Skip to content

Instantly share code, notes, and snippets.

@vincentarelbundock
Created August 26, 2012 23:28
Show Gist options
  • Save vincentarelbundock/3484340 to your computer and use it in GitHub Desktop.
Save vincentarelbundock/3484340 to your computer and use it in GitHub Desktop.
Statsmodels example: Out of sample prediction
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "example_predict"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Out of sample prediction"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import statsmodels.api as sm"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Artificial data"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"nsample = 50\n",
"sig = 0.25\n",
"x1 = np.linspace(0, 20, nsample)\n",
"X = np.c_[x1, np.sin(x1), (x1-5)**2, np.ones(nsample)]\n",
"beta = [0.5, 0.5, -0.02, 5.]\n",
"y_true = np.dot(X, beta)\n",
"y = y_true + sig * np.random.normal(size=nsample)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"olsmod = sm.OLS(y, X)\n",
"olsres = olsmod.fit()\n",
"print olsres.summary()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y R-squared: 0.987\n",
"Model: OLS Adj. R-squared: 0.986\n",
"Method: Least Squares F-statistic: 1135.\n",
"Date: Sun, 26 Aug 2012 Prob (F-statistic): 4.03e-43\n",
"Time: 20:53:07 Log-Likelihood: 5.3984\n",
"No. Observations: 50 AIC: -2.797\n",
"Df Residuals: 46 BIC: 4.851\n",
"Df Model: 3 \n",
"==============================================================================\n",
" coef std err t P>|t| [95.0% Conf. Int.]\n",
"------------------------------------------------------------------------------\n",
"x1 0.5167 0.012 43.406 0.000 0.493 0.541\n",
"x2 0.4541 0.047 9.705 0.000 0.360 0.548\n",
"x3 -0.0215 0.001 -20.550 0.000 -0.024 -0.019\n",
"const 4.8695 0.077 63.089 0.000 4.714 5.025\n",
"==============================================================================\n",
"Omnibus: 1.333 Durbin-Watson: 2.195\n",
"Prob(Omnibus): 0.514 Jarque-Bera (JB): 1.220\n",
"Skew: 0.231 Prob(JB): 0.543\n",
"Kurtosis: 2.390 Cond. No. 221.\n",
"==============================================================================\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## In-sample prediction"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ypred = olsres.predict(X)\n",
"print ypred"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ 4.33259464 4.80783601 5.24630515 5.62325195 5.92285846\n",
" 6.1408378 6.28513842 6.3746382 6.43604293 6.49949852\n",
" 6.5936382 6.74087813 6.95373448 7.23276706 7.56648738\n",
" 7.93324611 8.30479007 8.65090411 8.94437538 9.16546434\n",
" 9.30514787 9.36660181 9.3646791 9.32346955 9.27234192\n",
" 9.24111872 9.25517645 9.33127633 9.47481046 9.67891594\n",
" 9.9256024 10.18870775 10.4381966 10.64509493 10.78625047\n",
" 10.84813654 10.82907443 10.73950927 10.60029383 10.43926257\n",
" 10.28665841 10.17016402 10.11035353 10.11731232 10.18898002\n",
" 10.31148898 10.46144275 10.60975997 10.72645244 10.78555203]\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a new sample of explanatory variables Xnew, predict and plot"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"x1n = np.linspace(20.5,25, 10)\n",
"Xnew = np.c_[x1n, np.sin(x1n), (x1n-5)**2, np.ones(10)]\n",
"ynewpred = olsres.predict(Xnew) # predict out of sample\n",
"print ypred"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ 4.33259464 4.80783601 5.24630515 5.62325195 5.92285846\n",
" 6.1408378 6.28513842 6.3746382 6.43604293 6.49949852\n",
" 6.5936382 6.74087813 6.95373448 7.23276706 7.56648738\n",
" 7.93324611 8.30479007 8.65090411 8.94437538 9.16546434\n",
" 9.30514787 9.36660181 9.3646791 9.32346955 9.27234192\n",
" 9.24111872 9.25517645 9.33127633 9.47481046 9.67891594\n",
" 9.9256024 10.18870775 10.4381966 10.64509493 10.78625047\n",
" 10.84813654 10.82907443 10.73950927 10.60029383 10.43926257\n",
" 10.28665841 10.17016402 10.11035353 10.11731232 10.18898002\n",
" 10.31148898 10.46144275 10.60975997 10.72645244 10.78555203]\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot comparison"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import matplotlib.pyplot as plt\n",
"plt.figure()\n",
"plt.plot(x1, y, 'o', x1, y_true, 'b-')\n",
"plt.plot(np.hstack((x1, x1n)), np.hstack((ypred, ynewpred)),'r')\n",
"plt.title('OLS prediction, blue: true and data, fitted/predicted values:red')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 6,
"text": [
"<matplotlib.text.Text at 0x48a6b10>"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYU+fbB/BvGAXEsBEQUCxqVVTAbR3EAWhRa9UqThx1\nVsHWWltHxVpX1bZI7WtbFa2jjlqtCuIs4t5WLVp/IkvBgYDIhnC/f0QjgTDUJCeB+3NdXOLJyXnu\n8+TkPJxnioiIwBhjjJWiJ3QAjDHGtBMXEIwxxpTiAoIxxphSXEAwxhhTigsIxhhjSnEBwRhjTKka\nVUAEBwdj5MiRAIDExESIxWK8Ti/fJUuWYPz48aoOr4zRo0dj3rx55b6up6eHu3fvqj0OXSeRSLBu\n3boq7RsVFQVnZ2c1R1S+MWPGwMrKCh06dMDJkyfRpEkTtab3Knmjahs2bECXLl3k/xeLxYiPj1d7\nuuo6ZxcXFxw9elTlx1WnyvKiSgXEhg0b0KJFC5iamsLBwQFTpkzB06dP5a+XvPGWdvLkSbz77ruw\nsLCAtbU1OnfujIsXL77iaaiGSCSS/16vXj08e/ZMYZsyym4YX375JX799Ve1xFiSSCSqND5NEPIm\nogrqysfSN7g3deLECRw5cgTJyck4e/YsOnfujFu3bslfd3FxwbFjx+T/j4+Ph56eHoqLi187TWV5\nM3HiRI1c36U9e/YMLi4uFe6jrnNWBW35vr6KymKutIBYuXIlvvjiC6xcuRKZmZk4e/YsEhIS4O3t\njcLCQnkiymRmZqJPnz4ICgpCeno67t+/j/nz58PIyOg1T+eloqKiNz6GLtCGcYyVXfQ15bNQt4SE\nBLi4uMDY2Fjp6yKRSOn1oOprJDIyEn5+fq/0HiLS6LWqDd8LbaOO72GFBURmZiaCg4Px448/wsfH\nB/r6+qhfvz527NiB+Ph4bN68GUD5H9bt27chEokwZMgQiEQiGBsbw9vbGy1atFC6f3BwMAYNGgR/\nf3+YmZmhdevWuHbtmvx1FxcXfPvtt2jZsiXEYjGKi4tx9uxZvPvuu7C0tISHhweOHz8u3z8uLg5e\nXl4wMzODj48PUlNT5a+V/kskLS0NY8aMgaOjI6ysrDBgwADk5OSgd+/eSE5OhlgshpmZGVJSUso8\nMe3duxdubm6wtLREt27dyvzVt3LlSri7u8PCwgL+/v7Iz8+vKNsVpKamwsfHB2ZmZpBIJEhMTFS6\nX+m/8kv/dXvr1i14e3vD2toaTZo0wc6dO6uU/pw5c3DixAlMnToVYrEYgYGBAGTVWz/99BMaNWqE\nd955BwkJCWX+sisd0/r169GsWTNYWVmhV69e5Z4LAHz44YdwcHCAhYUFvLy8EBMTI39t9OjR+Pjj\nj9GnTx+YmZmhQ4cOClVthw8fRpMmTWBhYYFp06ZVePPKzc3F6NGjYWVlBTc3N1y4cEHh9aVLl6Jh\nw4YwMzODm5sb9uzZAwC4efMmJk+ejDNnzkAsFsPKygoAEB4eDk9PT5ibm6NevXpYsGBBlfJ53bp1\nGD9+vPx4CxYsUHh6HTlyJBITE9G3b1+IxWIsX74cXl5eAAALCwuIxWKcO3eu0nyuLG+uXbsGCwsL\n1K1bFxs2bECnTp0wbdo0WFhYoGnTpgpPMBKJBHPnzkWnTp1gamqKuLi4Cq+zJ0+eoF+/fjA3N0f7\n9u0RGxurkAclq0xzc3MxY8YMuLi4wMLCAl27dkVeXh66du2q8nN+ITk5GbVq1UJ6erp825UrV2Br\nawupVIrY2Fh0794dNjY2sLW1xYgRIxRqUkoqXT1cuiYiOTkZAwcORJ06dfD2228jNDRU/tr58+fR\npk0bmJubw97eHjNmzFCaxot72Pr161G/fn307NlTZXkhRxU4cOAAGRgYkFQqLfNaQEAADR06lIiI\n5s+fTyNGjCizT2ZmJllbW1NAQAAdOHCA0tLSKkqO5s+fT4aGhrRr1y4qKiqiFStWUIMGDaioqIiI\niOrXr0+enp507949ysvLo3v37pG1tTUdOHCAiIgOHz5M1tbWlJqaSkREHTp0oBkzZlBBQQFFR0eT\nWCymkSNHEhFRXFwciUQi+bm999575O/vTxkZGVRYWEjR0dFERBQVFUVOTk4KcQYHB8vP97///iNT\nU1M6cuQIFRUV0bfffksNGzakwsJCIiJycXGh9u3bU0pKCqWlpVHTpk1pzZo1FeZDyTwWi8V04sQJ\nys/Pp6CgIOrcubP8dZFIRLGxsUREJJFIaN26dfLXwsLC5PtmZWWRk5MTbdiwgaRSKV25coVsbGwo\nJiaGiIi2bNlCLVu2LDeO0sd+kbaPjw+lp6dTXl5emfws/b49e/ZQw4YN6datWySVSumbb76hd999\nt9w0w8LCKCsriwoKCmj69Onk4eGhkC/W1tZ04cIFKioqouHDh5O/vz8RET1+/JjEYrH8Gvr+++/J\nwMCgTPwvzJo1i7p27Urp6emUlJREbm5u5OzsLH99586dlJKSQkRE27dvJ1NTU3rw4AEREW3YsEHh\n8yCSXS83btwgIqJr166RnZ0d7dmzp9zzLKn08f7++2+Fa8/FxYWOHj0q/398fHyZPK8on6uSN0uW\nLKHZs2cTkewzMDAwoB9++IGKiopo+/btZG5uTunp6URE5OXlRfXr16eYmBiSSqWUkZFR4XU2ZMgQ\nGjJkCOXk5NCNGzfI0dGRunTpIk+75PU8ZcoU6tatGyUnJ5NUKqUzZ85Qfn6+Ws65pO7du9Ovv/4q\n//9nn31GkydPJiKiO3fu0JEjR6igoIAeP35MXbt2penTpyv9fEaPHk3z5s1T+llKpVJq1aoVLVy4\nkAoLC+nu3bv09ttv08GDB4lIdt/avHkzERFlZ2fT2bNn5cdp2bIl/f7770T08h4WEBBAOTk5lJub\nq9K8IJKVHuXatGkT2dvbK31t1qxZ5O3tTUTlFxBERDdv3qTRo0eTk5MTGRgYUL9+/ejhw4dK950/\nfz517NhR/v/i4mJycHCgkydPEpHsAwgLC5O/vnTpUvkN/wVfX1/auHEjJSQkkIGBAeXk5MhfGzZs\nmDzOkje05ORk0tPTo4yMjDIxlf6Slj7fr7/+moYMGaIQs6OjIx0/flwe85YtW+Svf/755zRp0iSl\n519ayUKYSHaj19fXp3v37hFR1QuIbdu2KXwRiYgmTJhACxYsqFIcEomE1q5dq7BNJBLR33//Lf9/\nZQVEr169FOKTSqVUq1YtSkxMrDT99PR0EolElJmZSUSyL9/48ePlr0dERFCTJk2IiGjjxo0K1xAR\nkZOTU7lfgpJfTCKiX375pcznXZKHhwf99ddfRKSYx+UJCgqiTz75pMJ9Xih9vMoKCGV5Xl4+JyQk\nVClvunTpIv++hYWFUd26dRX2b9euHW3atImIZJ/v/Pnz5a9VdJ0VFRWRoaEh/ffff/LXZs+erfQP\nHqlUSiYmJnTt2rUyeaSOcy5p7dq11L17dyKSfZednZ3pxIkTSvfdvXs3eXp6yv9fuoCYO3eu/LWS\nn+XZs2epXr16CsdavHgxjRkzhoiIunbtSvPnz6fHjx8rTbd0XsTFxaklL4iIKqxisrGxQWpqqtIG\noZSUFNja2lb0dgBAkyZNEBYWhqSkJNy4cQPJycmYPn16ufs7OTnJfxeJRHByckJycrJ8W8nHtISE\nBOzcuROWlpbyn1OnTuHBgwdITk6GpaUlTExM5PvXr19faZpJSUmwsrKCubl5pedTWnJyMurVq6cQ\ns7OzM+7fvy/fZm9vL//dxMQEWVlZVTr2i/N/wdTUFFZWVgr5URUJCQk4d+6cQj5t3boVDx8+rPIx\nlLVDvEpvn4SEBAQFBcnTt7a2BgCFfHqhuLgYX3zxBRo2bAhzc3M0aNAAABSqCO3s7OS/l8zT5ORk\nhTyrLM7k5GSF10t+lgDw22+/wdPTUx73jRs38OTJk3KPd+7cOXTr1g116tSBhYUFfv755wr3V7WK\n8jklJaXCvMnIyMCtW7fw7rvvyrc5Ojoq7F+/fn2kpKQofX9F11lqaiqKiooqzOsXUlNTkZeXB1dX\nV7Wfc2kDBgzAmTNn8ODBA0RHR0NPTw+dO3cGADx8+BD+/v5wcnKCubk5Ro4c+VqfbUJCgvz+9OJn\nyZIlePToEQBZdePt27fRtGlTtGvXDuHh4RUer/RnoKq8ACppg+jYsSOMjIywa9cuhe1ZWVmIjIxE\njx49Kjx4ae+88w4CAgJw48aNcvdJSkqS/15cXIx79+6hbt268m2leyKNHDkS6enp8p9nz57h888/\nh4ODA9LT05GTkyPfPyEhodwbXVpamtL6xMoaaB0dHZGQkCD/PxEhKSmpzBerqscrrWR+ZGVlIS0t\nTSE/XjA1NUV2drb8/w8ePJD/Xq9ePXh5eZXJp9WrV1cphvJiLrnd1NQUABTyu3QMv/zyi0IM2dnZ\n6NChQ5njbtmyBXv37sXRo0fx9OlTxMXFAahaw2TdunUV8uzF51EeBwcHhTrakr8nJCRgwoQJWL16\nNdLS0pCeno7mzZvL41CWL8OGDUP//v1x7949ZGRkYNKkSW/U46ak0ukpS7+8fO7YsSMcHBwqzJuD\nBw+iR48eCsctXYAnJCRU+H0s7zqzsbGBgYFBuXldko2NDYyNjXHnzp1K8+BNz7k0S0tL+Pj4YPv2\n7di6dSuGDh0qf2327NnQ19fHjRs38PTpU2zatKncz9bU1LTc74KzszMaNGigEG9mZib2798PAGjY\nsCG2bt2Kx48fY9asWRg0aBByc3PLjbn0Z6CqvAAqKSDMzc0xf/58TJs2DQcPHkRhYSHi4+MxePBg\nODs7KzTUFhcXIz8/H3l5ecjLy0N+fj7+++8/fPfdd/KLLCkpCb///js6duxYbpqXLl3C7t27UVRU\nhB9++AHGxsZKbyIAMGLECOzbtw+HDh2CVCpFXl4eoqKicP/+fdSvXx9t2rTB/PnzUVhYiJMnT8o/\ngNIcHBzQu3dvTJkyBRkZGSgsLER0dDQA2V+qT548QWZmptL3fvjhhwgPD8exY8dQWFiIlStXwtjY\nWOGvsJJK3+T09PTkaSnbNyIiAqdOnUJBQQHmzZuHjh07Ki18PDw88OeffyI3Nxd37txRaBz28/PD\n7du3sXnzZhQWFqKwsBAXLlxQaEyviJ2dXZkGxdJsbW3h6OiITZs2QSqVYv369QrvmTRpEhYvXixv\nbH769Gm5DeVZWVkwMjKClZUVsrOzMXv27DL5Up733nsP//77r/waWrVqlcKXs7TBgwdjyZIlyMjI\nwL179xQaC7OzsyESiWBjY4Pi4mKEhYUp/HFjZ2eHe/fuyXvzvYjd0tISb731Fs6fP4+tW7cqfIFd\nXFzw22+/lRtPRUp/Dra2ttDT06tyPleWNxEREWV6Lz169AirVq1CYWEhdu7ciVu3buG9996Tv17y\ns+jTp0+515m+vj4GDBiA4OBg5ObmIiYmBhs3blR6nnp6ehg7diw+/fRTpKSkQCqV4syZMygoKFD5\nOSszbNgwbNy4Ebt27cKwYcPk27OysmBqagozMzPcv38fy5cvL/cYHh4eiIiIQHp6Oh48eIAffvhB\n/lq7du0gFovx7bffIjc3F1KpFDdu3JB3/9+8eTMeP34MQHYPFolE0NOr2pA1VedFhW0QL6xbt46a\nN29OJiYmZGdnR5MmTVKorw8ODiaRSKTw4+zsTPfv36fBgweTo6MjmZqakqOjI02aNImePXumNJ3g\n4GAaNGgQDRkyhMRiMbVq1YquXLkif710HSwR0blz58jLy4usrKzI1taW+vTpI6/Xvnv3LnXp0oVq\n165N3t7eNG3aNIVGaj09PXldZlpaGgUEBJCdnR1ZWlrSwIED5WmMHTuWrK2tydLSkpKTkyk4OFih\n7WP37t3UrFkzMjc3J4lEIm+UUxZzyfcmJiaSmZlZuY33o0ePpsmTJ5O3tzfVrl2bvLy8KD4+Xv66\nnp6evA0iNTWVfHx8SCwWU+fOnSk4OFihPvi///4jPz8/srW1JWtra+rRowf9888/RES0efNmcnNz\nUxoDEdGZM2eocePGZGlpSUFBQUSk2P7xwoEDB6hBgwZkYWFBM2bMKNMusmnTJmrRogWZmZmRs7Mz\njRs3Tml6WVlZ9P7775NYLCYXFxf67bffFM5VWQNgyYblyMhIaty4MZmbm9PUqVOVNrK/kJOTQ6NG\njSILCwtyc3Oj5cuXKxxrzpw5ZGVlRTY2NvTpp58qHKugoID8/Pzk1x4R0R9//EH169cnsVhMffr0\nUbjm8vPzSSwWK9TDl7RhwwaFz6z0ef31119Ur149srCwoJUrVxIR0VdffUW2trZkYWFB586dqzSf\ny8ub4uJisre3V6j3DgsLo06dOtHUqVPJ3Nyc3nnnHTp8+LD8dWX5WtF19vjxY+rTpw+ZmZlR+/bt\nad68eQrnW/Izzs3NpenTp5OjoyOZm5uTl5cX5eXlqfScy5Obm0tisZiaN2+usP3ff/+l1q1bU+3a\ntcnT05NWrlyp8PmU/K7n5eXRkCFDyMzMjNzd3en7779X2Dc5OZmGDh1K9vb2ZGlpSR07dpS/d8SI\nEVSnTh2qXbs2NW/eXN7mRUTk5uZGW7duJaKy97AXVJkXIiLt6VC8YMEC3LlzB5s2bRI6FI3YsmUL\nYmJisGjRIqFDYRpw6tQp/PTTT9iyZYvQoZRx/vx5BAYG4uzZs/JtGzZswLp163DixAkBI2NCeu2p\nNsaOHQs7OzuFMQ07d+6Em5sb9PX1cfny5Vc+phaVVRoxfPhwLhxqkE6dOmll4QDI6rGrOmaD1Ryv\nXUCMGTMGkZGRCttatGiB3bt3ywezvCpdHKrOWHXQtm1b+Pr6Kmzj7yN7oyqm+Ph49O3bF9evX1fY\n3q1bN6xcuRKtWrV64wAZY4wJw0DTCfJfJIwx9no0XQ0vyHTf9Hz+j5r+M3/+fMFj0JafmpYXXl7z\nAVCZHy+v+dUyLyo63/Lek5NDeO+9+YiJET5+bfgRQo1aD4IxIREBjx4BxcWAkZHymTeNjaUajkoz\nXuV8nz4Fli4F3n4bUDJWjmmQ2goIoUo8xrTNo0fAihVA06ZAo0aAiQlw7docmJgoDj50dZ2NDh0c\nsHnzMUgkwfD1nYvwcOWDKHVNYKAPXF3nKGxzdZ2NadO85f9/9AiYPRtwdQWuXwcOHQKGDpXlGxPG\na7dBDB06FMePH0dqaiqcnZ2xYMECWFlZYdq0aUhNTYWfnx88PT1x4MABVcZbrUgkEqFD0BrVJS/C\nw6OxatUh5OUZIivLBSYm7+HGDVt88AGwbh3wbut85MMIiYkm2LEjG9u27cHTp3Xw8KE7bG0HY+PG\nfYiP/xqxsRIAQGys7Kbq5/d6PQO1xYv4Q0PnIS9PH8bGUkyb1ku+ffNmIDAQGDIEOH8euHkzGp99\ndggPH97DmTNzERjoo/N5oIs0PlCuvEVPGNN14eHRCAo6iNjYl2NbbGz2YN0iPfTLuQts2gRcvQqY\nmwNOToCzs+zfevWQKhkET/+nuHevXZnj+vrOQ2TkQk2eisYUFwNz5wLbtgH79gFubsrz0dV1DkJC\nfGt0ISHEvVPjvZgYqw5ePCnk5xvAyKgIgYE+WLXqkPymVgvZ6I89GJm6CZ0+Pg4MHwIsWwZIJEBG\nBnDvnuwnKQm4cwc2/TvjZwMnTMYeJEJx1uG8PP0qx6ANN9CqxpWVBYwcCTx5Apw7B7yYHLpkPhqg\nEFLoIzZ2EUJD52nF+dUkXEAw9oqU/YUrqwqyAQC0wDXsQX/cQhNsRADmNnKEdYoD8r85CaPlUS9v\nmB4eLw86bx7SW/fFZbTCFgzHYszGQ8imiVfWkFt+DMJWR1U1rqQkoF8/wNNT9vRQchViaa4IvRGB\nofgdfbEPb6EAsXBF2iUp8GUR0Lix7KdJE+D5dNZMTUjDBEiSMZXy8ZlDsj5Jij8i0VN6H7vpIWzJ\nH1ufbz9OJiYTFfZzdZ1N+/cfL3Pc/fuPU9v6QfQdptMTWNI8LCAjgxQaODCRSi/qWF4Mvr5zyxxX\nk6oS17lzRHXrEi1fTlRc/HxjcTHRsWNE48dThqEJncS7NBWryA4pZIpn5I4r9I37AKKFC4lGjiRq\n357IzIzo66+Jnq84Wd0Jce/kbq6MvaL8fGUP3oTlFoPwf/qj4IdwbINsHQETk9XIzV2jsKesuuRw\nmSP4+XXF/NUDcNC3Nia2D8BAq/WIbT4Az+6ZYfhwoORS5spjKL86SlMqi+v8eaBPH+D//g/47DNA\nJALw4AHw/vvA5MlAw4a49PMGBLhK8COm4SHskY3ayHLdAY9FQbIGi99+A86eBWJigGPHgB49ZNV1\nTOW4iomxV1S6T78JcrAeY+FR/C/+DdsI6y174ZUXDmNjKZKT66LUTDQAyr+R+/l1fVkVU/gtMGMG\nDkS2w3Tzv+Dj0wR79gCWlto7jqKiuK5eBfr2BdavlxUSAIAdO4Bp04Dx44E//gDeegvdAYTUsS+3\nx5OcoyNw5Ihs0ETr1sAvv8gKGqY6mn5kESBJxlRq//7j5Oo6mwAiK6TSBbSm3bXdKOLPQ2X2VUlV\n0Nq1VGxrS7+8v5+aNiVKSlKM4WXV1ZdKq640qby4Vq++QPb2RH/88XzH1FQif3965lSPprUbTV5e\n88nHZ87rx3/qFJGLC9HUqUS5uSo7H20ixL2TCwjGXsMff5wgC9NEOm3SgnbVb0/790Up3U9lN/JT\np4jq1qWoXoupUcNiun9fdmxf37nk5TWffH3nCl44vFA6rjVrzlPdukTP17khOniQqG5din3/Q2rW\nYGaV2meqJD2daPBgohYtiEos2lVdcAHBmA4oLiYaNYrocOPJVOznV2kjqcpu5ElJRK1b0+V2E6hJ\noyJKTn69w2jSnTtETk5EYWHPN6xeTWRvT3TsmHoa2ouLiX79VZZGXJwKzkB7CHHv5DYIxl7RunVA\nw8M/obv5cYi2ngH0K24YVmhXeBNOTsDff8OzXz/8kTsCPt1+w+EoQ9jbv/mh1SEhQdZ+PHcuMHpU\nMTBzFrB3L3DyJODqivwFx5W+740a2kUi4KOPgOxsWXvEqVNA7dqvf7wajnsxMfYKrl4FImYcxZeF\nX0Nv/17AzEyzAYjFQEQE3OpnYRd9gPe65eLRI82GUBX37wPduwOffAJMHJULDB4sGw135oxssiWo\nuaE9MFDWcD16tGy4NnstXEAwVkUZGcCMfv/DVtEwGOz4XX6j04Tw8Gj4+s6VTeLXfxEiPvoEjVub\nYVdub/T1ysTjxxoLpVIPH8qeHCZMAIKGPpKVFEZGwOHDgJWVfL+qTOD32kQiWV/a5GRgYfWcpkQT\nuIqJsSr67KMMbMnqB+NlXwPdumks3fJGJ9N34/Ge2Xbs2tcT/bscwK4oa8Grm548Aby9ZbOwzur/\nH9DxPWD4cGDBgueDHl6qbAK/N2ZkBPz5J9CuHdCiBTBggGqOW5NoutFDgCQZe2Ph+4vpoGl/Kpj4\nscbTrrAxt7iYij//nB7ZNqUu9RMoPl7j4cmlpxO1akU0axZRcfQJIjs7onXrhAvohYsXiWxsiP75\nR+hI3ogQ906uYmKsEllZwLGAjehodxeGISs1nn6Fo5NFIoiWLYPtl+MR/rQTJnS4hv/9T3Oxvaj6\n6tx5MVxcEuHkdB9LWu2EaOAA2YjnsWM1F0x5WrcGQkNljdbaVBenA7iKibFKfBeUgK+yZkJ87Kji\nrHIaUqXG3E8+gbhuXewZ3xMBHbfhq6juaN5cvXGVrfoidDjZE3mnr8Pk8CHFyQiF5u8PXLsGDBok\nawt56y2hI9IJ/ATBWAUunCtGj02jof/5Z0DLloLEUOXG3CFDYLJ3B34r9MePnX/HxYvqjavktNx6\nkCIU09An7RHGN/PXrsLhhW++kfU6mzdP6Eh0Bj9BMFaOwkLg7wGh+ND2KQadfYpcSbAg6y68UmOu\nