIsR3jwck5ePt9XbEdooVVxAJwcAnIgz4zQDoI/WKxyfnJyM6Kdr1QAooDHwiQsqgFMR2ioWkcd3m\n66P0GPbsMB9URd7GwCciSJKE6ZumI7xdOCRt66Gvj9RjwG8GoNut3XxYHXkL77QlokYVpRVYP2M9\nzhSdgcPmaPxg1hBtgKSRMGLBCAx4dAAkyY0Ff/IqPsSciLzq4vcXUfzXYlSUVkAfpUeXEV3Qc1JP\naA1af5emegx8IiKV4F46RETkEgOfiEglGPhERCrBwCciUgkGPhGRSjDwiYhUgoFPRKQSDHwiIpVg\n4BMRqQQDn4hIJRj4REQqITTwKyoqMHXqVGRkZCAzMxN79uwROR0RETmhE/nm8+bNw+23346PP/4Y\nNpsN1dXVIqcjIiInhO2WWVlZiby8PPzwww8tT8zdMomI3BaQu2WWlJQgISEB999/P/r06YMHHngA\nNTU1oqYjIiIXhC3p2Gw2FBUVYcWKFejfvz/mz5+PxYsXY8GCBY1jCgsLG782mUwwmUyiyqEgVVVW\nha/f/hpnD54FACTmJaLvA30RkxLj58qIfMNsNsNsNnvlvYQt6Zw9exaDBg1CSUkJAODLL7/E4sWL\nsWnTpmsTc0mHnKi/Uo8N92zAiS0nAAD2ejsAQBumhSRJSB+bjkl/mYSw6DB/lknkcwG5pJOYmIjU\n1FQcP34cALBt2zb06tVL1HQUQixXLVg1cBVObDkBe729MeyBa8Fvq7Ph+8++x6rBq2CptvixUqLg\nIvQRh4cOHcKcOXNgsVjQrVs3vPvuu4iNjb02MTt8asWmuZtw6P1DsNXZnI7ThmuR+79yMf6t8T6q\njMj/+ExbChn1V+qxtONS2Gqdh30DXYQOT/38FAxGg+DKiAJDQC7pELXFt+u/haSVFI/XaDX4dsO3\nAisiCh0MfAooVaerYK22Kh5vrbWi6nSVwIqIQgcDnwKK1qB1q8OXNBK0Bq3AiohCBwOfAkpS3yTo\nw/WKx+vCdEjqmySwIqLQwcCngNJlRBeExSi/tj68XTjSTGniCiIKIQx8CiiSRsLIRSOhj3Td5esj\n9Ri5aCQkSfkSEJGaMfAp4OTel4uBjw90Gvr6SD0GPjEQOffk+LAyouDG6/ApYH238TvseGkHzh89\n3/jBrN1iR4deHTD8xeHoPr67nysk8j3eeEUh7eLxi7h4/CIAIL5HPOJvifdzRUT+w8AnIlIJ3mlL\nREQuMfCJiFSCgU9EpBIMfCIilWDgExGpBAOfiEglGPhERCrBwCciUgmdvwsgosBV9VMVDqw6gHOH\nzwEAkvokIW9WHowdjX6ujNqCd9oS0Q3qr9Tjk/s+wYnNJyDLMuz1dgCALvxaj9hzck9MfGci9BHK\nn11A3sGtFYjIayxXLVg5YCUu/3C5MeivpwvXIaFXAmZ9OavxhwD5BrdWICKv2fzYZqdhDwC2OhvO\nHz2Pfz33Lx9WRp5i4BNRo7rKOhz58IjTsG9gq7Xh67e/hrVW+UPnyb8Y+ETU6OjHR916iDwk4Pim\n4+IKIq9qNfBPnTrlyzqIKABUllbCWq28Y7fV2VD5Y6XAisibWg38O+64o/HrKVOm+KQYIvIvjUED\nuNPga6TGp5FR4FO0pPPDDz+IroOIAkBSnyQYjAbF4zU6DRLzEgVWRN7ENXwiapR+W7pbl1lGJkSi\n09BOAisib2o18IuLixEdHY3o6GgcPny48evo6GjExMT4skYi8hGNVgPTSyboI13fUKWP1KNgYQEk\nyY01IPKrVn+U2+2uL8siotDT76F+uHj8IopWFrX6Aa4+Uo/BTw1G7+m9fVwdecLtO22vXr2KN998\nE88884xnE/NOWwpyl2ovoc5Wp3h8tCEa0WHRAivyrm8++gY7FuxAxQ8V0OiuLQbYrXYkZCRgeOFw\n9JjQw88VqpOQrRXKy8vxyiuv4OTJk8jKysILL7yAlStX4vXXX8fkyZOxfPlyvxVN5G9WuxVRi6Kg\nkTTQalxfpWK1W9GjfQ8cfviwD6rzrp+P/IyL31+EJElo37M92vds7++SVM2T7Gx1Sefee+/F0KFD\nMW7cOGzZsgVZWVkYOHAg9u/fj8REfipP6qbX6nF3r7ux9pu1qLfWuxwfpY/CQ30f8kFl3tchqwM6\nZHXwdxnkBa12+Lm5uTh48GDjr1NSUvDjjz9Cq1V+zW1aWhpiYmKg1Wqh1+uxd+/eXyZmh09BruRy\nCTL/lKloWScuIg7lT5QjTBfmg8oolAnp8B0OBy5dugQAkGUZcXFxqKz85Y66uLg4RYWZzWZFY4mC\nTZebumBqxlSs/WYtbA5bq+Oi9FFYYFrAsCe/a7XDT0tLc3q5VUlJics379KlC/bv34/4+PgbJ2aH\nTyFASZfP7p68SUiHX1pa2tZ6GkmShFGjRkGr1WLu3Ll44IEHmr1eWFjY+LXJZILJZPJ4TiJfctXl\ns7snT5nNZpjNZq+8V6sd/urVqzFz5kwAwK5duzBkyJDG11asWIFHHnnE5ZufOXMGSUlJOH/+PEaP\nHo0//vGPGDZs2LWJ2eFTiHDW5bO7J28T8gCU119/vfHr68N91apVit48KSkJAJCQkIBf/epXzT60\nJQoVDV2+TtP8H8zs7inQCNtLp6amBleuXAEAVFdX45///Cd69+ZdeRSaFoxYcEPgh+nCMKfPHD9V\nRHQjYYF/7tw5DBs2DLm5ucjPz8f48eNx6623ipqOyK+u7/LZ3VMganUNPyIiAunp6QCAkydPolu3\nbo2vnTx5EjU1NZ5NzDV8CjFN1/K5dk+iCLlK59tvv/X4zYnUpKHLX3N4Dbt7CkitdviyLOOTTz7B\niRMnkJ2djTFjxnh3Yv4goRBUcrkEsz6dhS0zt7gV+HaLHTUXaiBpJEQmREKj5aMqqGVCNk97+OGH\ncfToUQwePBiff/45xo8fjxdeeMGjQptNzMAnwvmj57H79d048uGRxt/ThmnR/+H+6P+b/ohJ5rMn\nqDkhgd+rVy8UFxdDq9WipqYGQ4cORVFRkUeFNpuYgU8qV/ROETY/thkOqwMOm6PZa9owLbR6LaZt\nnIY0U5p/CqSAJOQ6fIPB0LhRWmRkJMOZyIu+3fAtNj+2GbZa2w1hDwD2ejssVy34YPwHOFd8zg8V\nUihSdJUOAJw4caLx15Ikobi42LOJ2eGTSskOGb9P/T2ull9VNL7bmG6YuWWm4KooWAi5SufYsWNt\nLoiC25y/z8Gaw2sUj9dr9Dj40EF0vamrwKpCR8m/SmCpsige/+OOH1FVVoWYFK7nk2daDfysrKxW\nvyksLAzp6el4+eWXMWrUKCGFkf+M7joaHx75EDVWZfdadIjtgLR2aWKLCiEn/u8JWK4qD3yNToPS\nHaXInpEtsCpSg1YDv2FbhJbYbDZ88803mD59Or755hshhZH/TM2ciqe3PY1TladcjjUajFgyegk0\nEi8jVKq+0vUTspqSHXKrDxMnckeb/pbqdDrk5OTg0Ucf9XY9FAC0Gi1eG/UajAajy7FxEXGYmjnV\nB1WFDmOSEZKu9WdNXE+j0yCyfaTAikgtPGrLHnooOJ/RSa5NzZyKuAjnTypjd982WXdnQatX/qhQ\nh82Bbrd2cz2QyAX+TaUWKeny2d23TUJmAhJ6JQAKmnyNXoPeM3vDYDSIL4xCHgOfWuWsy2d375lf\n/eVXLkNco9PA2NGIgkUFPqqKQh3/tlKrnHX57O49k5CZgPu/uB9RHaJgiL4u+CXAYDQgvkc85nw1\nB5HxXL8n72j1xivhE/PGq6Bgd9jRdXnXZlfsGA1GrJq4Cnf1usuPlYUGu9WO7z79Dnve2IPLP1yG\npJHQMacjBv/nYKSZ0iBJyj/cJXUQspeOaAz84LHuyDrM2TgHVy3X7gztFNsJJfNKuJxD5AdC9tIh\natB0LZ9r90TBi39ryaWGtXy9Rs+1e6IgxsAnRaZmTkX3+O74w5g/sLsnClJcwyfFHLKDYU/kZ1zD\nJ59g2BMFN/4NJiJSCQY+EZFKMPCJiFSCgU9EpBIMfCIilWDgExGpBAOfiEglGPhERCrBwCciUgkG\nPhGRSjDwiYhUgoFPRKQSwgPfbrcjLy8PEyZMED0VERE5ITzwly1bhszMTD6bk4jIz4QGfllZGT77\n7DPMmTOHe98TEfmZTuSbP/7441iyZAmqqqpafL2wsLDxa5PJBJPJJLIcIqKgYzabYTabvfJewp54\ntWnTJmzevBlvvvkmzGYzXn/9dWzcuPGXiYPsiVeyLOPUzlPYvXQ3SreXwlZvQ1hMGHpP7438x/IR\nlx7n7xKJSAU8yU5hgf/ss8/ir3/9K3Q6Herq6lBVVYUpU6bg/fffvzZxEAW+pdqCtZPWouzfZbDW\nWIEmZWv0Gmh0Ggx5egiGvzicn1UQkVABGfhN7dixA0uXLg3KDt9hc+D9gvdRtrcM9jp7q+P0kXoM\ne24Yhj07zIfVEZHaBMUzbYO18/12w7coLyp3GvYAYK2x4ovffYGrZ6/6qDIiIvf4pMNvceIg6fDf\n7vc2znx9RtFYXbgOQ387FMNfGC64KiJSq6Do8INRXWUdzhWfUzzeVmdD8ZpigRUREbUdA9+J+sp6\naA1at7+HiCgQMfCdCIsJg93ifO3+eoZog6BqiIg8w8B3IrxdONr3bK94vDZMi6y7swRWRETUdgx8\nF4Y8MwT6KL2isZIkod/D/QRXRETUNgx8F3rd2QsJGQku1/L1kXrkz89HTHKMjyojInIPA98FrUGL\ne7bdg8Q+iTAYb1yfl7QSdBE69HmwDwoWFfihQiIiZXgdvkIOuwMntpzA7td249SuU5AdMnThOmTe\nmYlBjw9CYm6iv0skIhUI+K0VWpw4yAK/KVmWIdtlaHT8BxIR+ZYn2Sl0e+RQJUkSJF1wbhVBROrF\nFpWISCUY+EREKsHAJyJSCQY+EZFKMPCJiFSCgU9EpBIMfCIilWDgExGpBG+8Ip/57PvPMHndZMhQ\nfpfg0tFL8Wj+owKrIlIPBj75TH5yPjSSBrW2WkXjw7RhGNV1lOCqiNSDgU8+Ex8Zj0fzH8Xyr5aj\nzlbndKxW0uK29NuQkZDho+rI3+wWO459cgx7lu1BZWklNDoNkvolYdATg5A6OBWSxO1MPMXN08in\nLtZcRKc3OqHGWuN0XLguHEUPFjHwVaJ8fznWjF0DW70NliuWX16Qrj1ron3P9pixeQaiEqL8V2SA\n8CQ7+aEt+VR8ZDweGfAIwnXhrY7RSlqM6TaGYa8SZw+dxV9G/AU1F2qahz0AyIC12opzxeewatAq\n1FfV+6fIEMHAJ597evDT0Eit/9HTa/V4peAVH1ZE/rR+xnpYrlqcjnFYHagqq8KOBTt8VFVoYuCT\nzznr8tndq0v51+WoKKlQNNZeb8fXb38NW71NcFWhi4FPftFal8/uXl0OrzkMa51V8XhJklBqLhVX\nUIhj4JNftNTls7tXnyvlVwCH8vGyLKPmgvMP/Kl1DHzym+u7fHb36hMe2/qH9y2RJAn6SL2gakIf\nA5/8pmmXz+5endLHpsMQbVA83m6xo9PQTgIrCm0MfPKrhi5fr2F3r0bdx3eH1qBVNlgCbrn9Fl6L\n7wHeaUt+FR8ZjycHPYnvLnwXEN297JDx484fUVFSAUkroWN2RyTmJPq7rJCl0Wlw2xu3YdPcTbDW\nOP/w1hBlwIiXR/iostDEO23J7xr+HEiSBKvditKKUre+P61dGvRaz9Z1ZYeMr5Z/hV2v7oKl2gLZ\nIV/7M+qQ0a5LO4xcOBI97+jp0RzUuj1/2IPPn/scdosdsr15LmjDtNAatJjx2Qwu58Cz7GTgU0B5\np+gdzN00F1F6Zf9sr7ZW4+3xb2N2n9ltntNhd2Dd5HUo2VbSapepDdMib3Yebl9xO/d0EeTswbPY\nvXQ3jv7tKDQaDWRZhi5Mh/6/6Y/+/7s/om+O9neJASEgA7+urg7Dhw9HfX09LBYL7rjjDrzyyi9r\ntAx8akllXSWSf5+Mamu1ovFGvRFlT5QhNjy2zXNufXor9r25z+WSAgBEJkTCVGhC37l9odHyIzAR\nbHU2VJ+vhkanQVRCFDQ6/n9uKiD30gkPD8f27dtx8OBBFBcXY/v27fjyyy9FTUchIjY8Fk8OehIR\nugiXYyN0EXhy8JMehb2l2qI47AGg5nwNtj61FWvGroHdYm/zvNQ6XbgOsamxiE6KZth7mdD/m5GR\nkQAAi8UCu92OuLg4kdNRiHhi0BNO99ppoJW0eHzg4x7NdWTtEcDNFRprjRWnvjyFjQ9u9GhuIl8T\nepWOw+FAnz59cPLkSTz88MPIzMxs9nphYWHj1yaTCSaTSWQ5FCQauvwlu5e0+rAUb3T3AFC+rxzW\nauW39jew1drwzbpvULCogGvLJJTZbIbZbPbKe/nkQ9vKykqMGTMGixcvbgx1ruGTM67W8r2xdg8A\nf5/zdxxYdaBN36sN02LwU4Mx8ncjPaqByB0BuYbfVGxsLMaNG4f9+/f7YjoKAc7W8r3V3QNA+57t\noQtv2z907fV2/LjjR49rIPIVYYF/4cIFVFRc2/a0trYWW7duRV5enqjpKAS1tpbvjbX7Btn3ZLv1\nUPXr8YNbCibCAv/MmTMYOXIkcnNzkZ+fjwkTJqCgoEDUdBSCWuryvdndA4Cxo/Ha7f1hCm/vb0oC\nbupyk1fqIPIF3nhFAe36tXxvrd03VVdZh5X9V6LyVCXs9co7dn2UHjM+m4HO/9HZa7UQuRLwa/hE\nbdW0y/d2d98gPDYcD+x7AN0ndIdGr/CvhAQYE43oNIy3+lPwYIdPAa+hy5cgeb27v96Vs1fw4fgP\nce7QOThsrTyZQwLCosMw+9+zkZCZIKwWopYE5NYKLidm4JMb/rj3j9BAg98M+I3wuWSHjM+f+xxf\nvfEVJI3UeBeupJGgi7h2F+hd6+9CQgbDnnyPgU8kQF1lHQ69fwg/bPsBtlob2qW1Q58H+iC5f7K/\nSyMVY+ATEakEP7QlIiKXGPhERCrBwCciUgkGPhGRSjDwiYhUgoFPRKQSDHwiIpVg4BMRqQQDn4hI\nJRj4REQqwcAnIlIJBj4RkUow8ImIVIKBT0SkEgx8IiKVYOATEakEA5+ISCUY+EREKsHAJyJSCQY+\nEZFKMPCJiFSCgU9EpBIMfCIilWDgExGphM7fBZC6jV0zFscvHlc8/mbjzdg5a6fAiohCFwOf/CrG\nEIPSilI4ZIfLsRIkdL2pqw+qIgpNXNIhv1pYsBBh2jBFY8N14Xht1GuCKyIKXQx88qv0uHRM6D4B\nOo3zf2xKkDCk0xDkJeX5qDKi0CMs8E+fPo0RI0agV69eyMrKwvLly0VNRUFuYcFC6DV6p2PY3RN5\nTpJlWRbxxmfPnsXZs2eRm5uLq1evom/fvvjkk0+QkZFxbWJJgqCpQ54syyj7dxkqT1VCo9MgMS8R\ncd3i/F2WR+7+6G6sP7YeNofthtckSCjoWoCt92z1Q2VEgcWT7BT2oW1iYiISExMBAEajERkZGSgv\nL28MfHKf7JCxd8Ve7HptF+or6wHp2sm3W+xIzEvEyIUj0WVEF3+X2SYLCxZi4/GNLQY+u3si7/DJ\nVTqlpaU4cOAA8vPzm/1+YWFh49cmkwkmk8kX5QQlh82BtZPWonR7Kaw11hteL/t3GT4Y9wFue+M2\n9H2wrx8q9EzDWv71XT7X7kntzGYzzGazV95L2JJOg6tXr8JkMuH555/HpEmTfpnYR0s6O0p34ODZ\ng4rH6zQ63Jd7H4wGo8Cq3Ld53mYUvVMEW82NHXBTukgdZnw2A2nD03xTmBeduHQC2W9lo9ZW2/h7\nEboI7Jq1i4FP9P8F5JIOAFitVkyZMgUzZ85sFva+tPrwarx38D1oJNefT8uyDIfswJTMKQEV+HUV\ndSh6uwhy2LiXAAAKMUlEQVS2OudhDwC2Ghu2v7Ad9++43weVedf1XT67eyLvEnaVjizLmD17NjIz\nMzF//nxR07j0/LDnodPoYLFbXP4HAPfm3ItEY6Lf6m3JofcPQdJIiseX7y3H5ZLLAisSp+kVO1y7\nJ/IuYYG/a9curF69Gtu3b0deXh7y8vKwZcsWUdO1qnO7zrgr8y6Xl/0BgFajxUuml3xQlXtO7z7d\n4rp9a7RhWpwrPiewInEaunx290TeJ2xJZ+jQoXA4XN8u7wsLRizA/xz9H1gdrYemXqPHtKxpSI1N\n9WFlyjisbv5/lK99yBusFhYsxIZjG9jdE3mZKu60VdLlB2p3DwDxPeKh0Ss/VbJDRrvO7QRWJFZ6\nXDp+fupndvdEXqaKwAeudflajbbF1wK5uweAvNl50GiVn6rI9pFI6psksCLx2oUH7w8sokClmsB3\n1uUHcncPAHHd4pAyOEVRl6+P1GPob4dCkpR/yEtE6qCawAda7vIDvbtvMOWDKYhKiHIa+vpIPdLH\npqPPnD4+rIyIgoWqAr+lLj/Qu/sGxo5GzD0wF52Hd4YuXAet4ZcfXPooPXQROgx4dACmrpvq1iWc\nRKQewu+0bXViP22e9mPFj+j5Zk/U2eqg1+gxM3sm/nzHn31ehycul1zGwXcP4uL3F6E1aJE6KBXZ\nM7NhMBr8XRoRCeZJdqou8AHgvg334YPDH0Cn1eH4I8cDfjmHiKiBJ9mpqiWdBgtGLIADjqBYuyci\n8hZVdvgAsO7IOpjSTOho7Oi3GoiI3MUlHSIileCSDhERucTAJyJSCQY+EZFKMPC9QHbI/DyCiAKe\nT55pG4ouHr+IPW/sQfHqYliuWCBpJST1ScKQZ4agx8Qe0Opb3qiNiMhfeJVOG3y5+EvsWLADDpvj\nhr3qDUYDYjvF4t5/3Qtjx8B5TCIRhQZelulDXy3/Cp//9nOnT6DS6DRo16Ud5hbN5XYHRORVvCzT\nR+qr6rHt/2xz+bhBh82BqrIqfL3yax9VRkTkGgPfDQf/clDxTpS2Whv+vfTfkB3B968YIgpNDHw3\nHFl7BNZq5Q8Tr6uow6UTlwRWRESkHAPfDfWV9W6N1+g0qK9y73uIiERh4LshvF24W+MdNofb30NE\nJAoD3w3ZM7Ohj7rxmbitiWwfiZu63SSwIiIi5Rj4bsiema34cihdpA6DnxrMh4kTUcBg4LvBYDTg\ntjdugz7SeZevNWgR1zUOebPzfFQZEZFr3FrBTX0f6Au7xY6t/7kVskOG3WJv9rrBaEB8j3jc8897\noI9QvvxDRCQa77Rto8rTldj3p304+OeDqL1cC61ei+T8ZAx5Zgi6je6m+Hp9IiJ3cGsFIiKV4NYK\nRETkEgOfiEglGPhERCrBwCciUgkGviBms9nfJQjF4wtuoXx8oXxsnhIa+LNmzULHjh3Ru3dvkdME\npFD/Q8fjC26hfHyhfGyeEhr4999/P7Zs2SJyCiIiUkho4A8bNgw33cTNw4iIAoHwG69KS0sxYcIE\nHD58uPnE3FSMiKhN2hrbfttLh3fZEhH5Fq/SISJSCQY+EZFKCA38adOmYfDgwTh+/DhSU1Px7rvv\nipyOiIicEBr4H374IcrLy/Hpp58iKioKixYtwquvvtri2Mceewy33HILcnJycODAAZFled2WLVvQ\ns2dP3HLLLS0en9lsRmxsLPLy8pCXl4eXX37ZD1W2jZJ7KYL13Lk6tmA+bwBw+vRpjBgxAr169UJW\nVhaWL1/e4rhgPX9Kji+Yz2FdXR3y8/ORm5uLzMxM/Pa3v21xnFvnTxbMZrPJ3bp1k0tKSmSLxSLn\n5OTIR48ebTbmH//4hzx27FhZlmV5z549cn5+vuiyvEbJ8W3fvl2eMGGCnyr0zBdffCEXFRXJWVlZ\nLb4ezOfO1bEF83mTZVk+c+aMfODAAVmWZfnKlSty9+7dQ+rvnpLjC/ZzWF1dLcuyLFutVjk/P1/e\nuXNns9fdPX/C1/D37t2L9PR0pKWlQa/X49e//jU+/fTTZmP+/ve/47777gMA5Ofno6KiAufOnRNd\nmlcoOT4geK9KcnUvRTCfOyX3iQTreQOAxMRE5ObmAgCMRiMyMjJQXl7ebEwwnz8lxwcE9zmMjIwE\nAFgsFtjtdsTFxTV73d3zJzzwf/rpJ6Smpjb+OiUlBT/99JPLMWVlZaJL8wolxydJEnbv3o2cnBzc\nfvvtOHr0qK/LFCaYz50roXTeSktLceDAAeTn5zf7/VA5f60dX7CfQ4fDgdzcXHTs2BEjRoxAZmZm\ns9fdPX/Cr8NXeoPV9T+Fg+XGLCV19unTB6dPn0ZkZCQ2b96MSZMm4fjx4z6ozjeC9dy5Eirn7erV\nq5g6dSqWLVsGo9F4w+vBfv6cHV+wn0ONRoODBw+isrISY8aMgdlshslkajbGnfMnvMNPTk7G6dOn\nG399+vRppKSkOB1TVlaG5ORk0aV5hZLji46Obvyn2dixY2G1WnHp0iWf1ilKMJ87V0LhvFmtVkyZ\nMgUzZ87EpEmTbng92M+fq+MLhXMIALGxsRg3bhz279/f7PfdPX/CA79fv374/vvvUVpaCovFgnXr\n1mHixInNxkycOBHvv/8+AGDPnj1o164dOnbsKLo0r1ByfOfOnWv8Kbx3717IsnzDWlywCuZz50qw\nnzdZljF79mxkZmZi/vz5LY4J5vOn5PiC+RxeuHABFRUVAIDa2lps3boVeXl5zca4e/6EL+nodDqs\nWLECY8aMgd1ux+zZs5GRkYH//u//BgDMnTsXt99+Oz777DOkp6cjKioqqK7XV3J8H3/8Md566y3o\ndDpERkZi7dq1fq5auWnTpmHHjh24cOECUlNT8dJLL8FqtQII/nPn6tiC+bwBwK5du7B69WpkZ2c3\nBsWiRYtw6tQpAMF//pQcXzCfwzNnzuC+++6Dw+GAw+HAPffcg4KCAo+yU/jmaUREFBi4tQIRkUow\n8ImIVIKBT0SkEgx8IiKV8NsDUIh86eLFixg1ahQA4OzZs9BqtUhISAAAHDp0CDk5OY1jp02bhqef\nfhqbNm3CCy+8AIfDAavVinnz5uHChQv46KOPAADFxcXIzs4GAMyePRuPPPKIj4+KyD28SodU56WX\nXkJ0dDSeeOIJANduzrly5UqzMVarFWlpadi3bx9uvvlmWK1WlJSUoHv37o1jWvo+okDGJR1SJVd9\nzpUrV2Cz2Rpv0tHr9c3CnigYMfBJ9Wpraxv3S8/Ly8NHH32EuLg4TJw4EZ07d8b06dPxwQcfBPWu\ni0QA1/CJEBER0eKDI1auXIl58+Zh27ZtWLp0KbZu3RpUd6ISXY8dPpETWVlZmD9/PrZu3Yq//e1v\n/i6HyCMMfKIWVFdXw2w2N/76wIEDSEtL81s9RN7AJR1SpaZ7hjes4TcYO3Ysnn32WSxZsgQPPfQQ\nIiIiYDQa8d5777X6HkTBgJdlEhGpBJd0iIhUgoFPRKQSDHwiIpVg4BMRqQQDn4hIJRj4REQq8f8A\n4emd6b/QN68AAAAASUVORK5CYII=\n" | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAF6CAYAAAAavuPXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmczXX///HH2WZnRPa1SJYJQ6Usl7GUKBJaLC3Sel3t\n63VVv9K+aaHtupKrjXCVXbhCRpYkIWkTzYREIYNZz/L5/fH5mstgZs4453PW5/1269ZwPue8X8eH\n57znfd6LzTAMAxERiXn2cBcgIiKhocAXEYkTCnwRkTihwBcRiRMKfBGROKHAFxGJE5YG/rhx4zjj\njDPIyMhg3LhxVjYlIiKVsCzwN23axFtvvcWXX37J119/zbx589i6datVzYmISCUsC/wffviBzp07\nk5SUhMPhoEePHsyYMcOq5kREpBJOq144IyODBx98kH379pGUlMTHH3/M2WefXfq4zWazqmkRkZh2\nohskWNbDb9WqFffffz/nn38+/fr1IzMzE7u9bHOGYcTsf4888kjYa9D70/uLx/cXy+/NMALbCcfS\nD22vvfZa1q5dy7Jly6hRowann366lc2JiEgFLBvSAfj999+pU6cO27ZtY+bMmXzxxRdWNiciIhWw\nNPCHDh3K3r17cblcvP7661SvXt3K5iJKVlZWuEuwlN5fdIvl9xfL7y1QNiPQQaETbdhmC3g8SkQk\n3gSSnVppKyISJxT4IiJxQoEvIhInFPgiInFCgS8iEicU+CIicUKBLyISJxT4IiJxQoEvIhInFPgi\nInFCgS8iEicU+CIicUKBLyISJxT4IiJxQoEvIhInFPgiInFCgS8iEicU+CIicUKBLyISJxT4IiJx\nQoEvIhInFPgiInFCgS8iEicU+CIiccIZ7gJERPzx454fmfzNZAwMv58zpPUQOtTrYGFV0UWBLyJR\nYceBHTzx2RN+B77dZqd93fYK/CNoSEdEokKvU3qRUSfD7+sbVW/E4NaDLawo+ijwRSQq2Gw2xp4/\nllRXaqXXpiWk8fx5z2O3KeKOZDMMw/8BsWA2bLMRpqZFYt6Sn5ewv2i/39fXSa1D96bdLawoOAzD\noP0/2/PN799UeF2T9Cbk3J4Tk4EfSHYq8EViUO3na5Nfko/L4ar02hJvCY2qN+KnW38KQWWB+2Tr\nJwyeNph8d/5xH09LSGPiwIlc1vayEFcWGgp8ESnj5dUv89CnD5UbikdKS0jjjQvfYGS7kSGoLHCV\n9fKTnEn0PqU3NmzHfTw9KZ1/X/xvEhwJVpZpGQW+iJRR6C6kwYsN/BrWaVitIbl35OK0R8+kvcp6\n+RVpXL0xuXfkRu1wTyDZGZ3vWEQqlOxK5pEej1T6AWdaQhrP9HkmqsIe4LxTz+PUk06t8vPSEtJ4\n7rznojbsN20K7PmWvuunn36atm3bcsYZZzB8+HCKi4utbE5EjnBjpxsrHcNPT0zniowrQlRR8FRl\nxs6RTko6iUvbXGpRVdZauhR69QrsNSwL/NzcXCZMmMC6dev45ptv8Hq9TJ061armROQolfXyo7V3\nf9jRvfzyxuwPO9y7d9gdVpcWdFOnwhVXwLRpgb2OZYFfvXp1XC4XBQUFeDweCgoKaNiwoVXNichx\nVNTLj9be/WFH9vLTEtI4p9E5FX7zisbevWHA2LFw332weDH07BnY61n2rb1mzZrcfffdNGnShOTk\nZPr27UufPn3KXDNmzJjSr7OyssjKyrKqHJG4dLiXf/SMnWjv3R92uJd/oPgA7wx6h/b/bI/H5znm\numjs3Xu9cNddMHduNkOHZjN9OkyfHthrWjZLZ+vWrQwYMIDly5eTnp7OpZdeytChQxkxYoTZsGbp\niITE8WbsROPMnPL8sOcHijxFdKjXgcs/vJwZP8w4JvQbV29Mzu05URP4hYVw5ZWwdy/MnAk1avzv\nsYicpbN27Vq6dOlCrVq1cDqdDB48mFWrVlnVnIiU4+ix/Fjp3R/W6uRWpRukPdn7yWPeV7T17vfu\nhfPOg4QEWLiwbNgHyrLAb9WqFatXr6awsBDDMFi8eDFt2rSxqjkRqcCRY/nRPnZfkRY1WzCw5cAy\noR9NY/e5udC1q/nfpEmQmBjc17cs8Nu3b89VV13FmWeeSbt27QC44YYbrGpORCpwuJcPxFTv/niO\n7OVHU+9+/Xoz6G+5BZ59FuwWpLNW2orEiUJ3IU989gSP9nw0pgMf4PIPL+ej7z+iYbWGUTF2/9//\nmmP2//wnDK5kR2dtrSAicoQt+7Zw+qunM3nw5IgfvnrnHfj7380ZOF27Vn69Al9E5Cgbdm2gXd12\nEbuNgmHAE0/A22/D/PnQqpV/z1Pgi4hEEY8H/vpX+Oor+PhjqFfP/+cGkp2xPZAnIhJh8vPh8svN\n0M/OhmrVQtd2ZP6sIyISg37/3dweoU4dmDs3tGEPCnwRkZD46Sfo0gX69YOJE8FV+WFkQachHRER\ni33xBQwaBI8/DtddF746FPgiIhaaM8cM+Xfegf79w1uLAl8kTFZtX8Vf3v4LBv7PuHig2wM83utx\nC6uSYPrnP+Gxx8yZOGedFe5qFPgiYdOxfkeqJ1bnz6I//bo+2ZnMhS0vtLgqCQbDgIcegg8/hOXL\noXnzcFdk0oe2ImGS5ExiTNYYv47ps2HjzAZnck6jc0JQmQSipASuuQaWLIGVKyMn7EGBLxJWN3S6\ngQRHQqXXJbuSee6850JQkQTiwAG48ELYvx8+/RRq1w53RWUp8EXCyJ9evg0bnep3Uu8+wu3cCX/5\nC5x2GsyYASkp4a7oWAp8kTCrrJev3n3k++47c479FVfAa6+BI0I351Tgi4RZRb189e4j3/Ll5urZ\nxx83d7202cJdUfkU+CIRoLxevnr3ke3DD2HIEJg82dzPPtIp8EUiwPF6+erdR7aXX4a77oJFi6BP\nn3BX4x9tjywSIYo8RTR4oUHpvPwUVwpLrlqiwI8wPh/cc495StWCBdCkSWjbDyQ71cMXiRBH9vLV\nu49MRUUwbJi5j/2KFaEP+0Ap8EUiyOGxfJfDpbH7CPPnn9C3r/n1f/8LJ50U3npOhAJfJIIkOZN4\nps8z9GrWS737CLJtG3TrBp06wZQpkJQU7opOjMbwRSKQYRjYInl+Xxz5+mtz9ezdd8Odd4a7Gh1x\nKBJzFPaRYfFiGD7cXEx16aXhriZwGtIRETmOSZNgxAiYPj02wh7UwxcRKcMw4Nlnzb3sly6FNm3C\nXVHwKPBFRP6P1wu33gqrVpn/NWgQ7oqCS4EvIgIUFJhz7AsK4LPPoHr1cFcUfBrDF5G4t2cP9O4N\nNWqYxxHGYtiDAl9E4tzWrebWxr16mQeNJ1R+Hk3UUuCLSNz68kvo3t3cBO3JJyN7a+Ng0Bi+iMSl\n+fPNs2ffegsGDgx3NaGhHr6IxJ233oLRo2HOnPgJe7Aw8H/88UcyMzNL/0tPT2f8+PFWNSciUinD\ngEcegWeeMWfinBNn2xWFZC8dn89Hw4YNWbNmDY0bNzYb1l46IhJCbjfceCNs2gTz5kGdOuGu6MRE\n/F46ixcvpnnz5qVhLyISSocOmdsjOBzm6tnUY48PjgshGcOfOnUqw4cPD0VTIiJl7NoFPXpA48Yw\na1b8hj2EoIdfUlLC3LlzefbZZ495bMyYMaVfZ2VlkZWVZXU5IhJHfvwR+vWDa6+FBx+MzmmX2dnZ\nZGdnB+W1LB/Dnz17Nm+88QYLFy4s27DG8EXEQitXwpAh5ge011wT7mqCJ6LH8KdMmcKwYcOsbkZE\npNTMmeYHtO+//79jCcXiHn5+fj5NmzYlJyeHatWqlW1YPXwRscCrr8LTT8PcudCxY7irCb5AslNH\nHIpITPD54B//gNmzYeFCaNYs3BVZI6KHdERErFZcDKNGmYeNr1wJtWqFu6LIpK0VRCSq7d9vzsQp\nLoZFixT2FVHgi0jU2rHD3O3yjDPgP/+B5ORwVxTZFPgiEpU2bTL3sb/6anj5ZXMVrVRMY/giEnWW\nLoXLL4dx48xjCcU/6uGLSFSZMgWuuAKmTVPYV5V6+CISFQwDxo6FV16BJUsgIyPcFUUfBb6IHMPr\n9pK7NJeDvx3EmeSk0TmNqNG0Rvjq8cKdd0J2NqxaBY0aha2UqKbAF5FS7kI3y59azpevfonP58Pw\nGtjsNnxuH43OaUTvZ3rTqHNo07awEEaOhD//hOXLIT09pM3HFK20FREASg6V8Hb3t9nzwx48RZ7j\nXuNMdjJ40mBaD24dkpr27oWLL4YmTeDttyExMSTNRrRAslMf2ooIAB9d8RF//PBHuWEP4Cn0MPPK\nmfy+6XfL68nJga5doVs3mDRJYR8MCnwRYd+WfeQsycFb5K30Wk+xh+VPL7e0nnXrzKC/9VZze2O7\nkioo9McoIqx5dQ0+r8+vaw2vwQ8zfqAor8iSWv77X7jgAnPXy7/9zZIm4pYCX0TYsXoHPrd/gQ/g\nSHSwb8u+oNfxzjvmytlZs+CSS4L+8nFPs3RExO/efZnneKr+nPIYBjzxhPnB7LJlcPrpQXtpOYJ6\n+CJCrZa1oArnvXqLvaQ3Cc78SI/HPJ1q1ixzjr3C3joKfBHh7L+djSvF5ff1DTs3pFr9apVfWIn8\nfBg0CLZvN3v29eoF/JJSAQW+iNDo3EakN0nHZq+8m+9KddH9ge4Bt/n775CVBXXqwJw5kJYW8EtK\nJRT4IoLNZmP4vOEk1UjC5ig/9F0pLs7+29k0P795QO399JO5tfGFF8LEieDy/4cLCYBW2opIqf25\n+5kxYga/rfsNn8dX+sFsQrUEbHYbPR/rydm3no3NVoUB/6OsXm3OwHn8cbjuumBVHj90iLmIBNXe\nn/ay8f2N7M/djyvVxSk9T6HVoFY4EgI7ZWTOHDPk33kH+vcPTq3xRoEvIhHvjTfMXv2cOXDmmeGu\nJnoFkp2ahy8iljIMePBB+OgjWLECTj013BXFLwW+iFimpMQcwvnpJ3OO/cknh7ui+KbAFxFLHDgA\nQ4ZAaqp5QlVKSrgrEk3LFJGg27kTuneH006D6dMV9pFCgS8iQfXdd+Yc++HD4bXXwBHYxB4JIg3p\niEjQfPYZXHopvPCCeSyhRBYFvogExYcfmvvXT5kCvXuHuxo5HgW+iATspZfgxRdh0SJo3z7c1Uh5\nFPgicsJ8Prj7bvjkE1i50jxsXCKXAl9ETkhREVx1lbnr5YoVcNJJ4a5IKqNZOiJSZX/+CX37gs1m\nnkGrsI8Olgb+/v37GTp0KK1bt6ZNmzasXr3ayuZEJAS2bYOuXc39cKZMgcTEcFck/rJ0SOf222+n\nf//+fPTRR3g8HvLz861sTkQstmEDDBhgjtvfcUe4q5Gqsmy3zLy8PDIzM/n555+P37B2yxSJKosW\nwYgR5mKqSy8NdzXxK5DstGxIJycnh9q1azNq1Cg6duzI9ddfT0FBgVXNiYiF3n/fXEg1fbrCPppZ\nNqTj8XhYt24dr776KmeddRZ33HEHzzzzDI899ljpNWPGjCn9Oisri6ysLKvKkSh1YMcBvnrzK3Zt\n2AVAvcx6dLq+E9UbVQ9zZfHBMOCZZ+Bf/4LsbGjdOtwVxZ/s7Gyys7OD8lqWDens2rWLc889l5yc\nHABWrFjBM888w7x588yGNaQjFSg+WMzMK2eyZeEWALzFXgAciQ5sNhst+rVg0LuDSKymTwyt4vXC\nrbea2xrPnw8NGoS7IoEIHdKpV68ejRs3ZvPmzQAsXryYtm3bWtWcxJCSQyVMPGciWxZuwVvsLQ17\nMIPfU+Thp/k/MbHLREryS8JYaewqKIDBg2HLFnN/HIV9bLB0WuYrr7zCiBEjaN++PRs3buSBBx6w\nsjmJEZ/c/Ql//vxnmaA/mrfYy74t+/jknk9CWFl8+OMP6NULatSAefOgukbPYobOtJWIUnywmLF1\nx+Ip9Ph1vTPZyb2/30tCWoLFlcWHrVuhXz+47DLz/FmbLdwVydEickhH5ER8P+N7bA7/U8busPP9\nzO8trCh+fPmleWjJ3XfDE08o7GOR9tKRiHJg+wHc+W6/r3cXujmw/YCFFcWHjz+GUaNg4kRzYZXE\nJvXwJaI4EhxV6uHb7DYcCTpSKRATJpgHjc+dq7CPderhS0Sp36k+riQXJYf8m33jTHRSv1N9i6uK\nTYYBjzwCH3xgzsQ57bRwVyRWU+BLRDml5ykkVk/0O/CTaiTRLKuZtUXFILcbbrgBvv3WnGdfp064\nK5JQ0JCORBSb3Uavp3rhSnFVeq0rxUWvp3ph06eLVXLwoDl0s2cPLF2qsI8nCnyJOB2u7sA5d55T\nYei7Ulycc9c5tL9S5+lVxa5dkJUFTZvCzJmQmhruiiSUNA9fItaPc39k2aPL+OO7P0o/mPWWeKnT\ntg49HulBy4tahrnC6PLDD+Yc+9Gj4cEHNe0yWgWSnQp8iXh7N+9l7+a9ANQ6vRa1TqsV5oqiz8qV\nMGSIuRHaNdeEuxoJhAJfRMo1YwbcdBNMmgTnnx/uaiRQgWSnZumIxLBXXoFnnzXPnc3MDHc1Em4K\nfJEY5PPB3/9uLqZasQKaNQt3RRIJFPgiMaa42NwmYds2c+y+Zs1wVySRQtMyRWLI/v1wwQVQUmKe\nQauwlyMp8EVixPbt5m6X7drBtGmQnBzuiiTSKPBFYsA330DXruaUy5dfBof2k5Pj0Bi+SJRbuhSu\nuALGjTP/L1Ie9fBFotgHH5ghP22awl4qpx6+SBQyDHj+eXjtNViyBDIyrGnnwK8HWD9xPbu/2Q1A\n/Y71ybw2k7S6adY0KJbSSluRKOP1wh13wLJlsGABNGwY/DaKDxYz6+pZbFmwBcMwSg+UdyaZfcRW\ng1sx8K2BuJIr39VUgktbK4jEicJCGDEC8vLMLRPS04PfRsmhEiacPYE/f/6zNOiP5kxyUrttba5d\ncW3pNwEJDR1iLhIH9u6FPn3M6ZYLFlgT9gALbltQYdgDeIo8/PHdH3z64KfWFCGWUOCLRIGcHOjS\nxZxn//77kJBgTTtFeUVsmrKpwrA/zFPo4as3v8Jd6P+h8xJeCnyRCPfVV9CtG9x2m7m9sd3Cf7Xf\nffRdlQ6Rxwab5222riAJqnL/6mzbti2UdYjIcSxcaB5a8tpr8Le/Wd9eXm4e7nz/e+yeIg95v+RZ\nWJEEU7mBf/HFF5d+PWTIkJAUIyL/8/bb5srZWbNg0KDQtGlPsENVOvh2W+lpZBL5/Pp4/eeff7a6\nDhH5P4YBjz8O77xjTr08/fTQtV2/Y30S0hIoOVji1/V2p516mfUsrkqCRfOpRCKIxwM33wzr18Oq\nVVAvxFna4oIWOJOcfgd+Su0UmnRrYnFVEizlBv7GjRupVq0aAIWFhaVfgzkP9MCBA9ZXJxJHDh2C\nyy83Dy/Jzoa0MCxmtTvsZD2axaJ7FuEuqHgs35XioveTvbHpNPSoUW7ge72VT8sSkeDYvRsuusjc\n2vif/wRXGBewnnnTmezdvJd1E9aV+wGuK8VFl3u7cMbwM0JcnQSiyittDx06xGuvvcb9998fWMNa\naStRbl/hPoo8RX5fXy2hGtUSqx3z+5s3mzNxrroKHn4YIqXD/O2H37LssWXs/3k/dqc5v8Pr9lK7\ndW16jOnB6QNC+OGClLJka4WdO3fy9NNPs3XrVjIyMnj44YeZMGECL7zwAoMHD2b8+PFhK1ok3Nxe\nN6lPpWK32XHYK5+l4va6Of3k0/nm5m/K/P7q1XDJJfDEEzB6tFXVBub3Tb+z96e92Gw2Tm51Mie3\nOjncJcW1QLKz3CGdq666im7dunHhhReycOFCMjIyOOecc1i7di31Qv1JkkiEcTlcXN72cqZ+O5Vi\nd3Gl16e6Urmp001lfm/2bLjuOnj3Xejf36pKA1cnow51MuqEuwwJgnJ7+B06dGDDhg2lv27UqBG/\n/PILjiocpdOsWTOqV6+Ow+HA5XKxZs2a/zWsHr5EuZw/c2jzehu/hnVqJtdk5107SXQmAvDGG+bU\nyzlz4Mwzra5UYoklPXyfz8e+ffsAMAyDmjVrkpf3vxV1Nf04Hdlms5Gdne3XtSLR5pSTTmFo66FM\n/XYqHp+n3OtSXak8lvUYic5EDAMeeMDc6XLFCjj11BAWLHGv3B5+s2bNKpxulZOTU+mLn3LKKaxd\nu5ZatWod27B6+BID/OnlH+7d23yJjB4NW7eaPfuTNRQuJ8CSHn5ubu6J1lPKZrPRp08fHA4HN954\nI9dff32Zx8eMGVP6dVZWFllZWQG3KRJKlfXyD/fui/ITGTIEqlWDxYshJSUMxUpUys7OJjs7Oyiv\nVW4Pf9KkSYwcORKAlStX0rVr19LHXn31VW655ZZKX/y3336jfv36/PHHH5x33nm88sordO/e3WxY\nPXyJERX18msm1+TLy3dyycBEunWD8eOhCh+DiRzDkgNQXnjhhdKvjw73iRMn+vXi9evXB6B27dpc\ncsklZT60FYkVh3v5TnvZH5hTXanc3OQVev4lkeHD4dVXFfYSXpbtrF1QUMDBgwcByM/P55NPPuGM\nM7QqT2LTYz0fOybw7dt6MuH2YTz1FNx/f+QsqJL4Zdnmabt37+aSSy4BwOPxMGLECM4//3yrmhMJ\nq6PH8hN/GInx33/xwYc2evcOd3UipnLH8JOTk2nRogUAW7dupXnz5qWPbd26lYKCgsAa1hi+xJjS\nsfzlN2FffQ9ffFqbMztadBahxC1LZul8//33Ab+4SDxpmn4KzVbP5Id1jRnz3mLO7Hh1uEsSKaPc\nHr5hGMyaNYstW7bQrl07+vbtG9yG9Y1EYkhREVx5JWz/rRDnsMtYcuNHpatq/eEt8VKwpwCb3UZK\n7RTsDh03LcdnyeZpN998M9999x1dunRhyZIlXHTRRTz88MMBFVqmYQW+xIh9+8wjCBs0MPfFSfQ/\n5/njuz9Y9cIqNk3ZVPp7jkQHZ918Fmf97SyqN6xuQcUSzSwJ/LZt27Jx40YcDgcFBQV069aNdevW\nBVRomYYV+BIDfvnF3Nq4f3947jmwV6Fjvu6tdSy4bQE+tw+fx1fmMUeiA4fLwbC5w2iW1Sy4RUtU\ns2QefkJCQulGaSkpKQpnkaNs2ABdu8KNN8LYsVUL++9nfs+C2xbgKfQcE/YA3mIvJYdK+OCiD9i9\ncXcQq5Z45tcsHYAtW7aU/tpms7Fx48bAGlYPX6LYokUwYgS8/joMHVq15xo+gxcbv8ihnYf8ur55\n3+aMXDjyBKqUWGTJLJ0ffvjhhAuS6HbdnOuY/M1kv6932V1suGkDp54UH1s/vvce3HsvTJ8O/7dT\nSJXkfJpDyQH/DgkH+GXZLxzYcYDqjTSeL4EpN/AzMjLKfVJiYiItWrTgiSeeoE+fPpYUJuFz3qnn\nMWXTFArc/q21qJNeh2Y1mllbVAQwDHj6aZgwwTxkvHXrE3udLf/dQskh/wPf7rSTuyyXdiPanViD\nIv+n3MA/vC3C8Xg8Hr799luGDx/Ot99+a0lhEj5D2wzlvsX3sS1vW6XXpiWk8fx5z2O3xfY0Qo8H\nbr3VPJJw1Sr4v22iTkhxXuUnZB3J8BnlHiYuUhUn9K/U6XTSvn17br311mDXIxHAYXfwXJ/nSEtI\nq/Tamsk1GdqmioPYUSY/HwYPNvexX7YssLAHSKufhs3p/8Y6dqedlJO1n7IELqBu2U033VT5RRKV\nhrYZSs3kik8qi4fe/R9/QK9ecNJJ8PHHUD0Iw+gZl2fgcPm/babP46P5+c0rv1CkErH7L1UC4k8v\nP9Z791u3QpcucP758M474HIF53Vrt6lN7ba1wY9Ovt1l54yRZ5CQpj15JHAKfClXRb38WO/dr1kD\n3brBPfeYh40He2vjS969pNIQtzvtpNVNo/dT2m5TgiM2/7VKUFTUy4/l3v28eXDRRfDmm+aiKivU\nblObUZ+NIrVOKgnVjgp+GySkJVDr9Fpc98V1pNTS+L0ER7kLryxvWAuvooLX5+XU8aeWmbGTlpDG\nxIETuaztZWGszBpvvgmPPAKzZ8PZZ1vfntft5cfZP7L65dX8+fOf2Ow26ravS5d7utAsqxk2nZoi\nR7FkLx2rKfCjx7RN07hu7nUcKjFXhjZJb0LO7TkxNZxjGPDwwzBlCixcCEcsMheJKJbspSNy2JFj\n+bE4du92w6hR8Mkn5hx7hb3Eqtj5VyuWOTyW77K7Ym7s/uBBc7x+71749FOoUyfcFYlYR4Evfhna\nZigta7Xkpb4vxUzv/rffoEcPOOUUmDkTUlPDXZGItTSGL37zGb6YCfvvvzf3sL/uOnjggeBPuxSx\niiW7ZYocLVbCfsUKGDLEPLDkah07K3FEgS9xZfp0uPlmmDTJXEErEk8U+BI3xo83e/WffAIdOoS7\nGpHQU+BLzPP54P77zRW0K1dC06bhrkgkPBT4EtOKi+Gaa2DHDjPsa1a8AahITIuNT+FEjmP/fujb\n11xYtWiRwl5EgS8xaft2c7fLDh1g2jRISgp3RSLhp8CXmPPNN9C1K1x7Lbz8Mjj8P2tEJKZpDF9i\nyqefwhVXwCuvwOWXh7sakciiHr7EjA8+gGHD4D//UdiLHI96+BL1DMOcX//662YPv23bcFckEpkU\n+BLVvF64/XZYvtzc2rhhw3BXJBK5FPgStQoLYcQIOHAAPvsM0tPDXZFIZLN8DN/r9ZKZmcmAAQOs\nbkriyN690Ls3pKTA/PkKexF/WB7448aNo02bNjqbU4ImJwe6dDH3sn/vPUhIqPw5ImJx4O/YsYP5\n8+dz3XXXae97CYqvvjLn2N92Gzz9NNg1z0zEb5aO4d955508//zzHDhw4LiPjxkzpvTrrKwssrKy\nrCxHotyCBeb+9W++CYMGhbsakdDIzs4mOzs7KK9l2YlX8+bNY8GCBbz22mtkZ2fzwgsvMHfu3P81\nHGUnXhmGwbbl21g1dhW5S3PxFHtIrJ7IGcPPoPNtnanZQhu1WOnf/zZPppo5E849N9zViIRPINlp\nWeA/8MADvP/++zidToqKijhw4ABDhgzhvffeMxuOosAvyS9h6qCp7Ph8B+4CNxxRtt1lx+600/W+\nrvR4pIc+qwgyw4DHHjPH6hcsgJYtw12RSHhFZOAfadmyZYwdOzYqe/g+j4/3er/HjjU78BZ5y73O\nleKi+4NUg1pVAAAbMElEQVTd6f5A9xBWF9vcbvN0qg0b4OOPoW7dcFckEn6BZGfIPvKK1p7v9zO/\nZ+e6nRWGPYC7wM1nj3/GoV2HQlRZbDt0CC6+GHbuhOxshb1IMIQk8Hv06MGcOXNC0VTQrXx2Je5D\nbr+v/+rNryysJj7s3g1ZWdCgAcyeDWlp4a5IJDZoUlsFivKK2L1xt9/Xe4o8bJy80cKKYt/mzeYc\n+wEDYMIEcLnCXZFI7NDWChUozivGkeDA5/ZV6TlyYj7/HAYPhiefNPeyF5HgUuBXILF6It6Sisfu\nj5ZQTcs+T8Ts2XD99fDuu9CvX7irEYlNGtKpQFKNJE5udbLf1zsSHWRcnmFhRbHp9dfN2Tjz5yvs\nRaykwK9E1/u74kr1byDZZrNx5s1nWlxR7PD54O9/h3HjYMUKOFN/dCKWUuBXou2lbandujaOhIoP\nRnWluOh8R2eqN6weosqiW0kJXHWVua3xypVw6qnhrkgk9inwK+FIcHDl4iup17EeCWnHjs/bHDac\nyU463tCR3k/1DkOF0ScvD/r3h/x8WLIETvZ/1ExEAhCSlbbHbThKVtoe5vP62LJwC6ueW8W2ldsw\nfAbOJCdtLm3DuXeeS70O9cJdYlT49Vcz7Lt3N4dyHBX/4CQiR4n4rRWO23CUBf6RDMPA8BrYnfoB\nqSq+/dYM+7/+Fe67D6J08bVIWAWSnZqWeQJsNhs2p9KqKpYtg8sugxdfNI8lFJHQU+CL5aZNg1tv\nhalToVevcFcjEr8U+GKpF1+El16CxYuhXbtwVyMS3xT4YgmvF+6+2wz6VaugceNwVyQiCnwJuqIi\nGDkS9uwxF1TVqBHuikQENA9fgmzfPjjvPHOXy//+V2EvEkkU+BI0v/wC3brBOefA5MmQmBjuikTk\nSAp8CYoNG6BrV7jpJnj+ebDrb5ZIxNEYvgTsk0/MMfs33oAhQ8JdjYiUR4EvAXn3XXPV7IwZ5nBO\nReb/NJ/B0wZj4P8qwbHnjeXWzrcGWKWIgAJfTpBhwFNPwVtvmYeMt25d+XM6N+yM3Wan0FPoVxuJ\njkT6nNonsEJFpJQCX6rM44FbboE1a8w59vXr+/e8Wim1uLXzrYz/YjxFnqIKr3XYHFzQ4gJa1/bj\nO4nEBG+Jlx9m/cDqcavJy83D7rRT/8z6nHvXuTTu0hibNl8KmDZPkyrJz4dhw6C4GD76CKpVq9rz\n9xbspcnLTShwF1R4XZIziXU3rFPgx4mda3cyud9kPMUeSg6W/O8Bm3nWxMmtTmbEghGk1k4NX5ER\nIpDs1FwK8dvvv5t74dSsCfPmVT3swezl33L2LSQ5k8q9xmFz0Ld5X4V9nNj19S7e7fkuBXsKyoY9\ngAHufDe7N+5m4rkTKT5QHJ4iY4QCX/yyZYs57fL88+Htt82FVSfqvi73YbeV/1fP5XDxdO+nT7wB\niSozRsyg5FBJhdf43D4O7DjAsseWhaiq2KTAl0qtWWMeWHLvvfD444HvY19RL1+9+/iy86ud7M/Z\n79e13mIvX735FZ5ij8VVxS4FvlRo3jy46CKYMAFuuCF4r1teL1+9+/jyzeRvcBe5/b7eZrORm51r\nXUExToEv5XrzTTPkD4d+MB2vl6/effw5uPMg+Py/3jAMCvZU/IG/lE+BL8cwDPh//8/cIuGzz+Ds\ns61p5+hevnr38ScpvfwP74/HZrPhSgngA6Q4p8CXMtxuGDXK3C5h1Spo0cK6to7s5at3H59a9GtB\nQrUEv6/3lnhp0q2JhRXFNgW+lDp4EC680Nzi+NNPoXZt69s83Mt32dW7j0ctL2qJI8Hh38U2OK3/\naZqLHwAFvgDw22/wl7/Aqaea++KkhujfVK2UWtx97t0MPH1gRPTuDZ9B7rJcNryzga/f/5pdX+8K\nd0kxze60c8HLF/g1TJOQmkDPJ3qGoKrYpZW2wvffQ//+cP318I9/BD7tsqoO/z2w2Wy4vW5y9+dW\n6fnNajTD5QhsXNfwGXwx/gtWPruSkvwSDJ9h/h31GdQ4pQa9nuxFq4tbBdSGlG/1S6tZ8uASvCVe\nDG/ZXHAkOnAkOBgxf4SGcwgsOxX4cW7FCnNL4+efh6uuCnc18Na6t7hx3o2kuvz7ESPfnc+bF73J\n6I6jT7hNn9fHtMHTyFmcg7vg+FMEHYkOMkdn0v/V/trTxSK7Nuxi1dhVfDf9O+x2O4Zh4Ex0ctbf\nzuKsv55FtQYnsLQ7BkVk4BcVFdGjRw+Ki4spKSnh4osv5umn/zdGq8APv+nT4eabYdIkcwVtJMgr\nyqPhiw3Jd+f7dX2aK40dd+0gPSn9hNtcdN8ivnzty3LD/kgptVPIGpNFpxs7YXdoRNQKniIP+X/k\nY3faSa2dit2pP+cjReReOklJSSxdupQNGzawceNGli5dyooVK6xqTqpo3Di4/XZzNk6khD1AelI6\nd597N8nO5EqvTXYmc3eXuwMK+5L8Er/DHqDgjwIW3buIyf0m4y3xnnC7Uj5nkpP0xulUq19NYR9k\nlv5ppqSkAFBSUoLX66VmzZpWNid+8PngnnvgX/+ClSuhQ4dwV3Ssu869q8K9dg5z2Bzcec6dAbW1\naeomqOIIjbvAzbYV25h7w9yA2hYJNUv3w/f5fHTs2JGtW7dy880306ZNmzKPjxkzpvTrrKwssrKy\nrCwn7hUXwzXXwK+/mmP3kfr993Av//lVz5d7WEowevcAO7/ciTvf/6X9h3kKPXw77Vt6P9VbY8ti\nqezsbLKzs4PyWiH50DYvL4++ffvyzDPPlIa6xvBDa/9+GDTInFv//vuQVLUFjiFX2Vh+MMbuAeZc\nN4f1E9ef0HMdiQ663NuFXo/3CqgGkaqIyDH8I6Wnp3PhhReydu3aUDQnR9m+3TxvtkMHmDYt8sMe\nKh7LD1bvHuDkVifjTDqxH3S9xV5+WfZLwDWIhIplgb9nzx727ze3PS0sLGTRokVkZmZa1ZyUY+NG\n6NIFRo+Gl18GexR9BlbeWH4wxu4Pa3dluyodqn40fXAr0cSyf/6//fYbvXr1okOHDnTu3JkBAwbQ\nu3dvq5qT4/j0U+jTB154Ae4MTj6G1PF6+cHs3QOk1U0zl/cn+rm8/0g2OOmUk4JSh0goaOFVjPrg\nAzPk//Mf6NEj3NWcuKPH8oM1dn+korwiJpw1gbxteXiL/e+xu1JdjJg/gqZ/aRq0WkQqE/Fj+BI6\nhgHPPmtukfDpp9Ed9lC2lx/s3v1hSelJXP/l9bQc0BK7y89/EjZIq5dGk+5a6i/RQz38GOL1wm23\nmVMu58+Hhg3DXVFwHO7l27AFvXd/tIO7DjLloins/no3Pk85J3PYILFaIqM/H03tNiHYUlTkCBG5\ntUKlDSvwg6qwEIYPN7c4nj4d0q3LxLB4Zc0r2LHzt7P/Znlbhs9gyYNL+OLlL7DZbaWrcG12G85k\ncxXoZTMuo3Zrhb2EngI/zu3ZAwMHQvPmMHEiJPh/noRUoCiviK/f+5qfF/+Mp9BDjWY16Hh9Rxqe\nFSM/OklUUuDHsZ9/hn79YPBgeOqp0G9tLCKhpQ9t49TatdC9u7kJ2tNPK+xFpGKW7qUj1lmwwNy/\n/q234OKLw12NiEQD9fCj0MSJcO21MGeOwl5E/KcefhQxDHj0UXPzs2XLoGXLcFckItFEgR8l3G7z\ndKqvv4ZVq6Bu3XBXJCLRRoEfBQ4dgssuMz+UXboU0tLCXZGIRCON4Ue43bshKwsaNIDZsxX2InLi\nFPgR7Mcf4dxzzUVVEyaAUz+PiUgAFCER6vPP4ZJLzPn1o0aFuxoRiQUK/Ag0axbccAO89x5ccEG4\nqxGRWKHAjzCvvWZukbBgAXTqFO5qRCSWKPAjhM8HDzwAM2ea2xufckq4KxKRWKPAjwAlJebK2Zwc\nc459rVrhrkhEYpFm6YRZXp6522VBASxerLAXEeso8MPo11/hL3+BNm3gww8hObny54iInCgFfphs\n2gRdusCIETB+PDgc4a5IRGKdxvDDIDsbLr8cXnrJPJZQRCQUFPghNnWqedD41KnQq1e4qxGReKLA\nDxHDgBdfhHHjYMkSOOOMcFckIvFGgR8CXi/cfbc5C2flSmjcONwViUg8UuBbrLAQrrwS9u41F1TV\nqBHuikQkXmmWjoX27YPzzgOXCxYuVNiLSHgp8C2Smwtdu5pTLydPhsTEcFckIvFOgW+B9euhWzf4\n61/huefArj9lEYkAGsMPsk8+gZEj4Y03YMiQcFcT+fpN7sfmvZv9vr5BWgOWX7vcwopEYpcCP4je\nfRfuv9/c8bJr13BXEx2qJ1Qnd38uPsNX6bU2bJx60qkhqEokNtkMwzDC0rDNRpiaDjrDgCefhIkT\nzX3sW7UKd0XRY8u+LbR7ox2FnsJKr012JrPy2pVk1s8MQWUikSmQ7NTocoA8HrjpJpgxw9zaWGFf\nNS1qtmBAywE47RX/sGnDRtcmXRX2IgGwLPC3b99Oz549adu2LRkZGYwfP96qpsImP988d/aXX2DZ\nMqhfP9wVRacnez+Jy+6q8JokZxLP9XkuRBWJxCbLhnR27drFrl276NChA4cOHaJTp07MmjWL1q1b\nmw1H+ZDO77/DgAHm1sZvvmnOtQ8VwzDY8fkO8rblYXfaqZdZj5rNa4auAAtc/uHlzPhhBh6f55jH\nbNjofWpvFl25KAyViUSWQLLTsg9t69WrR7169QBIS0ujdevW7Ny5szTwo9mWLebh4sOHw6OPgs0W\nmnYNn8GaV9ew8rmVFOcVg828+d4SL/Uy69HryV6c0jM6z0Z8sveTzN0897iBr969SHCEZJZObm4u\n69evp3PnzmV+f8yYMaVfZ2VlkZWVFYpyAvLFFzBokBn0N9wQunZ9Hh9TB00ld2ku7gL3MY/v+HwH\nH1z4ARe8fAGdboi+088Pj+Uf3cvX2L3Eu+zsbLKzs4PyWpbP0jl06BBZWVk89NBDDBo06H8Nh2hI\nZ1nuMjbs2uD39U67k6s7XE1aQtoxj82dC6NHw7//DRddFMwqK7fg9gWse2sdnoJje8BHcqY4GTF/\nBM16NAtNYUF0vBk7mpkjUlZEDukAuN1uhgwZwsiRI8uEfShN+mYS72x4B7ut8s+nDcPAZ/gY0mbI\nMYH/r3+ZvfqPP4azzrKq2uMr2l/EujfX4SmqOOwBPAUelj68lFHLRoWgsuA6upev3r1IcFk2S8cw\nDEaPHk2bNm244447rGqmUg91fwin3UmJt6TS/wCuan8V9dLqlT7fMOChh2DsWFi+PPRhD/D1e19j\ns/v/QcHONTv5M+dPCyuyzpEzdjR2LxJclgX+ypUrmTRpEkuXLiUzM5PMzEwWLlxoVXPlalqjKZe1\nuazSaX8ADruDR7MeLf11SQlcc425j/2qVdC8uYWFVmD7qu3HHbcvjyPRwe6Nuy2syDqHe/nq3YsE\nn2VDOt26dcPnq3y5fCg81vMx/vPdf3D7yg9Nl93FsIxhNE43Tyc5cACGDoWkJPj0U0hJCVW1x/K5\nq/jnaJgf8karJ3s/ycwfZqp3LxJkcbHS1p9e/pG9+507oUcPs0c/Y0Z4wx6g1um1sLv8v1WGz6BG\n0+jdfL9FzRb8fu/v6t2LBFlcBD6YvXyH3XHcx47s3X//vbmH/WWXweuvgzMCtpfLHJ2J3eH/rUo5\nOYX6naJ72W+NpOj9hiUSqeIm8Cvq5R/u3a9YAVlZ8Pjj8I9/hG5BVWVqNq9Joy6N/Orlu1JcdPtH\nN2yRUryIRIy4CXw4fi//cO/+i0WNGTwYJk0yz6CNNEM+GEJq7dQKQ9+V4qJFvxZ0vK5jCCsTkWgR\nV4F/vF6+w+6gyfcvcMcd5uEl550XxgIrkFY3jRvX30jTHk1xJjlxJPzvG5cr1YUz2cnZt57N0GlD\nqzSFU0TiR9zth//L/l9o9VorijxFOEng9PVz8G3uy4IF0LRpyMs5IX/m/MmGtzew96e9OBIcND63\nMe1GtiMhLSHcpYmIxQLJzrgLfICrZ17N5PUfYcx6hzOrDWDhvCROOikspYiIVIkCv4o25m6nfc+t\nNGuYwveLzyYpKSxliIhUmU68qoJt22D4RY3p370+q+Y3VdiLSNyIq8D/+mvzcPHRo+Hj906nfvW6\n4S5JRCRkImBZUWgsWQLDhsGrr5qLqkRE4k1c9PAnTzZPp/roI4W9iMSvmO7hGwY8+yy88Ya5AVrb\ntuGuSEQkfGI28L1euO02WLECPv8cGjSwri3DZ5SeLysiEqliMvALCswhnEOHzENLqlcPfht7N+9l\n9cur2ThpIyUHS7A5bNTvWJ+u93fl9IGn43Adf6M2EZFwibl5+Hv2wIAB0KIFTJwICRYsPl3xzAqW\nPbYMn8d3zF71CWkJpDdJ56pPryKt7rHn4oqIBELz8P/Pzz+bWxv37AnvvWdN2H8x/gs+e/wzPIWe\n4x5MUnKohL2b9/J297cpOVQS/AJERE5QzAT+2rXQrRvceSc89ZQ1WxsXHyhm8d8XV3rcoM/j48CO\nA3w14avgFyEicoJiIvDnz4f+/c3ZODffbF07G97d4PdOlJ5CD5+P/dz8QFdEJAJEfeBPnAjXXgtz\n5sDFF1vb1qapm3Dn+3+YeNH+IvZt2WdhRSIi/ovaWTqGAY8+Cu+/D599Bi1bWt9mcV5xla63O+0U\nH6jac0RErBKVge92w003wcaNsGoV1A3RljhJNaq205rP46vyc0RErBJ1QzqHDsHAgbBrF2Rnhy7s\nAdqNbIcr9dgzccuTcnIKJzXXRvsiEhmiKvB37YIePaBRI5g9G1JTQ9t+u5Ht/J7/6kxx0uXeLlp9\nKyIRI2oC/8cfzTn2F18Mb74JzjAMRiWkJXDByxfgSqm4l+9IcFDz1Jpkjs4MUWUiIpWLijH8Vatg\n8GB4+mkYNSq8tXS6vhPeEi+L7lmE4TPwlnjLPJ6QlkCt02tx5SdX4kr2f/hHRMRqEb+1wsyZcOON\n5mycvn1DUJif8rbn8eXrX7Lh3xso/LMQh8tBw84N6Xp/V5qf19zv+foiIlURs2favvaauWp27lzo\n2DFEhYmIRLBAAj8ih3R8PnjgAZg1y9ze+JRTwl2RiEj0i7jALy42V87m5sLKlVCrVrgrEhGJDRE1\nSycvD/r1g8JCWLxYYS8iEkwRE/g7dkD37pCRAR9+CMnJ4a5IRCS2RETgb9oEXbvClVfCuHHgiIHD\norKzs8NdgqX0/qJbLL+/WH5vgbI08K+99lrq1q3LGWecUe412dnQu7c5x/7ee63Zxz4cYv0vnd5f\ndIvl9xfL7y1Qlgb+qFGjWLhwYbmPT50Kl11m/n/4cCsrERERSwO/e/funHRS+ZuHvfQSLFliHkko\nIiLWsnzhVW5uLgMGDOCbb74p23CsjN2IiIRY1C28CtMCXxGRuBURs3RERMR6CnwRkThhaeAPGzaM\nLl26sHnzZho3bszbb79tZXMiIlIBSwN/ypQp7Ny5k9mzZ5OamspTTz3Fs88+e9xrb7vtNk477TTa\nt2/P+vXrrSwr6BYuXEirVq047bTTjvv+srOzSU9PJzMzk8zMTJ544okwVHli/FlLEa33rrL3Fs33\nDWD79u307NmTtm3bkpGRwfjx4497XbTeP3/eXzTfw6KiIjp37kyHDh1o06YN//jHP457XZXun2Ex\nj8djNG/e3MjJyTFKSkqM9u3bG999912Zaz7++GOjX79+hmEYxurVq43OnTtbXVbQ+PP+li5dagwY\nMCBMFQbms88+M9atW2dkZGQc9/FovneVvbdovm+GYRi//fabsX79esMwDOPgwYNGy5YtY+rfnj/v\nL9rvYX5+vmEYhuF2u43OnTsby5cvL/N4Ve+f5WP4a9asoUWLFjRr1gyXy8UVV1zB7Nmzy1wzZ84c\nrr76agA6d+7M/v372b17t9WlBYU/7w+id1ZSZWspovneVfbeIHrvG0C9evXo0KEDAGlpabRu3Zqd\nO3eWuSaa758/7w+i+x6mpKQAUFJSgtfrpWbNmmUer+r9szzwf/31Vxo3blz660aNGvHrr79Wes2O\nHTusLi0o/Hl/NpuNVatW0b59e/r37893330X6jItE833rjKxdN9yc3NZv349nTt3LvP7sXL/ynt/\n0X4PfT4fHTp0oG7duvTs2ZM2bdqUebyq98/yefj+LrA6+rtwtCzM8qfOjh07sn37dlJSUliwYAGD\nBg1i8+bNIaguNKL13lUmVu7boUOHGDp0KOPGjSMtLe2Yx6P9/lX0/qL9HtrtdjZs2EBeXh59+/Yl\nOzubrKysMtdU5f5Z3sNv2LAh27dvL/319u3badSoUYXX7Nixg4YNG1pdWlD48/6qVatW+qNZv379\ncLvd7Nu3L6R1WiWa711lYuG+ud1uhgwZwsiRIxk0aNAxj0f7/avs/cXCPQRIT0/nwgsvZO3atWV+\nv6r3z/LAP/PMM/npp5/Izc2lpKSEadOmMXDgwDLXDBw4kPfeew+A1atXU6NGDerWrWt1aUHhz/vb\nvXt36XfhNWvWYBjGMWNx0Sqa711lov2+GYbB6NGjadOmDXfcccdxr4nm++fP+4vme7hnzx72798P\nQGFhIYsWLSIzM7PMNVW9f5YP6TidTl599VX69u2L1+tl9OjRtG7dmn/9618A3HjjjfTv35/58+fT\nokULUlNTo2q+vj/v76OPPuKNN97A6XSSkpLC1KlTw1y1/4YNG8ayZcvYs2cPjRs35tFHH8XtdgPR\nf+8qe2/RfN8AVq5cyaRJk2jXrl1pUDz11FNs27YNiP7758/7i+Z7+Ntvv3H11Vfj8/nw+XxceeWV\n9O7dO6DstHzzNBERiQzaWkFEJE4o8EVE4oQCX0QkTijwRUTiRNgOQBEJpb1799KnTx8Adu3ahcPh\noHbt2gB8/fXXtG/fvvTaYcOGcd999zFv3jwefvhhfD4fbreb22+/nT179vDhhx8CsHHjRtq1awfA\n6NGjueWWW0L8rkSqRrN0JO48+uijVKtWjbvuugswF+ccPHiwzDVut5tmzZrx5Zdf0qBBA9xuNzk5\nObRs2bL0muM9TySSaUhH4lJl/ZyDBw/i8XhKF+m4XK4yYS8SjRT4EvcKCwtL90vPzMzkww8/pGbN\nmgwcOJCmTZsyfPhwPvjgg6jedVEENIYvQnJy8nEPjpgwYQK33347ixcvZuzYsSxatCiqVqKKHE09\nfJEKZGRkcMcdd7Bo0SKmT58e7nJEAqLAFzmO/Px8srOzS3+9fv16mjVrFrZ6RIJBQzoSl47cM/zw\nGP5h/fr144EHHuD555/npptuIjk5mbS0NN55551yX0MkGmhapohInNCQjohInFDgi4jECQW+iEic\nUOCLiMQJBb6ISJxQ4IuIxIn/D4ExFrcva9raAAAAAElFTkSuQmCC\n" | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYjfn7B/D32do3EaVkHUtosa9TWiiUImsqspQZw+y+\ns33HGGYMZgZjRrYZIjulqKRS1mwh+1poSIkW1elsz+8PP76WllOdc56z3K/rmuty6TnPc2O83X2e\nz8JhGIYBIYQQjcBluwBCCCHyo9AmhBANQqFNCCEahEKbEEI0CIU2IYRoEAptQgjRIHWG9ooVK9C9\ne3d069YNK1asUEVNhBBCalBraF++fBnr16/HmTNncPHiRezfvx937txRVW2EEELeUmtoX79+HX37\n9oWBgQF4PB5cXV2xd+9eVdVGCCHkLfzavtitWzd88803ePr0KQwMDHDgwAH06dPn1dc5HI7SCySE\nEG3U0MXotXbanTt3xrx58zB06FD4+PjAxcUFXO6bH2EYRmv/+/7771mvgX599OvTxV+fJvzaUu+m\nwmqJFY7fP17vzzZGnS8iw8LCcPbsWWRkZMDCwgKdOnVq1AMJIUTTHb13FBN2T8CusbswoNUAlT67\n1uERACgoKEDz5s1x//59xMTE4NSpU6qoixBC1FJmXibG7ByDrWO2wrWNq8qfX2doBwYGoqioCAKB\nAH/99RfMzMxUUZdacHNzY7sEpaJfn2bT5l+fuv7azj08B79tftjovxGe7TxZqYHDNGKAhcPhNHp8\nhhBCNMHF/IsYtmUY1oxcg1GdRzXqXo3JTloRSQghdbhaeBXe0d74w+ePRgd2Y1FoE0JILW4W3YTX\nZi8s81qGsV3Hsl0OhTYhhNTkztM78IzyxI9DfkSQYxDb5QCg0CaEkGrdK74HjygPfD34a4S5hLFd\nzisU2oQQ8pZ/S/+Fe5Q7Pun3CSJ6RbBdzhsotAkh5DX5z/PhHuWO8J7hmNtvLtvlvINCmxBC/l9h\neSE8ojwwuftkfDnwS7bLqRaFNiGEAHha+RRem70Q0DkA37l+x3Y5NaLFNYQQnVcsLIZnlCeGtB2C\nJZ5LlL6DaWOyk0KbEKLTyqrKMHTLUPRu2RsrvFeoZMtpCm1CCGmAclE5fKJ90MWqCyJHRKrsjAAK\nbUIIqadKcSVGbhsJe3N7bPDbAC5Hda/4KLQJIaQeqiRV8N/hD0tDS0T5R4HH5an0+RTahBAiJ5FU\nhMCdgdDn62PbmG3gc+vcoVrhaJc/QgiRg0QmwaQ9k8DhcLB19FZWAruxNK9iQghpAKlMipCYEJSL\nyxE7PhYCnoDtkhqEQpsQovVkjAzT46ejoLwA8RPjoc/XZ7ukBqPQJoRoNYZhMOvALNx5egeJQYkw\nFBiyXVKjUGgTQrQWwzCYkzQHlx5fwsHJB2GsZ8x2SY1GoU0I0UoMw+CLQ18gMy8TKcEpMNU3Zbsk\nhaDQJoRope8Of4eUuylIC02DuYE52+UoDIU2IUTr/JjxI2Kvx+Jw6GFYGlqyXY5CUWgTQrTKkuNL\nEH0pGulT0mFlbMV2OQpHoU0I0RrLM5dj7bm1yJiSAWsTa7bLUQoKbUKIytx4cgPRl6LBQP4l3GO6\njIGztXOd160+sxorTq1AxpQM2JrZNqZMtUahTQhRmbzSPCw8slDu0OZyuHBq4VRnaP99/m/8fOxn\npE9Jh725vSJKVVu09wghRGXc27qjW/Nucl9vZ2aH0V1G13rNluwtL2aKhKSgXZN2jS1R7VFoE0JU\nhsPhYNnQZTAW1L3IxUTPBEu9lta6z/XOKzvxxaEvcCj4EDo27ajIUtUWbc1KiJpKvZuKYmGx3Nc3\nN26Owa0HK7EixWAYBk6RTrhUcKnW6+zN7ZEzN6fG0I69HouI/RFIDk6GYwtHZZSqNLSfNiFayGqp\nFcpF5XLtRieSimBnZodbH91SQWWNl3wnGaN3jEa5uLzar5vomWCD3waM6zqu2q8fuHkAYXFhSAxK\nRA+bHsosVSkotAnRQsszl+PbtG9rDLbXmeiZYPWI1ZjsOFkFlTVeXd22Ad8AHm09wMG7ZzYWVhTi\nQv4FpISkYJD9IGWXqhQU2oRooUpxJVr+1lKuIRJbU1vkfpyrUZv619Vt16a5UXM8+vyRSs91VCQ6\nuYYQLWQoMMT3rt/X+dLORM8Eiz0Xa1RgA4BXO68GzfYw4Btghc8KjQ3sxqrzV/3zzz+ja9eu6N69\nOyZNmoSqqipV1EUIARDeM7zOMW1zfXNM6DZBRRUpTn1mkrzOysgKYx3GKqkq9VdraOfm5mLdunXI\nysrCpUuXIJVKsX37dlXVRojOq6vb1tQu+6W3u+3qxrBfZ6JngiVeS1R+ero6qTW0zczMIBAIUFFR\nAYlEgoqKCtjaau/yUELUUW3dtqZ22S+93m2b6Jmgn12/Wv8BamLQRKe7bKCOZeyWlpb47LPPYG9v\nD0NDQwwbNgyenp5vXDN//vxXP3Zzc4Obm5sy6iREZ73stt+eSaLpXfZLL7vt0qpSbPTfCKdIJ0hk\nkneu0+QuOz09Henp6Qq5V62zR+7cuQNfX18cPXoU5ubmGDt2LAIDAxEUFPTiwzR7hBCVqG4miSbO\nGKnJ9SfXIZQI4WztjPG7xmPPtT2QMtI3rmll1go5c3M0MrTfprTZI2fPnsWAAQPQtGlT8Pl8jB49\nGidOnGjQgwghDff22La2dNkvdW7W+dWmUBG9It4JbE3ushWt1tDu3LkzMjMzUVlZCYZhkJKSAgcH\nB1XVRgh5zetj25o+ll2T+yX3MS1uGnpY93jjHyQay/6fWkPbyckJISEh6NWrFxwdX6ztnzlzpkoK\nI4S86WW3DUCruuyXHpY9hEeUBz7q8xF2jN3x6tdHXfabaEUkIRqkUlyJhUcW4ochP2hVaD9+/hhu\nm9wQ4hiCrwZ/BQAYv2s8dl/bDVtTW60Zy36JlrETQjTWk4onGLJpCMZ0GYP5bvNf/fztp7fRaVUn\nRI+O1rqhIAptQohGelb5DO5R7vDu4I2f3H8Ch/Pm4poL+Rfg2MJR65asU2gTQjROibAEXpu9MMh+\nEH4d+us7ga3NKLQJIRqlrKoM3tHecLZ2xiqfVToV2ACFNiFEg1SIKzA8ejjea/oe1oxco3VDH/Kg\n0CaEaAShRAi/bX6wNrHGRv+NOhnYAIU2IUQDVEmqMHrnaJjqmWLL6C1aNWWxvii0CSFqTSwVY+yu\nseByuNgRuEOucy+1WWOyU3f/qSNEAU48OIH3/3kfDOT/C/j1oK/xo/uPSqxKvUhkEgTtDYKUkWLn\n2J06H9iNRaFNSCP0sOkBM30zPBM+k+t6Q74hRnQcoeSq1IdUJsWU2CkoqSrBvgn7oMfTY7skjaeb\nbwEIURADvgHmu82X68gsDjjo1bIX+tn1U0Fl7JMxMszcPxMPyx4iZnwMDPgGbJekFSi0CWmkmT1n\nytVBGgoMscRriQoqYh/DMJidMBs3ntxA3MQ4GAmM2C5Ja1BoE9JI8nTbHHDQ06anTnTZDMPgk4Of\nIOtRFhKCEmCiZ8J2SVqFQpsQBair29aVLpthGPwn9T84ev8okiYnwUzfjO2StA6FNiEKUFu3rUtd\n9vfp3yPxViKSJyfDwsCC7XK0EoU2IQpSU7etK132oiOLsPvqbqSEpKCpUVO2y9FaFNqEKEh13bau\ndNm/nvgVmy5uQmpIKpobN2e7HK1GoU2IAr3dbetCl/3HqT/w19m/kBaaBhtTG7bL0XoU2oQo0Ovd\nti502WvPrcWvJ39Fakgq7Mzs2C5HJ1BoE6JgL7ttAU+g1V32xgsb8eORH5ESkoI2Fm3YLkdnUGgT\nomAGfAMs9lwM9zbuWttlb720FV+nfo1DwYfQwbID2+XoFNrljxAlYRhGK09k2XN1D2Ynzsah4EPo\n1rwb2+VoJNrljxA1pI2BHXcjDh8kfICDkw9SYLOEQpsQIpek20mYHjcdCUEJcLZ2ZrscnUWhTQip\nU+rdVATHBCNuQhx6tezFdjk6jV5EEkJqdeTeEUzYMwF7xu1B/1b92S5H51FoE0JqdPLBSQTuDMS2\nMdvwfuv32S6HgEKbEFKDsw/PYtT2Udjkvwme7TzZLof8PwptQsg7LuRfwIitI7Debz183vNhuxzy\nGgptQsgbLhdchk+0D/4c/if8OvmxXQ55C4U2IeSVG09uYNiWYfh16K8IdAhkuxxSDQptQggA4M7T\nO/Dc7ImFQxZiUvdJbJdDalBraN+4cQMuLi6v/jM3N8fKlStVVRshREXuFd+DR5QHvh38Laa6TGW7\nHFILufcekclksLW1xenTp9GqVasXH6a9RwjReHmleXDd6IqP+36Mj/p+xHY5OqEx2Sn38EhKSgra\nt2//KrAJIZrvUdkjuG9yx6xesyiwNYTcob19+3ZMmkTjXIRoi4LyAnhEeSDEKQSfD/ic7XKInOTa\ne0QkEiE+Ph6//PLLO1+bP3/+qx+7ubnBzc1NUbURQpSkqKIInlGeGOMwBt++/y3b5Wi99PR0pKen\nK+Reco1p79u3D6tXr0ZSUtKbH6YxbUI0TrGwGB5RHvBo64FfPH/Ryi1k1Z3Sx7S3bduGiRMnNugB\nhBD1UVpVCu8t3hhsP5gCW0PV2WmXl5ejdevWyMnJgamp6Zsfpk6bEI3xXPQcPtE+6Na8G/4a/hcF\nNosak5103BghOqBCXIGRW0eijUUbrPdbDy6H1tWxiUKbEFIjoUSIUdtHwcrICpv8N4HH5bFdks6j\n0CaEVEskFWHMzjEw5Bti65it4HPpsCp1oJLFNYQQzSKWijFxz0TwODxEj46mwNYS9KdIiBaSyqQI\niQ2BUCLE3nF7IeAJ2C6JKAiFNiFaRsbIEBYXhicVTxA/MR76fH22SyIKRKFNiBaRMTKE7w9HbnEu\nEoMSYcA3YLskomAU2oRoCYZhMCdxDq4UXMHByQdhJDBiuySiBBTahGgBhmHw+aHPcfrf0zgUfAim\n+qaQiqXIPZyLskdl4BvwYdfPDhatLdgulTQShTYhGo5hGHyT9g3SctKQFpIGI8YIad+l4cyqM5DJ\nZGCkDDhcDmRiGez62cFjsQfs+tqxXTZpIJqnTYiG+yH9B+y6ugvpU9JhJjPDP4P/wZPrTyARSqq9\nnm/Ix+gto9FldBcVV0peonnahOioxccWY9vlbUgNSUUzo2bYPWE3Cq8X1hjYACCplCAmOAYFlwtU\nWClRFAptQjTU7yd/x/qs9UgNSUULkxZ4evspclJzIBVK6/yspEqCoz8fVUGVRNEotAnRQH+d+Qsr\nT69EWmgabM1sAQCnV52GTCqT6/OMlMH1vdchLBEqs0xSjaJbRY36PIU2IRpmfdZ6LD62GGkhabA3\nt3/183mZeZCJ5QttAODp8/D09lNllEiqwcgYnP7zNP4e8Hej7kOhTYgGiboYhfnp85Eakoq2Tdq+\n8TV5u+w3PiOp/2dI/ZXmlWKL9xZkb85G2PGwRt2LQpsQDbHj8g7MS5mH5OBkvNf0vXe+3rRjU6Ae\n5xpIq6QwtzdXYIXkbQzD4OLmi1jTYw1au7ZG2LGwF39OjUDztAnRADHXYjA3aS6Sg5PhYOVQ7TV9\nPuyDG/tuQFwuluuetn1tYWpjWveFpEHKC8txIOIAim4WYfLBybBxsVHIfanTJkTN7b+5HxEHIpAQ\nlADHFo41XmfX3w7m9ubgcOtutwXGAgz+erAiyySvub7vOiIdI2HZwRIzzs5QWGADtLiGELWWfCcZ\nk/dOxv5J+9HHtk+d1z+7+wzreq+DsEQIRlr9302BkQB9ZveB5y+eii5X5wlLhDj48UHcO3IP/pv8\nYT/Ivtrr6OQaQrTQ4ZzDGLd7HGLHx2Kg/UC5P1ecW4y9QXvxKOsRZBLZq5eNeqZ64HA5GLJgCPp8\n1IcO9lWwnMM52Dd1Hzp4d8DQZUOhZ6JX47UU2oRomWP3jyFgRwB2Bu7EkLZDGnSPoltFyN6cjeLc\nYgiMBWg7pC06+3cGT4/OiFQkcYUYqV+l4uqeq/Bd54v3fN59Sfw2Cm1CtMipvFPw3eaLLaO3YGj7\noWyXQ2rx7+l/ERMSA5seNhi+ajgMLQ3l+lxjspNmjxCiRrIeZcFvux/+GfUPBbYak4qkOLLwCM6t\nOQefP3zQdVxXlT2bQpsQNZH9OBvDo4cjckQkRnQcwXY5pAYFVwoQExwDUxtThF8IV/m0SQptQtTA\n1cKrGLZlGFb6rERAlwC2yyHVkEllyPw9E8d/OQ6Pnz3gMs2FlZe5FNqEsOxm0U14bfbCUq+lGNd1\nHNvlkGo8u/sMsVNiweFwMP30dDRp24S1Wii0CWHR3Wd34RnliQVuCzDZcTLb5ZC3MAyDrHVZSPsm\nDYO+GoR+H/eTa/GSMlFoE8KS+yX34RHlgf8M+g+m9ZjGdjnkLWWPyhA3LQ7lj8sRmh6K5l2bs10S\nAFrGTggr/i39F+6b3DG371x80PsDtsshb7m84zLWOK+BbW9bTMucpjaBDVCnTYjK5T/Ph0eUB2b0\nmIGP+33MdjnkNZVPK5HwYQLyL+Rj4v6JsO1ty3ZJ76BOmxAVKiwvhGeUJyZ1n4R5g+axXQ55za3E\nW1jtuBom1iaYmTVTLQMboE6bEJV5WvkUXpu94NfJD9+9/x3b5ZD/J3ouQvJnybh98DYCNgeg7ZC2\ndX+IRdRpE6ICJcISDNsyDB7tPLDIfRFt1qQm7h29h0inSMgkMszKnqX2gQ3IEdrFxcUIDAxEly5d\n4ODggMzMTFXURYjWKKsqg0+0D/rZ9cMyr2UU2GpAIpTg0BeHsHv8bgxbPgx+G/ygb6bPdllyqXPD\nqNDQULi6uiIsLAwSiQTl5eUwN39xRBFtGEVI7cpF5Ri+dTg6Ne2EyJGR4HLom1u2Pcp6hJiQGDTr\n3AwjVo+AsZWxymtQ2i5/JSUlcHFxwd27dxX+YEK0XaW4Er7bfGFnZoe/R/1Ngc0ymUSGoz8fxek/\nTmPY78PQfVJ31r7rUdoufzk5ObCyssLUqVNx8eJF9OzZEytWrICRkVGDHkaIrqiSVGH0ztGwMrbC\nBr8NFNgse3LjCWJDYqFvro/wrHCY2ZmxXVKD1RraEokEWVlZWLVqFXr37o2PP/4YixcvxoIFC15d\nM3/+/Fc/dnNzg5ubm7JqJRqqNK8U59aeQ/6FfACAtYs1es7oqdF/cWojlooxbvc4GAmMEOUfBR6X\nDh1gCyNjcHrVaWQsyMCQH4egV0QvVrrr9PR0pKenK+RetQ6P5Ofno3///sjJyQEAHDt2DIsXL8b+\n/ftffJiGR0gtqsqqEBMcg9tJtwEA0iopAICnzwOHw0EHnw7w3+QPfVPNeAEkD4lMgol7JqJKUoXd\n43ZDj1fzkVNEuUrulyB2SiwkQgn8N/mj6XtN2S7plcZkZ63fs1lbW6NVq1a4efMmACAlJQVdu6pu\ns2+iuUTPRdjQbwNuJ92GtEr6KrCBF+EtEUpwK+EWNgzYAFG5iMVKFUcqkyI0NhRlVWXYNXYXBTZL\nGIbBhY0XsLbnWrQf2h5Tj05Vq8BurDpnj1y8eBHTp0+HSCRC+/bt8c8//9DsEVKn/eH7cTHqIiRC\nSa3X8Qx4cJ7ijJGrR6qoMuWQMTJMi5uGe8X3cGDSARgK5Dt2iihWeUE54mfGozinGP5R/rB2sma7\npGrRGZFErVSVVWFZi2WQVNYe2C/xDfn4ouCLWk+vVmcMw2DWgVm4UngFSUFJMNZT/RQyAlzbew0J\nHybAeaozXL93BV9ffRd80xmRRK1c23sNHJ78L3u4PC6uxVyDU7CTEqtSDoZh8PHBj3Eh/wKSg5Mp\nsFkgLBYicU4i8k7mYdyecWg1oBXbJSkVzUMiClf6oBTicrHc14srxSh9UKrEipSDYRjMS5mH4/eP\nI2lyEsz0tXM2jDq7c+gOVjuuhr6pPsIvhGt9YAPUaRMl4OnxwOFxwEjk+/aPw+WAp6d50+L+m/5f\nHLxzEIdDD8PCwILtcnSKqFyElHkpuLHvBvw2+KH90PZsl6QyFNpE4Wx62kBgIIDouXyzQvj6fNj0\ntFFyVYq18MhC7L22F+mh6bA0tGS7HJ2Sl5mHmJAY2PW1Q0R2BAyb6NZLXwptonBth7SFvpm+3KFt\nYGGANm5tlFuUAi09vhRRF6OQMSUDVsZWbJejM6QiKTJ+yEDWhiwM/3M4HMY4sF0SK2hMmygch8uB\n+0/uEBgJ6rxWYCSA+0/uGrPz3cpTKxF5LhJpoWmwMdWs7w402ePsx1jXZx0eX3qMiIsROhvYAHXa\nREmcQ53x9NZTZP6eCXFF9S8lBUYC9Pu0n8bMGllzdg1+O/kbMqZkwM7Mju1ydIJMKsOJZSdwctlJ\neC7xhPMUZ435B15ZaJ42Uaob8TeQ8UMGCq8WvnrZKBVJ0bxrc7h+74qOIzuyXKF8/jn/D/6b/l+k\nh6ajvaXuvPRi09PbTxEbGgueHg+jNo6CRWvtedlLi2uI2iu6WYSim0UAgKadmmrUsuLo7Gh8mfIl\n0kLS0KlZJ7bL0XoMw+Bs5Fkc/u4w3v/uffT9qC84XO3qrim0CVGSXVd2YU7SHKQEp6Brc9p3R9lK\n/y1F3LQ4VBZVImBzAJp1bsZ2SUqhtA2jCNFl+67vw+zE2UgKSqLAVjKGYZAdnY01LmvQakArhJ0I\n09rAbix6EUlINRJuJWBG/AwkBCXAyVozXpRqqoonFTgw6wAKrxYiKDEILXu2ZLsktUadNiFvSbmb\ngimxUxA3MQ69WvZiuxytdnP/TUQ6RcK8tTlmnptJgS0H6rQJeU1GbgYm7ZmEPeP2oJ9dP7bL0VpV\npVU4+OlB5KTlYMy2MWj9fmu2S9IY1GkT8v9OPDiBwF2B2B64HYNbD2a7HK2Vm56LSKdIcLgcRFyM\noMCuJ+q0CQFw5t8z8N/uj80Bm+He1p3tcrSSuFKMtG/ScGXHFYxcOxIdR2jGHH11Q6FNdN6F/AsY\nuW0kNvhtgHcHb7bL0UoPzz5ETEgMWnRvgYjsCBg1NWK7JI1FoU102uWCy/CJ9sFfw/+CbydftsvR\nOlKxFEcXHcXZ1WfhvcIb3SZ0Y7skjUehTXTW9SfXMXTzUPw29DeMcRjDdjlKU/pvKc5vOI/Hlx4D\nAGx62MAlzAUmLUyU+tzCq4WICYmBsZUxws+Hw7SlqVKfpytoRSTRSbef3obbRjcscl+EUOdQtstR\niqqyKsSGxuJ24m0wDANplRQAwDd40at1Ht0Zfuv9IDCsezfG+mBkDDJXZOLYT8cwZOEQ9JzZU+c3\neXobLWMnpB5yi3PhutEV3wz+BjN7zmS7HKUQPRdhXZ91eHb32auwfhvfgA+rrlYIOxb2Ksgbqzi3\nGLFTYsFIGYzaOAqW7emAiOrQMnZC5PSg5AHcN7njiwFfaG1gA0DinMRaAxsAJEIJCq8WIu2btEY/\nj2EYZG3Iwrre6/DeiPcQmh5Kga0k1GkTnfGo7BFcN7oivGc4PhvwGdvlKI2wRIhfrX+FRCiR63o9\nEz18XvB5g4dJnuc/R9z0OJT9W4aAzQFo3q15g+6jS6jTJqQOBeUF8IjywBTnKVod2ABwdfdVcHj1\nGEPmvFhO3hBXdl1BpHMkbFxsMP3UdApsFaDZI0TrFVUUwTPKE2O7jsXXg79muxylK8ktgbi8+tOC\nqiMRSlByr6Rez6h8VonE2Yl4ePYhJuybALu+dJKPqlCnTbTas8pn8NrsBZ/3fDDfdT7b5agEV48L\n1KfR5nJenSokj9sHbyPSMRKGTQ0Rfj6cAlvFqNMmWqu0qhTe0d54v/X7WOyxWGemndn0sIGeiR5E\nZSK5rufyubB2sa7zOtFzEQ59cQi3Em5h1MZRaOfRrrGlkgagTptopeei5xgePRw9bXri92G/60xg\nA0AH7w71msJnZGUE+0H2tV5z//h9RDpHQlwpRkR2BAU2iyi0idapEFfAd5svOjfrjFXDV+lUYAMA\nl8eF2w9uEBjVPRtEYCSAxyKPGn+PJFUSpMxLwa7AXRi6bCj8N/rDwNxA0SWTeqDhEaJVhBIh/Lf7\nw87MDmtGrgGXo5t9Sa+IXii6WYSsdVk1vpQUGAkw4IsB6D6pe7Vfz7+Qj5iQGFh2sETExQgYNzdW\nZslETjRPm2gNkVSE0TtGw0hghK1jtoLPrbsneVr5FEKJUO5nmOqZwlRfc/bQuLLrCjIWZKD4bjG4\n/Bf/gEnFUlh1sYLrfFd08n33dHmZRIbjS44j8/dMDP11KByDHXXuuxVlo2XsROeJpWKM2z0OALAz\ncCcEvLqHBsRSMYx/MgaXwwWPW/fsCbFUjE7NOuHSrEuNrlfVCi4XoOhWETgcDpp1blbjoblFN4sQ\nGxoLgbEAo/4eBXN7cxVXqhsak500PEI0nkQmweSYyRBJRdg7bq9cgQ0AAp4A47uOx/Yr21Elrqrz\nemOBMSJ6RjS2XFY079a81oUvjIzBmb/OIOOHDLh+74reH/QGh0vdtTqqs9Nu06YNzMzMwOPxIBAI\ncPr06f99mDptwjKpTIqp+6Yi/3k+4ibGwYBfv5dkOc9y4PCXg1xDJJaGlnj46UPo8/UbWq5aKnlQ\ngriwOFSVVSEgKgBNOzZluyStp9ROm8PhID09HZaWtPkLUS8yRobw/eG4X3IfCUEJ9Q5sAGjbpC0C\nuwRi+5XtkMhq3qvDWGCMBW4LtCqwGYZB9pZsJH+WjH4f98PALwe+Gvcm6kuu4RHqpom6YRgGsxNm\n49qTazg4+SCMBA0/vmrBkAXYfW13raGtz9fH9B7TG/wMdVNeWI794fvx9NZTBCcHw9q57sU1RD3I\n1Wl7enqCx+MhPDwcM2bMeOPr8+fPf/VjNzc3uLm5KbpGQt7AMAw+Tf4UZx+exaHgQzDRa9wJLHV1\n29rWZV+PvY4Dsw7AKcQJY7aNAV+fXm0pW3p6OtLT0xVyrzrHtB89egQbGxsUFhbCy8sLf/zxBwYP\nHvziwzSmTVSMYRh8lfoVku8kIzUkFU0MmyjkvrWNbWvLWLawRIikuUm4f/Q+/Df517kKkiiPUrdm\ntbGxAQBYWVkhICDgjReRhKjaDxk/IOFWApKDkxUW2MD/uu2353ZrS5edk5aDSMdICAwFiLgYQYGt\nwWoN7YpEDZ/NAAAgAElEQVSKCpSVlQEAysvLkZycjO7dq189RYiy/Xz0Z+y4sgMpISloZlT9POPG\nWDBkwTuhrelj2eIKMZLmJiEmJAYj14zEiNUjoGeix3ZZpBFqHcx6/PgxAgICAAASiQRBQUEYOnSo\nSgoj5HW/nfwNf1/4GxlTMtDcWDkb7b89tq3pXXbeqTzEhsTCpqcNZmXPgqGlIdslEQWgFZFE7a06\nvQq/nfwNGVMy0Mq8lVKf9frYtqaOZUtFUhz58QjOrT0Hn1U+6Dq2K9slkbfQcWNEa607tw5LTyxF\nakiq0gMb+F+3zQFHI7vsgssFWN9vPR6df4TwC+EU2FqIOm2itjZd2IRv0r5B+pR0dLDsoLLn5jzL\nQdi+MCRNTqpXaEtFUlQ8qQCHy4GRlRG4PNX1RDKpDCd/O4kTS07AY7EHXMJcaJMnNUYbRhGts/3y\ndnx68FOkhaahc7PObJdTq8KrhTjx6wlc3nb51c/x9HnoPas3en/YG2a2Zkp9/rO7zxAbGgsOl4NR\nG0ehSVvFzaohykGhTbTKnqt78GHCh0gJSUG35t3YLqdWWeuzkDgnETKxDDKJ7I2v8fR54Al4mBg/\nEW3c2ij82QzDIGtdFlK/TsXgrwej38f9aJMnDUGhTbRG/I14TI+fjqSgJLjYuLBdTq2uxVzD3qC9\nkFTWvPwdAATGAkw7MQ0tHFso7NllD8sQNz0O5Y/LEbA5AFYOVgq7N1E+ehFJtELS7SRMi5uG+Inx\nah/YjIxBwuyEOgMbAMTlYhz68pDCnn15+2VEOkfCto8tpmVOo8DWMbTpgJaaHjcd0Zei5b5ewBXg\nQsQFtGvCzoGtaTlpCI4Jxr4J+9DHtg8rNdRHTloORKXynXYOAPcy7qE0rxRmdg0f364oqkDCBwl4\nnP0Ykw5Mgm1v2wbfi2gu6rS1lFc7L3A5XAglQrn+a2LYBG0s2rBS69F7RzFh9wTsHrsbA1oNYKWG\n+rp98DZEz+UPbS6fi9yM3AY/71bCLUQ6RsLU1hQzs2ZSYOswCm0tFegQKPdSbxM9Eyz1WsrKIbiZ\neZkYs3MMto7ZCtc2rip/fkNVldR90s3rGBlT4wG7tT6nrArxM+OR8GECRkePxrDfhkFgKN/JPEQ7\nUWhrKR6XhyWeS+TattTS0BKBDoEqqOpN5x6eg982P2z03wjPdp4qf35jmNiYgMOXf6YGl8+FUbP6\n7fl978g9RDpFgpEyiLgYoZQZKETzUGhrsUCHQFga1n7iEFtd9sX8ixi+dTjW+q7F8PeGq/TZitBt\nfDfwBHUfBvySTCJD+6Ht5bpWIpQg+fNk7J6wG94rvOG3wQ/6Zpq1MpMoD4W2FpOn22ajy75aeBXe\n0d5Y5bMK/p39VfpsRbFysIJVVytAjmabK+Ci++Tucu2u9/DcQ6ztuRYl90owK3sWOvl2UkC1RJtQ\naGu52rptNrrsm0U34bXZC8u8lmFs17Eqe64yBGwKqDOIuXwuTFqYwOMnj1qvk4qlyFiQgWifaAz+\nZjACdwbWeziF6AZaXKMDdlzegenx0/Fc9PyNn7c3t0fO3ByVhfadp3fgtskNP7j9gDCXMJU8U9ny\nL+Rjy7AtEFeKISp7bTYJB9Az1oN5a3MEJwfDtKVpjfd4cv0JYkJiYNjEEH4b/Bo1LZBoBloRSWol\nlUnRbmU73C+5/+rnTPRMsMFvA8Z1HaeSGu4V34PrRlfMGzgPs3rPUskzVUUqluLGvhvIXJ6JZ3ef\ngcPloIVTCwz4fADauLWpceMmRsbg1B+ncOTHIxjy4xD0iuhFmzzpCAptUqe3u21Vdtl5pXlw3eiK\nOX3mYG6/uUp/niYovleMfVP3QVolhf8mf1h2qP2FMdEutIyd1On1sW1VjmXnP8+HR5QHwnuGU2Dj\nxSZP5/85j3W91qH9sPaYcmQKBTapF+q0dciOyzsQHBMMG1MblXTZheWFcNvkhgldJ+A71++U+ixN\n8Pzxc+yfuR/FucUI2Byg0A2kiGahTpvIJdAhEB2bdsTvw35XemA/rXwKr81eCOgcQIEN4Oqeq4h0\nikTzbs0x48wMCmzSYNRp6xgZI1N6YBcLi+EZ5Qm3Nm5Y6rVUp1+uCYuFSPwoEXmZefCP8ker/so/\nMo2oP+q0idyUHdhlVWXwifbBgFYDdD6w7xy6g9XdV0PfXB/hF8IpsIlCUKdNFKZcVA6faB90seqC\nyBGROhvYonIRUr5MwY34G/Db4If2XvItXye6g6b8EdZViisxcttI2JvbY4PfBlZ2DFQHD04+QGxI\nLOz628FnpQ8MLAzYLomoIQptwqoqSRX8d/jD0tASUf5R4HHl30hJW0iqJMj4IQPn/z6PEX+NQJfR\nXdguiagxCm3CGpFUhMCdgdDj6WF74Hbwubp3GNLj7MeICY6BRRsLjFw7EiYt6t4Ol+i2xmSn7v0N\nIwojkUkwac8kAMDWMVt1LrBlUhlOLD2Bk7+ehNdSLziFOunsOD5RHd36W0YURiqTIjgmGOXicsSO\nj4Uer+5tR7VJ0a0ixIbGgm/Ax4yzM2DR2oLtkoiOoNAm9SZjZJgWNw2F5YWInxgPfb7ubNDPMAzO\nrj6Lw/89jPe/ex99P+oLDpe6a6I6FNqkXhiGwawDs3D32V0kBiXCUGDIdkkqU5pXirhpcah8Vomw\nY2Fo1lm+MzgJUSTdnJdFGoRhGMxJmoPsx9k4MOkAjPWM2S5JJRiGQXZ0Ntb0WINWg1ph2olpFNiE\nNdRpE7kwDIMvDn2Bkw9OIiUkBab6NW/qr03KC8txYNYBPLn2BJOTJsOmhw3bJREdR502qRPDMPj2\n8LdIuZuC5OBkWBjoxku3G3E3EOkUCYs2Fph5biYFNlEL1GmTOi08shD7ru/D4dDDdZ7urg2qSquQ\n9HESctNzEbg9EK3fb812SYS8IlenLZVK4eLiAl9fX2XXQ9TMkuNLEH0pGikhKbAytmK7HKXLTc/F\nasfV4Al4iLgYQYFN1I5cnfaKFSvg4OCAsrIyZddD1MjyzOVYe24tMqZkwNrEmu1ylEpcKUba12m4\nsvMKfNf54r3h77FdEiHVqrPTzsvLQ0JCAqZPn05L1nXI6jOrsTxzOVJDUmFrZst2OUr175l/sbbH\nWpQ9KkNEdgQFNlFrdXban3zyCZYuXYrS0tJqvz5//vxXP3Zzc4Obm5uiaiMs2ZC1AT8f+xnpU9LR\n2kJ7hwekYimOLjyKs5Fn4b3CG90mdGO7JKKl0tPTkZ6erpB71bph1P79+5GYmIg///wT6enp+PXX\nXxEfH/+/D2vYhlEMw+D+0fs4sewEcg/nQlIlgb6ZPrpP6o6+c/rSAasAtmRvwbyUeTgcehgdm3Zk\nuxylKbxaiJjgGBi3MIbfej+YttSNKYxEPShtl7+vv/4amzdvBp/Ph1AoRGlpKcaMGYOoqKhGP1jV\nROUibPffjryTeRBXiIHXyuYKuODyuRj45UC4fu+qs5v+7LyyE3OT5iI1JBUOVg5sl6MUMqkMmcsz\ncXzxcbgvckePGT109s+bsEclW7NmZGRg2bJlGtlpyyQyRHlEIe90HqRCaY3XCYwEGPzNYAz+erAK\nq1MPsddjEbE/AsnByXBs4ch2OUrxLOcZ9k3ZB0bGwH+TP5q0a8J2SURHqeyMSE3tSK7FXMPDrIe1\nBjYAiCvEOPLjETzPf66iytTDgZsHMDN+Jg5MOqCVgc0wDLLWZ2F9n/Xo6NsRoemhFNhEY+nEIQhr\ne63Fo3OP5LqWb8DHoK8GwfW/rkquSj0k30nG5L2TETcxDv3s+rFdjsKVPSpD/Ix4lD0sQ0BUAJp3\na852SYTQaey1EZYI8Tj7sdzXS4QSZEdnK7Ei9ZGem46gvUHYO36vVgb2lZ1XsMZ5DWxcbDA9czoF\nNtEKWr+MvaqkCjw9HmRiWb0+o+2O3z+OcbvGYUfgDgyyH8R2OQpV+bQSCR8m4FHWI0yMnwjbPto9\nz5zoFq3vtPXN9CEV1T6W/TY9U+0+heX0v6cRsCMAmwM2w72tO9vlKNTtpNtY7bgaxs2NEX4+nAKb\naB2t77QNLAzQrHMzFFwqkOt6nj4P3cZr7yKLrEdZ8N3miw1+GzCswzC2y1EY0XMRkj9Pxu3E2wiI\nCkBb97Zsl0SIUmh9pw0AA+cNhMBYINe1HA4HvWb1UnJF7Lj0+BKGRw/H6hGr4dtJezb/un/sPiKd\nIiGtkiIiO4ICm2g1nQjtrmO7wqqLFXh6vFqvExgJ0PfjvjCzNVNRZapzrfAahm0ZhuXeyzG6y2i2\ny1EIiVCCQ18ewq6xuzD0t6EY9c8oGJgbsF0WIUqlE1P+gBezSLZ4b0Hh5UKInove+BqHxwFPj4ee\n4T0x7LdhGjsfvSa3im5hyKYh+MnjJ4Q4hbBdjkLkX8hHTHAMLN+zxMjIkTBurhtHnxHtoJIVkYp+\nMBtkUhluJ93GiSUncP/4fTAyBnwDPhzGOqD/J/1h7ax924/mPMuB2yY3fPf+d5jeYzrb5TSaTCLD\nsV+O4dTyUxj621A4TnbUun9kifaj0G4AhmHASBlw+do7QnS/5D5cN7ri8/6f48M+H7JdTqM9ufEE\nsaGx0DfVh9/ffjBvZc52SYQ0SGOyU+tnj9SEw+GAw9feDu1h2UN4RHngoz4faXxgMzIGp/88jYwf\nMuD2gxt6z+oNDld7/+wIqY3OhrY2e/z8MTyiPBDmHIZP+3/KdjmNUvKgBPum7oO4XIxpJ6ahacem\nbJdECKu0d2xARz2peALPzZ4Y33U8vhr8FdvlNBjDMLiw6QLW9liLtu5tMfXoVApsQqDDY9ra6Fnl\nM7hHucO7gzd+cv9JY1/QlReUY3/4fjy9/RQBmwO08gUx0W20YRRBibAEw7YMw5A2QzQ6sK/FXEOk\nUySadmqKGWdnUGAT8hbqtLVAWVUZvKO94WztjFU+qzQysIXFQiTNTcL94/fhv8kf9gPt2S6JEKWh\nTluHVYgr4LvNFw5WDvjD5w+NDOy7KXex2nE1BMYCRFyIoMAmpBbUaWswoUQI322+sDGxwUb/jeBy\nNOvfYHGFGCnzUnA99jp81/uiw7AObJdEiErQ4hodVCWpwuido2GqZ4oto7eAz9Ws2Zt5p/IQGxKL\nlr1awmeVDwybGLJdEiEqQ6GtY8RSMcbuGgsuh4sdgTsg4Mm3g6EiJNxKwOgdo8FA/j/3ZV7L8FHf\njwAAUpEUGQsykLUuCz6rfNB1bFdllUqI2qIVkTpEIpMgaG8QJDIJ9o7fq9LABoC+tn3B5XBRKamU\n63p9nj4823kCAB5feozYkFiY2Zkh4mIETKxNlFkqIVqJQluDSGVSTImdgpKqEuybsA96PNWfsNPU\nqCk+6vsRVp5aCaFEWOu1PA4P3h280cmyE44vOY4TS0/A8xdPOE911sgXpqRuUpEU12OvI3NFJkpy\nS8Dlc2HTywb9P+2PVgNa0Z+7AtDwiIaQMTLMiJ+BnGc52D9pP4wERqzVUlRRBPvl9qgQV9R6nQHf\nAEeGHsGlTy6By+di1D+j0KRtExVVSVTt4dmHiPaJhqRKAlHZa9sfc17sVd+sczMEJQbB2Iq20aUp\nf1qOYRjMTpiNG09uIG5iHKuBDbzotmf3mQ0Dfs0HDvDAw6ScSTjscxhdxnRBaFooBbYWy7+Yj01D\nNqHiScWbgQ0ADCAuF+Nx9mNs6L8BVaXaf3C2MlFoqzmGYfDJwU9w7tE5JAQlwERPPcaBvxzwZY1T\nDE1LTTEpehKczjph6pGp6P9Jf9qVT8vtDdr7zuEib5OJZSjNK0XGggwVVaWdKLTVGMMw+E/qf3Dk\n3hEkBSXBTF99jkGrtttmgG6XuiF8TTiMnIzw4ZkPYeVgxV6RRCUennuI4pxiua6VVklxbu05SKok\nSq5Ke1Foq7Hv079H4q1EHAo+hCaG6je08Hq3bVhhiMDdgXA94ordIbsx96+54AlqP5OTaIdL0Zcg\nForlvp7D4SA3PVd5BWk5Cm01tejIIuy+uhspISloaqSeW5K+7La73umKWatnocysDOvD18PpfSd0\nserCdnlERcoelgEy+a9nGAYVT2p/iU1qRlP+1NCyE8uw6eImZEzJQHPj5myXU6Oqsir0iu4F0X4R\n9o7Zi9w2uTDgG+Bnj5/ZLo2okIF5zS+kq8PhcCAwUu36Am1Cnbaa+ePUH/jrzF9IC02DjakN2+XU\nKDcjF5GOkdDn6UPvHz3kd8gHj8PDsPbDqMvWMR18OkDPVP41A1KRFPaDaFOwhqJOW42sPbcWy04u\nQ8aUDNiZ2bFdTrUkQgnSvknDpW2XMHLNSHTy7YSBFQOx6soqCLgC6rJ1UMeRHcHTk/P9BQd4b/h7\nNFe7ESi01cTGCxvx45EfcTj0MNpYtGG7nGo9PPcQMcExaN61OWZlz4JRsxfzxZsaNcVn/T/DjSc3\n1KLLZmQM7h29h+KcYnB4HLRwbAFrJzpMQVm4fC68l3tjf/h+iCtqfyGpZ6yHIQuHqKgy7UQrItXA\n1ktb8Xny50gLTUPnZp3ZLucdUrEUR386ijN/noH3cm90m9jtneXIL/8/4HA4EEvFyC3Ordcz2li0\nafQ+KoyMwamVp3D8l+MQlYvAyJgX/4/KGFi0tYD7Ind0HqV+v7/aIvP3TKR+kwqpSApG+mYu8PR5\n4OnxEJQQREMjoF3+NNruq7sxO2E2UkJS0K15N7bLeUfhtULEhsTCsKkh/Db4wcy27rni67PWI3x/\nOIwF8n0LXC4ux9qRazGtx7QG1ymTyrBj9A7kpOTU2O3x9HlwmeaC4auG0x4YSpJ/IR8nlp3A1T1X\nweVywTAM+Pp89P6wN3p/0BumLU3ZLlEtKC20hUIhXF1dUVVVBZFIhFGjRuHnn/83Zkmh3ThxN+Iw\nI34GDk4+CGdrZ7bLecPLrvXIwiNwX+iOnuE95Q66EmEJbH+zRbm4XK7rTQQmyPs0D+YG5g2u99CX\nh3DmzzN1fnsOAEZWRnCb74ae4T3B5dG7eGWQCCUoLywHl8+FsZUxuHz6fX6dUjvtiooKGBkZQSKR\nYNCgQVi2bBkGDRrU6AfruqTbSQiJCcGBSQfQ27Y32+W8oTi3GPum7oNUJIX/Jn9YdrCs9z2+P/w9\nlp5YWucWroZ8Q3w58EvMd5vfwGoBUbkIy5ovkyuwXxIYCdBqYCtM2j9J/pdohCiIUjeMMjJ68bJJ\nJBJBKpXC0rL+f4HJm1LvpiI4JhixE2LVKrAZhsH5v89jXe916ODTAVOOTGlQYAPAp/0/lev4Mx6H\nh0/6fdKgZ7x0eftloJ6jHeIKMe4fu4/4mfGNejYhqlbn7BGZTIYePXrgzp07mDVrFhwcHN74+vz5\n81/92M3NDW5uboquUascuXcEE/ZMwJ5xezCg1QC2y3nlef5zxM+MR8n9EoSkhaBF9xaNup+5gTk+\n6/9Zrd22Id8Qnw34rFHDIgDw8MxDiMvl77JfklRKcGXHFXj85EFjrUSp0tPTkZ6erpB7yf0isqSk\nBMOGDcPixYtfBTMNj9TPyQcn4bfdD9vGbHt1mos6uLr7KhJmJ6DHtB5w/d5VYcMFdY1tK2IsGwDi\npsfh/IbzDfosT5+HAV8MgPuP7o2qgZD6UMl+2ubm5hgxYgTOnj3boAfpurMPz2LU9lGI8o9Sm8Cu\nfFaJvZP3IvXrVIyPGQ/3Re4KHd992W0b8t89tFdRXTYANOvcDHyDhi05kFZJcS/jXqNrIERVag3t\nJ0+eoLj4xZaLlZWVOHToEFxcXFRSmDa5kH8BI7aOwDrfdfB5z4ftcgAAd5LvINIxEoZNDBF+Phyt\n+rdSynNqGttWxFj2S47BjvU6aPhtUpFUIXUQogq1hvajR4/g7u4OZ2dn9O3bF76+vvDw8FBVbVrh\ncsFl+ET7YJXPKozqPIrtciAqF+HABwcQNz0Oo/4ZBZ8/fKBnrLyzJqvrthXZZQOASQuTF0up9Rvw\nXQIHdKIO0Si0uEaJbjy5Afcodyz1WopJ3SexXQ4enHiA2NBY2PW3g89KHxhY1G93toZ6e2xbUWPZ\nrxOWCLGu9zqU3C+BtEr+zllgLEBQQhBav99aYbUQUhc6I1IN3X56G56bPbFwyELWA1tSJUHqV6nY\nMXoHPH/xREBUgMoCG3iz21Z0l/2SgbkBZpyZgY6+HcEVyPm/NQcwsTaB/WBaVk00B3XaSnCv+B5c\nN7riq0FfIbxXOKu15F/MR2xILCzaWmDkmpEwacHOGZMvu20OOArvst9Wll+GbSO34fHFx5BJatid\nnwPom+pj2slpdCQaUTnae0SN5JXmwXWjK+b2nYs5feewVodMIsPxpceR+VsmvJZ6wSnUifX9Nv44\n/Qe44OLDPh8q/VmMjEHqN6k4tfwUOFzOq9WSHC4HfEM+zFuZY9zecbDqQoFNVI9CW008KnsE142u\nmNFjBr4Y+AVrdRTdKkJsSCwERgKM+mcUzO2V19WqO2GJEBejLuJuyl1IKiWwaGOBHjN6wLa3Ldul\nER1Goa0GCsoL4LbRDZO6T8K373/LSg2MjMGZ1WeQ/n06XP/rij6z+4DDpd3sCFE3jclOOgRBAYoq\niuAZ5YkxDmNYC+zSvFLsC9sHYbEQYcfC0KxzM1bqIIQoF3XajVQsLIZHlAc82nrgF89fVD5uzDAM\nsrdkI/mzZPSd0xeD/jOItsEkRM3R8AhLSqtKMXTzUPS164vlw5arPLDLC8txIOIAntx4goCoANj0\nUN+DgAkh/0PztFnwXPQcI7aOgLO1MyuBfSPuBiKdItGkXRPMPDuTApsQHUGddgNUiCswcutItLFo\ng/V+6+XaN1pRhCVCHPz4IHIzcuG/yR+tB9NKPkI0DXXaKiSUCBGwIwAtTVtine86lQZ2zuEcRDpF\ngqfHQ8TFCApsQnQQddr1IJKKMGbnGBjyDbF1zFbwuaqZfCOuFCP1q1Rc3XUVvut88d7w91TyXEKI\nctCUPxUQS8WYuGcieBweokdHqyyw/z39L2JCYmDjYoNZl2bB0PLdvakJIbqDQlsOUpkUIbEhqBRX\nImZ8DAQ8gfKfKZbiyI9HcG7NOXiv9Ea38d2U/kxCiPqj0K6DjJEhLC4MTyqeIG5CHPT5+kp/ZsGV\nAsSGxMK4hTHCz4fT+YWEkFcotGshY2QI3x+O3OJcJAYlwlCg3KEJmVSGzOWZOL74ONx/ckeP6T1Y\n3+SJEKJeKLRrwDAM5iTOwZWCKzg4+SCMBEZKfd6zu88QOyUWADD91HQ0aUenqRBC3kWhXQ2GYfD5\noc9x6t9TSAlOgam+8oYnGIZB1rospH6dikH/GYR+n/QDl0czMQkh1aPQfgvDMPgm7Ruk5aQhNSRV\nuZv1PypD3LQ4PM9/jikZU9C8a3OlPYsQoh2opXvLgowFiLsRh0PBh2BpaKm051zecRlrnNegZa+W\nmJ45nQKbECIX6rRfs/jYYmy7vA0ZUzLQzEg5W5tWPq1EwocJeHT+ESbGT4RtH9qMnxAiP+q0/9/v\nJ3/H+qz1SA1JRQuTFkp5xq3EW1jtuPrFVL6scApsQki9UacN4M/Tf2Ll6ZXImJIBWzPFB6nouQjJ\nnyXjdtJtBEQFoK17W4U/gxCiG3S+016ftR6/HP8FaSFpsDe3V/j97x29h0inSEhFUkRkR1BgE0Ia\nRac77aiLUZifPh+HQw+jbRPFhqlEKMHh7w4je0s2RkSOQOdRnRV6f0KIbtLZ0N5xeQfmpcxDakgq\n3muq2F3zHp1/hJjgGDTr1AwR2REwtjJW6P0JIbpLJ0N777W9mJs0F8nByXCwclDYfWUSGY4tPoZT\nK05h2O/D0D2oOy1DJ4QolM6F9v6b+zHrwCwkBiXCsYWjwu775MYTxIbEQt9MHzOzZsK8lfIW5RBC\ndJdOhXbynWSE7QtD/MR49LDpoZB7MjIGp1edRsaCDLj94Ibes3qDw6XumhCiHDoT2odzDiNobxBi\nxsegr11fhdyz5H4J9k3dB3GFGNNOTEPTjk0Vcl9N4xPtg5tFN+W+vqVJSxwNO6rEigjRXjoR2sfu\nH8O43eOwM3AnBtkPavT9GIbBxaiLOPT5IfT7tB8GfjEQXL7uzp400zNDbnEuZIyszms54KBdk3Yq\nqIoQ7aT1Z0SeyjsF322+2DJ6C4a2H9ro+5UXlCN+Zjye3X2GgM0BsHayVkCVmu3209twXO2ISkll\nndca8g1xPOw4XGxcVFAZIeqJTmOvQdajLPhu88U/o/5RSGBfi7mG1Y6rYdXFCjPOzKDA/n8dLDvA\nt6NvnedmcsDBQPuBFNiENEKtnfaDBw8QEhKCgoICcDgczJw5E3PmzPnfh9W4085+nI2hm4di9YjV\nCOgS0Kh7CYuFSJyTiAcnHiAgKgCtBrRSUJXaQ55um7psQl5oTHbWGtr5+fnIz8+Hs7Mznj9/jp49\neyI2NhZdunRp9IOV6WrhVXhEeWD5sOUY3218o+5159AdxE2LQ8eRHeG1xAt6JnoKqZFhGOSdzEPJ\n/RJw+VxYu1jDsr3ytoJVhfG7xmPv9b2QyCTvfI0DDjzaeeBQ8CEWKiNEvTQmO2v9ftba2hrW1i+G\nAExMTNClSxc8fPjwVWiro5tFN+G12QtLPJc0KrBF5SKkzEvBjX034LveFx2GdVBIfS+nCB5fchxV\nJVUA58UfoFQkhbWLNdwXuaPtEM3cn2SRxyLE34yvNrQN+AZY4rmEhaoI0S5yzx7Jzc3F+fPn0bfv\nm9Pl5s+f/+rHbm5ucHNzU1Rt9Xb32V14RnligdsCBDsFN/g+eZl5iAmJgW0fW0RkR8CwiWIO9JVJ\nZNjuvx25h3MhrhC/+9yTedg6Yiu8l3uj58yeCnmmKr0c236726axbKLr0tPTkZ6erpB7yTV75Pnz\n53Bzc8O3334Lf3///31YRcMjGbkZuJB/odZrnlU+wx9n/oB7G3e4tXFDqHMoTPRM6vUcqUiKjB8y\nkLU+C8P/HA6HQMUtcQeAxLmJyFqfBUnFu53o6/hGfAQlBKGNaxuFPl8VqhvbprFsQt6ktDFtABCL\nxbsrWBYAAA2NSURBVBg5ciR8fHzw8ccfK+zB9TEjfgY2XtgILqf6yS4Mw0AsE4PH4YHL4ULGyJD3\naR6sTeSf3fE4+zFiQmJg3socvut8YWJdv8Cvi7BYiF9tfoVEWHtgv2T/vj2mZkxVaA2q8vrYNo1l\nE/IupU35YxgG06ZNg4ODwzuBrUrfDv4WfC4fIqmo2v/EshdDDVJGCgAIcQqRO7BlUhmO/XIMUR5R\n6DunLybETVB4YAPAxaiL9Vre/vD0QzzLeabwOlRhkcciCLgCADSWTYii1Rrax48fx5YtW3D48GG4\nuLjAxcUFSUlJqqrtldYWrTHOYdyrIKgNj8vDD24/yHXfp7efYqPrRtxOvI0ZZ2bAJcxFabvyPTjx\noNpx7Jrw9Hl4nP1YKbUo28uxbRrLJkTxan0ROWjQIMhkdS9NVoUFQxZg59Wdr7rq6gi4AkzsNhGt\nzGufR80wDM6tOYe0b9Pw/rfvo++cvkrf5EkmrufvI/PixaWmWuSxCDHXY6jLJkTBNGbvkZfd9rbL\n22oMbnm67NJ/SxE3LQ6VRZWYenQqrLpYKaPcdzTt1BRcAVfu8GZkDCxaWyi5KuXpYNkBBV8UwMJA\nc38NhKgjjVrGvmDIghpfRtbVZTMMg0tbL2GNyxrY9bdD2IkwlQU2ALhMcwGXJ/9vt1EzI9j0tFFi\nRcpHgU2I4mlMpw0AzYyawcLAAgXlBWDw5pvX2rrsiicVODDrAAquFCAoIQgte7VURblvsGxvCbsB\ndrh/9H6d3bbASIBBXw2iU28IIe/QmE67UlyJUdtHYZD9IOjx3lxKXluXfXP/Tax2XA1ze3PMPDeT\nlcB+aczWMTC2MgZXUPNvu8BIgA4+HdBjumIOaSCEaBeN2Jq1SlIF/x3+sDCwwJaALQjbF/bG2LYB\n3wA3Z998I7SrSqtw8NODyEnNwaiNo9RmoUp5QTn2BO3Bg2MPwMgYSEUvpikKjAVgZAz6zukL90Xu\n9RpKIYRoFqUurlHWg+UlkoowdtdY8Ll8bB+zHQKeAPeK76Hzn50hlAgh4Aow2XEy/h7196vP5Gbk\nYt+UfWjn2Q5DfxsKfVN9pdbYEM9ynuHCPxdQdKsIPD0eWvVvBcfJjgrbkIoQor60NrQlMgkm7pkI\noUSIPeP2vDEsEhoTiq2XtoLP47/qssWVYqR9k4YrO65g5JqR6Diyo9JqI4SQhtLKQxCkMilCY0NR\nWlWKXWN3vTOOvWDIAsggezWW/fDsQ6ztuRalD0oRcTGCApsQopXUstOWMTJMi5uGe8X3cGDSARgK\nqt9lb8flHRhsOxg3V9zEmb/OwHu5N7pN7EazLgghak1p+2mzgWEYfHDgA9x+ehtJQUk1BjYAuHPd\nEeMVA6NmRgg/Hw4zWzMVVkoIIaqnVqHNMAzmJs3FhfwLSA5OhrGecfXXyRhkrsjE0UVH4b7QHT3D\ne1J3TQjRCWoT2gzD4MuUL3HiwQmkhKTATL/6rrk4txixU2Ihk8gw/dR0jT+iixBC6kNtQvu/6f9F\n8p1kpIWkVbv8mWEYnP/7PFL/k4oBXwxA/8/601xmQojOUYvQXnhkIfZe24vDoYfR1KjpO19/nv8c\n8TPiUfKgBCFpIWjRvYXCa2BkzKvzGgkhRF2xHtpLjy9F1MUoZEzJQHPj5u98/eruq0j4MAE9ZvTA\nuD3jwNPjKezZRTeLkLk8E9lbsiEqE4HD48Cmhw0GzhuITn6dwBMo7lmEEKIIrE75W5G5AitPr0TG\nlAzYmdm98bXKZ5VInJ2If8/8i4CoANj1s6vhLg1zbPExZCzIgEwie2cDJz0TPZjbmyMkLQQmLRR/\nig0hRLdp5OKayLOR+D3zd6SFpL0T2LcP3sbq7qthaGmIiAsRCg/sUytP4f/au/+YJu88DuBvsTBX\nMPyQE3fQwwio/JC2jqQbG5tVWAUDqZFcxIN1QpxbshiXuNxclly4Uy4uS+50ZMz9OG4MIk7NhIvI\nBokFAyP4o3V6xBRzNpQfsgAHiAPa0u/9YY5cz+rz1P7i23xe/9Hn2/bzyVs+PD59nj6df+qEfdbu\n8hv3rDNWjJvGUZtTC+uM1avvTQghngjI4ZFaQy2OXj4KvU6PxKjExcetM1a0vdcG0wUTtH/XYl3u\nOq+/9/z0PNrfb4d99sk32HXYHZgenMa1L67hxXdf9HodhBDyNPy+p93wUwM+vPQh2svakRSTtPj4\nQNcAPlN8BtsvNrz909s+GdgAYPzaKPrWYvZZO378+MeHH1ISQsgS4Nc97TP/PINDbYfQXtaODbEb\nAAD2eTv0f9Djxtc3UPBpAVJ3pvq0hluNt2B7IP4Gu3OTc5i4M4FV6x89q4UQQvzNb0O76XYT3rn4\nDn4o/QHpq9MBAPeM9/Dd698hel003rrxFsJXu74C0pvmp+bdWh8iCcH8tHvPIYQQX/HL0G7pb8G+\nf+xDy+9aIF8jh8PuQNdHXej5Sw/yPs6D/HW5386PXhG1wq31DrvD7ecQQoiv+Hxot/+rHbrzOjTv\nbkbWr7MwbhrHed15hEpD8ea1NxH5m0hfl+AkszQT94z3RB8ikcZKEZ0U7eOqCCFEHJ9+ENlh7kDJ\nuRKc++05vBD/Anqre/FV9lfI2JOBsrYyvw9s4OHQFnt+pEQqQfZ72XSVJCFkyfDZnna3pRvFZ4rR\nuKsR8hA56jX1mJ+eR3lXOWI3xPrqbQWFRYRh+1+34/uD38P2y+P3tpeHLUfMuhgoK5R+rI4QQp7M\nJ3vaV4auQNuoRZ22DrFdsfh88+dIfDUx4AP7v57f9zxyP8qFZIXE5WXxYRFhWL1pNd7oeAOhz4YG\noEJCCHHN65exG0YM2N6wHdWvVsPxZwfGTePY+c1OPKd8zuNivW3KMoUrn16B8W9GzP57FstDlyNe\nFY+Xfv8SkvKSRJ/PTQgh7lgyN/a99fMt5Nbl4oNffQDb+zZklmVC/Uc1JCsC/r1UhBCyZCyJ243d\nHruN1+pew567e4AaoPjbYiTmJAo/kRBCiGheGdp3Ju5A/YUa6nY1tiZvRZ4xD8+sfMYbL00IIeR/\neDy0+0f68XLNy3il+xVUHqpESn6KN+oihBDigsfHtFcdWgXtjBafHP0Ez8Y8/s7phBBCHgro92k3\n5Dfgy5ovg3Jg6/X6QJfgU9Qf34K5v2DuzVOCQ7u8vBxxcXHYtGmTy+2arRqvF7VUBPs/HOqPb8Hc\nXzD35inBob137160trb6oxZCCCECBId2Tk4OoqPpC5MIIWQpEPVBpNlsRmFhIW7evOn8ZPoiJUII\neSoBubjGkzuxE0IIcV/A7sZOCCHEfTS0CSGEI4JDu6SkBNnZ2TCZTJDJZKitrfVHXYQQQlwQHNqn\nTp3C8PAwmpqaEB4ejqqqKhw7dszl2gMHDiAlJQVyuRwGg8HrxfpSa2srNm7ciJSUFJf96fV6REZG\nQqlUQqlU4siRIwGo8ukInWsP8JudUG885wYAFosFarUa6enpyMjIwIkTJ1yu4zU/Mf3xnOHc3BxU\nKhUUCgXS0tJw+PBhl+vcyo+JYLfbWVJSErt79y6zWq1MLpezvr4+pzUXLlxg+fn5jDHGenp6mEql\nEvPSS4KY/i5dusQKCwsDVKFnOjs72fXr11lGRobL7TxnJ9Qbz7kxxtjIyAgzGAyMMcbu37/P1q9f\nH1S/e2L64z3DBw8eMMYYs9lsTKVSscuXLzttdzc/Uce0e3t7kZycjLVr1yI0NBS7d+9GU1OT05rm\n5mbodDoAgEqlwuTkJEZHR8W8fMCJ6Q/g92wZoXPtec5OzHUEvOYGAGvWrIFCoQAAREREIDU1FcPD\nw05reM5PTH8A3xlKpVIAgNVqxcLCAmJiYpy2u5ufqKE9NDQEmUy2+HNCQgKGhoYE1wwODop5+YAT\n09+yZcvQ3d0NuVyOgoIC9PX1+btMn+E5OyHBlJvZbIbBYIBKpXJ6PFjye1x/vGfocDigUCgQFxcH\ntVqNtLQ0p+3u5ifqPG2xF9H8/19DXi6+EVPn5s2bYbFYIJVKcfHiRWi1WphMJj9U5x+8ZickWHKb\nmZlBcXExjh8/joiIiEe2857fk/rjPcOQkBAYjUZMTU1Bo9FAr9djy5YtTmvcyU/UnnZ8fDwsFsvi\nzxaLBQkJCU9cMzg4iPj4eDEvH3Bi+lu5cuXif3Py8/Nhs9kwMTHh1zp9hefshARDbjabDbt27UJp\naSm0Wu0j23nPT6i/YMgQACIjI7Fjxw5cvXrV6XF38xM1tLOystDf3w+z2Qyr1YrTp0+jqKjIaU1R\nURHq6uoAAD09PYiKikJcXJzohgJJTH+jo6OLfw17e3vBGHvk2BSveM5OCO+5McZQUVGBtLQ0HDx4\n0OUanvMT0x/PGY6NjWFychIAMDs7i7a2NiiVSqc17uYn6vCIRCJBdXU1NBoNFhYWUFFRgdTUVJw8\neRIAsH//fhQUFKClpQXJyckIDw/n6nxuMf2dPXsWNTU1kEgkkEqlaGxsDHDV4pWUlKCjowNjY2OQ\nyWSorKyEzWYDwH92Qr3xnBsAdHV1ob6+HpmZmYu/7FVVVRgYGADAf35i+uM5w5GREeh0OjgcDjgc\nDpSVlWHbtm0ezU6P7lxDCCHEv+gydkII4QgNbUII4QgNbUII4QgNbUII4QgNbUII4QgNbUII4ch/\nAJm9C1D3iToWAAAAAElFTkSuQmCC\n" | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtYVWXeP/73PnESOagYJoqHJAVFpVRQRBSLEpTcCMYh\nzlpjPtNIzTPPUH7HscwerSmjmcaUQz5ykJMIggrKQWwDTh4CD2GCGvxAQSOQLbDZe6/fH45OlsJm\nnxZr83ldV9flJWuv9cb07e297nUvHsMwDAghhHACn+0AhBBCVEelTQghHEKlTQghHEKlTQghHEKl\nTQghHEKlTQghHDJgae/atQuzZs3CzJkzsWvXLn1kIoQQ8gT9lvaFCxewd+9e/Otf/8J3332Hw4cP\no76+Xl/ZCCGE/Eq/pf39999jwYIFMDExgUAgwJIlS5CTk6OvbIQQQn5F2N8XZ86ciXfffRc//fQT\nTExMUFBQgPnz5z/8Oo/H03lAQggxROo+jN7vSHv69On405/+hBdffBEvv/wy5s6dCz7/0Y8wDGOw\n//3lL39hPQN9f/T9Dcfvz5C/N4bRbOeQAW9ERkVF4dtvv0V5eTmsrKzw7LPPanRBQggh6ut3egQA\nWltbMXbsWPz44484ePAgqqur9ZGLEELIYwxY2mvWrMGdO3cgEonwj3/8AxYWFvrINSR4enqyHUGn\n6PvjNkP+/gz5e9MUj9FggoXH42k8P0MIIcONJt1JT0QSQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkT\nQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkTQgiHUGkTQgiH\nUGkTQogeKZQKjT5PpU0IIXoilUkhzhBrdA4qbUII0YOWuy3wSPbAKNNRGp2HSpsQQnSs9lYtXBNc\nIZ4uRuKqRI3ONeA7IgkhhKivqL4IoTmh2PXSLgTNCtL4fFTahBCiI3vO7MHm0s3IWZsD94nuWjkn\nlTYhhGiZklEi7kQcsi9noyKyAtNGT9Pauam0CSFEi7r7uhGeG47mu82ojK7EGLMxWj0/3YgkhBAt\naZO2wWufFwR8AY6HHdd6YQNU2oQQohV1t+vgluCGpZOXIkWcAhOhiU6uQ9MjhBC9qbtdh5TaFDBg\nVP6M/wx/zLGdo8NUmiu/Xo7ArEBs99qOqLlROr0WlTYhRG+aOpvwwckPVC5tPo+P2U/NHtKlvb9m\nP2KPxSLVPxXLpyzX+fV4DMOo/lferz/M40GDjxNChhmGYTD7n7NR21qr0vETLSfi2lvXwOcNvZlc\nhmGwtXwrks4noSC4AE5jnVT+rCbdOfR+JQghBovH4+HjFz/GCNGIAY81NzLHzhd2DsnClilkiDgU\ngYIfClAVUzWowtYUTY8QMkSdaDiBn3t+Vvn4sSPGYrH9Yh0m0o4XpryAKdZTBhxtjzIdhTWOa/SU\nSnXt3e0QZ4hhZWKFsogymInM9Hp9mh4hZIiy2WkDqUwKkUA04LEyhQx2Fnb44b9+0EMyzRXVF0F8\nQAxpn/SxXzc3MkfCqgQEOgXqOVn/GtobsCJlBXwcfLBj+Q4I+AK1zqNJd1JpEzJEfVb1Gd4ree+J\nxfZL5kbm+NLnS4Q6h+ohmeYGmts2EZrAa7IXeOA99uuWJpZI9EuEkcBIlzEfUdVUhdUHVmOzx2Zs\nmLdBo3NRaRNigLr7uvH0355WaYpk/MjxuP6H6xDyuTPjOdBouz8TLCbg+h+u622+O/NiJjYUbkCy\nXzJ8HHw0Ph/diCTEAJmKTPGXJX8Z8KaduZE5Plr+EacKG/jP3PZgmRuZY8cLO/RS2AzDYMc3OxBb\nFIvi14q1UtiaGvC73r59O5ycnDBr1iwEBwejt7dXH7kIIQBef+71Aee0LY0t8erMV/WUSHsGs5Lk\nl6xNrBHgGKCjVP/Rp+jDGwVvILU2FZXRlUNmrXi/pX39+nXs2bMHZ8+eRW1tLRQKBdLT0/WVjZBh\nb6DRNldH2Q/8erT9pDnsBx6MstW9Aaiqzt5O+Kb5orGjERWRFbCzsNPp9Qaj39K2sLCASCTCvXv3\nIJfLce/ePYwfP15f2Qgh6H+0zdVR9gO/HG2bG5nD1c6137+A9DHKbuxohHuiO6ZaT0VeUB5GGo/U\n6fUGq9+/nkeNGoW3334bEydOhKmpKby9vbF8+aOPaW7ZsuXhjz09PeHp6amLnIQMWw9G279eScL1\nUfYDD0bbnb2dSH4lGbP/ORtypfw3x+ljlH2m+Qz80v0Q6xaLTa6bwOP1P/JXVVlZGcrKyrRyrn5X\nj9TX12PlypWoqKiApaUlAgICsGbNGoSEhNz/MK0eIUQvHreShIsrRp7k+9vfo0fegzm2c7A2cy1y\nvs/5TXFPsJiAa29d01lp59flIyovCrt9d0M8Q7M3pg9EZ6tHvv32WyxcuBCjR4+GUCiEWCyGRCJR\n60KEEPX9em7bUEbZD0wfM/3hjb5tXtt+833pepQdXx2P1w+/joLgAp0Xtqb6Le3p06ejqqoK3d3d\nYBgGx48fh6Ojo76yEUJ+4Zdz21yfy+7PM6OewSqHVY8Ut67mshVKBd46+ha+/PZLSKIlmD9+vtav\noW39lvbs2bMRFhaG559/Hs7OzgCA9evX6yUYIeRRD0bbAAxqlP04vxxt62qULZVJIc4Q40LrBUii\nJZhkNUmr59cVeiKSEA7p7uvGByc/wF+X/tWgSxsA1mauRdblLIwfOV7rc9ktd1vgm+YL56ecsdt3\nt14fhwfoMXZCiAG6+tNVPPvFs0gRp2h1Kqj2Vi1803yx3mU94hbHaW2FyGBQaRNCDNL5m+fh/JSz\n1h5ZL6ovQmhOKHa9tAtBs4K0ck51UGkTQsgA9pzZg82lm5EVmAX3ie6sZtGkOw17UowQMuwpGSXi\nTsQh+3I2KiIrMG30NLYjaYRKmxBisLr7uhGeG47mu82ojK7EGLMxbEfSGG3NSggxSG3SNnjt84KA\nL8DxsOMGUdgAlTYhxADV3a6DW4Iblk5eihRxCkyEJmxH0hqaHiGEGJTy6+UIzArEdq/tiJobxXYc\nraPSJkQDkkYJPJI8wED1lQBx7nF4f9n7Okw1fO2v2Y/YY7FI9U/F8inLB/4AB1FpE6IBl3EusDC2\nQHtPu0rHmwpNh8QrqwwNwzDYWr4VSeeTUBpeCqexTmxH0hma0yZEAyZCE2zx3KLSK7N44OH5p5+H\nq52rHpINHzKFDBGHIlDwQwGqYqoMurABKm1CNLb+ufUq7V1hKjLFjhd26CHR8NHe3Q7v/d7o7O1E\nWUQZbM1t2Y6kc1TahGhIldE2Dzw8N+45GmVrUUN7A9wS3OAyzgVZAVkwE5mxHUkvqLQJ0YKBRts0\nytauqqYqLEpchN8v+D0+efETnb/odyih0iZEC/obbdMoW7syL2ZiZdpK7F25FxvmbWA7jt7RhlGE\naEmPvAdPf/L0b1aSmInMcCLsBJW2hhiGwU7JTsSfjkd+UP7D15NxjVKhhEAo0M07IgkhqnvcaJtG\n2drRp+jDGwVvILU2FZXRlZwtbJlUhsw1mRqdg0qbEC369dw2zWVrrrO3E75pvmjsaERFZAXsLOzY\njqSWrptd+NrzaxhbGGt0HiptQrTol6NtGmVrrrGjEe6J7phqPRV5QXkYaTyS7Uhqab3Yir2ue+Gw\n0gF+yX4anYvmtAnRsgdz29I+Kcojyqm01XSm+Qz80v0Q6xaLTa6bWHktmDY0HG9AdnA2vP/mDefQ\n+y9Ip5cgEDKEmAhN8NHyj3Dw8kEqbDXl1+UjKi8Ku313QzxDzHYctZ1LPIcTfz6BwKxA2HvYa+Wc\nNNImREcYhuHs6JBN8dXx2H5qO3JfzcX88fPZjqMWRsmg5L0SXMy4iOCCYIx59tG9vGmkTcgQRIU9\nOAqlArFFsSiuL4YkWoJJVpPYjqQWeY8cuRG56GzsRHRlNEbYDLwvzWBQaRNCWCeVSRGcE4wuWRck\n0RJYmVixHUkt927fQ7pfOizsLBB2IgxCE+1XLK0eIYSwquVuCzySPTDKdBSOhBzhbGHfuXIHCW4J\nsF9iD/80f50UNkClTQhhUe2tWrgmuEI8XYzEVYkq7ZY4FN2ouIEkjyQs+tMieH3oBR5fd1NjND1C\nCGFFUX0RQnNCseulXQiaFcR2HLXVpNTg2KZjEKeIMfWFqTq/HpU2IUTv9pzZg82lm5GzNgfuE93Z\njqMWhmFw8oOTOJdwDuEl4Rg7c6xerkulTQjRGyWjRNyJOGRfzkZFZAWmjZ7GdiS1KGQK5K/PR+uF\nVkRXRmPkOP09qUmlTQjRi+6+boTnhqP5bjMqoysxxmzMwB8agrrbu5HhnwFjC2NElEfAaIR+5+Hp\nRiQhROfapG3w2ucFAV+A42HHOVvY7dfakbgwEbazbRGYHaj3wgaotAkhOlZ3uw5uCW5YOnkpUsQp\nMBGasB1JLU3VTUhclIh5b86D96fe4AvYqc9+r1pXV4e5c+c+/M/S0hKff/65vrIRQjiu/Ho5PJI9\nELc4DtuWbQOfx81x4qXsS0jzTcPKr1Zi/kZ2H61Xee8RpVKJ8ePH4/Tp05gwYcL9D9PeI4SQJ9hf\nsx+xx2KR6p+K5VOWsx1HLQzDoPKTSlR9VoWgvCCMcxmnlfPqZe+R48ePY+rUqQ8LmxBCHodhGGwt\n34qk80koDS+F01gntiOpRSlXonBjIRoljYiujIblBEu2IwEYRGmnp6cjODhYl1kIIRwnU8iwLn8d\nLrddRlVMFWzNbdmOpJbezl5krc0CAESditL4bTPapFJpy2Qy5Ofn43//939/87UtW7Y8/LGnpyc8\nPT21lY0QwiHt3e0QZ4hhZWKFsogymInM2I6klo7GDqT5psHOzQ4rvlgBvlDzefiysjKUlZVpHg4q\nzmkfOnQIX375JY4ePfroh2lOmxACoKG9AStSVsDHwQc7lu+AgC9gO5JaWs61IH1VOha8tQBub7vp\nbHtdnc9pp6WlISiIu3sDEEJ0p6qpCqsPrMZmj83YMG8D23HUduXwFRyKPASff/rA0d+R7ThPNOBI\nWyqVwt7eHteuXcPIkY8+qkkjbUKGt8yLmdhQuAHJfsnwcfBhO47aTn9xGhXbKrD24FrYuer+be+a\ndCe9bowQMmgMw2CnZCfiT8cjPygfc2znsB1JLUqFEsXvFOPq0asILgiG9RRrvVyXXjdGCNGbPkUf\nNh7ZiOqmalRGV8LOQvcjU12QSWXICclBb0cvoiRRMLU2ZTuSSqi0CSEq6+ztREBmAAQ8ASoiKzDS\nWH+722lT180upK1Mg42jDQIyAiAw4s6NU24+U0oI0bvGjka4J7pjqvVU5AXlcbawWy+2Yq/rXjis\ndIBfsh+nChugkTYhRAVnms/AL90PsW6x2OS6ibNvmm843oDs4Gx4/80bzqHObMdRC5U2IaRf+XX5\niMqLwm7f3RDPELMdR23nEs/hxJ9PIDArEPYe9mzHURuVNiHkieKr47H91HYUBBdg/nh2d7dTF6Nk\nUPJeCS5mXETEyQiMeZabe3k/QKVNCPkNhVKB2KJYFNcXQxItwSSrSWxHUou8R47ciFx0NnYiujIa\nI2xGsB1JY1TahBgoRZ8C10uv427LXQhNhLBztYOVvdWAn5PKpAjOCUaXrAuSaAmsTAb+zFB07/Y9\npPulw8LOAmEnwiA0MYy6M4zvghDyUF93Hyo+rMC/vvgXlEolGAUDHp8HZZ8Sdq528PrIC3YLHr+2\nuuVuC3zTfOH8lDMyAzJhJND/67S04c6VO0j1SYVjgCOWfbAMPD43b5w+Dj0RSYgBkXXJkLQ4Cbe/\nvw15j/yxxwhNhRDvF2OGeMYjP197qxa+ab5Y77IecYvjOLtC5EbFDWQGZGLZB8vgEuPCdpzHosfY\nCSEAgFTfVDScaICiR9HvcSIzEWKqYzB25lgAQFF9EUJzQrHrpV0ImsXdzeFqUmpwbNMxiFPEmPrC\nVLbjPJEm3UkP1xBiIH66+hOunbg2YGEDgLxXjortFQCAPWf2IOxgGHLW5nC2sBmGQfn75Sh5twTh\nJeFDurA1RXPahBiI01+chlKhVOlYRsHgUs4lVBZU4lDDIVREVmDa6Gk6TqgbCpkC+evz0XqhFdGV\n0Rg5jptPaqqKSpsQA9FU1QRln2ql3SfsQ544Dyb1JqiMqcQYM26uXe5u70aGfwaMLYwRUR4BoxHc\nvHE6GDQ9QoiBUHWULTWTYl/4PvCUPKQ+n8rZwm6/1o7EhYmwnW2LwOzAYVHYAJU2IQZjtMNoYIAF\nH7dH30ZCTAImXZuENblr8NTkp/QTTsuaqpuQuCgR896cB+9PvcEXDJ8qGz7fKSEGbv6b8yEyEz3x\n69ftryMpMgmLKxbDq8QLExZM4OT876XsS0jzTcPKr1Zi/kZuPlqvCZrTJsRA2LnZwXKiJe7U3QGj\nfHQ5WY1zDY55H4N/tj+mNEyBaIQIi+MWs5RUPQzDoPKTSlR9VoXQY6EY5zKO7UisoHXahBiQ9oZ2\n7Jm3Bz0dPWAUDBgwKF9SjvNzzyM4JRhj28ZCZCbC/I3zsfx/l7MdV2VKuRKFGwvRKGlEcEEwLCdY\nsh1JI/RwDSHkoZ+v/4yckBw0nm9Erncu2sa0ISgtCKN4o8Dj87B061LM/6/5nHnisbezF1lrswAA\naw6sgbGFMcuJNEelTQh5RHt3O1YmrwTvFg9vXnsT5mbmmLx0Mqa/Mp1Tb2rpaOxAmm8a7NzssOKL\nFeALDeM2HJU2IeShhvYGrEhZAR8HH+xYvgMCPndK+pdazrUgfVU6Fry1AG5vu3HmXwaqoLexE0IA\nAFVNVVh9YDU2e2zGhnkb2I6jtiuHr+BQ5CH4/NMHjv6ObMcZUqi0CTEQmRczsaFwA5L9kuHj4MN2\nHLWd/uI0KrZVICg/CHauj99Cdjij0iaE4xiGwU7JTsSfjkfxa8WYYzuH7UhqUSqUKH6nGFePXkWU\nJArWk63ZjjQkUWkTwmF9ij5sPLIR1U3VqIyuhJ0FN0emMqkMOSE56O3sRZQkCqbWpmxHGrKotAnh\nqM7eTgRkBkDAE6AisgIjjbn3dCMAdN3sQtrKNNg42iAgI4BTq1vYYBjrZwgZZho7GuGe6I6p1lOR\nF5TH2cJuvdCKva574bDSAX7JflTYKqCRNiEcc6b5DPzS/RDrFotNrps4uxSu4XgDsoOz4f03bziH\nOrMdhzOotAnhkPy6fETlRWG3726IZ4jZjqO2c4nncOLPJxCYFQh7D3u243AKlTYhHBFfHY/tp7aj\nILgA88dzc3c7Rsmg5L0SXMy4iIiTERjzLDf38mYTlTYhQ5xCqUBsUSyK64shiZZgktUktiOpRd4j\nR25ELjobOxFdGY0RNiPYjsRJVNqEDGFSmRTBOcHoknVBEi2BlYkV25HUcu/2PaT7pcPCzgJhJ8Ig\nNKHqUdeAq0d+/vlnrFmzBjNmzICjoyOqqqr0kYuQYa/lbgs8kj0wynQUjoQc4Wxh37lyBwluCbBf\nYg//NH8qbA0N+Kv31ltvYcWKFcjKyoJcLodUKtVHLkKGtdpbtfBN88V6l/WIWxzH2RUiNypuIDMg\nE8s+WAaXGBe24xiEfnf56+jowNy5c9HQ0PD4D9Muf4RoXVF9EUJzQrHrpV0ImhXEdhy11aTU4Nim\nYxCniDH1halsxxlSNOnOfqdHrl27BhsbG0RGRsLFxQXr1q3DvXv31LoQIWRge87sQdjBMOSszeFs\nYTMMg/L3y1HybgnCS8KpsLWs3+kRuVyOs2fP4osvvsC8efPwhz/8AR999BG2bt368JgtW7Y8/LGn\npyc8PT11lZVwVGdTJ858dQY3z98EANjOtcVz656DhZ0Fy8mGDiWjRNyJOGRfzkZFZAWmjZ7GdiS1\nKGQK5K/PR+uFVkRXRnPyxcG6UFZWhrKyMq2cq9/pkZs3b8LNzQ3Xrl0DAJw6dQofffQRDh8+fP/D\nND1C+tF7txcHXzuIq0evAgAUvQoAgMBYAB6Ph2defgavfP0KjEdy//VRmuju60Z4bjia7zYj99Vc\njDHj5trl7vZuZPhnwNjCGOIUMYxGGLEdacjS2fSIra0tJkyYgCtXrgAAjh8/DicnJ7UuRIYXWZcM\nCa4JuHr0KhS9ioeFDdwvb3mPHD8U/oCEhQmQSWUsJmVXm7QNXvu8IOALcDzsOGcLu/1aOxIXJsJ2\nti0CswOpsHVowCV/8fHxCAkJwezZs1FTU4O4uDh95CIcV/R2Edob2h8p619T9Crw09WfUPROkR6T\nDR11t+vgluCGpZOXIkWcAhOhCduR1NJU3YTERYmY9+Y8eH/qDb6A9qHTJXpHJNG63ru9+PipjyHv\nlqt0vNBUiD+2/hFG5sNndFZ+vRyBWYHY7rUdUXOj2I6jtkvZl1DwRgH8kvzg4OvAdhzO0Nn0CCHq\nuJxzGTyB6uuK+QI+Lh+8rMNEQ8v+mv0IyAxAijiFs4XNMAwkH0tw9K2jCD0WSoWtR/RoEtG6zsZO\n9En7VD6+r7sPnY2dOkw0NDAMg63lW5F0Pgml4aVwGsvN+0NKuRKFGwvRKGlEdGU0LCdYsh1pWKHS\nJlonMBKAJ+CBkav2zz8en2fwm9/LFDKsy1+Hy22XURVTBVtzW7YjqaW3sxdZa7MAAFGnomBsMbxX\n/rCBpkeI1o17bhxEJiKVjxcaCzHuuXE6TMSu9u52eO/3RmdvJ8oiyjhb2B2NHUhanARLe0sE5QdR\nYbOESpto3eSlkwf1B9rEygSTPCfpLhCLGtob4JbgBpdxLsgKyIKZyIztSGppOdeCxIWJcH7NGT5f\n+oAvpOpgC/3KE63j8XlY9uEyiMwGHm2LzERY9uEyzm6I1J+qpiosSlyE3y/4PT558RMI+NycArpy\n+Ar2v7gf3p95Y+E7Cw3y/xWX0Jw20Yk54XPw0w8/oerTKvTde/xNSZGZCK6xrpj92mw9p9O9zIuZ\n2FC4Acl+yfBx8GE7jtpOf3EaFdsqEJQfBDtXO7bjENA6baJjdfl1KP9rOdoutT282aiQKTDWaSyW\n/GWJwS0VYxgGOyU7EX86HvlB+ZhjO4ftSGpRKpQofqcYV49eRXBhMKwnW7MdyaBo0p1U2kQv7ly5\ngztX7gAARj87GqOnjWY5kfb1Kfqw8chGVDdV43DwYdhZcHNkKpPKkBOSg97OXgRmB8LU2pTtSAaH\nSpsQlnX2diIgMwACngAH1hzASGNu7m7XdbMLaSvTYONkg5VfrTT4pZhsoSciCWFRY0cj3BPdMdV6\nKvKC8jhb2K0XWrHXdS8cVjnAL8mPCnuIohuRhGjgTPMZ+KX7IdYtFptcN3F2ZUV9cT1yQnLg/ak3\nnEOc2Y5D+kGlTYia8uvyEZUXhd2+uyGeIWY7jtrOJpxFSVwJArMCYe9hz3YcMgAqbULUEF8dj+2n\ntqMguADzx89nO45aGCWDkvdKcDHjIiJORmDMs9zcy3u4odImZBAUSgVii2JRXF8MSbQEk6wmsR1J\nLfIeOXIjctHZ2InoymiMsBnBdiSiIiptQlQklUkRnBOMLlkXJNESWJlYsR1JLfdu30O6Xzos7CwQ\ndiIMQhOqAS6h1SOEqKDlbgs8kj0wynQUjoQc4Wxh37lyBwluCbBfYg//NH8qbA6i0iZkALW3auGa\n4ArxdDESVyXCSMDNN+zcqLiBJI8kLPrTInh96AUen5srXYY7+muWkH4U1RchNCcUu17ahaBZQWzH\nUUvn/9eJo28dxZXDV/D0/KchbZOi61YXzJ8yZzsaUQM9EUnIE+w5swebSzcjKzAL7hPd2Y4zaL13\ne3Ew7CB+OPwDlHLlw59/MCUyXTwdq/augshU9b3PiXbQY+yEaJGSUSLuRByyL2ejMLgQ00ZPYzvS\noMm6ZPhq3lf46cpPYJSP/zMqNBHCxskGUaeiaG5bz+gxdkK0pLuvG69mvYpTP55CZXQlJwsbAPJf\nz8edujtPLGzg/rK/tkttKHm3RI/JiKaotAn5tzZpG7z2eUHAF+B42HGMMePmwyY3a27iQtoFQIWB\nnLxbjjNfnUFft+ovYibsotImBEDd7Tq4Jbhh6eSlSBGnwERownYktTRVNyHZIxl80SD+aPPuv52G\ncAOVNhn2yq+XwyPZA3GL47Bt2Tbwedz8Y3Ep+xLSfNPwzEvPQClTDvyBf5P3yNFxo0OHyYg2cfN3\nJyFasr9mPwIyA5AiTkHU3Ci246iFYRhIPpbg6FtHEXosFDZONsAglmDz+DzahpVD6JYxGZYYhsHW\n8q1IOp+E0vBSOI11YjuSWpRyJQo3FqJR0ojoymhYTrDE3Za7MDI3guyuTKVz8IV82M611XFSoi1U\n2mTYkSlkWJe/DpfbLqMqpgq25twsrN7OXmStzQIARJ2KgrGFMQDgmZeegdBEqHJpm9mYYaL7RJ3l\nJNpF0yNkWGnvbof3fm909naiLKKMs4Xd0diBpMVJsLS3RFB+0MPCBgC+gA/Pv3pCZDbwQzMiMxG8\ntnlx9uUNwxGVNhk2Gtob4JbgBpdxLsgKyIKZyIztSGppOdeCxIWJcH7NGT5f+oAv/O0f4+ffeB4u\n610gGvHk4haZibDwjwsxK3iWLuMSLaMnIsmwUNVUhdUHVmOzx2ZsmLfh4c//1P0TeuQ9Kp9npNFI\nVt8BeeXwFRyKPASff/rA0d9xwOMvZl5E+dZy/Nzw88NyV/QpYDPDBku2LMGzK5/VdWTyGPQYOyH9\nyLyYiQ2FG5DslwwfB5+HP9+n6MOID0eAz+NDwB949USfog/PjnkWtb+r1WXcJzr9xWlUbKvA2oNr\nYedqN6jPtl5oxZ0f7oDH42HM9DEYM52bDw4ZCk26k25EEoPFMAx2SnYi/nQ8il8rxhzbOY98XSQQ\nYa3TWqRfTEdvX++A5xshGoE3nntDV3GfSKlQovidYlw9ehVRkihYT7Ye9DnGzhyLsTPH6iAd0bcB\nR9qTJk2ChYUFBAIBRCIRTp8+/Z8P00ibDFF9ij5sPLIR1U3VOBx8GHYWjx+ZXmu/Bsd/OKo0RTLK\ndBSaY5thLDQe8FhtkUllyAnJQW9nLwKzA2Fqbaq3axPd0elIm8fjoaysDKNGjVLrAoToW2dvJwIy\nAyDgCVCkU958AAAgAElEQVQRWdHvHPRk68lYM2MN0i+mQ66UP/G4EaIR2Oq5Va+F3XWzC2kr02Dj\nZIOAjAB6AIYAUHH1CI2mCVc0djTCPdEdU62nIi8oT6WbhluXboWQ3//4xVhojBiXGG3FHFDrhVbs\ndd0Lh1UO8Evyo8ImD6k00l6+fDkEAgFef/11rFu37pGvb9my5eGPPT094enpqe2MhKjkTPMZ+KX7\nIdYtFptcN6m89nig0ba+R9n1xfXICcmB96fecA5x1ss1iW6VlZWhrKxMK+cacE67paUF48aNQ1tb\nG1544QXEx8dj8eLF9z9Mc9pkiMivy0dUXhR2++6GeIZ40J/vb25bn3PZZxPOouTdEgRkBMDew17n\n1yPs0OlLEMaNGwcAsLGxwerVqx+5EUnIUBBfHY/XD7+OguACtQob+M9o+9fTJPoaZTNKBifiTuDU\n9lOIPBlJhU2eqN/SvnfvHu7evQsAkEqlKCoqwqxZ9PQUGRoUSgXeOvoWvvz2S0iiJZg/fr5G53vc\n3LY+5rLlPXJkB2fjRvkNRFdGY7TDaJ1ej3Bbv3Pat27dwurVqwEAcrkcISEhePHFF/USjJD+SGVS\nBOcEo0vWBUm0BFYmVhqf89dz2/oYZd+7fQ/pfumwsLNA2IkwelcjGRA9EUk4p+VuC3zTfOH8lDN2\n++6GkcBIa+f+5dy2ruey71y5g1SfVDgGOGLZB8vA49OmTcMFvdiXDBu1t2rhmuAK8XQxElclarWw\ngf+Mtnng6XSUfaPiBpI8krDoT4vg9aEXFTZRGY20CWcU1RchNCcUu17ahaBZQTq7zrX2a4g6FIWj\noUcHVdoKmQL3bt8Dj8+DmY0Z+ILHj4lqUmpwbNMxiFPEmPrCVG3FJhxCG0YRg7fnzB5sLt2MrMAs\nuE90ZzvOI9outUHyieT+G9D/TWAswLzfzcO8N+fBYrwFgPsPqZ384CTOJZxD8OFg2gtkGKPSJgZL\nySgRdyIO2ZezURhciGmjp7Ed6RFn957Fkd8fgbJPCaX80ZfpCowFEIgECMoPwoSFE5C/Ph+tF1oR\nlB+EkePY296VsI9Kmxik7r5uhOeGo/luM3JfzcUYs6G1nejlg5eRE5IDefeT9ywBAKGZEGOdxmLk\n0yMhThHDaIR25+EJ99CNSGJw2qRt8NrnBQFfgONhx4dcYTNKBoUbCwcsbACQ35ND2ipFYHYgFTbR\nGC0KNVAxeTFIqU1R+XgRX4Tzb5zHFOspOkylmrrbdfBJ9cHamWvx/tL3wecNvbHFtZJrkHWq9uJc\nAJDekqKrpQsWdhY6TEWGg6H3p4FoxQtTXgCfx0ePvEel/6xNrTHJahLbsVF+vRweyR6IWxyHbcu2\nDcnCBoCrx65C1qV6afOFfFwvv667QGTYGJp/IojG1jiuUXlKwdzIHDtf2Ml6Qe6v2Y+AzACkiFMQ\nNTeK1SwD6e0Y+E03v8QoGfRJ+3SUhgwnVNoGSsAXYMfyHTA3Mh/w2FGmo7DGcY0eUj0ewzD4a9lf\n8V7JeygNL8XyKctZy6Iq83Hm4AlVfyCGL+TDbAw33/5OhhYqbQO2xnENRpn2/8YhtkfZMoUMEYci\nUPBDAapiquA01omVHIM1c+1MCESqv5hAKVdi6ov0IA3RHJW2AVNltM3mKLu9ux3e+73R2duJsogy\n2JrbspJDHTaONrBxsgFUGGzzRXzMCp0FI3NaOUI0R6Vt4PobbbM5ym5ob4BbghtcxrkgKyALZiLu\nTR2s/no1hKb9L8DiC/kwf8ocXh966SkVMXRU2gauv9E2W6PsqqYqLEpchN8v+D0+efETCPjcfP9h\ne0M7hEZCGFsYw2jkr0bRPMDI3Aijnx2NmOoYmI3m3l9KZGiiJyKHAYVSgSmfT8GPHT8+/DlzI3Mk\nrEpAoFOgXrNkXszEhsINSPZLho+Dj16vrU2nvziNim0VWHtwLcY9Nw51h+pQ9VkV2hvawePz8NTs\np7DwnYWY5DlJ5XdVkuGDHmMnAzpw4QBi8mPQJesCAEy0nIhrb13T29QIwzDYKdmJ+NPxyA/Kxxzb\nOXq5rrYpFUoUv1OMq0evIrgwGNaTrdmORDiIHmMnA/rl3La+57L7FH14o+ANpNamojK6krOFLZPK\nkOGfgZvf3USUJIoKm7CCSnuYeDC3LeKL9DqX3dnbCd80XzR2NKIisgJ2FnZ6ua62dd3swteeX8PE\nygShR0Nham3KdiQyTFFpDyNrHNfAYbQDPvX+VC+j7MaORrgnumOq9VTkBeVhpDE3tyNtvdCKva57\n4bDKAX5JfhAYcfPGKTEMNKc9zCgZpV4K+0zzGfil+yHWLRabXDdx9mZcfXE9ckJy4P2pN5xDnNmO\nQwyEJt1Ju/wNM/oo7Py6fETlRWG3726IZ4h1fj1dOZtwFiXvliAwKxD2HvZsxyEEAJU20bL46nhs\nP7UdBcEFmD9+Pttx1MIoGZS8V4KLGRcReTISox1Gsx2JkIeotIlWKJQKxBbFori+GJJoyZDY5lUd\n8h45ciNy0dnYiZiqGNrkiQw5VNpEY1KZFME5weiSdUESLYGViRXbkdQibZPiwCsHYDHBAmEnwiA0\noT8eZOih1SNEIy13W+CR7IFRpqNwJOQIZwv7dt1tJLglwH6JPfxT/amwyZBFpU3UVnurFq4JrhBP\nFyNxVSKMBNzcxe7GyRtI9kiG+/+4w+tDL/D43FzpQoYHGk4QtRTVFyE0JxS7XtqFoFlBbMdRW01K\nDY5tOgZxihhTX6D9rsnQR6VNBm3PmT3YXLoZOWtz4D7Rne04amEYBic/OIlzCecQXhKOsTPHsh2J\nEJVQaROVKRkl4k7EIftyNioiKzBt9DS2I6lFIVMgf30+Wi+0IroyGiPHcfNJTTI8UWkTlXT3dSM8\nNxzNd5tRGV2p8kuDh5ru9m5k+GfA2MIYEeURMBrBzXl4MnzRjUgyoDZpG7z2eUHAF+B42HHOFnb7\ntXYkLkyE7WxbBGYHUmETTqLSJv2qu10HtwQ3LJ28FCniFJgITdiOpJam6iYkLkrEvDfnwftTb/AF\n9FufcBNNj5AnKr9ejsCsQGz32o6ouVFsx1HbpexLKHijAH5JfnDwdWA7DiEaUam0FQoFnn/+edjZ\n2SE/P1/XmcgQsL9mP2KPxSLVPxXLpyxnO45aGIZB5SeVqPqsCqHHQjHOZRzbkQjRmEqlvWvXLjg6\nOuLu3bu6zkNYxjAMtpZvRdL5JJSGl8JprBPbkdSilCtRuLEQjZJGRFdGw3KCJduRCNGKASf2mpqa\nUFhYiJiYGNo728DJFDJEHIpAwQ8FqIqp4mxh93b2Im1lGjpudCDqVBQVNjEoA460N23ahJ07d6Kz\ns/OxX9+yZcvDH3t6esLT01Nb2YgetXe3Q5whhpWJFcoiymAm4ubudh2NHUjzTYOdmx1WfLECfCHd\ncCTsKysrQ1lZmVbO1e+baw4fPowjR47g73//O8rKyvDJJ588MqfNtTfXMAyDHyt+hORjCa6XXoe8\nVw5jC2PMCp6FBb9fgFHPjGI7Iisa2huwImUFfBx8sGP5Dgj43HydVsu5FqSvSseCtxbA7W03zr4t\nhxg+Tbqz39KOi4vD//3f/0EoFKKnpwednZ3w9/fHvn37NL6wvsmkMqS/ko6myib03esDfhGbL+KD\nL+Rj0X8vwpK/LBlWf9irmqqw+sBqbPbYjA3zNrAdR21XDl/BochD8PmnDxz9HdmOQ0i/dFbav1Re\nXo6PP/6YkyNtpVyJfV770HS6CYoexROPE5mJsPjdxVgct1iP6diTeTETGwo3INkvGT4OPmzHUdvp\nL06jYlsF1h5cCztXbr7tnQwventHJFdHoJcPXkbz2eZ+CxsA+u714eT7JzE3ai7Mbc31lE7/GIbB\nTslOxJ+OR/FrxZhjO4ftSGpRKpQofqcYV49eRZQkCtaTrdmORIjODYu3sX/1/FdoOdOi0rFCEyHc\n/+yOJf9viY5TsaNP0YeNRzaiuqkah4MPw86CmyNTmVSGnJAc9Hb2IjA7EKbWpmxHIkRlmnSnwd9a\n7+nowa2aWyofL++RoyalRoeJ2NPZ2wnfNF80djSiIrKCs4XddbMLX3t+DRMrE4QeDaXCJsOKwZd2\nb0cvBEaDWw3R29GrozTsaexohHuiO6ZaT0VeUB5GGnNzO9LWC63Y67oXDqsc4JfkN+j/t4RwncHv\nPWJsYQyFrP+57F8zGmlYu7+daT4Dv3Q/xLrFYpPrJs7em6gvrkdOSA68P/WGc4gz23EIYYXBl7aJ\nlQnGTB+D1tpWlY4XGAswc+1MHafSn/y6fETlRWG3726IZ4jZjqO2swlnUfJuCQKzAmHvYc92HEJY\nY/DTIwCw6E+LIBohUulYHo+H53/3vI4T6Ud8dTxeP/w6CoILOFvYjJLBibgTOLX9FCJPRlJhk2HP\n4EfaAOAU4ITqz6pxq+ZWv1MlIjMR5v9+PizGW+gxnfYplArEFsWiuL4YkmgJJllNYjuSWuQ9cuRG\n5KKzsRMxVTEwG8PNR+sJ0aZhseQPuL+KZP9L+9F2oQ2yLtkjX+MJeBAYCfDc68/B+2/enJ3zBQCp\nTIrgnGB0ybqQHZgNKxMrtiOpRdomxYFXDsBiggVeSX4FQpNhMb4gw4RenojU9oXZoFQocfXoVUh2\nSPDjNz+CUTIQmgjhGOAIt01usJ1jy3ZEjbTcbYFvmi+cn3LGbt/dMBJw84bq7brbSPVJxcy1M7H0\n/aXg8bn7lyghj0OlrQaGYcAoGIPZBa72Vi1803yx3mU94hbHcfZfCzdO3kBmQCaWfbgMLtEubMch\nRCf09hi7IeHxeOAJuVlsv1ZUX4TQnFDsemkXgmYFsR1HbTUpNTi26Rj8U/0xZfkUtuMQMiQN29I2\nFHvO7MHm0s3IWZsD94nubMdRC8MwOPn+SZxLPIfwknCMnTmW7UiEDFlU2hylZJSIOxGH7MvZqIis\nwLTR09iOpBaFTIH89flovdCK6MpojBzHzSc1CdEXKm0O6u7rRnhuOJrvNqMyuhJjzMawHUkt3e3d\nyPDPgLGFMSLKI2A0gps3TgnRJ8O4CzeMtEnb4LXPCwK+AMfDjnO2sNuvtSNxYSJsZ9siMDuQCpsQ\nFVFpc0jd7Tq4Jbhh6eSlSBGnwERownYktTRVNyFxUSLmvTkP3p96gy+g34aEqIqmRzii/Ho5ArMC\nsd1rO6LmRrEdR22Xsi+h4I0C+CX5wcHXge04hHAOlTYH7K/Zj9hjsUj1T8XyKcvZjqMWhmFQ+Ukl\nqj6rQuixUIxzGcd2JEI4iUp7CGMYBlvLtyLpfBJKw0vhNNaJ7UhqUcqVKNxYiEZJI6Iro2E5wZLt\nSIRwFpX2ECVTyLAufx0ut11GVUwVbM2HxiP2hT8UQnxADAaqPc1l1GOEP5f8GfaW9og6FQVjC2Md\nJyTEsFFpD0Ht3e0QZ4hhZWKFsogymImGzu52C8YvAJ/HR7e8e8BjLTosEJIWggneExC0N8hgtgwg\nhE1U2kNMQ3sDVqSsgI+DD3Ys3wEBf2i9Tmu02Wj814L/wufVn6NH3vPE42xbbBGUFoSulV0ITQrl\n7F4oZHAUMgW+z/0eVbuq0HG9A3whH+OeHwe3WDdMWDiBfh9owbDdMGooqmqqwuoDq7HZYzM2zNvA\ndpwnunPvDiZ+NhH3+u499usOVxzgl+uHY37HkL4rHTNsZug5IWFD87fNSHk5BfJeOWR3f7H9Me/+\nXvVjpo9ByJEQjLAZwV7IIYLexm4AMi9mYmXaSuxduXdIFzZwf7S9cf7Gx64Tn396PlbmrcSB4AOY\nvGoyFfYwcfO7m/h66de4d/veo4UNAAzQJ+3DrZpbSHBLQG+n4b04W59opM0yhmGwU7IT8afjkR+U\njzm2c9iOpJJfj7Z5Sh5eLHoRz1x9BikhKeix6cHZ9WeptIeJf8z8B9outg14nMBYgPkb5+PFj1/U\nQ6qhi0baHNWn6MMbBW8gtTYVldGVnCls4NHRtkgmwtqMtbC9ZYuE6ATcHXUX3lO9qbCHieYzzfj5\n2s8qHavoVeDMV2cg75XrOJXhotJmSWdvJ3zTfNHY0YiKyArYWdixHWnQ/nvhf2Nk10hEJEegx6QH\n+0P3o8e0ByKBCNu9trMdj+hJbUot+nr6VD6ex+Phetl13QUycFTaLGjsaIR7ojumWk9FXlAeRhpz\ncztSRYMCv0v6Hepn1CPXLxcKgQICnoBG2cPM3ea7gFL14xmGwb3bj7+JTQZGpa1nZ5rPwC3BDRFz\nIvD3FX+HkM/NVZf1xfX4etnX8P7QG1XLqoB/r+SiUfbwY2I5uI3LeDweRGYiHaUxfFTaepRfl4+X\nUl7C5y9/jli3WM6uWT2bcBYHXzuIwKxALIxa+HBum0bZw9MzLz8Do5Gqb62rkCkw0X2iDhMZNipt\nPYmvjsfrh19HQXABxDPEbMdRC6NkcCLuBE5tP4XIk5Gw97AHcH9um8/jQ8SnUfZw5ODrAIGRig+B\n8YBpK6bRWm0NcPPf5hyiUCoQWxSL4vpiSKIlmGQ1ie1IapH3yJEbkYvOxk7EVMXAbMx/Hq0fbTYa\nb7u9jbrbdUNilM0oGdyouIGfr/0MnoCHp5yfgu3sobF3iyHiC/l46bOXcPj1w+i71/8NSaMRRlj6\nwVI9JTNMtE5bh6QyKYJzgtEl60J2YDasTKzYjqQWaZsUB145AIsJFngl+RUITX77d/2D3wc8Hg99\nij5c//n6oK4xyWoSRALN5jkZJYPqz6vxzf9+A5lUBkbJ3P89qmRgNdkKy7Ytw3S/6RpdgzxZ1adV\nOPHuCShkCjCKR3tBYCyAwEiAkMIQmhqBZt1Jpa0jLXdb4JvmC+ennLHbdzeMBNx8ndbtuttI9UnF\nzLUzsfT9peDxB56H33t2L14//DpGiFT7J7C0T4qvfL9CtEu02jmVCiUOiA/g2vFrTxztCYwFmBs9\nFyu+WMHZ+wlD3c3zNyH5WIJL2ZfA5/PBMAyExkLMe3Me5m2Yh5FPc3OllLbprLR7enqwZMkS9Pb2\nQiaTwc/PD9u3/2fOkkr78Wpv1cI3zRfrXdYjbnEcZwvixskbyAzIxLIPl8El2kXlz3X0dGD838ZD\n2idV6XhzkTmaYptgaaL+PtvF/12Mf/39XwP+8xwAzGzM4LnFE8+9/hy96kxH5D1ySNuk4Av5GGEz\ngnZ4/BWdPRFpYmKC0tJSnD9/HjU1NSgtLcWpU6fUutBwUVRfBK99XvjI6yO86/EuZwu7JqUGGWsy\nIE4RD6qwAcDSxBJvu70NU6HpgMeaCk3x9sK3NSpsmVSmcmEDwL22eyj+YzFSXk6BQqZQ+7rkyYQm\nQlhOsMTIcSOpsLVswF9NM7P7N5xkMhkUCgVGjRql81BctefMHoQdDEPO2hwEzQpiO45aGIZB+dZy\nlLxbgvDScExZPkWt88S6xYLPG/gPq4AnwCbXTWpd44EL6RcerhNXVd+9Pvx46kfkr8/X6NqE6NuA\nq0eUSiVcXFxQX1+P3/3ud3B0dHzk61u2bHn4Y09PT3h6emo745CnZJSIOxGH7MvZqIiswLTR09iO\npBaFTIH89flou9iGmKoYmNuaq32uB6PtnZKdT3xhgjZG2QDQ/K9m9ElVf4z6AXm3HBcPXITXh140\n10p0qqysDGVlZVo5l8o3Ijs6OuDt7Y2PPvroYTHTnDbQ3deN8NxwNN9tRu6ruRhjNobtSGrpbu9G\nhjgDxpbGEKeIYTRC8xunA81ta2MuGwDyYvJwLuGcWp8VGAuw8I8Lsez9ZRplIGQw9LLLn6WlJXx8\nfPDtt9+qdSFD1CZtg9c+Lwj4AhwPO87Zwm6/1o7EhYmwnWOLwOxArRQ20P/ctrZG2QAwZvqYxy5D\nVIWiV4Eb5Tc0zkCIvvRb2rdv38bPP9/fcrG7uxvFxcWYO3euXoINdXW36+CW4Ialk5ciRZzy2BcC\ncEFTdRMSFyVi3pvz4P2pt9ZXUzxpblsbc9kPOL/mrPKLhh+HbkYSLun3T2hLSwuWLVuGOXPmYMGC\nBVi5ciW8vLz0lW3IKr9eDo9kD8QtjsO2ZdtUuuE2FF3KvoQ03zSs/Gol5m+cr5NrPG60rc1RNgCY\nP2V+/1FqYzXep8kDrCdbayUHIfpAD9cM0v6a/Yg9FotU/1Qsn7Kc7ThqYRgGlZ9UouqzKgTlBWGc\nyzidXu/Xc9vamsv+pZ6OHuyZtwcdP3ZA0av6yFk0QoSQwpCH+6gQog/05ho9YBgGfy37K94reQ+l\n4aWcLWylXImC3xXgu33fIboyWueFDTw62tb2KPsBE0sTrPvXOjisdABfpOJvax5gbmuOiYvpsWrC\nHTTSVoFMIcO6/HW43HYZeUF5sDXn5uZDvZ29yFqbBQBYc2ANjC2M9XbtB6NtHnhaH2X/2t2bd5Hm\nm4Zb392CUv6E3fl5gPFIY0RXRsPG0UZnWQh5HNp7RIfau9shzhDDysQKKeIUmInMBv7QENTR2IE0\n3zTYudlhxRcrWHlKLf50PPjg4835b+r8WoySwYl3T6D6s2rw+LyHT0vy+DwITe8/rReYEwibGVTY\nRP+otHWkob0BK1JWwMfBBzuW74CAr8aNriGg5VwL0lelY8FbC+D2thtnH61XR09HD77b9x0ajjdA\n3i2H1SQruKxzwfh549mORoYxKm0dqGqqwuoDq7HZYzM2zNvAdhy1XTl8BYciD8Hnnz5w9Hcc+AOE\nEJ3TpDvpJQiPkXkxExsKNyDZLxk+Dj5sx1Hb6S9Oo2JbBYLyg2Dnyr23vRNCfotK+xcYhsFOyU7E\nn45H8WvFmGM7h+1IalEqlCh+pxhXj15FlCSK1iETYkCotP+tT9GHjUc2orqpGpXRlbCz4ObIVCaV\nISckB72dvYiSRMHUeuDtUQkh3EGlDaCztxMBmQEQ8ASoiKzASGNu7vjWdbMLaSvTYONkg4CMANVf\ntkoI4Yxh/3BNY0cj3BPdMdV6KvKC8jhb2K0XWrHXdS8cVjnAL8mPCpsQAzWsR9pnms/AL90PsW6x\n2OS6ibNL4eqL65ETkgPvT73hHOLMdhxCiA4N29LOr8tHVF4UdvvuhniGmO04ajubcBYl75YgMCuQ\n9s8gZBgYlqUdXx2P7ae2oyC4APPH62Z3O11jlAxK3ivBxYyLiDwZidEOo9mORAjRg2FV2gqlArFF\nsSiuL4YkWoJJVpPYjqQWeY8cuRG56GzsRExVDMzGcPPRekLI4A2b0pbKpAjOCUaXrAuSaAmsTKzY\njqQWaZsUB145AIsJFgg7Eab2G1sIIdw0LFaPtNxtgUeyB0aZjsKRkCOcLezbdbeR4JaASZ6T4J/q\nT4VNyDBk8KVde6sWrgmuEE8XI3FVIowE2nn/ob7dOHkDyR7JcP+zO5ZtWwYen5srXQghmjHooVpR\nfRFCc0Kx66VdCJoVxHYctdWk1ODYpmPwT/XHlOVT2I5DCGGRwZb2njN7sLl0M3LW5sB9ojvbcdTC\nMAxOvn8S5xLPIbw0HGOdxrIdiRDCMoMrbSWjRNyJOGRfzkZFZAWmjZ7GdiS1KGQK5K/PR9vFNsRU\nxcDc1pztSISQIcCgSru7rxvhueFovtuMyuhKjDEbw3YktXS3dyNDnAFjS2OEl4XDaAQ35+EJIdpn\nMDci26Rt8NrnBQFfgONhxzlb2O0N7UhcmAjbubYIzA6kwiaEPMIgSrvudh3cEtywdPJSpIhTYCI0\nYTuSWpqqmpC4KBHzNs6D99+8wRcYxP8eQogWcX56pPx6OQKzArHdazui5kaxHUdtl7IvoeCNAvgl\n+cHB14HtOISQIYrTpb2/Zj9ij8Ui1T8Vy6csZzuOWhiGQeUnlaj6rAqhx0IxzmUc25EIIUMYJ0ub\nYRhsLd+KpPNJKA0vhdNYJ7YjqUUpV6JwYyEaJY2IroyG5QRLtiMRQoY4zpW2TCHDuvx1uNx2GVUx\nVbA1t2U7klp6O3uRtTYLABB1KgrGFsYsJyKEcAGn7nS1d7fDe783Ons7URZRxtnC7mjsQNLiJFja\nWyIoP4gKmxCiMs6UdkN7A9wS3OAyzgVZAVkwE3FzO9KWcy1IXJgI59ec4fOlD/hCzvwvIIQMAZyY\nHqlqqsLqA6ux2WMzNszbwHYctV05fAWHIg/B558+cPR3ZDuO1ryc8jKu3Lmi8vFPmz+NiqgKHSYi\nxHAN+dLOvJiJDYUbkOyXDB8HH7bjqO30F6dRsa0CQflBsHO1YzuOVlkYWeD6z9ehZJQDHssDD1Os\nadMrQtTFYxiGUfvDPB40+Hi/GIbBTslOxJ+OR35QPubYztHJdXRNqVCi+J1iXD16FcGFwbCebM12\nJK27+tNVOH/pjG5594DHmgpN8U3UN5g7bq4ekhEyNGnSnUNypN2n6MPGIxtR3VSNyuhK2Flwc2Qq\nk8qQE5KD3s5eREmiYGptynYknXhm1DNY6bASOd/nQK6UP/E4HnhYNHERFTYhGuj3LlhjYyOWLl0K\nJycnzJw5E59//rnOA3X2dsI3zReNHY2oiKzgbGF33ezC155fw8TKBKFHQw22sB/Y5rUNIr6o32NM\nhCbYsXyHnhIRYpj6LW2RSIRPP/0UFy9eRFVVFf7+97/j8uXLOgvT2NEI90R3TLWeirygPIw0Hqmz\na+lS64VW7HXdC4dVDvBL8oPASPCbYxiGQaOkERfSL+BS1iX8VP8TC0m158FoW8h//D/eaJRNiHb0\nOz1ia2sLW9v7a6HNzc0xY8YMNDc3Y8aMGVoPcqb5DPzS/RDrFotNrpvA43HzdVr1xfXICcmB96fe\ncA5x/s3XGSWD01+cxjc7vkFvRy/Auz+/pZApYDvXFsu2LcPkpZNZSK65bV7bkH8l/7FTJDTKJkQ7\nVJ7Tvn79Os6dO4cFCxY88vNbtmx5+GNPT094enoOOkR+XT6i8qKw23c3xDPEg/78UHE24SxK3i1B\nYFYg7D3sf/N1pVyJ9FfScb30Ovru9f3m602VTUj1ScVLn72E59Y/p4/IWvWkuW0aZZPhrqysDGVl\nZbn1jgsAAA1aSURBVFo5l0qrR7q6uuDp6Yn33nsPr7zyyn8+rIXVI/HV8dh+ajtyX83F/PHzH3tM\n+fVynL95XuVzCvlChM8Jh7mRft72wigZlLxXgosZFxFSGILRDqMfe9yRt47g7N6zkN978s06ABCa\nCRFSGIJJSybpIK1uPW4lCa0YIeRROl090tfXB39/f4SGhj5S2JpSKBWILYpFcX0xJNESTLKa9MRj\n99fuR/L5ZPB5Az89yDAMlIwS/o7+eilteY8cuRG56GzsRExVDMzGPP5JzZ6fe3D2q7OQ9/Rf2AAg\nvydH6f8rRWR5pLbj6tyvR9s0yiZEu/ptQYZhEB0dDUdHR/zhD3/Q2kWlMinEGWJcaL0wYGEDwHuL\n34OQL4RMIRvwPwAImx2ml31JpG1S7PPad/+aJ8KeWNgA8N2+78Djqz5P33y6Ge3X2jXOyIZfriSh\nuWxCtKvf0v7mm2+wf/9+lJaWYu7cuZg7dy6OHj2q0QVb7rbAI9kDo0xH4UjIEViZWA34GXsrewQ6\nBg64pAwABHwB/ur5V40yquJ23W0kuCVgkuck+Kf6Q2jS/z9aGiWNj53HfhKBsQC3am5pGpMVD0bb\nNMomRPv6bRp3d3colQM/mqyq2lu18E3zxXqX9YhbHDeoFSJbl25FxqUM9CmfXHwivghBM4MwwXKC\nNuI+0Y2TN5AZkIllHy6DS7SLSp9R9g3y15G5f+OSq7Z5bcPB7w/SKJsQLdPbFnNF9UXw2ueFj7w+\nwrse7w56SZ8qo219jLJrUmqQsSYD4hSxyoUNAKOfHQ2+SPVfbkbJwMp+4H+FDFXPjHoGrX9spVE2\nIVqml9Lec2YPwg6GIWdtDoJmBal9nq1Lt0LA/+2DKoDuR9kMw6B8azlK3i1BeGk4piwf3KZHc6Pn\nDupFvWZjzDDuOW6/ekyVqS9CyODotLSVjBL/c/x/sEOyAxWRFXCf6K7R+fobbetylK2QKXAo8hCu\n5F9BTFUMxjqNHfQ5Rk0dBbuFdiqNtkVmIrj/2Z2zDxgRQnRHZ6Xd3deNV7NexakfT6EyuhLTRk/T\nynkfN9rW5Si7u70b+733o+fnHoSXhcPcVv1lhP6p/hhhM6Lf4haZifDMy8/AJUb1qRdCyPChk9Ju\nk7bBa58XBHwBjocdxxizMVo79+NG27oaZbc3tCNxYSJs59oiMDsQRiOMNDqf+VPmeP3c67BfYg+h\nifCRPUlEI0QQmgox/7/mY82BNYNaHkgIGT60vp923e06+KT6YO3MtXh/6fsqPRAzWDd+voHpf5+O\nHnkPRHwRQp1DkeiXqNVrNFU14cDqA1j83mLMf/PxT2pqov1aO84nncedH+5AYCTABLcJcA51hpG5\nZn8xEEKGPk2eiNRqaZdfL0dgViC2e21H1NwodU+rkvCD4UitTYVQIMSVjVe0OjVyKesSCn5XAL9k\nPzj4OGjtvIQQAmhW2lobBu+v2Y+AzACkiFN0XtjA/bltJZRanctmGAbf7PwGxzYdQ2hRKBU2IWTI\n0XikrVQqsbV8K5LOJ6EguABOY520ma9fBy4cgOckTzxl/pTG51LKlSjcWIimyiYEFwTDws5CCwkJ\nIeS3WJ0eCTsYhsttl5EXlKeX/T50obezF1lrswAAaw6sgbGFMcuJCCGGjNXpkanWU1EWUcbZwu5o\n7EDS4iRY2lsiKD+ICpsQMqQN2bex60PLuRakr0rHgrcWwO1tN3qYhRCiFwb3NnZ9uPL/t3f/MU3e\neRzA30BBrtTxw2XFABdOfigVgTqz7lBugLsw4EDuMMQ6kCHbmeUS45Jddia7P7wpibn7YxpznrkJ\nwnEqhv1ADsWx0wKHNkwpASUZuomWH8dkSBECPG2f7/1hQq6j2qcibb/l8/qvfb59+vnkQz+Uh+/3\n+f6rHw1lDcj9Wy5UhSp3h0MIIZIsy6bdeawT7YfaoW3UIvLVx7u9M5HN79dICCGealldHhGtIlre\nb8Gd5jvYeWEnRLMI/cd69NT2QHgkwMfPB6s3rsbmDzZjbf5a+PnbvzkVIYQshscsrvFkwrSAz978\nDHOTcyj6tAg3TtxA659aIVrEBfe6DlAEIPinwdh1eRcUStfsM0kIWT48YnGNJ5v67xSq06sRGBKI\n4uZi9PyjB20ftcEyY7G7OYEwJeCH/h9QlVYFYUpwQ8SEEGKf1zft729+j09e/QTx+fHYVrUNllkL\nvvrDVw63/hItIiYHJ3Hj7zdcFCkhhDjm1U3725ZvUZ1ZjcxDmXjtj6/Bx8cH3dXdku+gZ5mx4Npf\nrj3+JyUhhHgAr23aXSe78HnJ5yiqL0LSm0nzz988exPmaekb7M5OzGL8zvhShEgIIU7zuil/TGS4\n/OFl3Dp3C2VtZVgVv8rm+Jxpzqnz+cp8MTfp3GsIIWSpeFXTtsxa8MVbX2DSOIm39W9D/qJ8wZjA\nkECnzilaRKdfQwghS8VrLo9MP5hGzdYaAMCuf++y27ABIKk4Cf5BT97R/cfkL8oRGhP6XGIkhJDF\n8oqmPfbNGE7+/CSi06NReLoQssAn/wGRVJwkeX6kTC5D6u9TaZUkIcRjcN+077Xdw6lfnMKW/VuQ\neSjT4cyQAEUA3vj4DfjLn/5t2y/AD2FrwqAuVz/PcAkhZFG4vqbd888eXHrvEgpPF2LN62skv+7l\nd16GVbCi5f0WMJHBKlhtjgcoArBq7SqUfFkC/59Iv5RCCCFLjctl7IwxtH3UBkOlATubduKl9S89\n03lMRhO+/uvX6K7sxszDGfj5+yFCE4HNH2xGzC9jaEd0QsiSWFb3HrEKVjT+thEPbj2AtlELRTjd\nG4QQwpdlcz/tmYczOPebc1gRvAKlulIEBAW4OyRCCHEpbv4R+fC7h6hMrUS4OhxFnxZRwyaELEtc\nfNMe1A+i7td1SPswDa/87hV3h0MIIW7j8U27r74PTe82YdupbYjPjXd3OIQQ4lYee3mEMYaOP3fg\n0nuXUPxlsVsatk6nc/l7uhLlxzdvzs+bc1ssh0179+7dUCqV2LBhgyviAfD4fh9N7zaht7YX5dfK\nsVq92mXv/f+8/QeH8uObN+fnzbktlsOmXVZWhubmZlfEAgCYm5zD6V+dhumeCWX/KcMLkS+47L0J\nIcTTOWzaaWlpCA11zQ2TTEYTKrdUIvRnodA2arFi5QqXvC8hhPBC0uKagYEB5OXlobe31/bFdCMl\nQgh5Jm5ZXMPLTuyEEOItPHb2CCGEkIWoaRNCCEccNm2tVovU1FT09/cjKioKVVVVroiLEEKIHQ6b\n9pkzZzA8PIyGhgYEBQWhoqIChw8ftjt27969iIuLQ3JyMgwGw3MPdik1Nzdj3bp1iIuLs5ufTqdD\ncHAw1Go11Go1Dh486IYon42Uufa81s5RbjzXDQCMRiMyMjKwfv16JCYm4ujRo3bH8Vo/KfnxXMPZ\n2VloNBqkpKRApVJh//79dsc5VT8mgcViYTExMezu3btMEASWnJzM+vr6bMY0NTWx7Oxsxhhjer2e\naTQaKaf2CFLyu3LlCsvLy3NThIvT1tbGurq6WGJiot3jPNfOUW48140xxkZGRpjBYGCMMfbo0SMW\nHx/vVZ89KfnxXsPp6WnGGGNms5lpNBrW3t5uc9zZ+km6pt3Z2YnY2FhER0fD398fO3bsQENDg82Y\n8+fPo7S0FACg0WgwMTGB0dFRKad3Oyn5AfzOlnE0157n2klZR8Br3QAgPDwcKSkpAACFQoGEhAQM\nDw/bjOG5flLyA/iuoVz+eJNxQRBgtVoRFhZmc9zZ+klq2kNDQ4iKipp/HBkZiaGhIYdjBgcHpZze\n7aTk5+Pjg6tXryI5ORk5OTno6+tzdZhLhufaOeJNdRsYGIDBYIBGo7F53lvq96T8eK+hKIpISUmB\nUqlERkYGVCqVzXFn6ydpnrbURTQ//m3Iy+IbKXFu3LgRRqMRcrkcFy9eREFBAfr7+10QnWvwWjtH\nvKVuU1NT2L59O44cOQKFYuFuTbzX72n58V5DX19fdHd3w2QyISsrCzqdDunp6TZjnKmfpG/aERER\nMBqN84+NRiMiIyOfOmZwcBARERFSTu92UvJbuXLl/J852dnZMJvNGB8fd2mcS4Xn2jniDXUzm80o\nLCxEcXExCgoKFhznvX6O8vOGGgJAcHAwcnNzcf36dZvnna2fpKa9adMm3L59GwMDAxAEAXV1dcjP\nz7cZk5+fj5qaGgCAXq9HSEgIlEql5ITcSUp+o6Oj878NOzs7wRhbcG2KVzzXzhHe68YYQ3l5OVQq\nFfbt22d3DM/1k5IfzzUcGxvDxMQEAGBmZgYtLS1Qq9U2Y5ytn6TLIzKZDMeOHUNWVhasVivKy8uR\nkJCAEydOAAD27NmDnJwcXLhwAbGxsQgKCuJqPreU/Orr63H8+HHIZDLI5XKcPXvWzVFLp9Vq0dra\nirGxMURFReHAgQMwm80A+K+do9x4rhsAdHR0oLa2FklJSfMf9oqKCty/fx8A//WTkh/PNRwZGUFp\naSlEUYQoiigpKcHWrVsX1TsXtRs7IYQQ16Jl7IQQwhFq2oQQwhFq2oQQwhFq2oQQwhFq2oQQwhFq\n2oQQwpH/Ab0wn7VZUc5LAAAAAElFTkSuQmCC\n" | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTfn/B/DX3doXopSdbGUthLTZdyrZt0ExC8YszMLg\nm3UswzBm7GbMRJHdYKx1228UshRRiIhoX+52fn/4MYzUrbucu7yfj8c8Hr46y6vyffXpc875HA7D\nMAwIIYToBC7bAQghhCiOSpsQQnQIlTYhhOgQKm1CCNEhVNqEEKJDqLQJIUSHVFnaP//8M9q3b492\n7drh559/1kQmQgghH1BpaV+/fh07duxAYmIirl69ihMnTuDu3buaykYIIeQ/Ki3t1NRUdOvWDSYm\nJuDxePD29sahQ4c0lY0QQsh/8Cv7YLt27bBgwQK8ePECJiYm+Pvvv+Hm5vbm4xwOR+0BCSFEH9X0\nYfRKR9pt2rTBN998g/79+2PQoEFwcXEBl/vuLgzD6O1/ixcvZj0DfX70+Rni56eOz21l1Ep03dYV\npZJS1j8/ZVR5IXLatGm4dOkSIiMjUatWLbRu3VqpExJCiKadunMKm0SbcGjMIZjwTdiOo5RKp0cA\nICcnB3Z2dnjw4AEOHz6MhIQETeQihBCVuJN7B1OOTMHhMYfR0Koh23GUVmVpBwQEIDc3FwKBAL/+\n+iusrKw0kUsr+Pj4sB1Brejz0236/Pmp6nMrLC/EiNARWNprKXo27qmSY7KNwygxwcLhcJSenyGE\nEHWQM3L4h/mjnkU9bB26le0471CmO6scaRNCiC5aGrkUz0ueY/+o/WxHUSkqbUKI3jmaehQ7kncg\nMSgRRjwjtuOoFJU2IUSv3Hx2E4HHA/H3+L9hb2HPdhyVowWjCCF6I68sD76hvljddzXcGrhVvYMO\noguRhBC9IJPLMGzfMLSwaYGNgzayHadSynQnjbQJIXrhh4s/oFRainX917EdRa1oTpsQovP239iP\nvSl7kRiUCAFPwHYctaLSJoTotGtPr+Gzk5/hzMQzsDW3ZTuO2tH0CCFEZ+WW5MI31Bc/D/wZLg4u\nbMfRCLoQSQjRSVK5FINCBqGTfSes6beG7TjVQhciCSEG55tz34ADDlb2Wcl2FI2iOW1CiM7569pf\nOJp6FKIgEfhcw6oxw/psCSE67/Ljy/jiny9wYfIF2JjasB1H42h6hBCiM3KKc+C/3x9bhmxB+3rt\n2Y7DCiptQohOkMgkGHVgFCZ1mISRziPZjsMaunuEEKITZp2chcy8TBwbdwxcjm6PN2k9bUKIXtuZ\ntBPn7p1DQmCCzhe2sqi0CSFaLT4rHt+d/w7CqUJYm1izHYd1hv0jixCi1bILsxGwPwA7h+9Em7pt\n2I6jFai0CSFaqVxajpH7R2Jm55kY1noY23G0Bl2IJIRoHYZhMOPEDOSW5CJ8dLjezWPThUhCiF7Z\ncmkL4h7GIW56nN4VtrKotAkhWiXqfhSWRC5BzLQYWBpbsh1H69CPMEKI1niY/xBjwsdgj+8etLBp\nwXYcrURz2oQQjUl7noaQlBAweL83JDIJ9lzdAydbJ7g3cn/z9yOdRqKTfSdNxlQ7mtMmhOiErIIs\nLBMuq7C0X8suysaFjAsAAC6Hi471OupdaSuDpkcIIRrTu1lvtLNrp/D2Da0awt/JX42JdA+VNiFE\nYzgcDtb2XwtzgXmV21oYWWBNvzV098h/0Jw2IVrq/L3zyCvLU3h7O3M7eDbxVGMi1WAYBh23dERK\nTkql2zW2boyMzzP0srSV6U4qbUK0lO0aWxSLiyHgCarcViwTo6FVQ9yZfUcDyZR35u4Z+IX6oURa\nUuHHLYwssHP4ToxuO1rDyTSDSpsQPbQhfgMWXliIYklxldtaGFngtyG/YWKHiRpIpjy5XA6b1TbI\nL8+v8OMmfBP0adYHHHAq/Li1iTV2jdgFI56ROmOqDZU2IXqoVFKK+j/VV2iKpIFlA2TOzdSZ9yWu\njlmNnck7kZWf9cHRdmUaWTVC5txMnZ06obexE6KHTAWmWOy9uMqLdhZGFljVd5XOFPbp9NPYEL8B\n5yadg6ONY7X3tzCywOp+q3W2sJVV5We9cuVKtG3bFu3bt8f48eNRXl6uiVyEEAAzO8+sck7b2tga\nY9uN1VAi5dzJvYPJhydj/6j9aGTdSOE7Sd5W26Q2RjmPUlNC7VdpaWdmZmL79u1ISkpCSkoKZDIZ\nQkNDNZWNEINX1Whbl0bZheWF8A3zRXCvYHg09gAA9GveD81rN3+zzYfmsF97PcrmcXlqzarNKi1t\nKysrCAQClJSUQCqVoqSkBA0aNNBUNkIIKh9t68ooW87IMfnIZPRs1BMzO8988/dv37dtYWSB7g27\nV/oDyNBH2UAVj7Hb2Njgq6++QuPGjWFqaooBAwagb9++72yzZMmSN3/28fGBj4+POnISYrBej7b/\neyeJLo2ylwuX42nRU4SODAWH8+5o+vVou6C8AL/7/o6OWzpCKpe+dwxdHmVHREQgIiJCJceq9O6R\nu3fvYtiwYYiKioK1tTVGjRqFgIAATJgw4dXOdPcIIRpR0Z0kunLHyLG0Y/js5GcQBYrgYOlQ4Tap\nz1NRJi1DJ/tOGHNgDA6lHnqvuBtZNULG5xk6Wdr/pba7Ry5dugR3d3fUqVMHfD4f/v7+iI2NrdGJ\nCCE199+5bV0ZZd96dgvTj01H+KjwDxY2ALSp2+bNolDL+yx/7/PS5VG2qlVa2m3atEF8fDxKS0vB\nMAzOnTsHZ2dnTWUjhLzl7bltXZjLzivLg2+YL1b3XY1uDbspvF8LmxYY3mr4O8VNc9n/qrS0O3bs\niMmTJ6NLly7o0KEDAGDGjBkaCUYIedfr0TYArR9ly+QyTDg0Af0d+2Oqy9Rq7//2aJtG2e+iJyIJ\n0SGlklIsEy7D/3r9T6tLe+GFhYh6EIVzk84ptHZKRcYcGIPwW+FoYNlAb+ayX6PH2AkhWiP8Zji+\nOvMVEoMSYWduV+PjpL9IR+tfWiPEP0Trp4Kqi0qbEKIVUp6moPee3vhn4j9wdXBV+nhXnlxBh3od\n9O6RdSptQgjrXpS+QNftXRHsE4wJHSawHUerUWkTQlgllUsxOGQwOtTrgLX917IdR+vRKn+EEFZ9\nd/47MGCwqu8qtqPoPe29/EwI0Ql7U/bi4M2DSAxK1Oo7WvQFfYUJITWWlJ2Ez09/jvOTz6OOWR22\n4xgEmh4hhNRITnEO/ML88NuQ39ChXge24xgMGmkTooTYh7Hw2u0FBopfVPre43ss7b1UjanUTyKT\nYPSB0ZjYYSICnAPYjmNQqLQJUYKrgyusjK3wsuylQtub8k0xpNUQNadSv6/OfAVzI3ME+wSzHcXg\n0PQIIUow4Ztgic8ShV6ZxQEHXep3QfeG3TWQTH12J+/G6fTTCPEP0atHy3UFlTYhSprReQaMeEZV\nbmcqMMXqfqs1kEh9ErIS8M25b3B07FHUMqnFdhyDRKVNiJIUGW1zwEFnh846PcrOLsxGwIEA7Bi+\nA062TmzHMVhU2oSoQFWjbV0fZZdLyzFy/0gEuQZheOvhbMcxaFTahKhAZaNtfRhlzzk9B/Us6mGh\n10K2oxg8Km1CVORDo21dH2VvvbQV0Q+iscd3j96ttqeL6DtAiIpUNNrW9VF29INoLIpYhCNjjsDS\n2JLtOARU2oSo1H9H27o8ys4qyMLoA6Pxh+8faFmnJdtxyP+j0iZEhd4ebevyKLtMWga/MD983u1z\nDGwxkO045C20njYhKlYmLUP9dfVRLClG5EeROlfaDMNg6tGpKJWWInRkKDgcDtuR9I4y3UmPsROi\nYiZ8E6zquwqHbx3WucIGgE2iTUh+kozYabFU2FqIRtqEqAnDMDpXehczLmLcwXGImx6HZrWbsR1H\nb9GbawjRQrpW2Jl5mRh3cBxC/EOosLUYlTYhBCWSEviF+eFbj2/Rp3kftuOQStD0CCEGjmEYjD80\nHgKuAH/4/qFzvyHoIroQSQipsbWxa3En9w6ipkZRYesAKm1CDNg/6f9gffx6JAQmwFRgynYcogAq\nbUIMVPqLdEw+Mhnho8LRyLoR23GIguhCJCEGqLC8EL6hvljivQSeTTzZjkOqgS5EEmJg5IwcAfsD\nUMesDrYN3Ubz2CygC5GEEIWtiFqB7KJs7Bu5jwpbB1FpE2JAjqcdx5ZLWyAKEsGYb8x2HFIDlc5p\np6WlwcXF5c1/1tbW2Lhxo6ayEUJUKPV5KqYfm47w0eGob1mf7TikhhSe05bL5WjQoAFEIhEaNXp1\npZnmtAnRDfll+ei2oxvmuc/DdNfpbMcxeBpZe+TcuXNwdHR8U9iEEN0gZ+SYeHgi+jbvS4WtBxQu\n7dDQUIwfP16dWQgharA4YjEKyguwfsB6tqMQFVDoQqRYLMbx48fx448/vvexJUuWvPmzj48PfHx8\nVJWNEKKkgzcPYs/VPUgMSoSAJ2A7jsGKiIhARESESo6l0Jz20aNH8dtvv+H06dPv7kxz2oRores5\n19Hrj144PeE0OtfvzHYc8ha1z2nv27cP48aNq9EJCCGa96L0BXxDfbF+wHoqbD1T5Ui7uLgYTZo0\nQUZGBiwtLd/dmUbahGgdqVyKIXuHoJ1dO6zrv47tOKQCynQnPcZOiJ6Zf3Y+krKTcHriafC59Pyc\nNqLH2AkhAIB9KfsQfjMciUGJVNh6ir6rhOiJ5OxkzDk9B+cmnUMdszpsxyFqQkuzEqIHnhU/g1+Y\nHzYP3oyO9h3ZjkPUiEqbEB0nkUkwJnwMxrcfj9FtR7Mdh6gZlTYhOu7rs1/DhG+Cpb2Wsh2FaADN\naROiw36/8jtO3TkFUZAIPC6P7ThEA6i0CdFRokcizDs7D5EfRaKWSS224xANodImRAc9KXqCkftH\nYvuw7XC2da5wG5lEhsyLmSjMLgTfhI+G3RuiVhMqd11HpU2IjhHLxAjYH4DpLtPh28b3vY9LSiWI\nWhGFxF8SIZfLwcgYcLgcyCVyNOzeEH1W9UHDbg1ZSE5UgZ6IJETHfHziYzwpeoJDYw6By3n3XgJx\nkRi7PXfjeepzSMukFe7PN+XD/y9/OPk7aSIuqYBGXoJACGHf1ktbIbwvxB6/Pe8VNgCEjw3Hs9Rn\nHyxsAJCWSnF40mHkXM9RZ1SiJlTahOiImAcx+OHiDzgy9gisjK3e+/iL9BfIOJ8BWZmsymNJy6WI\nWhmljphEzai0CdEBjwoeYXT4aPzu+zta1WlV4TaiX0SQy+QKHY+RMUg9lIqy/DJVxiQaQKVNiJYr\nk5bBf78/ZnWdhcEtB39wu6z4LMglipU2APCMeXiR/kIVEYkGUWkTosUYhsEnf3+CJtZN8K3Ht5Vu\nq+go+519pNXfh7CLSpsQLfaL6BdcfnwZu0fsBofDqXTbOq3qAJVv8g5ZuQzWja2VTEg0jUqbEC0V\nkRmBZVHLcGTsEZgbmVe5vdtnbhCYKf7y3gbdGsDSwbLqDYlWodImRAvdz7uPcQfHIcQ/BM1rN1do\nn4Y9GsK6sTU43KqH2wJzATy/91Q2JmEBlTYhWqZEUgK/MD/Mc5+Hvs37Krwfh8PB+BPjYVLLBBze\nh4tbYCaA22ducOzvqIq4RMPoiUhCtAjDMJh4eCK4HC72+O6pch67InmZeTg04RCyk7Ihl8rfXGw0\nsjQCh8tBr+BecJvtVqNjE9WgF/sSoifWxq7Fvuv7ED01GqYCU6WOlXsnF9f+vIa8zDwIzAVo1qsZ\n2vi2Ac+IlnBlG5U2IXrgzN0zmHJkChICE9DYujHbcYga0dvYCdFxd1/cxaTDk3Bg1AEqbFIpuhBJ\nCMuKxEXwDfPFIq9F8GrixXYcouVoeoQQFjEMg1EHRsHaxBo7hu2gi4MGgqZHCNFRK6NX4lHhI4T4\nh1BhE4VQaRPCkr9v/41fE3+FKEgEY74x23GIjqDSJoQFac/TMPXoVBwdexT1LeuzHYfoELoQSYiG\n5ZflY0ToCKzoswI9GvVgOw7RMXQhkhANkjNy+Ib6oqFVQ/w65Fe24xCW0IVIQnTE/yL/h7yyPISP\nDmc7CtFRVNqEaMihW4ewO3k3EoMSYcQzYjsO0VFU2oRowPWc65h5YiZOTTiFehb12I5DdFiVFyLz\n8vIQEBAAJycnODs7Iz4+XhO5CNEbL0tfwjfUF+v6r0OX+l3YjkN0XJUXIqdMmQJvb29MmzYNUqkU\nxcXFsLZ+9YoiuhBJSOVkchmG7B0CJ1snrB+wnu04REuobZW//Px8uLi44N69eyo/MSGG4Ntz3yLx\ncSL+mfgP+FyajSSvKNOdlU6PZGRkwNbWFlOnToWrqyuCgoJQUlJSoxMRYmjCrodh/439CAsIo8Im\nKlPpvySpVIqkpCT88ssv6Nq1K+bOnYtVq1YhODj4zTZLlix582cfHx/4+PioKyvRUQVZBbi87TKe\nXHkCALB3sUfnoM6wamjFcjL1ufLkCmadmoVzk86hrlldtuMQlkVERCAiIkIlx6p0euTJkyfo0aMH\nMjIyAADR0dFYtWoVTpw48Wpnmh4hlSgvLMfhSYeRfjodACArlwEAeMY8cDgctBjUAr5/+MLYUr/W\n3Xhe8hxdt3fFqj6rMKbdGLbjEC2ktukRe3t7NGrUCLdv3wYAnDt3Dm3btq3RiYhhEReJsbP7TqSf\nToesXPamsIFX5S0tk+LOyTvY6b4T4mIxi0lVSyqXYvSB0RjTdgwVNqlQ0ZMipfavcqJt06ZNmDBh\nAsRiMRwdHbF7926lTkgMw5mvzuDlvZfvlPV/ycpleJH+Ame+PoOhvw3VYDr1mXd2Hoz5xljeeznb\nUYiWKXxciJjVMbi656pSx6G1R4jKlReWY229tZCWShXanm/Kx7yceTCy0O2nBPdc3YOlwqUQBYpQ\n27Q223GIlijIKkD0qmik7E2By1QX9Pi6B6zqW9HaI0R73Dp0Cxye4gv6c3lc3Dp8Cx0ndVRjKvVK\nfJSIr858hYgpEVTYBACQdz8PMaticD3sOlwDXTErdRbM7cyVPi6VNlG5gocFkBRLFN5eUipBwcMC\nNSZSr6dFTzFy/0hsG7oNbe3omo+he3nvJaJXRuPWoVvoPLMzZqXNgrmt8mX9GpU2UTmeEQ8cHgeM\nVLFf/zhcDnhGPDWnUg+xTIyAAwGY6jIVfk5+bMchLMq9k4voFdFIO56Grp92xew7s2FqY6ry81Bp\nE5Vz6OwAgYkA4iLF7grhG/Ph0NlBzanUY+7puahtUhuLvRezHYWw5Hnqc0Qtj0L66XS4zXbDnPQ5\nMKllorbzUWkTlWvWqxmMrYwVLm2TWiZo6tNUvaHUYPvl7biYeREJgQngcuglUIYm50YOopZH4d65\ne+g+tzsGbx4MYyv1P3NApU1UjsPloPeK3jj56UlISiqf2xaYCdB7RW+dexN57MNYLLiwANHTomFl\nrL9PdpL3Pb32FMJlQtyPvI/uX3bH0K1DNfqAGJU2UYtOUzrhxZ0XiF8f/8HiFpgJ0P3L7jp318ij\ngkcYdWAUdo/YjVZ1WrEdh2hIdnI2hEuFyIrLQo+ve2DE7hEwMtf8bap0nzZRq7TjaYj8XySe3Xz2\n5mKjTCyDXVs7eC/2RquhulV6ZdIyeP/ujRGtR+B7z+/ZjkM04FHiIwiXCpF9ORvu893ROagzBGYC\npY6ptqVZ1XliYlhyb+ci93YuAKBO6zqo07IOy4mqj2EYBB4PREF5AfYH7Ne5KR1SPVnxWYgMjkRO\nSg56ftsTrtNdwTdRzeQElTYhGrBZtBlbL29F7PRYWBhZsB2HqMmD6AeIDI5E7u1ceHzngU4fdQLf\nWLUzyfQ2dkLULDIzEkuFS6mw9VhmRCYigyORl5kHzwWe6Dipo1Y+P0ClTUgVHuQ/wNiDY/Gn359o\nXrs523GICjEMg4wLGRAGC1H4uBCeCzzRfkJ78ATaV9avUWkTUokSSQl8Q33xdY+v0c+xH9txiIow\nDIO7Z+5CGCxESW4JvBZ6od3YduDytf9+e5rTJuQDGIbBpMOTwIDBX35/0YVHPcAwDO6cvANhsBDi\nIjG8fvCC8yhncHmaLWua0yZEDdbHr8fNZzcRPS2aClvHMQyDtGNpEAYLIZPI4L3IG07+TuBwde/7\nSqVNSAXO3TuHNbFrkBCYADOBGdtxSA0xcga3Dt+CcKkQHC4H3ou80Xp4a50s69eotAn5j3sv72Hi\noYkICwhDY+vGbMchNSCXyXHr4Kuy5pvw0XtZb7Qc0lIvfmOi0ibkLUXiIviG+mKh10J4N/VmOw6p\nJrlMjhthNyBcJoSJtQn6rekHxwGOelHWr9GFSEL+H8MwGB0+GpZGltg5fKfe/B+94FEBkncm42nK\nUwCAg6sDXKa5wKKe/txvLpfKkbI3BVHLo2Bmawbvxd5o3re51n4P6YlIQlRgZdRKHEk7gsiPImHC\nV996yJpSXliOI1OOIP1UOhiGefOS5dePYrfxb4PhO4ZDYKrcOhpskklkuPbnNUStiIJ1I2t4LfJC\nU5+mWlvWr1FpE6Kkk3dOIuh4EESBIjSwasB2HKWJi8TY7rYdL++9fFPW/8U34cO2rS2mRU9T2Zoa\nmiITy3Dl9yuIXhkNmxY28PrBC028mrAdS2F0yx8hSridexsfHfkIR8Ye0YvCBoBTc05VWtgAIC2T\n4tnNZ7iw4AL6r+uvwXQ1Jy2XInlXMmJWxcDW2Rb+If5o5N6I7VgaRSNtYtAKygvQfUd3fNH9CwR1\nDmI7jkqU5Zdhnf06SMukCm1vZGGEr3O+1uppEkmpBEk7khDzYwzsO9nDe5E3Grjp7g9YGmkTUgNy\nRo5JhyfBu6m33hQ2ANwMvwkOrxpzuhzg9onbaDtK+94kLymR4NLWS4hdE4sGbg0w9uhY1O9cn+1Y\nrKLSJgYrODIYuSW5ODDqANtRVCo/Mx+S4spf8/Y2aZkU+ffz1Zio+sRFYiT+loi4dXFo7NEYE05O\ngH0ne7ZjaQUqbWKQjqQewa7kXRAFiWDE0/wro9SJa8QFOAAU/O2bw+VozRKk5QXlEG0WIWFDApr2\naorJ5ybDrp0d27G0CpU2MTg3n93EjOMz8Pf4v2FvoX+jNwdXBxhZGEFcKFZoey6fC3sXdr8OZXll\nSNiUANFGERwHOGJKxBTYOtmymklbUWkTg5JXlgffUF+s7b8WXRt0ZTuOWrQY2AJ8E77CpW1ma4bG\nHuw8rl/6shQJGxIg2ixCqyGtMC1mGuq00r1X0WmS9i8eS4iKyOQyjDs4DoNbDsbkjpPZjqM2XB4X\nPv/zUejlswIzAfos76Pxh1FKcktwYeEFbGqxCQVZBQiMD4TvH75U2AqgkTYxGAsvLkS5tBxr+q1h\nO4radfm4C3Jv5yJpe9IHL0oKzARwn+eO9uPbayxX8bNixK2LQ9L2JDgHOCPoUhBqN6utsfPrA7pP\nmxiE/Tf2Y/7Z+UgMSoSt+b9zpS9KX6BMWqbwcSyNLGFpbKmOiGpx48CNV+89vJf35q0sMokMtk62\n8F7ijdbDWmskR9GTIsSujUXyrmS0H9cePb/pCevG1ho5tzaix9gJqcTVJ1fR98++ODvpLDrZd3rz\n9xKZBOYrzMHlcMHjVn33hEQmQeu6rZHySYo646pFzvUc5N7JBYfDQd02dVG3TV2NnLfwcSFiVsfg\n6p6r6DipI9znu8OqgZVGzq3N6OEaQj4gtyQXfmF+2DRo0zuFDQACngBj2o5B6I1QlEvKqzyWucAc\nH3f+WF1R1cqunZ1Gb53Lf5iPmB9jkLI3BS5TXfDpjU9h6aA7v6FosypH2k2bNoWVlRV4PB4EAgFE\nItG/O9NIm2gxqVyKAX8NQJf6XfBj3x8r3CbjZQacf3VWaIrExtQGj798DGO+saqj6o28+3mIXhmN\nmwduwjXQFT2+6gFzO3O2Y2kdtY60ORwOIiIiYGNjU6MTEMKW+Wfng8/lY0XvFR/cplntZghwCkDo\njVBI5R9eq8NcYI5gn2Aq7A94ee8loldG49ahW+jycRfMSpsFs7r0mjZ1UGh6hEbTRNf8efVPHEs7\nBlGQqMr56uBewQi/FV5paRvzjRHoGqjqmDov904uoldEI+14Grp+2hWz78yGqY0p27H0mkIj7b59\n+4LH42HmzJkICnp3YZ0lS5a8+bOPjw98fHxUnZGQarn0+BK+PPMlLk65CBvTqn9DrGq0TaPs9z1P\nfY6o5VFIP50Ot9lumJM+Bya1dP/FEeoSERGBiIgIlRyryjnt7OxsODg44NmzZ+jXrx82bdoET0/P\nVzvTnDbRMk+LnsJthxvWD1gPfyd/hferbG6b5rL/lXMjB1HLonDv/D10n9sdbrPcYGxFX5fqUqY7\nq3wi0sHBAQBga2sLPz+/dy5EEqJNJDIJRh0YhSkdp1SrsIF/R9t87ru/fNIo+5Wn157iwOgD2NNn\nD+xd7DHn7hx4fu9Jhc2CSku7pKQEhYWFAIDi4mKcOXMG7dtr7ukpQqpj7j9zYW1ijSU+S2q0f3Cv\n4PdK29DnsrOTsxHmH4a/BvyFBt0aYM7dOeg5vyeMLams2VLpnPbTp0/h5+cHAJBKpZgwYQL699eN\n1xIRw7IjaQfO3zuPhMAEcDk1W1Lnv3PbhjzKfpT4CMKlQmRfzob7fHf4/+Wv0FomRP3oiUii8+Ie\nxmFE6AhETY1C67rKPZb99ty2Ic5lZ8VnITI4EjkpOej5bU+4TnfVuZf+6gJ6IpIYrMeFjzHqwCjs\nHrFb6cIG/h1th6SEGNQo+0H0A0QGRyL3di48vvPAmMNjwDemetBG9F0hOqtcWo6R+0fiky6fYEir\nISo7bnCvYGQVZFV7LlsmlqHkeQk4XA7MbM3A5Wn/yseZEZmvFpTKzIPnAk90nNRRa95iQypG0yNE\nJzEMg6DjQcgry8OBUQc0vh70257dfIbYdbG4vu/6m7/jGfPQ9ZOu6PpZV61bIIlhGGRcyIAwWIjC\nx4XwXOiJ9uPbgyegstYUWuWPGJxfE3/Fb5d+Q9z0OFgYWbCWI2lHEk7NOQW5RA65VP7Ox3jGPPAE\nPIw7Pg5NfZqyE/AtDMPg7pm7EAYLUZJbAq+FXmg3tt2bJVuJ5lBpE4MivC/EqAOjEDstFo42jqzl\nuHX4Fg7ZQ1NjAAAgAElEQVRNOARp6YcffwcAgbkA02Ono16HehpK9i6GYXDn5B0Ig4UQF4nh9YMX\nnEc568T0jb6i0iYG42H+Q3Tb0Q2/+/6O/o7s3X7KyBn81OgnFD0uUmh7xwGOmHh6oppTvYthGKQd\nS4MwWAi5VA6vH7zg5O8EDpe9qSTyCt09Qt4TeCwQISkhCm8v4Apw5eMraF67uRpTKadUUgq/MD98\n2eNLVgsbADIuZEBcoNiLcwHgfuR9FGQVwKqh+ue3GTmDW4dvQbhUCA6XA+9F3mg9vDWVtZ6g0tZT\n/Zr3w77r+1AiKVFoeztrOzSt1VS9oZTAMAxmnJiBVnVa4aseX7EdB+n/pENcpHhpc/lcZEZmosOE\nDmrLJJfJcTP8JoRLhRCYCtB7WW+0HNKS1Yu0RPWotPVUgHMA5p+bjwf5D6rc1sLIAmv6ranxk4Sa\nsCF+A67nXEfMtBitKKHy/KrfdPM2Rs588AW7ypLL5LgRdgPCZUKYWJug/9r+cBzgqBVfJ6J6VNp6\nisflYXXf1Qg8HogiceXzrjamNghwDtBQsuo7d+8cfoz5EQmBCTATaMfC+hYOFuDwOWCkis1Lcvlc\nlb8UQC6VI2VvCqKWR8HczhyDNg5Csz7NqKz1nPYOrYjSApwDqlxPWttH2RkvMzDx0ESEBoSiSa0m\nbMd5o92YdtW6r1kulcOxv2rudJFJZEjelYxf2vyCK7uvYMiWIfhI+BGa921OhW0AaKStxxQZbWvz\nKLtYXAzfMF8s8FwAn6Y+bMd5h62zLWzb2iL7cjZQxWCbK+Ci/cT2MLIwUuqcMrEMV36/guiV0bBp\nYYMRu0agiZf2/CAjmkG3/Ok5mVyG5hubVzi3bWFkgZ3Dd2J029EsJKscwzAYe3AszARm2DV8l1aO\nIJ/dfIYd3XdAXPjhC5JcPhcW9haYeWUmzOrUbHpEWi5F8s5kRK+Khl1bO3j94IVG7o1qGptoAbpP\nm1Qq7HpYhaPtxtaNkfF5hlZOjayKXoVDtw5BOFUIE772vsbqyZUn+GvAX5CUSt4tbw5gZG4E6ybW\nmHRmEizrW1b72JJSCZJ2JCHmxxg4uDjA6wcvNHBroML0hC1U2qRSFY22tXmUferOKQQeD0RCYAIa\nWjVkO06VZBIZ0o6mIX5DPF7eewkOl4N6HevB/Wt3NPVpWu3fEiQlElzaegmxa2LRsFtDeC70RP3O\n9dWUnrCBSptU6b+jbW0dZd/JvYOeu3ri8JjD6Nm4J9txNEpcJEbib4mIWxeHxh6N4bXQC/ad7NmO\nRdSASptU6e3RtraOsgvLC9FtRzd83u1zzOwyk+04GlNeUA7RZhESNiSgaa+m8FroBbt2dmzHImpE\npU0UEnY9DJMOT4KDpYPWjbLljBwj949EPfN62DJ0C9txNKIsrwwJmxIg2iiC4wBHeC7whK2TLdux\niAZQaROFyOQydNzSEcG9gqv9tnJ1C44Mxpm7Z3BhygUY8ZS7NU7blb4sRcKGBIg2i9BqaCt4fu+J\nOq3qsB2LaBCVNlGYnJFr1QgbAI6mHsWsU7OQGJQIewv9ncMtyS1B/Pp4XNpyCW1828DjOw/YOFb+\n8BPRT7TKH1GYthX2zWc3EXg8EH+P/1tvC7s4pxhxP8UhaXsSnAOcEZQYhNrNarMdi+goKm3Cmryy\nPPiG+mJNvzVwa+DGdhyVK3pShNi1sUjelYz249pjZvJMWDe2ZjsW0XE0PUJYIZPLMGzfMLSs0xI/\nD/yZ7TgqVfi4EDGrY3B1z1V0nNQR7vPdte49kYRdND1CdM6iiEUolZZibb+1bEdRmfyH+Yj5MQYp\ne1PgMtUFn974FJYO1X8SkpDKUGkTjTtw4wBCroUgMSgRAp6A7ThKy8vMQ/SqaNw8cBOuga6YlToL\n5nbmbMcieoqmR4hGXXt6DX329MGZiWfg4uDCdhylvLz3ElEropB6OBVdPu6C7l90V/ma2UQ/0fQI\n0Qm5JbnwDfXFxoEbdbqwc+/kInpFNNKOp8HtMzfMvjMbpjambMciBoJG2kQjpHIpBoUMgou9C1b3\nW812nBp5nvocUcujkH46HW6z3dBtTjeY1NLeFQiJ9qKRNtF63577FlwOFyv7rGQ7SrXl3MhB1LIo\n3Dt/D93ndsfgzYNhbGXMdixioKi0idqFXAvBkdQjEAWJwOMq/ooutj299hTCpULcj7qPHl/2wNBt\nQ2FsSWVN2EXTI0StLj++jIEhA3Fh8gW0r9ee7TgKyU7OhnCpEFlxWXCf547OMzvDyFy/10MhmkXT\nI0Qr5RTnwH+/P7YM2aIThf0o8RGES4XIvpyNnt/0hH+IPwSmun9LItEvNNImaiGRSdD3z77wbOyJ\nZb2XsR2nUg/jHkK4VIiclBz0/LYnXKe7gm9C4xmiPmpf5U8mk6FLly5o2LAhjh8/rpITE/02+9Rs\nZOZl4ujYo1q3SNVrD6IfIDI4Erm3c+HxnQc6fdQJfGMqa6J+ap8e+fnnn+Hs7IzCwsIanYQYll3J\nu3D27lkkBCZoZWFnRmQiMjgSeZl58FzgiY6TOoJnpDsXSIlhq7K0s7KycPLkSSxYsAA//fSTJjIR\nHRafFY9vz30L4VQhrE20Z0U7hmGQcSEDwmAhCh8XwnOhJ9qPbw+egMqa6JYqS/uLL77AmjVrUFBQ\nUOHHlyxZ8ubPPj4+8PHxUVU2omOyC7MRsD8AO4fvRJu6bdiOA+BVWd89cxfCYCFKckvg9YMX2o1p\nBy5f+34DIPorIiICERERKjlWpXPaJ06cwKlTp7B582ZERERg3bp1Oj2nzTAMHkQ9QOzaWGRezIS0\nXApjK2O0H98e3eZ0g00LeotITZVLy9Hrj14Y1GIQfvD+ge04YBgGd07egTBYCHGRGF4/eMF5lDO4\nPCprwj61XYj8/vvv8eeff4LP56OsrAwFBQUYOXIk9uzZo/SJNU1cLEaobyiy4rIgKZEAb8XmCrjg\n8rnoOb8nvBd7g8PhsBdUBzEMgxknZuBF6QscGHWA1XlshmGQdiwNwmAh5FI5vH7wgpO/Ezhc+p4S\n7aGRd0RGRkZi7dq1OjnSlkvl2NNnD7JEWZCVyT64ncBMAM8FnvD83lOD6XTflktb8IvoF8RNj4Ol\nMTvrRzNyBrcO34JwqRAcLgfei7zRenhrKmuilTT2cI2ujkBvHb6Fx0mPKy1sAJCUSCBcKoTLNBdY\n2FtoKJ1ui7ofhcURixEzLYaVwpbL5LgZfhPCpUIIzATovaw3Wg5pqbP/VgmpikE8XLOtyzZkX85W\naFu+CR8e33nAe5G3mlPpvof5D9FtRzfsHrEbA1oM0Oi55VI5roddR9SyKJjUMoH3Ym84DnCksiY6\ngR5jr0RZfhmeXnuq8PbSMimuhVyj0q5CqaQUfmF+mNt9rkYLWy6VI2VvCoTLhLCoZ4FBmwahWZ9m\nVNbEYOh9aZfnl4NnxINcIq/WPuTDGIbBx39/jJZ1WmKe+zyNnFMmkeHan9cQtSIK1o2sMXTrUDT1\naUplTQyO3pe2sZUxZOLK57L/y8iSVnSrzMaEjbj29BpipsWovTRlYhmu/H4F0SujYdPCBiN2jUAT\nryZqPSch2kzvS9uklgnqtqmLnJQchbbnGfPQbkw7NafSXRcyLmBl9ErEB8bDTKC+9yFKy6RI3pWM\n6FXRsGtrB/8QfzRyb6S28xGiK/S+tAGg5zc9cWLmCUiKJVVuy+Fw0OWTLhpIpXsyXmZg/MHx2Dty\nL5rWaqqWc0hKJUjanoSY1TFwcHHA6PDRaODWQC3nIkQXGURptx3VFgkbEvD02tNKp0oEZgK4zXGD\nVQMrDabTDcXiYviF+eE7j+/Qu1lvlR9fUiLBpa2XELsmFg27NcTYo2NRv3N9lZ+HEF1nELf8Aa/u\nIvlr4F94dv0ZxEXidz7G4XHAM+Kh88zOGPDTALq49R8Mw2DcwXEw4Ztg94jdKv36iIvESPwtEXHr\n4tDEswk8F3rCvqO9yo5PiDbSyBORqj4xG+QyOdJPpyN2dSwexDwAI2fAN+HDeZQzenzRA/adqCwq\nsjpmNcJvhkM4VQgTvmrePl5eUA7RZhESNiSgaa+m8FroBbt2dio5NiHajkq7BhiGASNjaLW3KpxO\nP41pR6dBFCRCQ6uGSh+vLK8MCZsSINooguMAR3gu8IStk60KkhKiO+jhmhrgcDjg8GkapDLpL9Ix\n5cgUHBx9UOnCLn1ZioQNCRBtFqHV0FaYFjMNdVrVUVFSQgyHwZY2qVxheSFGhI7A/3z+B4/GHjU+\nTkluCeLXx+PSlkto49sGgQmBsHGkJXAJqSmDnR4hHyZn5Bi5fyRszWyxdejWGl14LM4pRtxPcUja\nngTnUc7w+NYDtZrWUkNaQnQPTY8QlVouXI6c4hyEjgytdmEXPSlC7NpYJO9KRvtx7THzykxYN9Ke\n144RouuotMk7jqUdw7akbRAFimDMN1Z4v8LHhYhZHYOre66i46SO+CTlE7rfnRA1oNImb6Q+T0Xg\nsUAcH3ccDpYOCu2T/zAfMT/GIGVvClymuuDTG5/C0oGdFyEQYgiotAkAIK8sDyNCR+DHvj+iW8Nu\nVW+fmYfoVdG4eeAmXANdMSt1FsztzDWQlBDDRhciCWRyGYaHDkfz2s2xadCmSrd9ee8lolZEIfVw\nKrp83AXdv+gOs7rqWziKEH1EFyKJUhZHLEaxuBg/9f/pg9vk3slF9IpopB1Pg9tnbph9ZzZMbUw1\nmJIQAlBpG7zwm+H469pfSAxKhIAneO/jz1OfI2p5FNJPp8Ntthva/NMGA08NBPOr4qOEtf3WYna3\n2aqMTYjBotI2YClPU/DJ35/gn4n/wNb83UfJc27kIGpZFO6dv4fuc7tj8ObBMLYyRm5JLrinuSiV\nlip0DmOeMfo276uO+IQYJCptA/Wi9AV8w3yxYcAGuDq4vvn7p9eeQrhUiPtR99Hjyx4Yum0ojC3/\nvfWvjlkdzO42GxsTNqJMWlbpOXgcHga2GAgnWye1fR5Eu8jEMqQeSUX8z/HIz8wHl8+FQxcH9Piy\nBxq5N6IVNFWALkQaIKlcisEhg9GhXges7b8WAJCdnA1hsBBZ8Vlwn+eOzjM7w8i84teu5ZbkovGG\nxiiRlFR6HhO+CZJmJFFpG4jHlx4jZFAIpOVSiAvfWv6Y82qt+rpt6mLCqQkwt6W7jJTpTlrizgB9\nd/47AMCqvqvwKPER9g3fh31D96Fpr6aYc28OenzZ44OFDbwabc9ym1XpMq08Dg8DHAdQYRuIJ1ef\n4I9ef6Dkecm7hQ0ADCApluDptafY2WMnygvoxdnKoJG2gdmbshc/XPwBRzodwbVV15BzPQce33rA\nZZoL+CaKz5ZVNdqmUbZh+bXdr3h241mV2/GMeXCb5Yb+a/trIJX2opE2UUhSdhJmH5+N6Rem4/zk\n82jj2waz78xG10+7VquwgcpH2zTKNiyPLz9GXkaeQtvKymW4vO0ypOVSNafSX1TaBuLymcsYsHEA\nhp8djoHDBmL27dnoPKMz+MY1vxY9330+uJz3/wkJeAKs7LNSmbhEh6SEpEBSVvVLs1/jcDjIjMhU\nXyA9R6WtxxiGwb3z97DDZwfGHhmLEfVGYMeZHXCd7gqeEU/p41c02qZRtuEpfFwIyBXfnmEYlDyv\n/CI2+TC65U8PMQyDu2fuQhgsROmLUsTMjEEr21bYOm4reFzly/pt893n4xfRL2/+N42yDY+JdfXe\nG8rhcCAwe/9BLqIYGmnrEYZhcPvv29jZfSfOfHUGbnPcYBpiisv8ywgZGaLywgbeHW3TKNswtRjU\nAkaWH77b6L9kYhkaezRWYyL9RiNtPcAwDNKOpUEYLIRcKofXIi84+TlB9FiEb/d9i8iPIlHLRH1v\njXk92hZwaZRtiFoNbaX4dBsHaDm4Jd2rrQQqbR3GyBncOnwLwqVCcLgceC/yRuvhrcHhcvCk6AkC\nDgRgx/Adah/51jGrg696fIW052laMcpm5AzuR91HXkYeODwO6nWoB/uO9mzH0ltcPhcDNwzEiZkn\nICmp/IKkkbkRei3rpaFk+onu09ZBcpkcN8NvQrhUCIGZAN6LvNFySMs3jwiLZWL0+qMXBjgOwCLv\nRRrJ9PrfAYfDgUQmQWZeZrX2b1qraYULVlUrg5xBwsYExPwYA3GxGIycefVvVM6gVrNa6L28N9qM\naKPUOciHxa+Px/kF5yETy8DI3u0FnjEPPCMeJpycQFMjUK47qbR1iFwqx/Ww64haFgWTWibwXuwN\nxwGO763nMPPETOQU5+Dg6IMV3pKnbjuSdmDmiZkwFyj2K3CxpBjbhm7DdNfpNT6nXCZHmH8YMs5l\nfHC0xzPmwWW6Cwb/MpjWwFCTJ1eeIHZtLG4evAkulwuGYcA35qPrZ13R9dOusKxPbzUC1FjaZWVl\n8Pb2Rnl5OcRiMUaMGIGVK/+ds6TS1gy5VI5rIdcQtTwKFvUs4L3YG836NKuweLZe2oqNoo2Inx4P\nS2N2/g+SX5aPBj81QLGkWKHtLQQWyPoyC9YmNX8B8Nn5Z5G4ObHKX88BwMzWDD5LfNB5ZmdweXQt\nXh2kZVIUPysGl8+Fua05uHz6Or9NrSPtkpISmJmZQSqVwsPDA2vXroWHh4fSJyZVk0lkuPbnq7K2\nbmwNr0VeaOrT9IOjxOgH0Ri5fyRipsWghU0LDad91+KLi7Emdk2VS7ia8k0xv+d8LPFZUuNziYvF\nWGu3VqHCfk1gJkCjno0w/sR4ldyzTkh1qPUxdjOzV6+SEovFkMlksLGxqdGJiOJk4leP+v7S6hdc\n33cdI3aPwJSLU9CsV8WjawDIKsjCmPAx+MP3D9YLGwC+7PGlQlMzPA4PX3T/QqlzXQ+9DlRztkNS\nIsGD6Ac4PuO4UucmRNOqvHtELpfD1dUVd+/exSeffAJnZ+d3Pr5kyZI3f/bx8YGPj4+qMxoMaZkU\nybuSEb0qGnZt7eAf4o9G7o2q3K9MWgb/MH/McZuDgS0GaiBp1axNrPFVj68qHW2b8k3xlftXSk2L\nAMDjxMeQFCs+yn5NWirFjbAb6LOiD821ErWKiIhARESESo6l8IXI/Px8DBgwAKtWrXpTzDQ9ohqS\nUgmStichZnUMHFwc4PWDFxq4NVBoX4ZhMPXoVJRKSxE6MlSrLrBVNbetirlsADgWeAzJO5NrtC/P\nmAf3ee7ovbS3UhkIqQ6NrPJnbW2NIUOG4NKlSzU6EXmfpESCuJ/isNFxIzIvZmLcsXEYd3ycwoUN\nAJtEm3DlyRXsGr5Lqwob+He0bcp//wXAqhplA0DdNnWrvUrha7JyGe5H3lc6AyGaUmlpP3/+HHl5\nr5ZcLC0txdmzZ+Hi4qKRYPpMXCRGzJoY/Nz8Z2TFZWHCqQkYc3gMHFwdqnWcixkXsSJqBY6MPQJz\nI+18wuxDc9uqmMt+rcOkDmBQ89/4ZGKZSnIQogmVDk+ys7MxZcoUyOVyyOVyTJo0CX369NFUNr1T\nXlAO0WYREjYkoFnvZph8bjLs2tnV6FiZeZkYd3AcQvxD0LRWU9UGVaGK5rZVOcoGAIt6Fmg1tBVu\nH78NWXk1C5gD1G5WWyU5CNEEerhGA8ryypCwKQGijSK0GNgCHt97wNbJtuodP6BEUoKeu3piSscp\nmNt9rgqTqsd/57ZVNZf9trL8Mmzvuh35D/KrVdwCcwEmnJyAJl5NVJaFkKrQm2u0VOmLUkQsjsDG\nFhvx8u5LTIuZBr8//ZQqbIZhEHgsEO3t2uPzbp+rMK36vD23repR9msm1iYISgxCq2GtwBUo+M+a\nA1jYW6CxJz1WTXQHjbTVoCS3BPHr43FpyyW08W0Dj+88YOOomvvb18SsQdiNMERNjYKp4P0LfNrq\n9WibA47KR9n/VfikEPuG7sPTq08hl35gdX4OYGxpjOlx02HrXPMfooTUBK09oiWKc4oR91MckrYn\nwXmUMzy+9UCtpqpbEvWf9H8w9ehUJAQmoJF11fdva5tNok3ggovP3D5T+7kYOYPzC84jYUMCOFzO\nm6clOVwO+KZ8WDeyxuhDo5X6rYeQmqLSZlnRkyLEro3Fld1X0G5cO/T8piesG6l2JJn+Ih09d/VE\n+KhweDbxVOmx9VlZfhmu7rmKe+fuQVoqRa2mteAa5IoGXRW/rZIQVaPSZknh40LErI7B1T1X0XFS\nR7jPd4dVAyuVn6dIXITuO7rjs66f4ZOun6j8+IQQzaLS1rD8h/mI+TEGKXtT4DLVBT2+7gFLB/U8\nBs0wDAIOBMDG1Abbhm7TugdoCCHVp0x30ptrqiEvMw/Rq6Jx88BNuAa6YlbqLJjbqfehluVRy/G4\n8DH2+u+lwiaEUGkr4uW9l4haEYXUw6no8nEXzEqbBbO6Zmo/7/G049hyaQtEQSIY843Vfj5CiPaj\n0q5E7p1cRC2Pwu0Tt+H2mRtm35kNUxvN3GaX+jwV049Nx7Fxx1Dfsr5GzkkI0X5U2hV4nvocUcuj\nkH46HW5z3DAnfQ5Maplo7Pz5ZfnwDfXFqr6r0L1hd42dlxCi/ehC5FtybuQgalkU7p2/h+5zu8Nt\nlhuMrTQ7LSFn5BgROgJNrJvgl8G/aPTchBDNoAuRSnp67SmES4W4H3UfPb7sgaHbhsLYkp055CUR\nS1BQXoD1A9azcn5CiHYz6NLOTsqGcKkQWQlZcP/aHSN+HwEjcyPW8hy6dQh/XP0DiUGJEPAErOUg\nhGgvg5weeZT4CMJgIbKTstHzm55wDXKFwJTdkryecx29/uiF0xNOo3P9zqxmIYSoF02PKOhh3EMI\nlwqRcz0HHt96YNSBUTV+44kqvSh9Ad9QX6wfsJ4KmxBSKYMYaT+IfoDI4Ejk3s6F5/ee6DilI/jG\n7Jc1AMjkMgzeOxjt7NphXf91bMchhGgAjbQrwDAM7kfeR2RwJPLv58NzgSc6TOoAnoDHdrR3fH/h\ne8jkMvzY90e2oxBCdIDelTbDMMg4n4HI4EgUZRfBc6En2o9vr3VlDQD7UvbhwI0DSAxKBJ+rd98K\nQoga6E1TMAyDu2fuQhgsROmLUngu9ES7Me3A5Wvny3mSs5Mx5/QcnJ98HnXM6rAdhxCiI3S+tBmG\nwZ2TdyAMFkJcLIbXD15wDnAGl6edZQ0Az4qfwS/MD78O/hUd6nVgOw4hRIfobGkzDIO0Y2kQBgsh\nl8rhtcgLTn5O4HC1eyU8iUyCMeFjML79eIxqO4rtOIQQHaNzpc3IGdw6fAvCpUJweVx4LfJC62Gt\ntb6sX5t3dh5M+CZY2msp21EIITpIZ0pbLpPjZvhNCJcKITAToPey3mg5pKVOrTH9x5U/cPLOSYiC\nROBxte/CKCFE+2l9aculclwPu46oZVEwqWWC/mv7w3GAo06VNQCIHokw7+w8RHwUgVomqnvZLyHE\nsGhtaculclwLuYao5VGwqGeBQZsGoVmfZjpX1gDwpOgJRu4fie3DtsPZ1pntOIQQHaZ1pS2TyHDt\nz1dlbd3EGsO2DUMT7yY6WdYAIJaJEbA/AIEugRjRZgTbcQghOk5rHmOXiWW48vsVRK+Mhk0LG3gt\n8kITzyYqOTabPvn7E2QXZuPQmEPgcrT3NkRCiObo9GPs0jIpknclI3pVNOza2sE/xB+N3BuxHUsl\ntl3ehsjMSMQHxlNhE0JUgrXSlpRKkLQ9CTGrY+Dg4oDR4aPRwK0BW3FULuZBDBZeWIjoadGwMrZi\nOw4hRE9ovLTFxWJc3noZsWtj0bBbQ4w7Ng4Org6ajqFWjwoeYXT4aPzu+zta1WnFdhy1GxQyCLdz\nbyu8fX2L+oiaFqXGRIToL42VtrhIjMRfExH3UxyaeDbBhFMTYN/RXlOn15gyaRn89/tjtttsDG45\nmO04GmFlZIXMvEzIGXmV23LAQfPazTWQihD9pPYLkeUF5RBtFiFhQwKa9W4GzwWesGtnV9NTajWG\nYTDt2DQUi4sRFhCms3e8VFf6i3R0+K0DSqWlVW5ryjdFzLQYuDi4aCAZIdpJKy9EluWVIWFTAkQb\nRWgxsAWmREyBrZOtuk6nFTYnbsblx5cRNz3OYAobAFrYtMCwVsNwKPUQpHLpB7fjgIOejXtSYROi\nhEpH2g8fPsTkyZORk5MDDoeDGTNmYM6cOf/uXMFPi9IXpUj4OQGizSK0GtoKngs8Uael/i89GpEZ\ngbHhYxE7PdYgf/1XZLRNo2xCXlFmpF1paT958gRPnjxBp06dUFRUhM6dO+PIkSNwcnJ678Qlz0sQ\nvz4el7ZcQhu/NvD4zgM2jjY1CqVr7ufdR/ed3fGn35/o27yvQvswDIOsuCzkP8gHl8+FvYu9zn+9\nxhwY88HRNgcc9GneB2cnnWUhGSHaRW3TI/b29rC3f3Wx0MLCAk5OTnj8+PGb0gaA4pxixP0Uh6Tt\nSXAe5YwZl2egVlPDWVujRFICvzA/zHefr1BhM3IGol9EiFkdg/L8coDz6hsoE8tg72KP3st7o1mv\nZhpIrnrL+yzH8dvHKyxtE74JVvddzUIqQvSLwnPamZmZSE5ORrdu3d75e/8W/qjbpi4aT2kMi+EW\nBlXYDMMg6HgQ2tq1xdzuc6vcXi6VI9Q3FJkXMyEpkbz38ay4LOwdshcDNwxE5xm691b2D81t01w2\nMXQRERGIiIhQybEUunukqKgIPj4+WLhwIXx9ff/dmcNBeWE5jCyMVBLmQyIzI3HlyRWFt+dz+ZjS\naQosjCzUmApYF7sOe6/vRfTUaJgKTKvc/tTnp5C0IwnSkg9frAMAvhkfE05OQFPvpipKqjkVzW3T\nXDYh71Lr3SMSiQQjR47ExIkT3yns19Rd2ADwV8pf+P3K7wo9Cs4wDOSMHCOdR6q1tM/ePYu1cWuR\nEJigUGGX5ZUhaVsSpGWVFzYASEukuLjoIqZGTlVFVI3672ibRtmEqFalLcgwDKZPnw5nZ2fMnVv1\nr//qstBzIfhcPsQycZX/AcDkjpNhb6G+B3fuvriLiYcnIiwgDI2tGyu0z9U9V6v1dp3Hosd4mfGy\nprxl1NsAAAp/SURBVBFZtbzPcgi4AgA0l02IqlVa2jExMfjrr79w8eJFuLi4wMXFBadPn9ZUtjea\n1GqC0c6j3xRBZXhcHv7n8z+1ZSkSF8E3zBeLvBbBq4mXwvs9jH1Y4Tz2h/CMeXh67WlNIrLu9Wib\nRtmEqF6l0yMeHh6Qy6t+NFkTgnsFY//N/ZDIP1x8Aq4A49qNQyNr9awSyDAMPjryEbo16IZPu35a\nrX3lkmp+HZlXFy511fI+y3E49TCNsglRMZ1ZL1SR0ba6R9kro1fiUeEjbB68udpPPNZpXQdcgeJf\nbkbOoFYT3b0Tp4VNC+TMy6FRNiEqpjOlDbwabX/ohbjqHmX/fftv/Jr4Kw6OPghjvnG193eZ7gIu\nT/Evt1ldMzh01u3VD+ldmISonk6VdmWjbXWOstOep2Hq0ak4MOoA6lvWr9ExbBxt0NC9oUKjbYGZ\nAB7feRjU+iWEEMXoVGkDFY+21TnKLigvgG+YL1b0WYEejXoodayRe0fC3Na80uIWmAnQYlALuAa6\nKnUuQoh+0rnSrmi0ra5RtpyRY+KhiejdrDcCXQOVPp5FPQvMTJ6JJt5NwDfhg2f07w8fgbkAfFM+\n3Ga7ISAsoFq3BxJCDIfWvNi3Ou7n3UebzW1QJi2DgCvAxA4TsWvELpWfZ3HEYlzMuIhzk8/BiKfa\nh4heZrzEld1XkHsnFzwjHhr1aIQOEzto5GElQgi71LbKnzpPrKwph6dgb8pe8Hl83J51W+VTI4dv\nHcbnpz9HYlAi6lnUU+mxCSGGTZnu1LnpkdeCewVDDrla5rJv5NzAjBMzcGjMISpsQohWYe1t7Mpq\nUqsJ9vrvhU9TH5Ue92XpS/iG+eKn/j+hS/0uKj02IYQoS2enR9RBJpdhyN4hcLZ1xk8DfmI7DiFE\nTxnk9Ig6LLiwABK5BKv70aPXhBDtpLPTI6oWdj0M+2/shyhIBD6XviyEEO1E7QTg6pOrmHVqFs5N\nOoe6ZnXZjkMIIR9k8NMjz0uewzfMF5sGbkKHeh3YjkMIIZUy6AuRT1OfYsCeAbC+ao3eJ3uDw+PA\nwdUBPb/pidbDW4MnqHhxKkIIUYZBPlyjrOhV0fgm+hs8q/0M40LGgcv8+0uHkYURrBtbY/KFybCo\np973TBJCDA/dPVJNCRsT8POhn5HaPBX+4f7vFDYAiIvEyL2di92euyEuErOUkhBC3mdwpV1eUI4/\nNvyBkz4nMTZ0LEzLKn4pr1wqR0FWAS5vv6zhhIQQ8mEGV9oXdl/AXr+9GHZ8GOye2VW6rbRUiri1\ncWDkujkFRAjRPwZV2mKZGJ9nfI5OSZ3glOqk0D5leWV4kf5CzckIIUQxBlXac0/PhUmJCXwifRTe\nh8vnorygXH2hCCGkGgymtLdf3o6LmRcxM20mOIziLxiQS+UwqWWixmSEEKI4g3giMvZhLBZcWIDo\nadEo4BXgzOUzkBRLFNrXrK4ZajvWVnNCQghRjN6PtB8XPsboA6Oxe8RutKrTCh0mdlD4/ki+GR/u\n89zpBbuEEK2h16VdLi2Hf5g/Pu36KYa0GgLg1YMzAzcMhMDs/Te6v41nxINNcxu4THfRRFRCCFGI\n3j4RyTAMAo8HoqC8APsD9r83WhZtFuHs12fByBnIxLJ3PmZkYYQ6retg0plJMLWp+D5uQgipKXqM\nvQKbRZux9fJWxE6PhYVRxY+i5z/MR+Kvibiy6wpKX5aCJ+ChQbcG6PlNTzj2c6Q3ohNC1IJK+z8i\nMyMxJnwMYqfHonnt5mzHIYSQd9DaI295kP8AYw+OxZ9+f1JhE0L0jl6VdqmkFH5hfvi6x9fo59iP\n7TiEEKJyejM9wjAMJh2e9H/t3V9Ik3scx/F3oRdnGqtuFkcXQho5rW3h4YGgU9KFaCg7GJwEQ9QL\nL4LoNugmCCG6iCIQr4IKMogTCzShoPVPhkQLAgODGs4/CKOUkmLL/c6dsNNOz2+pm7+n7+tue34+\nfL983Hf6+HscADf+uiHb9IQQG9ZqZqdjbq65FL3Em+QbnnU/k4EthHAsR1weefjuIRfHLnL377v8\nVrp2W/QikcianWsjkv7M5uT+nNzbatkO7Z6eHjweD3v37i1EPXl79/Ednf90MtQ+xE73zjU9t9O/\ncaQ/szm5Pyf3tlq2Q7u7u5vR0dFC1JK3pdQSoaEQZ/88y6GqQ8UuRwgh1p3t0D548CDbtm28f5ik\nlKI73E3D7w2c/ONkscsRQoiC0No9Eo/HaW1t5fXr19lfLH/wE0KIn1KU3SMbZbufEEL8Khyxe0QI\nIX4VMrSFEMIgtkO7o6ODAwcOMDk5idfr5dq1a4WoSwghRA62Q/vWrVvMzs4SDocpKyujv7+fCxcu\n5Fx76tQpampq8Pv9xGKxNS92PY2OjrJnzx5qampy9heJRHC73QSDQYLBIOfPny9ClT9HZ6+9qdnZ\n9WZybgCJRILGxkbq6uqor6/nypUrOdeZmp9OfyZn+PXrVyzLIhAI4PP5OHPmTM51eeWnNHz79k3t\n2rVLvX//XqVSKeX3+9XExETWmuHhYdXc3KyUUioajSrLsnROvSHo9Pfo0SPV2tpapApX58mTJ+rl\ny5eqvr4+53GTs7PrzeTclFJqbm5OxWIxpZRSnz59Urt373bUa0+nP9MzXFpaUkoplU6nlWVZ6unT\np1nH881P65r2+Pg41dXVVFVVUVpayvHjxwmHw1lr7t27R1dXFwCWZbGwsMD8/LzO6YtOpz8wd7eM\n3V57k7PTuY/A1NwAduzYQSAQAKC8vJza2lpmZ2ez1picn05/YHaGLpcLgFQqxfLyMtu3b886nm9+\nWkN7ZmYGr9e78riyspKZmRnbNdPT0zqnLzqd/jZt2sTY2Bh+v5+WlhYmJiYKXea6MTk7O07KLR6P\nE4vFsCwr63mn5Pd//ZmeYSaTIRAI4PF4aGxsxOfzZR3PNz+tfdq6N9H8993QlJtvdOrcv38/iUQC\nl8vF/fv3CYVCTE5OFqC6wjA1OztOye3z588cO3aMy5cvU17+/cfnmZ7fj/ozPcPNmzfz6tUrFhcX\naWpqIhKJcPjw4aw1+eSn9ZN2RUUFiURi5XEikaCysvKHa6anp6moqNA5fdHp9Ldly5aVX3Oam5tJ\np9N8+PChoHWuF5Ozs+OE3NLpNO3t7XR2dhIKhb47bnp+dv05IUMAt9vN0aNHefHiRdbz+eanNbQb\nGhp4+/Yt8XicVCrF7du3aWtry1rT1tbG9evXAYhGo2zduhWPx6PdUDHp9Dc/P7/ybjg+Po5S6rtr\nU6YyOTs7puemlKK3txefz8fp06dzrjE5P53+TM4wmUyysLAAwJcvX3jw4AHBYDBrTb75aV0eKSkp\n4erVqzQ1NbG8vExvby+1tbUMDg4C0NfXR0tLCyMjI1RXV1NWVmbUfm6d/u7cucPAwAAlJSW4XC6G\nhoaKXLW+jo4OHj9+TDKZxOv1cu7cOdLpNGB+dna9mZwbwPPnz7l58yb79u1bebH39/czNTUFmJ+f\nTn8mZzg3N0dXVxeZTIZMJsOJEyc4cuTIqmbnqj5uTAghRGHJbexCCGEQGdpCCGEQGdpCCGEQGdpC\nCGEQGdpCCGEQGdpCCGGQfwE2MwDshNF7/gAAAABJRU5ErkJggg==\n" | |
} | |
], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# is there any effect of ETHN on slope or intercept?\n", | |
"table5 = anova_lm(min_lm, min_lm4)\n", | |
"print table5\n", | |
"\n", | |
"# is there any effect of ETHN on intercept\n", | |
"table6 = anova_lm(min_lm, min_lm3)\n", | |
"print table6\n", | |
"\n", | |
"# is there any effect of ETHN on slope\n", | |
"table7 = anova_lm(min_lm, min_lm2)\n", | |
"print table7\n", | |
"\n", | |
"# is it just the slope or both?\n", | |
"table8 = anova_lm(min_lm2, min_lm4)\n", | |
"print table8" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 18 45.568297 0 NaN NaN NaN\n", | |
"1 16 31.655473 2 13.912824 3.516061 0.054236\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 18 45.568297 0 NaN NaN NaN\n", | |
"1 17 40.321546 1 5.246751 2.212087 0.155246\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 18 45.568297 0 NaN NaN NaN\n", | |
"1 17 34.707653 1 10.860644 5.319603 0.033949\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 17 34.707653 0 NaN NaN NaN\n", | |
"1 16 31.655473 1 3.05218 1.542699 0.232115\n" | |
] | |
} | |
], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## One-way ANOVA" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"try:\n", | |
" rehab_table = pandas.read_csv('rehab.table')\n", | |
"except:\n", | |
" url = 'http://stats191.stanford.edu/data/rehab.csv'\n", | |
" rehab_table = pandas.read_table(url, delimiter=\",\")\n", | |
" rehab_table.to_csv('rehab.table')\n", | |
"\n", | |
"plt.figure(figsize=(6,6))\n", | |
"rehab_table.boxplot('Time', 'Fitness', ax=plt.gca())\n", | |
"\n", | |
"rehab_lm = ols('Time ~ C(Fitness)', df=rehab_table).fit()\n", | |
"table9 = anova_lm(rehab_lm)\n", | |
"print table9\n", | |
"\n", | |
"print rehab_lm.model._data._orig_exog\n", | |
"\n", | |
"print rehab_lm.summary()\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" df sum_sq mean_sq F PR(>F)\n", | |
"C(Fitness) 2 672 336.000000 16.961538 0.000041\n", | |
"Residual 21 416 19.809524 NaN NaN\n", | |
" Intercept C(Fitness)[T.2] C(Fitness)[T.3]\n", | |
"0 1 0 0\n", | |
"1 1 0 0\n", | |
"2 1 0 0\n", | |
"3 1 0 0\n", | |
"4 1 0 0\n", | |
"5 1 0 0\n", | |
"6 1 0 0\n", | |
"7 1 0 0\n", | |
"8 1 1 0\n", | |
"9 1 1 0\n", | |
"10 1 1 0\n", | |
"11 1 1 0\n", | |
"12 1 1 0\n", | |
"13 1 1 0\n", | |
"14 1 1 0\n", | |
"15 1 1 0\n", | |
"16 1 1 0\n", | |
"17 1 1 0\n", | |
"18 1 0 1\n", | |
"19 1 0 1\n", | |
"20 1 0 1\n", | |
"21 1 0 1\n", | |
"22 1 0 1\n", | |
"23 1 0 1\n", | |
" OLS Regression Results \n", | |
"==============================================================================\n", | |
"Dep. Variable: Time R-squared: 0.618\n", | |
"Model: OLS Adj. R-squared: 0.581\n", | |
"Method: Least Squares F-statistic: 16.96\n", | |
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 4.13e-05\n", | |
"Time: 20:52:32 Log-Likelihood: -68.286\n", | |
"No. Observations: 24 AIC: 142.6\n", | |
"Df Residuals: 21 BIC: 146.1\n", | |
"Df Model: 2 \n", | |
"===================================================================================\n", | |
" coef std err t P>|t| [95.0% Conf. Int.]\n", | |
"-----------------------------------------------------------------------------------\n", | |
"Intercept 38.0000 1.574 24.149 0.000 34.728 41.272\n", | |
"C(Fitness)[T.2] -6.0000 2.111 -2.842 0.010 -10.390 -1.610\n", | |
"C(Fitness)[T.3] -14.0000 2.404 -5.824 0.000 -18.999 -9.001\n", | |
"==============================================================================\n", | |
"Omnibus: 0.163 Durbin-Watson: 2.209\n", | |
"Prob(Omnibus): 0.922 Jarque-Bera (JB): 0.211\n", | |
"Skew: -0.163 Prob(JB): 0.900\n", | |
"Kurtosis: 2.675 Cond. No. 3.80\n", | |
"==============================================================================\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAGPCAYAAACnAZCKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVPX5x/HPIUABQUIqCVbERB0ol8AuIHgBCdBELcbi\nDYsVEpVaKWoFW5UZlSBW4wURUKfUOhK8oxZKUagoWRRRUUi8tCpOZAU0USHcxR+X/f7+iKwEQhI4\nm5yz332/ZnbgJJuzz+ZhH85+9ux3HWOMEQDAKk28LgAAEHsMdwCwEMMdACzEcAcACzHcAcBCDHcA\nsBDDHUpKSlIwGFQgEFCfPn309ttvx3T/oVBIubm5tV5n2bJlMb/dxpCenq7KyspDvt66deuj3md+\nfr5OPvlkBYNBBYNBzZw5U5MmTdLrr78uSXrooYe0a9euo94/EkNTrwuA91q1aqWSkhJJ0quvvqqJ\nEycqFAo1ag3FxcVq06aNzjjjjKP6+f1v13AcJ5Zl1elwt+emDsdx9MADD+iiiy6q8fvTp0/XqFGj\n1LJly6O+DdiPI3dUs3XrVqWkpEiqGph/+ctflJmZqZ49e2ru3LmSpBtvvFFTpkyRJP3nP//RoEGD\nZIxRfn6+rr32Wp122mnq0qWLXn755UP2X1lZqeHDh6tXr14644wz9NFHHykcDmvWrFmaNm2agsGg\nli9fXu1nvvvuO2VnZ6tHjx76/e9/Hz1aDofD6tKli/Ly8pSZman169fXWO/Bzxyuu+46FRUVSao6\n8r7lllvUs2dP9e/fX2VlZdHbvOSSS9SvXz/169dPK1askCRt2rRJOTk50Vpqew/ghAkT1KNHD/3q\nV7/Sxo0bVVZWpj59+kS///nnn1fbPtDB+83Pz9dLL72kmTNn6uuvv9bgwYM1dOhQSVXPEm677TYF\nAgGdccYZ+vbbb2u9D8uWLYs+K+jdu7d27typ8vJynX322QoGg8rMzDykB4hDBgkvKSnJBAIB88tf\n/tK0bdvWrF692hhjzIsvvmiys7NNJBIx33zzjenUqZOpqKgw33//venevbtZunSp6dKli/niiy+M\nMcbk5eWZ8847zxhjzOeff246duxofvjhB1NcXGzOP/98Y4wx1113nbnzzjuNMcYsXbrUBAIBY4wx\nBQUFZurUqTXWN27cOFNYWGiMMWbx4sXGcRyzadMms3btWtOkSRPz7rvvHrbe8vLyare/v4aioiJj\njDHp6enm7rvvNsYYM2fOnOj1Ro4caZYvX26MMebLL780Xbt2NcYYc/3115spU6YYY4x5+eWXo7Uc\nzHEc88wzzxhjjLnzzjvNddddZ4wxZvDgwaa0tNQYY8zEiRPNww8/fMjP5uXlmYyMDBMIBEwwGDQf\nffSRyc/PNy+99FK05gNv03Ecs3DhQmOMMTfffLO56667ar0Pubm5ZsWKFcYYY3bu3Gn27t1rpk6d\nav76178aY4yJRCJm+/btNfYC8YNYBmrZsmU0lnnnnXc0atQoffzxx1q+fLkuv/xyOY6j1NRUDRo0\nSCtXrlRubq4ee+wxDRw4UNOnT1dGRoakqjhhxIgRkqRTTz1VJ598sj799NNqt/XWW2/pn//8pyRp\n8ODB2rRpk7Zv3y7p0KPVA39m/vz5kqRzzjlH7dq1i37vpJNOUr9+/aLXO7je9957T8cee2yt93/k\nyJGSpN/+9rcaP368JOm1117TJ598Er3O9u3btXPnTr355puaN2+eJOnXv/51tVoO1KRJE1122WWS\npCuuuCIasYwZM0ZPPPGEHnzwQc2dO1fvvffeIT9bVyxzsObNm2vYsGGSpD59+mjJkiW13oezzjpL\n48eP1+9+9ztddNFFOuGEE3Taaafpqquu0p49e6LPrBDfiGVQzemnn66NGzfqu+++k+M41QauMSaa\nJX/44Ydq3769vvrqq1r316TJof/EDjfEa3O4nznmmGNqvZ7jOGratKkikUj0a7W9GLn//hlj9O67\n76qkpEQlJSVav3599LaOtP4Df28XXXSRFi1apIULF6pv376H/c/hSG6jWbNm0b83adJEe/furfU+\n3HLLLXr88ce1a9cunXXWWfrss880cOBAvfnmmzrhhBOUn5+vJ5988ojuI/yH4Y5qPv30U0UiER13\n3HEaOHCgnn/+eUUiEX333Xd688031a9fP3355Zd68MEHVVJSokWLFmnlypWSqobJCy+8IGOMysrK\n9MUXX6hLly7V9j9w4EA9/fTTkqqy8Pbt26tNmzZq06ZN9Aj+YGeddVY0P3/11Ve1efPmGq93cL1v\nvPGG+vXrp06dOul///ufdu/erS1btmjp0qXVfu7555+P/nnmmWdKknJycjRjxozodT744ANJ0tln\nn61nnnlGkrRo0aLD1hKJRPTCCy9Ikp555hkNHDhQktSiRQudc845Gjt2rK688soaf7Yubdq00bZt\n2+q83sH3obS0VJJUVlam7t276+abb9Zpp52mzz77TOvWrVP79u01ZswYjRkzJvpMDvGLWAbatWuX\ngsGgpKoBXVRUJMdxdOGFF+rtt99Wr1695DiO7r//fqWmpio7O1tTp05Vhw4d9Pjjjys/P1/vvfee\nHMdRp06d1K9fP23btk2zZs1S8+bN5ThO9Mi1oKBAV111lXr16qVjjjkm+sJmbm6uLrnkEv3rX//S\nww8/rLPOOita36RJkzRy5Eg9+eSTOuOMM9ShQ4fogDvwrJTD1StJI0aMUI8ePZSRkaHevXtXu/+b\nN29Wr1691KJFCz377LOSpBkzZmjcuHHq1auX9u7dq0GDBunRRx+N1vLss8/qzDPP1EknnVTj7/SY\nY47RypUrdddddyktLS36H4gkXX755Zo3b55ycnIO25Pazra55pprdO655+qEE07Q66+/Xu26B/6u\nD3cfpk+fruLiYjVp0kQ9evTQueeeq+eee07333+/mjVrpjZt2mjOnDmHvX3EB8cczXNkoAZXXnml\ncnNz650V19fu3buVlJSkpKQkvf322xo3bpxWr14dk31nZGRo1apV0TOEGsMDDzyg7du3a/LkyY12\nm0g8HLnD99atW6cRI0YoEomoefPmeuyxx2K278Y+L/7CCy/U2rVrD4mGgFjjyB0ALMQLqgBgIYY7\nAFiI4Q4AFmK4A4CFGO4AYCGGOwBYiOEOABZiuAOAhRjuSDg9evTQG2+84XUZQINi+QFYp3Xr1tFl\nBXbu3KkWLVooKSlJkvT3v/9dH3/8sZflAY2C5QdgtYyMDD3++OMaMmSI16UAjYpYBgknPT09unBX\nQUGBLr30Uo0aNUrHHnusevbsqc8//1z33HOP0tLSdNJJJ0U/2Uiq+ozZq6++Wr/4xS/UsWNH3X77\n7dU+CATwC4Y7Es7BK0EuXLhQo0eP1ubNmxUMBpWdnS1J+vrrr3X77bfrD3/4Q/S6+fn5at68ucrK\nylRSUqJXX31V//jHPxq1fqA+GO5IeGeffbays7OVlJSkSy65RJs2bdKtt96qpKQkXXbZZQqHw9q2\nbZu++eYbLVq0SNOmTVPLli3Vvn173XjjjXruuee8vgvAIXhBFQlv/6c1SVUfFn7cccdFj+5btmwp\nSdqxY4c2bNigPXv26Pjjj49ePxKJqFOnTo1bMFAPDHegnk488UT97Gc/06ZNm2r84G/AT/gXCtTT\n8ccfr5ycHE2YMEHbt29XJBJRWVkZ58zDlxjuSGgHfqD0gV873PacOXO0e/dudevWTSkpKbr00ktV\nUVHRKLUCR4Lz3AHAQvU6ct+3b5+CwaByc3MlVZ0b3LFjRwWDQQWDQS1evLhBiwQAHJl6vaA6ffp0\ndevWTdu3b5dU9TR1woQJmjBhQoMWBwA4OnUeuW/YsEGvvPKKxowZo/0JjjFGpDkA4F91HrmPHz9e\n999/v7Zt2xb9muM4mjlzpubMmaO+fftq6tSpSk5OrvZzB78oBQCIrdoOsms9cl+4cKFSU1MVDAar\n7WTs2LFau3atSktLdfzxx+umm2467A3bfJk0aZLnNXChn1wSs5d1qXW4r1ixQgsWLFBGRoZGjhyp\npUuXavTo0UpNTY2eQjZmzBitXLmyzhsCADSeWof73XffrfXr12vt2rV67rnnNGTIEM2ZM0fl5eXR\n68ybN0+ZmZkNXqgfhcNhr0tADNFPe9DLI1h+wBgTzdFvvvlmffDBB3IcRxkZGZo1a1aDFehngUDA\n6xIQQ/TTHvSyAd/E5DhOvXIhAMCRq2vGsvwAAFiI4e5CKBTyugTEEP20B71kuAOAlcjcASAOkbkD\nQAJiuLtArmcX+mkPeslwBwArkbkDQBwicweABMRwd4Fczy700x70kuEOAFYicweAOETmDgAJiOHu\nArmeXeinPeglwx0ArETmDgBxiMwdABIQw90Fcj270E970EuGOwBYicwdAOJQXTO2aSPWEnccx4nJ\nfvhPDkBjI5aphTGm1kteXnGd12Gwxw9yWnvQS4a7K/n5XlcAADUjcweAOMR57gCQgBjuLpDr2YV+\n2oNeMtwBwEpk7i4UFFRdAKCx1TVjGe4uOI5k+V0E4FO8oNqgQl4XgBgip7UHvWS4A4CViGVcIJYB\n4BViGQBIQAk73FNSqo683VykkOt9OE5VLfAeOa096GUCD/fNm6siFTeX4mL3+zCmqhYAiKWEzdz9\nlJf7qRYA8YHMHQASEMPdBXI9u9BPe9BLhjsAWInM3Qf8VAuA+EDmDgAJiOHuArmeXeinPeglwx0A\nrETm7gN+qgVAfCBzB4AExHB3gVzPLvTTHvSS4Q4AViJz9wE/1QIgPpC5A0ACYri7QK5nF/ppD3rJ\ncAcAK5G5+4CfagEQH8jcASABMdxdINezC/20B71kuAOAlcjcfcBPtQCIDzHJ3Pft26dgMKjc3FxJ\nUmVlpbKzs9W5c2fl5ORoy5YtsakWABAT9Rru06dPV7du3eQ4jiSpsLBQ2dnZWrNmjYYOHarCwsIG\nLdKvyPXsQj/tQS/rMdw3bNigV155RWPGjIk+BViwYIHy8vIkSXl5eZo/f37DVgkAOCJN67rC+PHj\ndf/992vbtm3Rr33zzTdKS0uTJKWlpembb76p8Wfz8/OVnp4uSUpOTlYgEFBWVpakn/5n9Wq7WI5C\njpT1Y62hH/880m3V8f36bBtJoVDxEdXPdsNs7+eXetg+uu39X/NLPbHYLi0tjUbg4XBYdan1BdWF\nCxdq0aJFeuSRRxQKhTR16lT9+9//Vrt27bR58+bo9VJSUlRZWVl9x7ygWm9+qgVAfHD1guqKFSu0\nYMECZWRkaOTIkVq6dKlGjRqltLQ0VVRUSJLKy8uVmpoa26rjxMFHe4hv9NMe9LKO4X733Xdr/fr1\nWrt2rZ577jkNGTJETz75pC644AIVFRVJkoqKijR8+PBGKRYAUD/1Ps992bJlmjp1qhYsWKDKykqN\nGDFC69atU3p6uubOnavk5OTqOyaWqTc/1QIgPtQ1Y3kTkw/4qRYA8YGFwxoQuZ5d6Kc96CXDHQCs\nRCzjA36qBUB8IJYBgATEcHeBXM8u9NMe9JLhDgBWInP3AT/VAiA+1DVj61w4DLDB/uWq3fLzAQtw\nIGIZF8j14ocxps5LcXFxnddBfOCxyXAHACuRufuAn2oBEB84zx2op4ICrysAYofh7gK5nl0mTw55\nXQJihMcmwx0ArETm7gN+qiWR0QfEEzJ3AEhADHcXyPVsE/K6AMQIj02GOxCVl+d1BUDskLn7gJ9q\nARAfyNwBIAEx3F0g17ML/bQHvWS4A4CVyNx9wE+1AIgPZO5APbG2DGzCcHeBXM8urC1jDx6bDHcA\nsBKZuw/4qZZERh8QT8jcASABMdxdINezTcjrAhAjPDYZ7kAUa8vAJmTuPuCnWgDEBzJ3AEhADHcX\nyPXsQj/tQS8Z7gBgJTJ3H/BTLQDiA5k7UE+sLQObMNxdINezC2vL2IPHJsMdAKxE5u4DfqolkdEH\nxBMydwBIQAx3F8j1bBPyugDECI9NhjsQxdoysAmZuw/4qRYA8YHMHQASEMPdBXI9u9BPe9BLhjsA\nWCmhM3e/aNdOqqz0ugoA8YTM/TCMcX+J1X4Y7P7A2jKwScIO99gIeV0AYoi1ZexB5s5wBwArJWzm\nHgucn24X+ol4QuYOAAmI4e5CXl7I6xIQUyGvC0CMkLkz3F3Jz/e6AsQSa8vAJmTuABCHyNwBIAHV\nOtx/+OEH9e/fX4FAQN26ddPEiRMlSQUFBerYsaOCwaCCwaAWL17cKMX6DbmeXeinPeil1LS2b7Zo\n0ULFxcVq1aqV9u7dqwEDBmj58uVyHEcTJkzQhAkTGqtOAMARqHW4S1KrVq0kSbt379a+ffvUrl07\nSapXnp6fn6/09HRJUnJysgKBgLKysiT99D9rPG/Pni39uOmLeth2v72fX+ph++i293/NL/XEYru0\ntFRbtmyRJIXDYdWlzhdUI5GIevfurbKyMo0dO1b33XefJk+erCeeeEJt27ZV3759NXXqVCUnJ1ff\ncQK8oMqbXuxSUMD6Mogfrl9QbdKkiUpLS7Vhwwa98cYbCoVCGjt2rNauXavS0lIdf/zxuummm2Ja\ndPwIeV0AYoi1Zexx8DOxRFTvs2Xatm2rYcOG6f3331dqaqocx5HjOBozZoxWrlzZkDUCAI5QrcN9\n48aN0Yxn165dWrJkiYLBoCoqKqLXmTdvnjIzMxu2St/K8roAxFSW1wUgRg7M3hNVrS+olpeXKy8v\nT5FIRJFIRKNGjdLQoUM1evRolZaWynEcZWRkaNasWY1VLwCgHniHqgv5+SHNnp3ldRmIEccJyZgs\nr8tADBx4poyteIdqA2JtGX9ISak6c8ntRXK/j5QUb38XwH4cuSPu+emUVD/VArtx5A4ACYjh7gLn\n0tqFftqDXjLcAcBKZO4u8HZ1f/BTzu2nWmC3umYsw90FHsj+4Kc++KkW2I0XVBtUyOsCEEPktPag\nlwx3ALASsYwLPAX3Bz/1wU+1wG7EMgCQgBjuLuTlhbwuATFETmsPeslwd4W1ZQD4FZk74p6fcm4/\n1QK7kbkDQAJiuLtArmcX+mkPeslwBwArkbm7wNoy/uCnnNtPtcBurC3TgHgg+4Of+uCnWmA3XlBt\nUCGvC0AMkdPag14y3AHASsQyLvAU3B/81Ac/1QK7EcsAQAJiuLvA2jJ2Iae1B71kuLvC2jIA/IrM\nHXHPTzm3n2qB3cjcASABMdxdINezC/20B71kuAOAlRjuLoRCWV6XgBjKysryugTETJbXBXiO4e7C\n5MleVwCgJqQyDHeXQl4XgBgip7VHOBzyugTPNfW6AACIhVDopyP2oiIpPb3q71lZVZdEw3nuLnBO\nsz/4qQ9+qiWRJcJnLXCeOwAkIIa7C6wtYxcyd3skJ4e8LsFzDHcXWFsG8KdAwOsKvEfmjrjnp5zb\nT7XAbmTuAJCAGO4ukNHahX7ag14y3AHASmTuLiTCubTxwE85t59qgd3qmrEMdxd4IPuDn/rgp1pg\nN15QbVAhrwtADJHT2oNeMtwBwErEMi7wFNwnHMfrCqrjHwUaQV0zllUhEfccGd/MU8eRfFIKEhyx\njAusLWMXclp70EuGuyusLQPAr8jcEff89NqHn2qB3TgVEgASEMPdBXI9u9BPe9BLhjsAWInM3QXW\nlvEHP+XcfqoFdmNtmQbEA9kf/NQHP9UCu/GCaoMKeV0AYoic1h70so7h/sMPP6h///4KBALq1q2b\nJk6cKEmqrKxUdna2OnfurJycHG3ZsqVRigUA1E+dscz333+vVq1aae/evRowYIAeeOABLViwQMcd\nd5xuvvlm3Xvvvdq8ebMKCwur75hYBo3ET33wUy2wm+u1ZVq1aiVJ2r17t/bt26d27dppwYIFWrZs\nmSQpLy9PWVlZhwx3ScrPz1d6erokKTk5WYFAQFlZWZJ+etoU79uSv+ph29tt/j2w3VDbpaWl0ZQk\nHA6rLnUeuUciEfXu3VtlZWUaO3as7rvvPrVr106bN2+WJBljlJKSEt2O7jgBjtzz80OaPTvL6zIS\nXqyOlkOhUPTB5HUtcCcWvfQ710fuTZo0UWlpqbZu3apzzjlHxcXFh9yA47clVxsJa8sA8Kt6ny3T\ntm1bDRs2TKtWrVJaWpoqKiokSeXl5UpNTW2wAv3M9iODREM/7UEv6xjuGzdujGY8u3bt0pIlSxQM\nBnXBBReoqKhIklRUVKThw4c3fKUAgHqrdbiXl5dryJAhCgQC6t+/v3JzczV06FDdeuutWrJkiTp3\n7qylS5fq1ltvbax6feWnF9FgA/ppD3pZR+aemZmp1atXH/L1lJQUvfbaaw1WFADAHZYfcIG1ZfzB\nT2eo+KkW2I21ZRoQD2R/8FMf/FQL7MbaMg0q5HUBiCFyWnvQy3qc5w7EA7+81aJdO68rAKoQy7jA\nU3C70E/EE2IZAEhADPda7F9a4XAXqfbvJ/LSDPEp5HUBiBEyd4Z7rYwxtV6Ki4vrvI7t0RQAfyJz\nB35E5o54QuYO1NOkSV5XAMQOw90Fcj27ZGWFvC4BMcJjk+EOAFYicweAOETmDgAJiOHuArmeXein\nPeglwx2Imj3b6wqA2CFzB37Eee6IJ2TuAJCAGO4ukOvZJuR1AYgRHpus544EUd8F3Oq6GlEj4gWZ\nOwDEITJ3AEhADHcXyPXsQj/tQS8Z7gBgJTJ3AIhDZO4AkIAY7i6Q69mFftqDXjLcAcBKZO4AEIfI\n3AEgATHcXSDXswv9tAe9ZLgDgJXI3AEgDpG5A0ACYri7QK5nF/ppD3rJcAcAK5G5A0AcInMHgATE\ncHeBXM8u9NMe9JLhDgBWInMHgDhE5g4ACYjh7gK5nl3opz3oJcMdAKxE5g4AcaiuGdu0EWsBANcc\nx4nJfmw/+CSWcYFczy70Mz4YY+q8FBcX13kd2zHcAcBCZO4AEIc4zx1Awiko8LoC7zHcXSCjtQv9\ntMfkySGvS/Acwx0ALETmDsA6jiPZPn7I3AEgATHcXSCjtQv9tEnI6wI8V+twX79+vQYPHqzu3bur\nR48emjFjhiSpoKBAHTt2VDAYVDAY1OLFixulWAB2S0mpilTcXiT3+0hJ8fZ34VatmXtFRYUqKioU\nCAS0Y8cO9enTR/Pnz9fcuXPVpk0bTZgw4fA7JnMHcIT8lJX7qZaauFpbpkOHDurQoYMkqXXr1ura\ntau++uorSfavywAA8azeC4eFw2GVlJTo9NNP11tvvaWZM2dqzpw56tu3r6ZOnark5ORDfiY/P1/p\n6emSpOTkZAUCAWVlZUn6Kd+M5+3S0lLdeOONvqmHbfoZ79tSbPb30EMPxWTexKqeWP373LJli6Sq\neVyXep0KuWPHDmVlZem2227T8OHD9e2336p9+/aSpNtvv13l5eV6/PHHq+84AWKZUCgU/eUj/tFP\n78UqColFL+M9lqlzuO/Zs0fnn3++zjvvvOhRzYHC4bByc3P10UcfHdENA8DB/DRQ/VRLTVyd526M\n0dVXX61u3bpVG+zl5eXRv8+bN0+ZmZkxKBUAECu1Dve33npLTz31lIqLi6OnPS5atEi33HKLevbs\nqV69emnZsmWaNm1aY9XrKz/lcrAB/bQHvazjBdUBAwYoEokc8vXzzjuvwQoCALjH2jIAfMNPObef\naqkJa8sAQAJiuLtArmcX+mkPeslwBwArkbkD8A0/5dx+qqUmZO4AkIAY7i6Q69mFftqDXjLcAcBK\nZO4AfMNPObefaqkJmTsAJCCGuwvkenahn/aglwx3ALASmTsA3/BTzu2nWmpC5g4ACYjh7gK5nl3o\npz3oJcMdAKxE5g7AN/yUc/uplpqQuQNAAmK4u0CuZxf6aQ96yXAHACuRuQPwDT/l3H6qpSZk7gCQ\ngBjuLpDr2YV+2oNeMtwBwEpk7gB8w085t59qqQmZOwAkIIa7C+R6dqGf3jNyqg6ZXV5CMdiHkeP1\nr8MVhjsA33BkqrIQt5fiYtf7cOTjTKYeyNwB+Iafcm4/1VITMncASEAMdxfIaO1CP+1BLxnuAGAl\nMncAvuGnnNtPtdSEzB0AEhDD3QVyPbvQT3vQS4Y7AFiJzB2Ab/gp5/ZTLTUhcweABMRwd4Fczy70\n0x70kuEOAFYicwfgG37Kuf1US03I3AEgATHcXSDXswv9tAe9lJp6XQAAHMjxyWdktGvndQXukLkD\nsI7f8/JYIHMHgATEcHeBXM8u9NMmIa8L8BzDHQAsROYOwDpk7hy5A7DQpEleV+A9hrsLZLR2oZ/2\nyMoKeV2C5xjuAGAhMncAiENk7gCQgBjuLpDR2oV+2oNeMtxdKS0t9boExBD9tEdhIb2sdbivX79e\ngwcPVvfu3dWjRw/NmDFDklRZWans7Gx17txZOTk52rJlS6MU6zeJer9tRT/t8Z//0Mtah3uzZs00\nbdo0/fe//9U777yjRx55RJ988okKCwuVnZ2tNWvWaOjQoSosLGysegEA9VDrcO/QoYMCgYAkqXXr\n1uratau++uorLViwQHl5eZKkvLw8zZ8/v+Er9aFwOOx1CYgh+mmTsNcFeK7ep0KGw2ENGjRIH3/8\nsTp16qTNmzdLkowxSklJiW5Hd+yXRZkBwFK1je96fVjHjh07dPHFF2v69Olq06ZNte85jlPjIOcc\ndwDwTp1ny+zZs0cXX3yxRo0apeHDh0uS0tLSVFFRIUkqLy9Xampqw1YJADgitQ53Y4yuvvpqdevW\nTTfeeGP06xdccIGKiookSUVFRdGhDwDwh1oz9+XLl+vss89Wz549o9HLPffco379+mnEiBFat26d\n0tPTNXfuXCUnJzda0QCA2jXY2jK2u+qqq/Tyyy8rNTVVH330kdflwIX169dr9OjR+vbbb+U4jq65\n5hrdcMMNXpeFo/DDDz9o0KBB+r//+z/t3r1bv/nNb3TPPfd4XZYnGO5H6c0331Tr1q01evRohnuc\nq6ioUEVFhQKBgHbs2KE+ffpo/vz56tq1q9el4Sh8//33atWqlfbu3asBAwbogQce0IABA7wuq9Gx\n/MBRGjhwoNq1a+d1GYiBmt7P8fXXX3tcFY5Wq1atJEm7d+/Wvn37lJKS4nFF3mC4AwcIh8MqKSlR\n//79vS7O/UAoAAAEI0lEQVQFRykSiSgQCCgtLU2DBw9Wt27dvC7JEwx34Ec7duzQJZdcounTp6t1\n69Zel4Oj1KRJE5WWlmrDhg164403EnaFSIY7oJ/ez3HFFVdwaq8l2rZtq2HDhun999/3uhRPMNyR\n8A73fg7En40bN0ZX99y1a5eWLFmiYDDocVXeYLgfpZEjR+rMM8/UmjVrdOKJJ+qJJ57wuiQcpbfe\nektPPfWUiouLFQwGFQwGtXjxYq/LwlEoLy/XkCFDFAgE1L9/f+Xm5mro0KFel+UJToUEAAtx5A4A\nFmK4A4CFGO4AYCGGOwBYiOEOABZiuCOuhMNhtWzZUr1795YkpaenV/v6/lMZe/furfXr1+vSSy+V\nJH3wwQdatGhRo9Q4e/ZsTZ48WZI0bdo0nXTSSbr++usb5baB/er1MXuAn5x66qlavXq1pOqf1Xvq\nqaeqpKSk2nVfeOEFSVJJSYlWrVql8847r8HrO7Cm8ePHKyUlJWHfJQnvcOSOuFbbRzyGw2FlZmZq\nz549uuOOO/T8888rGAxq7ty5Kigo0FVXXaXBgwfrlFNO0cyZM6M/99RTT6l///4KBoO69tprFYlE\ntG/fPuXn5yszM1M9e/bU9OnTJUkzZsxQ9+7d1atXL11++eWSpJYtW1b7rGHeSgIvcOSOuPbuu+9G\n/15WVhZ9q/mAAQP05z//WZLUrFkzTZkyRatWrdKMGTMkSQUFBVqzZo2Ki4u1bds2denSRX/84x+1\nZs0azZ07VytWrFBSUpLGjRunp59+Wt27d9fXX38dXbt/27ZtkqR7771X4XBYzZo1i35txIgR1Wqs\n6QPkgYbGcIc1TjnllGqxTDgcjv7dGFPtCNpxHA0bNkzNmjXTz3/+c6WmpqqiokKvv/66Vq1apb59\n+0qqWp8kLS1Nubm5+uKLL3TDDTdo2LBhysnJkST17NlTl19+uYYPH86CY/AVYhkkrObNm0f/npSU\npL1790qS8vLyVFJSopKSEn366ae64447lJycrA8//FBZWVn629/+pjFjxkiSXn75ZY0bN06rV6/W\naaedpn379nlyX4CDMdyREI499lht37691us4jqOhQ4fqxRdf1HfffSdJqqys1Lp167Rp0ybt3btX\nF110kaZMmaLVq1fLGKN169YpKytLhYWF2rp1q3bu3NkYdweoE7EMrFFTtr3/a4MHD1ZhYaGCwaAm\nTpx42Ot37dpVd911l3JychSJRNSsWTM9+uijatGiha688kpFIhFJUmFhofbt26dRo0Zp69atMsbo\nT3/6k4499tgGvIdA/bEqJOJKOBxWbm5uXH0o+ezZs7Vq1apqZ+QADY1YBnGladOm2rp1a/RNTH43\nbdo0FRYWqm3btl6XggTDkTsAWIgjdwCwEMMdACzEcAcACzHcAcBCDHcAsND/A43KLs+/+vqDAAAA\nAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 24 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Two-way ANOVA" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"try:\n", | |
" kidney_table = pandas.read_table('./kidney.table')\n", | |
"except:\n", | |
" url = 'http://stats191.stanford.edu/data/kidney.table'\n", | |
" kidney_table = pandas.read_table(url, delimiter=\" *\")" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 25 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Explore the dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"kidney_table.groupby(['Weight', 'Duration']).size()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 26, | |
"text": [ | |
"Weight Duration\n", | |
"1 1 10\n", | |
" 2 10\n", | |
"2 1 10\n", | |
" 2 10\n", | |
"3 1 10\n", | |
" 2 10" | |
] | |
} | |
], | |
"prompt_number": 26 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Balanced panel" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"kt = kidney_table\n", | |
"plt.figure(figsize=(6,6))\n", | |
"interaction_plot(kt['Weight'], kt['Duration'], np.log(kt['Days']+1),\n", | |
" colors=['red', 'blue'], markers=['D','^'], ms=10, ax=plt.gca())" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAF4CAYAAABTg5LhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmczWX/x/HXMaTGOlTcoVKW7CbDWG41WmwhRbpFltRP\n0nJT2igU7srSTaXSMpFC2UVMxVjHMjXoNoksNZZsMxjGMsv398eVyTAbc875nnO+7+fj4ZE558yZ\nzxyn91xzfa/rc7ksy7IQERHHKGR3ASIi4l0KfhERh1Hwi4g4jIJfRMRhFPwiIg5T2O4C8uJyuewu\nQUTEL+W0aNMvRvyWZXntz9ChQ7369fzhj14TvS56XfzvdcmNXwS/iIi4j4JfRMRhFPwXiIiIsLsE\nn6PXJHt6XbKn1yV7vvS6uKy8JoNs5nK58pyvEhGRrHLLTp9f1ZOTMmXKkJSUZHcZbhESEkJiYqLd\nZYiIQ/jtiD+QfhMIpO9FRHxDbrmiOX4REYdR8IuIOIyCX0TEYQIq+IOCgggNDaV27drUr1+fcePG\nuXXufPLkyezfvz/z48cee4xffvnFbc8vIuINAXVxt0SJEiQnJwNw6NAhHnroIZo1a8awYcPy/fUy\nMjIoVCj7n4ctWrRgzJgxNGjQIP/fQD7o4q6IuJsjL+5ec801TJo0iXfffReAzz77jKeeeirz/nbt\n2rFixQoAihcvznPPPUf9+vWJiYnh9ddfp1GjRtSpU4e+ffsCMHPmTGJjY+nWrRu33norp0+fJiIi\ngh9//BGAadOmUbduXerUqcOLL76Y+XWKFy/OkCFDqF+/Pk2aNOHgwYPeeglERLIVsMEPULlyZdLT\n0zl48OBFXT7P/zglJYXGjRuzceNGmjVrxpNPPsn69ev5+eefOXXqFN988w2dO3cmLCyML7/8kp9+\n+okrr7wSl8uFy+Vi3759vPjiiyxbtoyNGzeyYcMG5s2bl/ncTZo0YePGjdx222189NFHXn0NREQu\nFNDBf05eUylBQUF06tQp8+OlS5fSuHFj6taty9KlS4mPj8+878LnsSyLDRs2EBERQdmyZQkKCqJb\nt26Zv01cccUV3HPPPQA0aNCA3bt3u/E7ExG5dH67czc/du7cSVBQENdccw2FCxcmIyMj877Tp09n\n/v3c6P3c7f379+fHH3+kQoUKDB8+PMtjszsf4MLbLMvKvK1IkSKZtxcqVIi0tDT3fHMiIpcpYEf8\nhw4d4vHHH8+c169cuTIbN27EsiwSEhJYv359tp93LuTLli3LiRMn+PrrrzPvK1GiBMePH8/yeJfL\nRaNGjVi+fDlHjhwhPT2d6dOnc/vtt3voOxMRKZiAGvGfOnWK0NBQUlNTKVy4MD169GDAgAEANGvW\njMqVK1OzZk1q1KiRZWXO+SP20qVL89hjj1G7dm3Kly9PeHh45n29evXi8ccfJzg4mDVr1mTeXr58\ned544w1atGiBZVm0a9eO9u3bX/Tc564JiIjYKaCWc/qrQPpeRMQ3OHI5p4iIZE/BLyLiYUlJSTzR\nsaPPtJJX8IuIeFBSUhKDW7Zk0Lx5DG7Z0ifCX8EvIuIh50J/ZGwslYGRsbE+Ef4KfhERDzg/9EP+\nui0E3wh/Bb+IiJtlF/rn+EL4B2zwu+Niiq9dkBER35db6J9jd/gHZPC742KKL16QERHflp/QP8fW\n8Ld8XE4l5nR7YmKi1S8szEoEywIrEczHiYn5/prueI533nnHatCggVW0aFGrV69euT7WD/4ZRCQf\n+t17r7Xzr9zI75+dYPW7916315JbrgTUiN8dF1PcdUGmQoUKvPLKKzzyyCOX862IiB8aGRnJ6LAw\n8jt+TwJGh4UxMjLSk2VdzO0/ZtwspxIvvP3CUfqFf/IzanfHc1xoyJAhGvGLOEheOVKQPLkUueVK\nQIz43XExxVMXZCz14BFxlJCQEEZGRTH45ptzHPknAYPDwhgZFUVISF5XA9zP74PfHRdTPHlBRt04\nRRzGsgh57z1Gnj7N4Jo1Lwp/u0MfPBj8CQkJtGjRglq1alG7dm0mTJhw0WOio6MpVaoUoaGhhIaG\nMmLEiEv+OoN792ZQPgL7nBBgUGwsg8uUAZcLXC4Glylzec/Ru3eej9WIX8RBTp+G7t1h/nxCNmxg\n5KpVDD5vzt8XQh/w3OTy/v37rbi4OMuyLCs5OdmqVq2aFR8fn+Uxy5Yts9q3b5/r8+RU4rnb8zuf\nltu8mjueIyea4xdxiP37LSs83LIefNCyUlIybz6XLzs9PKd/odxyxWMj/vLly1O/fn0AihcvTo0a\nNdi3b192P3gK9HUy59PycSU9p5+27niOC6Wnp3P69GnS0tJIT0/nzJkzpKen5/fbEhF/smkTNG4M\nbdrAtGlw1VWZd53Ll9H33mv/SP8cb/zk2bVrl3X99ddbycnJWW6Pjo62ypQpY9WtW9dq06aNtWXL\nlos+F7CGDh2a+WfZsmWZt5/P11b1DB061HK5XFn+DB8+PNvHeumfQUQ8Yd48y7r6asuaPt3WMpYt\nW5YlK3PLFY8nTnJystWgQQNrzpw5F913/Phx6+TJk5ZlWdaiRYusqlWrXlzgJWzgyim4LyWw3fEc\nl0rBL+KHMjIs6623LKtCBctat87uai5iW/CfPXvWatmypfX222/n6/E33nijdeTIkSy3XUrwW5bv\n7Ny9FAp+ET9z+rRl9eplWaGhlpWQYHc12cotVzw2x29ZFn369KFmzZr8+9//zvYxBw4cyJzjX79+\nPZZlUaZMmQJ93fPn63dxeVfQ3fEcIhKgDh+Gu++GY8dg5UqoWNHuii6Zxw5bX7VqFbfddht169bN\nXMs+atQo/vjjDwD69u3Le++9x/vvv0/hwoUJDg5m3LhxNG7cOGuBl3nYelJSEoN792ZkZORlB7Y7\nniM/dNi6iJ+Ij4f27eFf/4LXX4dCvrsVKrdc8Vjwu8vlBr8/CaTvRSRgLV4MPXrA2LHw8MN2V5On\n3HKlsJdrERHxL5YF77wD//kPzJkDzZrZXVGBKfhFRHKSmgpPPQWrV0NMDNx4o90VuYWCX0QkO4mJ\n8MADZjPWmjVQooTdFbmN716ZEBGxy7ZtZiduaCjMmxdQoQ8BHvzuuGCqi64iDvPDD9C8ObzwAowZ\nA0FBdlfkdgEb/JZl8eijAwsU3AV5jrNnz9KnTx9uvPFGSpYsSWhoKIsXL77sWkTECz74ALp1gxkz\noE8fu6vxmIAN/lmzlvD11zB7dpQtz5GWlsb111/PihUrOH78OCNGjKBLly78/vvvl12PiHhIWho8\n8wyMHw+rVkFEhN0VeVRABr9lWYwdu4Tk5HGMGbP4skbsBX2O4OBghg4dyvXXXw/APffcQ+XKlfnp\np58uuRYR8aBjx6BdO9i61azcqVLF7oo8LiCDf9asJWze3BpwsXlzq8sasbvjOc534MABtm3bRq1a\ntQr0PCLiRjt2QJMmULUqLFwIpUvbXZFXBFzwnxupp6S0BCAlpdUlj9jd8RznS01NpVu3bvTq1Ytq\n1apd1nOIiJutWGE2Yz35pNmgVdg5q9sDrmXDzJmL6dnTRUpKq/NuXQy4gFYXPT57Fz8+OHgxU6a4\n6NQpv89hZGRk8NBDD3HixAnmzZtHUDYrBNSyQcTLIiPhxRdh6lTTcC0A5ZYrATXiv3Ck/rdWNG68\nmIwMK89zFTMyLBo3XgJkfY7L/c2hT58+HDp0iFmzZmUb+iLiRenpMGgQjBoFy5cHbOjnJaCC//x5\n+azyP0/vjuc4p1+/fmzdupX58+dTtGjRfH+eiHhAcjLcdx/ExsLatXDLLXZXZJuACf6cR/tGfkbs\n7niOc37//XcmTZrEpk2bKF++PCVKlKBEiRJMmzYtf9+QiLjP77/DP/8J5cvDkiVQtqzdFdkqYII/\n55H6OXmP2N3xHOfccMMNZGRkkJKSQnJycuafrl275vm5IuJGMTFm5U7v3vDhh3DFFXZXZLuAuYy9\naFE0DRsWBWJyeZTFwoVncrxA647nEBEf8sUXMGCAuZh7zz12V+MzAm5Vjz8KpO9FxCdkZMCrr8KX\nX8L8+VC7tt0VeZ0OYhER5zh50pyUdeAArFsH11xjd0U+J2Dm+EVE2LsXbrsNihc3XTYV+tny2xF/\nSEhI5iHu/s6TB7mLOEZsLHTsaE7Mev55CJB88AS/neMXEcn09dfwxBPw0Ucm/EVz/CISoCwLRoyA\njz+G776D+vXtrsgvKPhFxD+dOgWPPAI7d5qLuOXL212R39DFXRHxP3/+CS1amL9HRyv0L5GCX0T8\ny8aNEB5uNmR9+SVcdZXdFfkdTfWIiP+YOxceewzeew+6dLG7Gr+l4BcR32dZ8NZb5sCURYugYUO7\nK/JrCn4R8W1nzkDfvrB5s2mnXLGi3RX5Pc3xi4jvOnQI7rzT9NJfuVKh7yYKfhHxTf/7n7mIGxFh\nNmgVK2Z3RQFDUz0i4nsWLYJevWDcOOje3e5qAo6CX0R8h2XBf/8Lo0fDvHnmABVxOwW/iPiGs2fh\nySfNBdyYGLjhBrsrClgKfhGxX2IidOpk2imvXg0lSthdUUDTxV0Rsdevv5qLuA0bmg1aCn2PU/CL\niH2++84cnPLSS2aDVlCQ3RU5gqZ6RMQeEyfCa6/BV1/B7bfbXY2jKPhFxLvS0mDAAHM04urVcPPN\ndlfkOAp+EfGeo0fhwQfNsYgxMVCqlN0VOZLm+EXEO377zazLv+UW+OYbhb6NFPwi4nnLl8M//wnP\nPAPjx0NhTTbYSa++iHjWJ5/Ayy/DF1/AXXfZXY2g4BcRT0lPhxdegPnzYcUKqF7d7orkLwp+EXG/\n48fhoYcgJcW0YChTxu6K5Dya4xcR99q9G5o1gwoVYMkShb4PUvCLiPusXm1W7jz6KHzwARQpYndF\nkg1N9YiIe3z+OTz7LEyeDG3a2F2N5ELBLyIFk5EBQ4bA9OmwbBnUqmV3RZIHBb+IXL6TJ+Hhh83Z\nuOvWwTXX2F2R5IPm+EXk8uzZYzZllSoF33+v0PcjCn4RuXTr10PjxmbJ5qefQtGidlckl0BTPSJy\naWbMMEckfvwx3Huv3dXIZVDwi0j+WBYMHw6RkWZqp149uyuSy6TgF5G8nToFvXvD77+bi7jly9td\nkRSA5vhFJHf795sTsoKCzHJNhb7fU/CLSM7i4sxB6B06wNSpcOWVdlckbqCpHhHJ3pw58H//B++/\nD507212NuJGCX0Sysix44w1zGPq330JYmN0ViZsp+EXkb2fOwGOPQXy8aadcoYLdFYkHaI5fRIyD\nB+GOO8wKnhUrFPoBTMEvIvDzz+Yi7h13mA1awcF2VyQepKkeEaf75huzRn/8eNOCQQKegl/EqSwL\n3n4bxoyBBQtM7x1xBAW/iBOdPQv9+5tma2vXwvXX212ReJGCX8RpjhyBTp1MO+XVq6F4cbsrEi/T\nxV0RJ9m61VzEbdQIZs9W6DuUgl/EKaKi4LbbYPBgeOst03tHHElTPSJO8O67MGIEzJoFzZvbXY3Y\nTMEvEsjS0uCZZyA6GtasgZtusrsi8QEKfpFAlZQEXbpA4cIm9EuVsrsi8RGa4xcJRNu3Q5MmUKuW\nWaOv0JfzKPhFAs2yZWYef8AA+O9/zYhf5Dx6R4gEko8+giFDYNo003dHJBsKfpFAkJ4Ozz0HixbB\nypVQrZrdFYkPU/CL+Lvjx6FrV9NLf+1aCAmxuyLxcZrjF/Fnu3ZB06am18633yr0fZhlWXaXkMlj\nwZ+QkECLFi2oVasWtWvXZsKECdk+7umnn6Zq1arUq1ePuLg4T5UjEnhWrTKh37evOSaxSBG7K5Ic\nWJbFo48O9Jnw91jwFylShLfffpstW7awdu1a3nvvPX755Zcsj1m0aBG//fYb27dvZ9KkSfTr189T\n5YgElsmT4f77ITISnnoKXC67K5JczJq1hK+/htmzo+wuBfBg8JcvX5769esDULx4cWrUqMG+ffuy\nPGb+/Pn07NkTgPDwcI4ePcqBAwc8VZKI/8vIgBdfhNdeM7txW7e2uyLJg2VZjB27hOTkcYwZs9gn\nRv1emePfvXs3cXFxhIeHZ7l97969VKpUKfPjihUrsmfPHm+UJOJ/Tpww7ZTXrIF166BmTbsrknyY\nNWsJmze3Blxs3tzKJ0b9Hl/Vc+LECTp37sz48eMpnk0L2At/+rmy+ZV12LBhmX+PiIggIiLC3WWK\n+LaEBGjfHm691ZyJe8UVdlck+XButJ+SMg6AlJRWjBkzkPvvb5lt1hVEdHQ00dHR+Xqsy/Lg7x2p\nqam0a9eONm3a8O9///ui+x9//HEiIiL417/+BcAtt9zC8uXLKVeu3N8Fulw+8auRiG3WrTPz+QMG\nwLPPaj7fj8ycuZiePV2kpLTKvC04eDFTprjo1KlVLp9ZcLllp8emeizLok+fPtSsWTPb0Afo0KED\nU6ZMAWDt2rWULl06S+iLON60adCuHXzwgdmgpdD3G3+P9ltmud2M+u2d6/fYiH/VqlXcdttt1K1b\nN/NXmlGjRvHHH38A0LdvXwCefPJJFi9eTLFixYiMjOTWW2/NWqBG/OJEGRkwfLhZvTN/PtSta3dF\ncommTVtMjx4u0tIuHtl7Y9SfW3Z6dKrHHRT84jgpKdC7t5nXnzMH9Fuw39m716J69YGcPDkOyO63\nNIvGjQeyZs04t8/1n2PLVI+IXIZ9++D2281mrKVLFfp+KCYG6tRZwtmzZiVP9uxd4aNePSK+4qef\n4N57oV8/eOklzef7oY8/hpdfhltvjSYtrSgQk8ujLRYuPOPxi7zZ0VSPiC+YNQsef9xcxO3Uye5q\n5BKdPWsWXf3wA8ybB9Wr211R7tmpEb+InSwLRo0ygb9kiVmnL37lwAF44AEoXdqsvPWHw840xy9i\nl9On4eGHYe5ckxgKfb8TGwsNG0JEhPln9IfQBwW/iD0OHDAnZJ09C8uXw3XX2V2RXKLPP4c2bczp\nlq+9BoX8KE011SPibZs3Q4cO0LMnDB3qX4khpKXB88+b7RXLlkHt2nZXdOnyfMetWrWKEydOAPD5\n558zcOBAfv/9d48XJhKQFiyAu+6C//zHbNBS6PuVw4ehVSvYsgU2bPDP0Id8BH+/fv0oVqwYmzZt\nYty4cdx888306NHDG7WJBA7LgjFjzMqdBQvMUYniVzZtMvP5YWHmaGN/Puwsz+AvXLgwLpeLuXPn\n0r9/f/r3709ycrI3ahMJDGfPQp8+MHWq2d1zQXty8X1fffX3L2pvvglBQXZXVDB5zvGXKFGCUaNG\nMXXqVFauXEl6ejqpqaneqE3E/x0+bNblh4SYoxKzaU0uvis9HYYMgenT4bvv4K+zpfxeniP+GTNm\nULRoUT799FPKly/P3r17GTRokDdqE/FZSUlJPNGxI0lJSTk/KD7ejO6bNIHZsxX6fuboUXMEwtq1\nsH594IQ+5GPn7oQJE3j44YcJsWlCSzt3xdckJSUxuGVLBsXGMjosjJFRURf//7F4MfToAaNHm9U7\n4lfi46FjR2jb1vwT+uM59gVq0nbgwAEaNmxIly5dWLzYN86LFLHLudAfGRtLZWBkbCyDW7b8e+Rv\nWfDOO6a75uzZCn0/NHeu6ZP38stmjb4/hn5e8tWrJyMjg6ioKD777DNiY2Pp0qULffr04eabb/Z8\ngRrxi484P/TPH98nAYPDwhi5cCEhQ4fCypVm5U7lynaVKpchI8NsxPrkE9M6qVEjuysqmAK3ZS5U\nqBDly5enXLlyBAUFkZSUROfOnTXXL46RU+gDhPDXyL9KFZJ27DCHoSv0/crx4+Z0y+++M+vz/T30\n85LniH/8+PFMmTKFsmXL8uijj3LfffdRpEgRMjIyqFq1Kjt27PBsgRrxi81yC/0sj+OvkX92c/7i\ns7ZtM/P5t90GEyYEzjn2BerOmZiYyOzZs7nhhhuy3F6oUCEWLFjgngpFfFR+Qx/OG/m3bKnw9xOL\nFkGvXvD66/DXabCOkO9+/AcPHuT06dOZH19//fUeK+p8GvGLnZ7o2JFB8+ZxKRM3u4DR997LxLlz\nPVWWFJBlmY1Y77xjNmc1a2Z3Re5XoDn++fPnU7VqVSpXrsztt9/OjTfeSJs2bdxepIgvGhkZyeiw\nMHJZrZ9FEpglnpGRnixLCuDkSfjXv8yiq3XrAjP085Jn8A8ZMoSYmBiqVavGrl27+OGHHwjXlnNx\niJCQEEZGRTE4H+GvOX7ft2sXNG0KV10FK1ZAxYp2V2SPPIO/SJEiXH311WRkZJCenk6LFi2IjY31\nRm0iPiE/4a/Q930//GA2UffpA5GRcOWVdldknzwv7oaEhJCcnEzz5s3p1q0b1157LcW19VwcJiQk\nhJFDhjC4c2dGpqVlv45foe+TLMtsxHrzTZg2DVq0sLsi++V5cffEiRNcddVVWJbF1KlTOX78ON26\ndaNs2bLeKVAXd8UXrFoF999P0qefMnj48MxVPgp933bqlFmt8/PPMGcO3Hij3RV5T27ZmWfwHz16\nlG3btuFyuahWrRqlvHyopIJfbLd+PbRrZ9oq/9WeIc9ePWK7hAS47z6oVg0+/hiCg+2uyLsuK/jP\nnDlD3759mTt3LpUrV8ayLHbv3s19993Hhx9+yBVe2uWg4Bdbbdxojlz65BMT/n9JSkpicO/ejIyM\nVOj7oBUrzMqdAQPguefA5bK7Iu+7rOWcI0aMIDU1lYSEBOLi4ti4cSMJCQmkpaXx+uuve6xYEZ+x\nZYs5TXvixCyhD2bOf+LcuQp9H2NZ5p/rgQfMBdxBg5wZ+nnJccRfq1Yt1q9fT7FixbLcfuLECcLD\nw9myZYt3CtSIX+ywbZu5Cjh6NDz0kN3VSD6cOQNPPmkOOZs7F6pUsbsie13WiD8oKOii0AcoXrw4\nhXRAtASynTvNOXsjRij0/cS+fRARAUeOmOB3eujnJdflnImJiRfdZlkWLv3uJIEqIQHuvBNefNH0\n1Beft3YtdO5szrF/+WXQuDRvOQb/8ePHadCggTdrEbHX/v1wxx3w9NPwxBN2VyP58Omn5mf0J5+Y\nYxIlf/LdpM0umuMXrzh40MwVdO9uho3i01JTzYqd776DefPgllvsrsj3FKgts0jAS0yEu+828wUK\nfZ938KBZtVOihNli4eWtRQFBs2HibMeOQcuW5s/w4XZXI3n48Udo2BCaN4f58xX6lyvH4N+1a5c3\n6xDxvuRks06/SRN46y0t+PZxX3wBrVvD2LFmwZUu4l6+HF+6zp07A3DHHXd4rRgRr0lJMVcDa9WC\n8eMV+j4sLQ2efRZefRWWLjUzclIwOc7xp6enM3LkSLZt28a4ceOyXCRwuVwMHDjQKwWKuN3p06aJ\nS6VK8MEHGjr6sCNHTOsFl8scgl6mjN0VBYYc3/HTp08nKCiI9PR0kpOTSU5O5sSJE5l/F/FLZ89C\nly5mcjgyEoKC7K5IcrB5MzRqBPXrm7NxFfruk+dyzkWLFtG2bVtv1XMRLecUt0lLM8PH1FSYOROK\nFLG7IsnBzJnQr5/po9+tm93V+KcCt2UePnw4K1asACAiIoJXX33Va+2ZFfziFunp0KOHWbo5dy4U\nLWp3RZKN9HQzlz91qumff+utdlfkvwp02PojjzxCyZIl+frrr/nqq68oUaIEvbWVXfxJRgb83/+Z\nnbmzZyv0fdTRo9ChA6xebebzFfqek+eIv169emzatCnP2zxFI34pEMsyLRs3bYLFi0HHhvqkX36B\njh3N0Qdjx2oWzh0KNOK/6qqrWLlyZebHq1atIthpR9mIf7IscwrHhg3m6qBC3yfNnw+33WZ67kyY\noND3hjxbNnzwwQf06NGDY8eOAeYAismTJ3u8MJECe+UVs/B76VIoWdLuauQCGRlmI9akSfDNNxAe\nbndFzpHvJm3ngl9n7opfGDECpk2D6Gi45hq7q5ELJCdDz57w558waxb84x92VxR4CjTVc06pUqW8\nHvoil2XsWJgyBX74QaHvg377DRo3hquvhmXLFPp20JZFCSzvvWf+LF0K5cvbXY1cYPFiaNoUnnoK\nPvxQC6zsorbMEjg+/tg0W1u+HCpWtLsaOY9lmX+a8ePN1E7z5nZX5Gz5Cv7Vq1eze/du0tLSADN3\n1KNHD48WJnJJpk6FYcPM3MGNN9pdjZzn5Eno0wd27IB160yLJLFXnsHfvXt3du7cSf369Qk6r6+J\ngl98xtdfw6BBZk6/alW7q5Hz7N5t1ufXrQsrVsBVV9ldkUA+VvXUqFGD+Ph42w5Y16oeydX8+WZX\n7pIlUK+e3dXIeZYuhYcegpdeMscYq/O1dxVoVU/t2rXZv3+/24sSKbAlS+DRR80icIW+z7As01zt\noYfM4SnPPKPQ9zV5TvUcOnSImjVr0qhRI4r+dQne5XIxf/58jxcnkqNly+Dhh03DtbAwu6uRv5w6\nBY8/Dhs3QkwMVK5sd0WSnTyDf9iwYV4oQ+QSrF4NDz4IX31l1gaKT0hIgPvvh5tugjVroFgxuyuS\nnOR7565dNMcvWWzYAPfcY1bxtGxpdzXyl1WrzPk2zzwDzz+vqR1fUKA5/piYGBo2bEjx4sUpUqQI\nhQoVoqT6nogdNm6Edu3gk08U+j7kgw/MSP/TT+GFFxT6/iDPqZ4nn3yS6dOn06VLF2JjY5kyZQq/\n/vqrN2oT+duWLdCmjdmV27693dUIcOaMWa2zapWZfdNKWv+Rr5YNVatWJT09naCgIHr37s3ixYs9\nXZfI37ZtMyP8MWOgc2e7qxHMmTZ33AEHD8LatQp9f5PniL9YsWKcOXOGevXq8fzzz1O+fHnNuYv3\n7NoFd90Fr7+uw1d9xLp15ufvY4/BkCFQSB2//E6e/2RTpkwhIyODd999l+DgYPbs2cOsWbO8UZs4\nXUIC3HmnOaHjkUfsrkaAyEhzmeXdd83ZuAp9/5SvVT0pKSkkJCRQvXp1b9SUhVb1ONT+/eZYpn79\nYOBAu6txvNRUePZZ011z7lyoWdPuiiQvBVrVM3/+fEJDQ2nVqhUAcXFxdOjQwb0Vipzv0CEzvdO7\nt0LfBxw6BHffbfror1+v0A8EeQb/sGHDWLduHSEhIQCEhoayc+dOjxcmDpWYaFLm/vvh5Zftrsbx\n4uKgYUNmlklBAAAbVElEQVRo1gwWLIDSpe2uSNwhz4u7RYoUofQF/9qFNLEnnnDsGLRqZUb7r71m\ndzWO9+WXZkPWxInwwAN2VyPulGfw16pViy+++IK0tDS2b9/OhAkTaKpt8uJuJ05A27bmxO3Ro7UL\nyEZpaaaj5qxZptN13bp2VyTulufQ/Z133mHLli0ULVqUrl27UrJkSf773/96ozZxipQUsymrZk2Y\nMEGhb6PERPPzNy7OdMdQ6Acm9eoRe50+DffeC9deC599Bucd9iPe9fPPcN995p/jzTehsA5m9Wu5\nZWeewb9hwwZGjRp10dGLmzdvdn+l2RWo4A9cZ8+anUBXXmkmlJU0tpk1y7RTfvtt6N7d7mrEHQoU\n/NWqVWPMmDHUrl07y0XdG710rqmCP0ClpUHXrib8Z86EIkXsrsiRMjLMRqzPP4fZs6FBA7srEnfJ\nLTvzHGJdc801Wrcv7pWeDr16QXIyzJun0LfJsWOmC0ZyspnPv/ZauysSb8lzxB8VFcWMGTO46667\nuOKKK8wnuVzcf//93ilQI/7AkpFhzsjdudMcmRgcbHdFjrR1qzkE/a67zPSOfvYGngKN+CdPnsyv\nv/5KWlpalqkebwW/BBDLMn18t241e/8V+rZYsMC0PvrPf8yRxeI8eQZ/bGwsW7duxaUldlIQlgWD\nBpnWjt9/D8WL212R42RkwKhR5uCU+fOhSRO7KxK75Bn8TZs2JT4+nlq1anmjHglUr75qAn/pUihV\nyu5qHCc52VxW2bfP9Nu57jq7KxI75TnHf8stt7Bjxw4qV65M0aJFzSdpOadcipEjzXLN6Gi45hq7\nq3GcHTvM2vzwcNN+4a//jSXAFWiOX6dtSYGMHQuTJ8Py5Qp9GyxZAj16wNChpsO1ZmwFtHNXPOm9\n90zwL18OlSrZXY2jWJY5qXLcOJgxwxxtIM5SoH78l+uRRx6hXLly1KlTJ9v7o6OjKVWqFKGhoYSG\nhjJixAhPlSJ2+OQTs+//hx8U+l6WkmLW50+fbq6lK/TlQh4L/vwcyn777bcTFxdHXFwcQ4YM8VQp\n4m1Tp5q5hR9+gMqV7a7GUX7/3fTODwqCVavg+uvtrkh8kceCv3nz5pmHt+REUzgBaOZMs2wzKgqq\nVrW7GkeJjjYXcHv0gClT4Kqr7K5IfJVtXbFcLhdr1qyhXr16VKhQgTFjxlAzhzPdhg0blvn3iIgI\nIiIivFOkXJoFC6B/fxP6Op/PayzLHH4+YgR88YXZjSvOEx0dTXR0dL4e69GLu7t376Z9+/b8/PPP\nF92XnJxMUFAQwcHBfPvttzzzzDNs27bt4gJ1cdc/LFkCDz8MCxeas/rEK06fNqt1fvzRHIJ+0012\nVyS+wpaLu3kpUaIEwX9t2W/Tpg2pqakkJibaVY4URHS0Cf05cxT6XrRnj7lwe/IkxMQo9CX/bAv+\nAwcOZP40Wr9+PZZlUaZMGbvKkcu1erU5kPWrr8xVRfGK1auhUSNzcMqMGVCsmN0ViT/x2Bx/165d\nWb58OYcPH6ZSpUoMHz6c1NRUAPr27cvMmTN5//33KVy4MMHBwUyfPt1TpYinbNhgkmfqVNB1F6+Z\nNAmGDDEHlrVta3c14o+0gUsuz6ZN0LIlfPyxOS9XPO7sWdPcdMUKM59frZrdFYkvK1DLBpGLxMdD\n69ZmZ65C3yv+/NOcUlm2LKxdCyVL2l2R+DPb5vjFT23fDnffbfoBdO5sdzWOsGGDuWZ+113m+rlC\nXwpKI37Jv1274M474bXXTE8A8bjJk+G55+Cjj8yJWSLuoOCX/ElIMKH/wgvQp4/d1QS81FQT+IsW\nmdWyOg5D3EnBL3nbv9+Efv/+5o941OHD0KWL6Zu/fj3k0flE5JJpjl9yd+iQmVzu2ROefdbuagLe\nxo1mPr9RI3MWvUJfPEEjfslZYqK5kHvffTB4sN3VBLzp0+Gpp0zfnQcftLsaCWQKfsnesWNmyeZd\nd8Hrr9tdTUBLT4eXXzabn7//HurVs7siCXQKfrnYiRNmS2ijRjB6tM7r86CkJPjXvyAtzSzbvPpq\nuysSJ9Acv2SVkmI2ZdWoARMmKPQ9aMsWM59fs6ZpbqrQF29Rywb525kz0KGDORR98mRzjJN4xOzZ\n0LevOZK4Rw+7q5FApJYNkrfUVLOGsGRJ0/1Loe8RGRkwbJh5ib/9FsLC7K5InEjBL2aCuVs3c5TT\nF19AYb0tPOH4ceje3czrb9gA5crZXZE4leb4nS49HXr3Nqt4vvoKrrjC7ooC0q+/mvNwK1Y0Z9Ar\n9MVOCn4ny8iAxx83RznNmQNXXml3RQFp4UJo3hwGDoSJE/WzVeyn3+mdyrJMc/f4eLOk5K9jMMV9\nLAtGjTJhP3cuNG1qd0UihoLfiSwLBg2CdevMjqHixe2uyC9ZloUrh+WuJ06YGbQ//jD9dipU8HJx\nIrnQVI8TvfqqCfwlS6BUKbur8UuWZfHoowOzXS63Ywc0aQIlSsDy5Qp98T0KfqcZOdIsIv/uO9Dh\n9pdt1qwlfP01zJ4dleX2774zUzp9+8Inn+iyifgmBb+TjBtnNmZ9/73ZpCWXxbIsxo5dQnLyOMaM\nWYxlWViWOZSsRw+YMQOefFKbnsV3aY7fKSZOhHfeMSd1/+Mfdlfj12bNWsLmza0BF5s3t2LatCgW\nLmzFL7+Y83BvuMHuCkVypxG/E3z6KbzxBixdCpUq2V2NXzs32k9JaQlASkorHnvMjPpXrVLoi39Q\n8Ae6L76AV14x0zuVK9tdjd87f7RvuEhNbcX990dpRaz4DQV/IJs50xzcGhUF1arZXY3fu3C0f05q\naivGjl2sZoLiNxT8gWrBAnM+7rff6qRuNxk+fAnr158/2j/HzPVfuMJHxFcp+ANRVBT06WMOba1f\n3+5q/N6aNdCihcUbbywhI6Nlto9JSWmVucJHxNcp+ANNdLTptDlnjjnlQy7bjz+ag8i6doVbbllC\nUFB2o/1zNOoX/6HlnIFkzRrTU/+rr6BZM7ur8Vv/+x8MHWqWZr78svkZ2q9fNA0bFgVicvlMi4UL\nz9CpUytvlSpyWXQCV6CIjTXD088/h1YKnsuxfbs5JOX77+H556FfP/WuE/+VW3ZqqicQbNoE99wD\nH3+s0L8Mu3ebSyJNmpjzb3/7DZ59VqEvgUvB7+/i46F1a3j3XXNeruTbvn1m4VODBnDddWbEP3iw\naa4mEsgU/P5s+3Zo2RJGj4YHHrC7Gr9x8KAZ0deubUb1W7fC669DSIjdlYl4h4LfX+3aBXfdZSal\nu3e3uxq/kJRkRvQ1asCZM+Yi7ujR6lcnzqPg90d79sCdd5orkI8+anc1Pu/4cTOir1oVDhyAn34y\nM2PXXWd3ZSL2UPD7m/374Y47zOR0//52V+PTUlLMiL5KFXPYeUyMuf6tRmridFrH708OHTLTOz16\nmElqydaZM/DRR+a826ZNYdkyda0QOZ+C318kJpoLuffdB0OG2F2NT0pNNefMvP461KljOlbceqvd\nVYn4HgW/Pzh2zCzZvOMOk2qSRXo6TJtmrnPfeCNMn27W5ItI9hT8vu7ECbM5q2FDc7afzvPLlJFh\njg9+9VWzFPOjj6BFC7urEvF9Cn5fduqU2ZRVvbo5NlGhD4BlwcKF5nyZoCBzlHCrVnp5RPJLvXp8\n1ZkzcO+9ULYsTJliEs7hLAt++MFc4jhxwsx6deyowBfJTm7ZqeD3Ramp0LkzFCliJqwL6xezVatM\n4O/bB8OHmyak+lkokrPcslOJ4mvS0kw/fcuCL790fOhv2GCmdLZuNa2SH37Y8S+JSIHpfyFfkp4O\nvXubVTzz5sEVV9hdkW1+/tkEfmysabMwf76jXw4Rt9LOXV+RkQGPP27aMcyZA1deaXdFtvj1V3Pi\n1d13w+23mz50/fop9EXcScHvCywLnnnGtFhesMCRjeB37YJeveCf/4S6dU1P/AED4Kqr7K5MJPAo\n+O1mWabZ2tq1sGgRFC9ud0VetWePGdGHhZkeOtu3w0svOe5lEPEqBb/dhg6FqChYsgRKlbK7Gq85\ncMCM6OvWhZIlzRTP8OFQurTdlYkEPgW/nUaNgpkz4bvvoEwZu6vxisREM6KvUcNcy96yBd58E66+\n2u7KRJxDwW+Xt9+GyEizI+naa+2uxuOOHzcj+qpV4cgR2LgRJkyAf/zD7spEnEfBb4eJE00LhqVL\nAz75Tp40I/oqVWDHDli3DiZNguuvt7syEefSOn5v+/RTeOMNWL4cKlWyuxqPOX3aBPx//gPNm0N0\nNNSsaXdVIgIKfu/68kuzK2nZMqhc2e5qPOLsWTODNWIEhIbCt99C/fp2VyUi51Pwe8usWebUrO+/\nh2rV7K7G7dLT4YsvTE/8KlXMNevwcLurEpHsKPi9YcECeOIJs2QzwM4AzMgwIT90qFmZExlpdtyK\niO9S8HtaVBT06WPOAQygOQ/LMj/PXnkFihaF8eNNmwW1SBbxfQp+T1q+3HTanDMHGjWyuxq3sCyz\n7WDIEHMB9/XXzVkxCnwR/6Hg95Q1a+CBB2DGDNOAJgCsWGEC/+BBsyb/gQegkBYEi/gdBb8nxMaa\no6GmTDEHpPu5devMlM5vv5m5/G7d1BNfxJ9pvOZumzZBu3bm5O/Wre2upkA2bTLTOJ07Q6dO5jCU\nnj0V+iL+TsHvTvHxJuzfececl+unfvnFHG3YujXceafpmNm3r3riiwQKBb+7bN8OLVvC6NFm8tsP\n7dgBPXrAbbdBgwZmaueZZxx7JoxIwFLwu8Pu3XDXXWb3UvfudldzyRISzIg+PBxuvtkE/gsvQLFi\ndlcmIp6g4C+oPXvMfMigQfDoo3ZXc0n+/NOM6OvXN12hf/3VXLx10LEAIo6k4C+IP/80od+vHzz5\npN3V5NuRI2ZEX7OmWX8fH2+aqZUta3dlIuINCv7Ldfiwmd7p3h2ee87uavLl2DEzoq9Wzfx90yb4\n73+hXDm7KxMRb1LwX46kJNOf4N57zY4mH3fihBnRV6kCv/8OGzbABx8EdFdoEcmFgv9SHT9u1jm2\naGF6D/twr4JTp8xBX1WqmNH9ypXw2Wdw0012VyYidtJWnEtx4gS0bWvWOo4d67Ohf/YsfPIJjBwJ\nYWGmT1zdunZXJSK+QiP+8yQlJfFEx44kJSVdfOepU2Yba/Xq8O67Phn6aWmmLXL16jBvHsyeDXPn\nKvRFJCsF/1+SkpIY3LIlg+bNY3DLllnD/8wZuP9+cz7upEk+15ksIwOmTzet/j/7zLQIWrw4YBqC\nioibuSzLsuwuIjculwtPl3gu9EfGxhICJAGDw8IYGRVFSPHiZidu4cImXX2oUY1lmZH9K69AcLCZ\n2rnzTp/8ZUREvCy37HR88F8Y+pm3A4MbNGBkpUqEpKWZoxN9pFmNZZnDvIYMMdM7I0bAPfco8EXk\nbwr+HOQU+pn3A4NLlmTk1q2E/OMfHqnhUkVHm8A/cgRee810zfSxmScR8QG5ZadjIyOv0AcIAUYe\nP87gDh2yv+DrRWvXmv1iffqYvjr/+58OQhGRy+PI2MhP6J8TAoyMjb34gq+XxMWZ9v5dusCDD5qe\n+A8/DEFBXi9FRAKEx4L/kUceoVy5ctSpUyfHxzz99NNUrVqVevXqERcX56lSLjK4d28G5SP0zwkB\nBsXGMrh3b0+WlcWWLeYAlLZtoVUr2LYNHnsMihTxWgkiEqA8Fvy9e/dm8eLFOd6/aNEifvvtN7Zv\n386kSZPo16+fp0q5yMjISEaHhZHf8XsSMDosjJGRkZ4sCzAtkbt3NxuDw8NNj/ynnlJPfBFxH48F\nf/PmzQkJyXlMPX/+fHr27AlAeHg4R48e5cCBA54qJ4uQkBBGRkUxOB/hn2VpZy7fT0H98YcZ0Tdu\nbDZg/fab6fQcHOyxLykiDmXbHP/evXupdF6XsIoVK7Jnzx6vff38hL83Qn//fjOiDw2Fa681Uzqv\nvAIlS3rky4mI2Nur58KlRq4cFqIPGzYs8+8RERFERES45etnhn9O6/g9GPqHDsFbb5meOr16mXNu\nr73W7V9GRBwiOjqa6Ojo/D3Y8qBdu3ZZtWvXzva+vn37WtOmTcv8uHr16taff/550eM8XKJlWZaV\nmJho9QsLsxLN3igrEczHiYlu/1pJSZY1ZIhllSljWf36WdaePW7/EiIiuWanbVM9HTp0YMqUKQCs\nXbuW0qVLU86mE0HOn/bZhWdG+snJpqVC1aqwdy/ExsLEiVChgtu+hIhIvnhsqqdr164sX76cw4cP\nU6lSJYYPH05qaioAffv2pW3btixatIgqVapQrFgxIr2wYiY3meHfuzcjIyPdFvqnTpmAf+st00dn\n9WpzApaIiF0c3bLBk86cgY8/hlGjzLLM4cMhly0NIiJulVt2+k6ryQCRlgaTJ5s+OrVqme6ZYWF2\nVyUi8jcFv5ukp8OMGeYw84oV4csvoVkzu6sSEbmYgr+ALAvmzIFXX4USJeDDD+GOO+yuSkQkZwr+\nC1iWleN+gqyPg2+/NS2SwVy8bdNGPfFFxPc5sjtnTizL4tFHB+Z5MXnpUjONM2gQDB5slma2bavQ\nFxH/oOA/z6xZS/j6a5g9Oyrb+9esMdM4fftC//6webMOQhER/6PI+otlWYwdu4Tk5HGMGbM4y6j/\nxx/NiL5rV+jWDeLjzX/VE19E/JGC/y+zZi1h8+bWgIvNm1sxe3YU//sf3H8/tG9vzrTdts2cgKWe\n+CLiz7SBCzPab9p0IGvXjgNcgEXZsgMpVGgcL7zgol8/tUcWEf+iDVx5OH+0b7g4frwVn34aRffu\nrewsTUTE7Rw/1XNubj8lpWWW21NTW/Hee4v9sl2EiEhuHB/8F4/2z/l7rl9EJJA4OvhzGu2fk5LS\n6qIVPiIi/s7RwZ/zaP8cjfpFJPA4+uLuokXRNGxYFIjJ5VEWCxeeoVMnXeQVkcCg5ZwiIgEot+x0\n9FSPiIgTKfhFRBxGwS8i4jAKfhERh1Hwi4g4jIJfRMRhFPwiIg6j4BcRcRgFv4iIwyj4RUQcRsEv\nIuIwCn4REYdR8IuIOIyCX0TEYRT8IiIOo+AXEXEYBb+IiMMo+C8QHR1tdwk+R69J9vS6ZE+vS/Z8\n6XVR8F/Al/5xfIVek+zpdcmeXpfs+dLrouAXEXEYBb+IiMO4rJyOYfcRLpfL7hJERPxSTvFe2Mt1\nXDIf/7kkIuJ3NNUjIuIwCn4REYdxZPA/8sgjlCtXjjp16uT4mKeffpqqVatSr1494uLivFidffJ6\nXaKjoylVqhShoaGEhoYyYsQIL1fofQkJCbRo0YJatWpRu3ZtJkyYkO3jnPZ+yc/r4sT3y+nTpwkP\nD6d+/frUrFmTl156KdvH2f5+sRxoxYoV1k8//WTVrl072/sXLlxotWnTxrIsy1q7dq0VHh7uzfJs\nk9frsmzZMqt9+/Zerspe+/fvt+Li4izLsqzk5GSrWrVqVnx8fJbHOPH9kp/XxYnvF8uyrJMnT1qW\nZVmpqalWeHi4tXLlyiz3+8L7xZEj/ubNmxMSEpLj/fPnz6dnz54AhIeHc/ToUQ4cOOCt8myT1+sC\nzrvYXr58eerXrw9A8eLFqVGjBvv27cvyGCe+X/LzuoDz3i8AwcHBAJw9e5b09HTKlCmT5X5feL84\nMvjzsnfvXipVqpT5ccWKFdmzZ4+NFfkGl8vFmjVrqFevHm3btiU+Pt7ukrxq9+7dxMXFER4enuV2\np79fcnpdnPp+ycjIoH79+pQrV44WLVpQs2bNLPf7wvvF55dz2uXCkYr2E8Ctt95KQkICwcHBfPvt\nt3Ts2JFt27bZXZZXnDhxgs6dOzN+/HiKFy9+0f1Ofb/k9ro49f1SqFAhNm7cyLFjx2jVqhXR0dFE\nRERkeYzd7xeN+LNRoUIFEhISMj/es2cPFSpUsLEi31CiRInMX2PbtGlDamoqiYmJNlfleampqXTq\n1Inu3bvTsWPHi+536vslr9fFqe+Xc0qVKsU999xDbGxsltt94f2i4M9Ghw4dmDJlCgBr166ldOnS\nlCtXzuaq7HfgwIHMkcr69euxLOui+ctAY1kWffr0oWbNmvz73//O9jFOfL/k53Vx4vvl8OHDHD16\nFIBTp07x3XffERoamuUxvvB+ceRUT9euXVm+fDmHDx+mUqVKDB8+nNTUVAD69u1L27ZtWbRoEVWq\nVKFYsWJERkbaXLF35PW6zJw5k/fff5/ChQsTHBzM9OnTba7Y81avXs3UqVOpW7du5v/Ao0aN4o8/\n/gCc+37Jz+vixPfL/v376dmzJxkZGWRkZPDwww9z55138uGHHwK+837x+V49IiLiXprqERFxGAW/\niIjDKPhFRBxGwS8i4jAKfnGkAQMGMH78+MyPW7VqxWOPPZb58bPPPsvbb7+d7ecOHTqUH374Idfn\nHzZsGGPHjr3o9mPHjvH+++9fZtUi7qHgF0f65z//yZo1awCzxf7IkSNZWgrExMTQrFmzbD93+PDh\n3Hnnnbk+f047MZOSkpg4ceJlVi3iHgp+caQmTZoQExMDwJYtW6hduzYlSpTg6NGjnDlzhl9++QWA\niIgIwsLCaN26NX/++ScAvXr1YtasWQAsWrSIGjVqEBYWxtNPP0379u0zv0Z8fDwtWrTg5ptv5p13\n3gHgxRdfZMeOHYSGhvLCCy9481sWyeTIDVwi1113HYULFyYhIYGYmBiaNGnC3r17iYmJoWTJktSo\nUYMBAwYwb948rr76ambMmMHgwYP55JNPcLlcuFwuTp8+zeOPP87KlSu54YYbeOihhzJH+pZlsXXr\nVqKjozl+/DjVq1fniSee4M0332TLli2O6NkvvkvBL47VtGlT1qxZw5o1axg4cCB79+5lzZo1lCpV\nigoVKhAVFcXdd98NQHp6Otddd13m554L9ptuuokbbrgBMDufJ02aBJipnnbt2lGkSBHKli3Ltdde\nm6WFgYidFPziWM2aNWP16tX8/PPP1KlTh0qVKjFmzBhKlSpFRERE5g+CnFw4j39hqF9xxRWZfw8K\nCiItLc2934DIZdIcvzhW06ZN+eabbyhbtiwul4uQkBCOHj1KTEwMXbt25dChQ6xduxYwnSjPv/jr\ncrmoXr06O3fu5PfffwdgxowZWaZ6slOiRAmSk5M9/J2J5E7BL45Vu3Ztjhw5QuPGjTNvq1u3LqVL\nl+aaa65h5syZvPDCC9SvX5/Q0NDMi8HnXHnllUycOJHWrVsTFhZGyZIlKVWqFEDmdYALlS1blmbN\nmlGnTh1d3BXbqEmbSAGcPHmSYsWKAdC/f3+qVavGM888Y3NVIrnTiF+kAD766CNCQ0OpVasWx48f\np2/fvnaXJJInjfhFRBxGI34REYdR8IuIOIyCX0TEYRT8IiIOo+AXEXEYBb+IiMMo+EVEHOb/AckQ\nxqBChPp6AAAAAElFTkSuQmCC\n", | |
"prompt_number": 27, | |
"text": [ | |
"<matplotlib.figure.Figure at 0x5375e90>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAF4CAYAAABTg5LhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmczWX/x/HXMaTGOlTcoVKW7CbDWG41WmwhRbpFltRP\n0nJT2igU7srSTaXSMpFC2UVMxVjHMjXoNoksNZZsMxjGMsv398eVyTAbc875nnO+7+fj4ZE558yZ\nzxyn91xzfa/rc7ksy7IQERHHKGR3ASIi4l0KfhERh1Hwi4g4jIJfRMRhFPwiIg5T2O4C8uJyuewu\nQUTEL+W0aNMvRvyWZXntz9ChQ7369fzhj14TvS56XfzvdcmNXwS/iIi4j4JfRMRhFPwXiIiIsLsE\nn6PXJHt6XbKn1yV7vvS6uKy8JoNs5nK58pyvEhGRrHLLTp9f1ZOTMmXKkJSUZHcZbhESEkJiYqLd\nZYiIQ/jtiD+QfhMIpO9FRHxDbrmiOX4REYdR8IuIOIyCX0TEYQIq+IOCgggNDaV27drUr1+fcePG\nuXXufPLkyezfvz/z48cee4xffvnFbc8vIuINAXVxt0SJEiQnJwNw6NAhHnroIZo1a8awYcPy/fUy\nMjIoVCj7n4ctWrRgzJgxNGjQIP/fQD7o4q6IuJsjL+5ec801TJo0iXfffReAzz77jKeeeirz/nbt\n2rFixQoAihcvznPPPUf9+vWJiYnh9ddfp1GjRtSpU4e+ffsCMHPmTGJjY+nWrRu33norp0+fJiIi\ngh9//BGAadOmUbduXerUqcOLL76Y+XWKFy/OkCFDqF+/Pk2aNOHgwYPeeglERLIVsMEPULlyZdLT\n0zl48OBFXT7P/zglJYXGjRuzceNGmjVrxpNPPsn69ev5+eefOXXqFN988w2dO3cmLCyML7/8kp9+\n+okrr7wSl8uFy+Vi3759vPjiiyxbtoyNGzeyYcMG5s2bl/ncTZo0YePGjdx222189NFHXn0NREQu\nFNDBf05eUylBQUF06tQp8+OlS5fSuHFj6taty9KlS4mPj8+878LnsSyLDRs2EBERQdmyZQkKCqJb\nt26Zv01cccUV3HPPPQA0aNCA3bt3u/E7ExG5dH67czc/du7cSVBQENdccw2FCxcmIyMj877Tp09n\n/v3c6P3c7f379+fHH3+kQoUKDB8+PMtjszsf4MLbLMvKvK1IkSKZtxcqVIi0tDT3fHMiIpcpYEf8\nhw4d4vHHH8+c169cuTIbN27EsiwSEhJYv359tp93LuTLli3LiRMn+PrrrzPvK1GiBMePH8/yeJfL\nRaNGjVi+fDlHjhwhPT2d6dOnc/vtt3voOxMRKZiAGvGfOnWK0NBQUlNTKVy4MD169GDAgAEANGvW\njMqVK1OzZk1q1KiRZWXO+SP20qVL89hjj1G7dm3Kly9PeHh45n29evXi8ccfJzg4mDVr1mTeXr58\ned544w1atGiBZVm0a9eO9u3bX/Tc564JiIjYKaCWc/qrQPpeRMQ3OHI5p4iIZE/BLyLiYUlJSTzR\nsaPPtJJX8IuIeFBSUhKDW7Zk0Lx5DG7Z0ifCX8EvIuIh50J/ZGwslYGRsbE+Ef4KfhERDzg/9EP+\nui0E3wh/Bb+IiJtlF/rn+EL4B2zwu+Niiq9dkBER35db6J9jd/gHZPC742KKL16QERHflp/QP8fW\n8Ld8XE4l5nR7YmKi1S8szEoEywIrEczHiYn5/prueI533nnHatCggVW0aFGrV69euT7WD/4ZRCQf\n+t17r7Xzr9zI75+dYPW7916315JbrgTUiN8dF1PcdUGmQoUKvPLKKzzyyCOX862IiB8aGRnJ6LAw\n8jt+TwJGh4UxMjLSk2VdzO0/ZtwspxIvvP3CUfqFf/IzanfHc1xoyJAhGvGLOEheOVKQPLkUueVK\nQIz43XExxVMXZCz14BFxlJCQEEZGRTH45ptzHPknAYPDwhgZFUVISF5XA9zP74PfHRdTPHlBRt04\nRRzGsgh57z1Gnj7N4Jo1Lwp/u0MfPBj8CQkJtGjRglq1alG7dm0mTJhw0WOio6MpVaoUoaGhhIaG\nMmLEiEv+OoN792ZQPgL7nBBgUGwsg8uUAZcLXC4Glylzec/Ru3eej9WIX8RBTp+G7t1h/nxCNmxg\n5KpVDD5vzt8XQh/w3OTy/v37rbi4OMuyLCs5OdmqVq2aFR8fn+Uxy5Yts9q3b5/r8+RU4rnb8zuf\nltu8mjueIyea4xdxiP37LSs83LIefNCyUlIybz6XLzs9PKd/odxyxWMj/vLly1O/fn0AihcvTo0a\nNdi3b192P3gK9HUy59PycSU9p5+27niOC6Wnp3P69GnS0tJIT0/nzJkzpKen5/fbEhF/smkTNG4M\nbdrAtGlw1VWZd53Ll9H33mv/SP8cb/zk2bVrl3X99ddbycnJWW6Pjo62ypQpY9WtW9dq06aNtWXL\nlos+F7CGDh2a+WfZsmWZt5/P11b1DB061HK5XFn+DB8+PNvHeumfQUQ8Yd48y7r6asuaPt3WMpYt\nW5YlK3PLFY8nTnJystWgQQNrzpw5F913/Phx6+TJk5ZlWdaiRYusqlWrXlzgJWzgyim4LyWw3fEc\nl0rBL+KHMjIs6623LKtCBctat87uai5iW/CfPXvWatmypfX222/n6/E33nijdeTIkSy3XUrwW5bv\n7Ny9FAp+ET9z+rRl9eplWaGhlpWQYHc12cotVzw2x29ZFn369KFmzZr8+9//zvYxBw4cyJzjX79+\nPZZlUaZMmQJ93fPn63dxeVfQ3fEcIhKgDh+Gu++GY8dg5UqoWNHuii6Zxw5bX7VqFbfddht169bN\nXMs+atQo/vjjDwD69u3Le++9x/vvv0/hwoUJDg5m3LhxNG7cOGuBl3nYelJSEoN792ZkZORlB7Y7\nniM/dNi6iJ+Ij4f27eFf/4LXX4dCvrsVKrdc8Vjwu8vlBr8/CaTvRSRgLV4MPXrA2LHw8MN2V5On\n3HKlsJdrERHxL5YF77wD//kPzJkDzZrZXVGBKfhFRHKSmgpPPQWrV0NMDNx4o90VuYWCX0QkO4mJ\n8MADZjPWmjVQooTdFbmN716ZEBGxy7ZtZiduaCjMmxdQoQ8BHvzuuGCqi64iDvPDD9C8ObzwAowZ\nA0FBdlfkdgEb/JZl8eijAwsU3AV5jrNnz9KnTx9uvPFGSpYsSWhoKIsXL77sWkTECz74ALp1gxkz\noE8fu6vxmIAN/lmzlvD11zB7dpQtz5GWlsb111/PihUrOH78OCNGjKBLly78/vvvl12PiHhIWho8\n8wyMHw+rVkFEhN0VeVRABr9lWYwdu4Tk5HGMGbP4skbsBX2O4OBghg4dyvXXXw/APffcQ+XKlfnp\np58uuRYR8aBjx6BdO9i61azcqVLF7oo8LiCDf9asJWze3BpwsXlzq8sasbvjOc534MABtm3bRq1a\ntQr0PCLiRjt2QJMmULUqLFwIpUvbXZFXBFzwnxupp6S0BCAlpdUlj9jd8RznS01NpVu3bvTq1Ytq\n1apd1nOIiJutWGE2Yz35pNmgVdg5q9sDrmXDzJmL6dnTRUpKq/NuXQy4gFYXPT57Fz8+OHgxU6a4\n6NQpv89hZGRk8NBDD3HixAnmzZtHUDYrBNSyQcTLIiPhxRdh6lTTcC0A5ZYrATXiv3Ck/rdWNG68\nmIwMK89zFTMyLBo3XgJkfY7L/c2hT58+HDp0iFmzZmUb+iLiRenpMGgQjBoFy5cHbOjnJaCC//x5\n+azyP0/vjuc4p1+/fmzdupX58+dTtGjRfH+eiHhAcjLcdx/ExsLatXDLLXZXZJuACf6cR/tGfkbs\n7niOc37//XcmTZrEpk2bKF++PCVKlKBEiRJMmzYtf9+QiLjP77/DP/8J5cvDkiVQtqzdFdkqYII/\n55H6OXmP2N3xHOfccMMNZGRkkJKSQnJycuafrl275vm5IuJGMTFm5U7v3vDhh3DFFXZXZLuAuYy9\naFE0DRsWBWJyeZTFwoVncrxA647nEBEf8sUXMGCAuZh7zz12V+MzAm5Vjz8KpO9FxCdkZMCrr8KX\nX8L8+VC7tt0VeZ0OYhER5zh50pyUdeAArFsH11xjd0U+J2Dm+EVE2LsXbrsNihc3XTYV+tny2xF/\nSEhI5iHu/s6TB7mLOEZsLHTsaE7Mev55CJB88AS/neMXEcn09dfwxBPw0Ucm/EVz/CISoCwLRoyA\njz+G776D+vXtrsgvKPhFxD+dOgWPPAI7d5qLuOXL212R39DFXRHxP3/+CS1amL9HRyv0L5GCX0T8\ny8aNEB5uNmR9+SVcdZXdFfkdTfWIiP+YOxceewzeew+6dLG7Gr+l4BcR32dZ8NZb5sCURYugYUO7\nK/JrCn4R8W1nzkDfvrB5s2mnXLGi3RX5Pc3xi4jvOnQI7rzT9NJfuVKh7yYKfhHxTf/7n7mIGxFh\nNmgVK2Z3RQFDUz0i4nsWLYJevWDcOOje3e5qAo6CX0R8h2XBf/8Lo0fDvHnmABVxOwW/iPiGs2fh\nySfNBdyYGLjhBrsrClgKfhGxX2IidOpk2imvXg0lSthdUUDTxV0Rsdevv5qLuA0bmg1aCn2PU/CL\niH2++84cnPLSS2aDVlCQ3RU5gqZ6RMQeEyfCa6/BV1/B7bfbXY2jKPhFxLvS0mDAAHM04urVcPPN\ndlfkOAp+EfGeo0fhwQfNsYgxMVCqlN0VOZLm+EXEO377zazLv+UW+OYbhb6NFPwi4nnLl8M//wnP\nPAPjx0NhTTbYSa++iHjWJ5/Ayy/DF1/AXXfZXY2g4BcRT0lPhxdegPnzYcUKqF7d7orkLwp+EXG/\n48fhoYcgJcW0YChTxu6K5Dya4xcR99q9G5o1gwoVYMkShb4PUvCLiPusXm1W7jz6KHzwARQpYndF\nkg1N9YiIe3z+OTz7LEyeDG3a2F2N5ELBLyIFk5EBQ4bA9OmwbBnUqmV3RZIHBb+IXL6TJ+Hhh83Z\nuOvWwTXX2F2R5IPm+EXk8uzZYzZllSoF33+v0PcjCn4RuXTr10PjxmbJ5qefQtGidlckl0BTPSJy\naWbMMEckfvwx3Huv3dXIZVDwi0j+WBYMHw6RkWZqp149uyuSy6TgF5G8nToFvXvD77+bi7jly9td\nkRSA5vhFJHf795sTsoKCzHJNhb7fU/CLSM7i4sxB6B06wNSpcOWVdlckbqCpHhHJ3pw58H//B++/\nD507212NuJGCX0Sysix44w1zGPq330JYmN0ViZsp+EXkb2fOwGOPQXy8aadcoYLdFYkHaI5fRIyD\nB+GOO8wKnhUrFPoBTMEvIvDzz+Yi7h13mA1awcF2VyQepKkeEaf75huzRn/8eNOCQQKegl/EqSwL\n3n4bxoyBBQtM7x1xBAW/iBOdPQv9+5tma2vXwvXX212ReJGCX8RpjhyBTp1MO+XVq6F4cbsrEi/T\nxV0RJ9m61VzEbdQIZs9W6DuUgl/EKaKi4LbbYPBgeOst03tHHElTPSJO8O67MGIEzJoFzZvbXY3Y\nTMEvEsjS0uCZZyA6GtasgZtusrsi8QEKfpFAlZQEXbpA4cIm9EuVsrsi8RGa4xcJRNu3Q5MmUKuW\nWaOv0JfzKPhFAs2yZWYef8AA+O9/zYhf5Dx6R4gEko8+giFDYNo003dHJBsKfpFAkJ4Ozz0HixbB\nypVQrZrdFYkPU/CL+Lvjx6FrV9NLf+1aCAmxuyLxcZrjF/Fnu3ZB06am18633yr0fZhlWXaXkMlj\nwZ+QkECLFi2oVasWtWvXZsKECdk+7umnn6Zq1arUq1ePuLg4T5UjEnhWrTKh37evOSaxSBG7K5Ic\nWJbFo48O9Jnw91jwFylShLfffpstW7awdu1a3nvvPX755Zcsj1m0aBG//fYb27dvZ9KkSfTr189T\n5YgElsmT4f77ITISnnoKXC67K5JczJq1hK+/htmzo+wuBfBg8JcvX5769esDULx4cWrUqMG+ffuy\nPGb+/Pn07NkTgPDwcI4ePcqBAwc8VZKI/8vIgBdfhNdeM7txW7e2uyLJg2VZjB27hOTkcYwZs9gn\nRv1emePfvXs3cXFxhIeHZ7l97969VKpUKfPjihUrsmfPHm+UJOJ/Tpww7ZTXrIF166BmTbsrknyY\nNWsJmze3Blxs3tzKJ0b9Hl/Vc+LECTp37sz48eMpnk0L2At/+rmy+ZV12LBhmX+PiIggIiLC3WWK\n+LaEBGjfHm691ZyJe8UVdlck+XButJ+SMg6AlJRWjBkzkPvvb5lt1hVEdHQ00dHR+Xqsy/Lg7x2p\nqam0a9eONm3a8O9///ui+x9//HEiIiL417/+BcAtt9zC8uXLKVeu3N8Fulw+8auRiG3WrTPz+QMG\nwLPPaj7fj8ycuZiePV2kpLTKvC04eDFTprjo1KlVLp9ZcLllp8emeizLok+fPtSsWTPb0Afo0KED\nU6ZMAWDt2rWULl06S+iLON60adCuHXzwgdmgpdD3G3+P9ltmud2M+u2d6/fYiH/VqlXcdttt1K1b\nN/NXmlGjRvHHH38A0LdvXwCefPJJFi9eTLFixYiMjOTWW2/NWqBG/OJEGRkwfLhZvTN/PtSta3dF\ncommTVtMjx4u0tIuHtl7Y9SfW3Z6dKrHHRT84jgpKdC7t5nXnzMH9Fuw39m716J69YGcPDkOyO63\nNIvGjQeyZs04t8/1n2PLVI+IXIZ9++D2281mrKVLFfp+KCYG6tRZwtmzZiVP9uxd4aNePSK+4qef\n4N57oV8/eOklzef7oY8/hpdfhltvjSYtrSgQk8ujLRYuPOPxi7zZ0VSPiC+YNQsef9xcxO3Uye5q\n5BKdPWsWXf3wA8ybB9Wr211R7tmpEb+InSwLRo0ygb9kiVmnL37lwAF44AEoXdqsvPWHw840xy9i\nl9On4eGHYe5ckxgKfb8TGwsNG0JEhPln9IfQBwW/iD0OHDAnZJ09C8uXw3XX2V2RXKLPP4c2bczp\nlq+9BoX8KE011SPibZs3Q4cO0LMnDB3qX4khpKXB88+b7RXLlkHt2nZXdOnyfMetWrWKEydOAPD5\n558zcOBAfv/9d48XJhKQFiyAu+6C//zHbNBS6PuVw4ehVSvYsgU2bPDP0Id8BH+/fv0oVqwYmzZt\nYty4cdx888306NHDG7WJBA7LgjFjzMqdBQvMUYniVzZtMvP5YWHmaGN/Puwsz+AvXLgwLpeLuXPn\n0r9/f/r3709ycrI3ahMJDGfPQp8+MHWq2d1zQXty8X1fffX3L2pvvglBQXZXVDB5zvGXKFGCUaNG\nMXXqVFauXEl6ejqpqaneqE3E/x0+bNblh4SYoxKzaU0uvis9HYYMgenT4bvv4K+zpfxeniP+GTNm\nULRoUT799FPKly/P3r17GTRokDdqE/FZSUlJPNGxI0lJSTk/KD7ejO6bNIHZsxX6fuboUXMEwtq1\nsH594IQ+5GPn7oQJE3j44YcJsWlCSzt3xdckJSUxuGVLBsXGMjosjJFRURf//7F4MfToAaNHm9U7\n4lfi46FjR2jb1vwT+uM59gVq0nbgwAEaNmxIly5dWLzYN86LFLHLudAfGRtLZWBkbCyDW7b8e+Rv\nWfDOO6a75uzZCn0/NHeu6ZP38stmjb4/hn5e8tWrJyMjg6ioKD777DNiY2Pp0qULffr04eabb/Z8\ngRrxi484P/TPH98nAYPDwhi5cCEhQ4fCypVm5U7lynaVKpchI8NsxPrkE9M6qVEjuysqmAK3ZS5U\nqBDly5enXLlyBAUFkZSUROfOnTXXL46RU+gDhPDXyL9KFZJ27DCHoSv0/crx4+Z0y+++M+vz/T30\n85LniH/8+PFMmTKFsmXL8uijj3LfffdRpEgRMjIyqFq1Kjt27PBsgRrxi81yC/0sj+OvkX92c/7i\ns7ZtM/P5t90GEyYEzjn2BerOmZiYyOzZs7nhhhuy3F6oUCEWLFjgngpFfFR+Qx/OG/m3bKnw9xOL\nFkGvXvD66/DXabCOkO9+/AcPHuT06dOZH19//fUeK+p8GvGLnZ7o2JFB8+ZxKRM3u4DR997LxLlz\nPVWWFJBlmY1Y77xjNmc1a2Z3Re5XoDn++fPnU7VqVSpXrsztt9/OjTfeSJs2bdxepIgvGhkZyeiw\nMHJZrZ9FEpglnpGRnixLCuDkSfjXv8yiq3XrAjP085Jn8A8ZMoSYmBiqVavGrl27+OGHHwjXlnNx\niJCQEEZGRTE4H+GvOX7ft2sXNG0KV10FK1ZAxYp2V2SPPIO/SJEiXH311WRkZJCenk6LFi2IjY31\nRm0iPiE/4a/Q930//GA2UffpA5GRcOWVdldknzwv7oaEhJCcnEzz5s3p1q0b1157LcW19VwcJiQk\nhJFDhjC4c2dGpqVlv45foe+TLMtsxHrzTZg2DVq0sLsi++V5cffEiRNcddVVWJbF1KlTOX78ON26\ndaNs2bLeKVAXd8UXrFoF999P0qefMnj48MxVPgp933bqlFmt8/PPMGcO3Hij3RV5T27ZmWfwHz16\nlG3btuFyuahWrRqlvHyopIJfbLd+PbRrZ9oq/9WeIc9ePWK7hAS47z6oVg0+/hiCg+2uyLsuK/jP\nnDlD3759mTt3LpUrV8ayLHbv3s19993Hhx9+yBVe2uWg4Bdbbdxojlz65BMT/n9JSkpicO/ejIyM\nVOj7oBUrzMqdAQPguefA5bK7Iu+7rOWcI0aMIDU1lYSEBOLi4ti4cSMJCQmkpaXx+uuve6xYEZ+x\nZYs5TXvixCyhD2bOf+LcuQp9H2NZ5p/rgQfMBdxBg5wZ+nnJccRfq1Yt1q9fT7FixbLcfuLECcLD\nw9myZYt3CtSIX+ywbZu5Cjh6NDz0kN3VSD6cOQNPPmkOOZs7F6pUsbsie13WiD8oKOii0AcoXrw4\nhXRAtASynTvNOXsjRij0/cS+fRARAUeOmOB3eujnJdflnImJiRfdZlkWLv3uJIEqIQHuvBNefNH0\n1Beft3YtdO5szrF/+WXQuDRvOQb/8ePHadCggTdrEbHX/v1wxx3w9NPwxBN2VyP58Omn5mf0J5+Y\nYxIlf/LdpM0umuMXrzh40MwVdO9uho3i01JTzYqd776DefPgllvsrsj3FKgts0jAS0yEu+828wUK\nfZ938KBZtVOihNli4eWtRQFBs2HibMeOQcuW5s/w4XZXI3n48Udo2BCaN4f58xX6lyvH4N+1a5c3\n6xDxvuRks06/SRN46y0t+PZxX3wBrVvD2LFmwZUu4l6+HF+6zp07A3DHHXd4rRgRr0lJMVcDa9WC\n8eMV+j4sLQ2efRZefRWWLjUzclIwOc7xp6enM3LkSLZt28a4ceOyXCRwuVwMHDjQKwWKuN3p06aJ\nS6VK8MEHGjr6sCNHTOsFl8scgl6mjN0VBYYc3/HTp08nKCiI9PR0kpOTSU5O5sSJE5l/F/FLZ89C\nly5mcjgyEoKC7K5IcrB5MzRqBPXrm7NxFfruk+dyzkWLFtG2bVtv1XMRLecUt0lLM8PH1FSYOROK\nFLG7IsnBzJnQr5/po9+tm93V+KcCt2UePnw4K1asACAiIoJXX33Va+2ZFfziFunp0KOHWbo5dy4U\nLWp3RZKN9HQzlz91qumff+utdlfkvwp02PojjzxCyZIl+frrr/nqq68oUaIEvbWVXfxJRgb83/+Z\nnbmzZyv0fdTRo9ChA6xebebzFfqek+eIv169emzatCnP2zxFI34pEMsyLRs3bYLFi0HHhvqkX36B\njh3N0Qdjx2oWzh0KNOK/6qqrWLlyZebHq1atIthpR9mIf7IscwrHhg3m6qBC3yfNnw+33WZ67kyY\noND3hjxbNnzwwQf06NGDY8eOAeYAismTJ3u8MJECe+UVs/B76VIoWdLuauQCGRlmI9akSfDNNxAe\nbndFzpHvJm3ngl9n7opfGDECpk2D6Gi45hq7q5ELJCdDz57w558waxb84x92VxR4CjTVc06pUqW8\nHvoil2XsWJgyBX74QaHvg377DRo3hquvhmXLFPp20JZFCSzvvWf+LF0K5cvbXY1cYPFiaNoUnnoK\nPvxQC6zsorbMEjg+/tg0W1u+HCpWtLsaOY9lmX+a8ePN1E7z5nZX5Gz5Cv7Vq1eze/du0tLSADN3\n1KNHD48WJnJJpk6FYcPM3MGNN9pdjZzn5Eno0wd27IB160yLJLFXnsHfvXt3du7cSf369Qk6r6+J\ngl98xtdfw6BBZk6/alW7q5Hz7N5t1ufXrQsrVsBVV9ldkUA+VvXUqFGD+Ph42w5Y16oeydX8+WZX\n7pIlUK+e3dXIeZYuhYcegpdeMscYq/O1dxVoVU/t2rXZv3+/24sSKbAlS+DRR80icIW+z7As01zt\noYfM4SnPPKPQ9zV5TvUcOnSImjVr0qhRI4r+dQne5XIxf/58jxcnkqNly+Dhh03DtbAwu6uRv5w6\nBY8/Dhs3QkwMVK5sd0WSnTyDf9iwYV4oQ+QSrF4NDz4IX31l1gaKT0hIgPvvh5tugjVroFgxuyuS\nnOR7565dNMcvWWzYAPfcY1bxtGxpdzXyl1WrzPk2zzwDzz+vqR1fUKA5/piYGBo2bEjx4sUpUqQI\nhQoVoqT6nogdNm6Edu3gk08U+j7kgw/MSP/TT+GFFxT6/iDPqZ4nn3yS6dOn06VLF2JjY5kyZQq/\n/vqrN2oT+duWLdCmjdmV27693dUIcOaMWa2zapWZfdNKWv+Rr5YNVatWJT09naCgIHr37s3ixYs9\nXZfI37ZtMyP8MWOgc2e7qxHMmTZ33AEHD8LatQp9f5PniL9YsWKcOXOGevXq8fzzz1O+fHnNuYv3\n7NoFd90Fr7+uw1d9xLp15ufvY4/BkCFQSB2//E6e/2RTpkwhIyODd999l+DgYPbs2cOsWbO8UZs4\nXUIC3HmnOaHjkUfsrkaAyEhzmeXdd83ZuAp9/5SvVT0pKSkkJCRQvXp1b9SUhVb1ONT+/eZYpn79\nYOBAu6txvNRUePZZ011z7lyoWdPuiiQvBVrVM3/+fEJDQ2nVqhUAcXFxdOjQwb0Vipzv0CEzvdO7\nt0LfBxw6BHffbfror1+v0A8EeQb/sGHDWLduHSEhIQCEhoayc+dOjxcmDpWYaFLm/vvh5Zftrsbx\n4uKgYUNmlklBAAAbVElEQVRo1gwWLIDSpe2uSNwhz4u7RYoUofQF/9qFNLEnnnDsGLRqZUb7r71m\ndzWO9+WXZkPWxInwwAN2VyPulGfw16pViy+++IK0tDS2b9/OhAkTaKpt8uJuJ05A27bmxO3Ro7UL\nyEZpaaaj5qxZptN13bp2VyTulufQ/Z133mHLli0ULVqUrl27UrJkSf773/96ozZxipQUsymrZk2Y\nMEGhb6PERPPzNy7OdMdQ6Acm9eoRe50+DffeC9deC599Bucd9iPe9fPPcN995p/jzTehsA5m9Wu5\nZWeewb9hwwZGjRp10dGLmzdvdn+l2RWo4A9cZ8+anUBXXmkmlJU0tpk1y7RTfvtt6N7d7mrEHQoU\n/NWqVWPMmDHUrl07y0XdG710rqmCP0ClpUHXrib8Z86EIkXsrsiRMjLMRqzPP4fZs6FBA7srEnfJ\nLTvzHGJdc801Wrcv7pWeDr16QXIyzJun0LfJsWOmC0ZyspnPv/ZauysSb8lzxB8VFcWMGTO46667\nuOKKK8wnuVzcf//93ilQI/7AkpFhzsjdudMcmRgcbHdFjrR1qzkE/a67zPSOfvYGngKN+CdPnsyv\nv/5KWlpalqkebwW/BBDLMn18t241e/8V+rZYsMC0PvrPf8yRxeI8eQZ/bGwsW7duxaUldlIQlgWD\nBpnWjt9/D8WL212R42RkwKhR5uCU+fOhSRO7KxK75Bn8TZs2JT4+nlq1anmjHglUr75qAn/pUihV\nyu5qHCc52VxW2bfP9Nu57jq7KxI75TnHf8stt7Bjxw4qV65M0aJFzSdpOadcipEjzXLN6Gi45hq7\nq3GcHTvM2vzwcNN+4a//jSXAFWiOX6dtSYGMHQuTJ8Py5Qp9GyxZAj16wNChpsO1ZmwFtHNXPOm9\n90zwL18OlSrZXY2jWJY5qXLcOJgxwxxtIM5SoH78l+uRRx6hXLly1KlTJ9v7o6OjKVWqFKGhoYSG\nhjJixAhPlSJ2+OQTs+//hx8U+l6WkmLW50+fbq6lK/TlQh4L/vwcyn777bcTFxdHXFwcQ4YM8VQp\n4m1Tp5q5hR9+gMqV7a7GUX7/3fTODwqCVavg+uvtrkh8kceCv3nz5pmHt+REUzgBaOZMs2wzKgqq\nVrW7GkeJjjYXcHv0gClT4Kqr7K5IfJVtXbFcLhdr1qyhXr16VKhQgTFjxlAzhzPdhg0blvn3iIgI\nIiIivFOkXJoFC6B/fxP6Op/PayzLHH4+YgR88YXZjSvOEx0dTXR0dL4e69GLu7t376Z9+/b8/PPP\nF92XnJxMUFAQwcHBfPvttzzzzDNs27bt4gJ1cdc/LFkCDz8MCxeas/rEK06fNqt1fvzRHIJ+0012\nVyS+wpaLu3kpUaIEwX9t2W/Tpg2pqakkJibaVY4URHS0Cf05cxT6XrRnj7lwe/IkxMQo9CX/bAv+\nAwcOZP40Wr9+PZZlUaZMGbvKkcu1erU5kPWrr8xVRfGK1auhUSNzcMqMGVCsmN0ViT/x2Bx/165d\nWb58OYcPH6ZSpUoMHz6c1NRUAPr27cvMmTN5//33KVy4MMHBwUyfPt1TpYinbNhgkmfqVNB1F6+Z\nNAmGDDEHlrVta3c14o+0gUsuz6ZN0LIlfPyxOS9XPO7sWdPcdMUKM59frZrdFYkvK1DLBpGLxMdD\n69ZmZ65C3yv+/NOcUlm2LKxdCyVL2l2R+DPb5vjFT23fDnffbfoBdO5sdzWOsGGDuWZ+113m+rlC\nXwpKI37Jv1274M474bXXTE8A8bjJk+G55+Cjj8yJWSLuoOCX/ElIMKH/wgvQp4/d1QS81FQT+IsW\nmdWyOg5D3EnBL3nbv9+Efv/+5o941OHD0KWL6Zu/fj3k0flE5JJpjl9yd+iQmVzu2ROefdbuagLe\nxo1mPr9RI3MWvUJfPEEjfslZYqK5kHvffTB4sN3VBLzp0+Gpp0zfnQcftLsaCWQKfsnesWNmyeZd\nd8Hrr9tdTUBLT4eXXzabn7//HurVs7siCXQKfrnYiRNmS2ijRjB6tM7r86CkJPjXvyAtzSzbvPpq\nuysSJ9Acv2SVkmI2ZdWoARMmKPQ9aMsWM59fs6ZpbqrQF29Rywb525kz0KGDORR98mRzjJN4xOzZ\n0LevOZK4Rw+7q5FApJYNkrfUVLOGsGRJ0/1Loe8RGRkwbJh5ib/9FsLC7K5InEjBL2aCuVs3c5TT\nF19AYb0tPOH4ceje3czrb9gA5crZXZE4leb4nS49HXr3Nqt4vvoKrrjC7ooC0q+/mvNwK1Y0Z9Ar\n9MVOCn4ny8iAxx83RznNmQNXXml3RQFp4UJo3hwGDoSJE/WzVeyn3+mdyrJMc/f4eLOk5K9jMMV9\nLAtGjTJhP3cuNG1qd0UihoLfiSwLBg2CdevMjqHixe2uyC9ZloUrh+WuJ06YGbQ//jD9dipU8HJx\nIrnQVI8TvfqqCfwlS6BUKbur8UuWZfHoowOzXS63Ywc0aQIlSsDy5Qp98T0KfqcZOdIsIv/uO9Dh\n9pdt1qwlfP01zJ4dleX2774zUzp9+8Inn+iyifgmBb+TjBtnNmZ9/73ZpCWXxbIsxo5dQnLyOMaM\nWYxlWViWOZSsRw+YMQOefFKbnsV3aY7fKSZOhHfeMSd1/+Mfdlfj12bNWsLmza0BF5s3t2LatCgW\nLmzFL7+Y83BvuMHuCkVypxG/E3z6KbzxBixdCpUq2V2NXzs32k9JaQlASkorHnvMjPpXrVLoi39Q\n8Ae6L76AV14x0zuVK9tdjd87f7RvuEhNbcX990dpRaz4DQV/IJs50xzcGhUF1arZXY3fu3C0f05q\naivGjl2sZoLiNxT8gWrBAnM+7rff6qRuNxk+fAnr158/2j/HzPVfuMJHxFcp+ANRVBT06WMOba1f\n3+5q/N6aNdCihcUbbywhI6Nlto9JSWmVucJHxNcp+ANNdLTptDlnjjnlQy7bjz+ag8i6doVbbllC\nUFB2o/1zNOoX/6HlnIFkzRrTU/+rr6BZM7ur8Vv/+x8MHWqWZr78svkZ2q9fNA0bFgVicvlMi4UL\nz9CpUytvlSpyWXQCV6CIjTXD088/h1YKnsuxfbs5JOX77+H556FfP/WuE/+VW3ZqqicQbNoE99wD\nH3+s0L8Mu3ebSyJNmpjzb3/7DZ59VqEvgUvB7+/i46F1a3j3XXNeruTbvn1m4VODBnDddWbEP3iw\naa4mEsgU/P5s+3Zo2RJGj4YHHrC7Gr9x8KAZ0deubUb1W7fC669DSIjdlYl4h4LfX+3aBXfdZSal\nu3e3uxq/kJRkRvQ1asCZM+Yi7ujR6lcnzqPg90d79sCdd5orkI8+anc1Pu/4cTOir1oVDhyAn34y\nM2PXXWd3ZSL2UPD7m/374Y47zOR0//52V+PTUlLMiL5KFXPYeUyMuf6tRmridFrH708OHTLTOz16\nmElqydaZM/DRR+a826ZNYdkyda0QOZ+C318kJpoLuffdB0OG2F2NT0pNNefMvP461KljOlbceqvd\nVYn4HgW/Pzh2zCzZvOMOk2qSRXo6TJtmrnPfeCNMn27W5ItI9hT8vu7ECbM5q2FDc7afzvPLlJFh\njg9+9VWzFPOjj6BFC7urEvF9Cn5fduqU2ZRVvbo5NlGhD4BlwcKF5nyZoCBzlHCrVnp5RPJLvXp8\n1ZkzcO+9ULYsTJliEs7hLAt++MFc4jhxwsx6deyowBfJTm7ZqeD3Ramp0LkzFCliJqwL6xezVatM\n4O/bB8OHmyak+lkokrPcslOJ4mvS0kw/fcuCL790fOhv2GCmdLZuNa2SH37Y8S+JSIHpfyFfkp4O\nvXubVTzz5sEVV9hdkW1+/tkEfmysabMwf76jXw4Rt9LOXV+RkQGPP27aMcyZA1deaXdFtvj1V3Pi\n1d13w+23mz50/fop9EXcScHvCywLnnnGtFhesMCRjeB37YJeveCf/4S6dU1P/AED4Kqr7K5MJPAo\n+O1mWabZ2tq1sGgRFC9ud0VetWePGdGHhZkeOtu3w0svOe5lEPEqBb/dhg6FqChYsgRKlbK7Gq85\ncMCM6OvWhZIlzRTP8OFQurTdlYkEPgW/nUaNgpkz4bvvoEwZu6vxisREM6KvUcNcy96yBd58E66+\n2u7KRJxDwW+Xt9+GyEizI+naa+2uxuOOHzcj+qpV4cgR2LgRJkyAf/zD7spEnEfBb4eJE00LhqVL\nAz75Tp40I/oqVWDHDli3DiZNguuvt7syEefSOn5v+/RTeOMNWL4cKlWyuxqPOX3aBPx//gPNm0N0\nNNSsaXdVIgIKfu/68kuzK2nZMqhc2e5qPOLsWTODNWIEhIbCt99C/fp2VyUi51Pwe8usWebUrO+/\nh2rV7K7G7dLT4YsvTE/8KlXMNevwcLurEpHsKPi9YcECeOIJs2QzwM4AzMgwIT90qFmZExlpdtyK\niO9S8HtaVBT06WPOAQygOQ/LMj/PXnkFihaF8eNNmwW1SBbxfQp+T1q+3HTanDMHGjWyuxq3sCyz\n7WDIEHMB9/XXzVkxCnwR/6Hg95Q1a+CBB2DGDNOAJgCsWGEC/+BBsyb/gQegkBYEi/gdBb8nxMaa\no6GmTDEHpPu5devMlM5vv5m5/G7d1BNfxJ9pvOZumzZBu3bm5O/Wre2upkA2bTLTOJ07Q6dO5jCU\nnj0V+iL+TsHvTvHxJuzfececl+unfvnFHG3YujXceafpmNm3r3riiwQKBb+7bN8OLVvC6NFm8tsP\n7dgBPXrAbbdBgwZmaueZZxx7JoxIwFLwu8Pu3XDXXWb3UvfudldzyRISzIg+PBxuvtkE/gsvQLFi\ndlcmIp6g4C+oPXvMfMigQfDoo3ZXc0n+/NOM6OvXN12hf/3VXLx10LEAIo6k4C+IP/80od+vHzz5\npN3V5NuRI2ZEX7OmWX8fH2+aqZUta3dlIuINCv7Ldfiwmd7p3h2ee87uavLl2DEzoq9Wzfx90yb4\n73+hXDm7KxMRb1LwX46kJNOf4N57zY4mH3fihBnRV6kCv/8OGzbABx8EdFdoEcmFgv9SHT9u1jm2\naGF6D/twr4JTp8xBX1WqmNH9ypXw2Wdw0012VyYidtJWnEtx4gS0bWvWOo4d67Ohf/YsfPIJjBwJ\nYWGmT1zdunZXJSK+QiP+8yQlJfFEx44kJSVdfOepU2Yba/Xq8O67Phn6aWmmLXL16jBvHsyeDXPn\nKvRFJCsF/1+SkpIY3LIlg+bNY3DLllnD/8wZuP9+cz7upEk+15ksIwOmTzet/j/7zLQIWrw4YBqC\nioibuSzLsuwuIjculwtPl3gu9EfGxhICJAGDw8IYGRVFSPHiZidu4cImXX2oUY1lmZH9K69AcLCZ\n2rnzTp/8ZUREvCy37HR88F8Y+pm3A4MbNGBkpUqEpKWZoxN9pFmNZZnDvIYMMdM7I0bAPfco8EXk\nbwr+HOQU+pn3A4NLlmTk1q2E/OMfHqnhUkVHm8A/cgRee810zfSxmScR8QG5ZadjIyOv0AcIAUYe\nP87gDh2yv+DrRWvXmv1iffqYvjr/+58OQhGRy+PI2MhP6J8TAoyMjb34gq+XxMWZ9v5dusCDD5qe\n+A8/DEFBXi9FRAKEx4L/kUceoVy5ctSpUyfHxzz99NNUrVqVevXqERcX56lSLjK4d28G5SP0zwkB\nBsXGMrh3b0+WlcWWLeYAlLZtoVUr2LYNHnsMihTxWgkiEqA8Fvy9e/dm8eLFOd6/aNEifvvtN7Zv\n386kSZPo16+fp0q5yMjISEaHhZHf8XsSMDosjJGRkZ4sCzAtkbt3NxuDw8NNj/ynnlJPfBFxH48F\nf/PmzQkJyXlMPX/+fHr27AlAeHg4R48e5cCBA54qJ4uQkBBGRkUxOB/hn2VpZy7fT0H98YcZ0Tdu\nbDZg/fab6fQcHOyxLykiDmXbHP/evXupdF6XsIoVK7Jnzx6vff38hL83Qn//fjOiDw2Fa681Uzqv\nvAIlS3rky4mI2Nur58KlRq4cFqIPGzYs8+8RERFERES45etnhn9O6/g9GPqHDsFbb5meOr16mXNu\nr73W7V9GRBwiOjqa6Ojo/D3Y8qBdu3ZZtWvXzva+vn37WtOmTcv8uHr16taff/550eM8XKJlWZaV\nmJho9QsLsxLN3igrEczHiYlu/1pJSZY1ZIhllSljWf36WdaePW7/EiIiuWanbVM9HTp0YMqUKQCs\nXbuW0qVLU86mE0HOn/bZhWdG+snJpqVC1aqwdy/ExsLEiVChgtu+hIhIvnhsqqdr164sX76cw4cP\nU6lSJYYPH05qaioAffv2pW3btixatIgqVapQrFgxIr2wYiY3meHfuzcjIyPdFvqnTpmAf+st00dn\n9WpzApaIiF0c3bLBk86cgY8/hlGjzLLM4cMhly0NIiJulVt2+k6ryQCRlgaTJ5s+OrVqme6ZYWF2\nVyUi8jcFv5ukp8OMGeYw84oV4csvoVkzu6sSEbmYgr+ALAvmzIFXX4USJeDDD+GOO+yuSkQkZwr+\nC1iWleN+gqyPg2+/NS2SwVy8bdNGPfFFxPc5sjtnTizL4tFHB+Z5MXnpUjONM2gQDB5slma2bavQ\nFxH/oOA/z6xZS/j6a5g9Oyrb+9esMdM4fftC//6webMOQhER/6PI+otlWYwdu4Tk5HGMGbM4y6j/\nxx/NiL5rV+jWDeLjzX/VE19E/JGC/y+zZi1h8+bWgIvNm1sxe3YU//sf3H8/tG9vzrTdts2cgKWe\n+CLiz7SBCzPab9p0IGvXjgNcgEXZsgMpVGgcL7zgol8/tUcWEf+iDVx5OH+0b7g4frwVn34aRffu\nrewsTUTE7Rw/1XNubj8lpWWW21NTW/Hee4v9sl2EiEhuHB/8F4/2z/l7rl9EJJA4OvhzGu2fk5LS\n6qIVPiIi/s7RwZ/zaP8cjfpFJPA4+uLuokXRNGxYFIjJ5VEWCxeeoVMnXeQVkcCg5ZwiIgEot+x0\n9FSPiIgTKfhFRBxGwS8i4jAKfhERh1Hwi4g4jIJfRMRhFPwiIg6j4BcRcRgFv4iIwyj4RUQcRsEv\nIuIwCn4REYdR8IuIOIyCX0TEYRT8IiIOo+AXEXEYBb+IiMMo+C8QHR1tdwk+R69J9vS6ZE+vS/Z8\n6XVR8F/Al/5xfIVek+zpdcmeXpfs+dLrouAXEXEYBb+IiMO4rJyOYfcRLpfL7hJERPxSTvFe2Mt1\nXDIf/7kkIuJ3NNUjIuIwCn4REYdxZPA/8sgjlCtXjjp16uT4mKeffpqqVatSr1494uLivFidffJ6\nXaKjoylVqhShoaGEhoYyYsQIL1fofQkJCbRo0YJatWpRu3ZtJkyYkO3jnPZ+yc/r4sT3y+nTpwkP\nD6d+/frUrFmTl156KdvH2f5+sRxoxYoV1k8//WTVrl072/sXLlxotWnTxrIsy1q7dq0VHh7uzfJs\nk9frsmzZMqt9+/Zerspe+/fvt+Li4izLsqzk5GSrWrVqVnx8fJbHOPH9kp/XxYnvF8uyrJMnT1qW\nZVmpqalWeHi4tXLlyiz3+8L7xZEj/ubNmxMSEpLj/fPnz6dnz54AhIeHc/ToUQ4cOOCt8myT1+sC\nzrvYXr58eerXrw9A8eLFqVGjBvv27cvyGCe+X/LzuoDz3i8AwcHBAJw9e5b09HTKlCmT5X5feL84\nMvjzsnfvXipVqpT5ccWKFdmzZ4+NFfkGl8vFmjVrqFevHm3btiU+Pt7ukrxq9+7dxMXFER4enuV2\np79fcnpdnPp+ycjIoH79+pQrV44WLVpQs2bNLPf7wvvF55dz2uXCkYr2E8Ctt95KQkICwcHBfPvt\nt3Ts2JFt27bZXZZXnDhxgs6dOzN+/HiKFy9+0f1Ofb/k9ro49f1SqFAhNm7cyLFjx2jVqhXR0dFE\nRERkeYzd7xeN+LNRoUIFEhISMj/es2cPFSpUsLEi31CiRInMX2PbtGlDamoqiYmJNlfleampqXTq\n1Inu3bvTsWPHi+536vslr9fFqe+Xc0qVKsU999xDbGxsltt94f2i4M9Ghw4dmDJlCgBr166ldOnS\nlCtXzuaq7HfgwIHMkcr69euxLOui+ctAY1kWffr0oWbNmvz73//O9jFOfL/k53Vx4vvl8OHDHD16\nFIBTp07x3XffERoamuUxvvB+ceRUT9euXVm+fDmHDx+mUqVKDB8+nNTUVAD69u1L27ZtWbRoEVWq\nVKFYsWJERkbaXLF35PW6zJw5k/fff5/ChQsTHBzM9OnTba7Y81avXs3UqVOpW7du5v/Ao0aN4o8/\n/gCc+37Jz+vixPfL/v376dmzJxkZGWRkZPDwww9z55138uGHHwK+837x+V49IiLiXprqERFxGAW/\niIjDKPhFRBxGwS8i4jAKfnGkAQMGMH78+MyPW7VqxWOPPZb58bPPPsvbb7+d7ecOHTqUH374Idfn\nHzZsGGPHjr3o9mPHjvH+++9fZtUi7qHgF0f65z//yZo1awCzxf7IkSNZWgrExMTQrFmzbD93+PDh\n3Hnnnbk+f047MZOSkpg4ceJlVi3iHgp+caQmTZoQExMDwJYtW6hduzYlSpTg6NGjnDlzhl9++QWA\niIgIwsLCaN26NX/++ScAvXr1YtasWQAsWrSIGjVqEBYWxtNPP0379u0zv0Z8fDwtWrTg5ptv5p13\n3gHgxRdfZMeOHYSGhvLCCy9481sWyeTIDVwi1113HYULFyYhIYGYmBiaNGnC3r17iYmJoWTJktSo\nUYMBAwYwb948rr76ambMmMHgwYP55JNPcLlcuFwuTp8+zeOPP87KlSu54YYbeOihhzJH+pZlsXXr\nVqKjozl+/DjVq1fniSee4M0332TLli2O6NkvvkvBL47VtGlT1qxZw5o1axg4cCB79+5lzZo1lCpV\nigoVKhAVFcXdd98NQHp6Otddd13m554L9ptuuokbbrgBMDufJ02aBJipnnbt2lGkSBHKli3Ltdde\nm6WFgYidFPziWM2aNWP16tX8/PPP1KlTh0qVKjFmzBhKlSpFRERE5g+CnFw4j39hqF9xxRWZfw8K\nCiItLc2934DIZdIcvzhW06ZN+eabbyhbtiwul4uQkBCOHj1KTEwMXbt25dChQ6xduxYwnSjPv/jr\ncrmoXr06O3fu5PfffwdgxowZWaZ6slOiRAmSk5M9/J2J5E7BL45Vu3Ztjhw5QuPGjTNvq1u3LqVL\nl+aaa65h5syZvPDCC9SvX5/Q0NDMi8HnXHnllUycOJHWrVsTFhZGyZIlKVWqFEDmdYALlS1blmbN\nmlGnTh1d3BXbqEmbSAGcPHmSYsWKAdC/f3+qVavGM888Y3NVIrnTiF+kAD766CNCQ0OpVasWx48f\np2/fvnaXJJInjfhFRBxGI34REYdR8IuIOIyCX0TEYRT8IiIOo+AXEXEYBb+IiMMo+EVEHOb/AckQ\nxqBChPp6AAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 27 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"You have things available in the calling namespace available in the formula evaluation namespace" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"kidney_lm = ols('np.log(Days+1) ~ C(Duration) * C(Weight)', df=kt).fit()\n", | |
"\n", | |
"table10 = anova_lm(kidney_lm)\n", | |
"\n", | |
"print anova_lm(ols('np.log(Days+1) ~ C(Duration) + C(Weight)',\n", | |
" df=kt).fit(), kidney_lm)\n", | |
"print anova_lm(ols('np.log(Days+1) ~ C(Duration)', df=kt).fit(),\n", | |
" ols('np.log(Days+1) ~ C(Duration) + C(Weight, Sum)',\n", | |
" df=kt).fit())\n", | |
"print anova_lm(ols('np.log(Days+1) ~ C(Weight)', df=kt).fit(),\n", | |
" ols('np.log(Days+1) ~ C(Duration) + C(Weight, Sum)',\n", | |
" df=kt).fit())" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 56 29.624856 0 NaN NaN NaN\n", | |
"1 54 28.989198 2 0.635658 0.59204 0.556748\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 58 46.596147 0 NaN NaN NaN\n", | |
"1 56 29.624856 2 16.971291 16.040454 0.000003\n", | |
" df_resid ssr df_diff ss_diff F Pr(>F)\n", | |
"0 57 31.964549 0 NaN NaN NaN\n", | |
"1 56 29.624856 1 2.339693 4.422732 0.03997\n" | |
] | |
} | |
], | |
"prompt_number": 28 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Sum of squares\n", | |
"\n", | |
" Illustrates the use of different types of sums of squares (I,II,II)\n", | |
" and how the Sum contrast can be used to produce the same output between\n", | |
" the 3.\n", | |
"\n", | |
" Types I and II are equivalent under a balanced design.\n", | |
"\n", | |
" Don't use Type III with non-orthogonal contrast - ie., Treatment" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"sum_lm = ols('np.log(Days+1) ~ C(Duration, Sum) * C(Weight, Sum)',\n", | |
" df=kt).fit()\n", | |
"\n", | |
"print anova_lm(sum_lm)\n", | |
"print anova_lm(sum_lm, typ=2)\n", | |
"print anova_lm(sum_lm, typ=3)\n", | |
"\n", | |
"nosum_lm = ols('np.log(Days+1) ~ C(Duration, Treatment) * C(Weight, Treatment)',\n", | |
" df=kt).fit()\n", | |
"print anova_lm(nosum_lm)\n", | |
"print anova_lm(nosum_lm, typ=2)\n", | |
"print anova_lm(nosum_lm, typ=3)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" df sum_sq mean_sq F PR(>F)\n", | |
"C(Duration, Sum) 1 2.339693 2.339693 4.358293 0.041562\n", | |
"C(Weight, Sum) 2 16.971291 8.485645 15.806745 0.000004\n", | |
"C(Duration, Sum):C(Weight, Sum) 2 0.635658 0.317829 0.592040 0.556748\n", | |
"Residual 54 28.989198 0.536837 NaN NaN\n", | |
" sum_sq df F PR(>F)\n", | |
"C(Duration, Sum) 2.339693 1 4.358293 0.041562\n", | |
"C(Weight, Sum) 16.971291 2 15.806745 0.000004\n", | |
"C(Duration, Sum):C(Weight, Sum) 0.635658 2 0.592040 0.556748\n", | |
"Residual 28.989198 54 NaN NaN\n", | |
" sum_sq df F PR(>F)\n", | |
"Intercept 156.301830 1 291.153237 0.000000\n", | |
"C(Duration, Sum) 2.339693 1 4.358293 0.041562\n", | |
"C(Weight, Sum) 16.971291 2 15.806745 0.000004\n", | |
"C(Duration, Sum):C(Weight, Sum) 0.635658 2 0.592040 0.556748\n", | |
"Residual 28.989198 54 NaN NaN\n", | |
" df sum_sq mean_sq F PR(>F)\n", | |
"C(Duration, Treatment) 1 2.339693 2.339693 4.358293 0.041562\n", | |
"C(Weight, Treatment) 2 16.971291 8.485645 15.806745 0.000004\n", | |
"C(Duration, Treatment):C(Weight, Treatment) 2 0.635658 0.317829 0.592040 0.556748\n", | |
"Residual 54 28.989198 0.536837 NaN NaN\n", | |
" sum_sq df F PR(>F)\n", | |
"C(Duration, Treatment) 2.339693 1 4.358293 0.041562\n", | |
"C(Weight, Treatment) 16.971291 2 15.806745 0.000004\n", | |
"C(Duration, Treatment):C(Weight, Treatment) 0.635658 2 0.592040 0.556748\n", | |
"Residual 28.989198 54 NaN NaN\n", | |
" sum_sq df F PR(>F)\n", | |
"Intercept 10.427596 1 19.424139 0.000050\n", | |
"C(Duration, Treatment) 0.054293 1 0.101134 0.751699\n", | |
"C(Weight, Treatment) 11.703387 2 10.900317 0.000106\n", | |
"C(Duration, Treatment):C(Weight, Treatment) 0.635658 2 0.592040 0.556748\n", | |
"Residual 28.989198 54 NaN NaN" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 29 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment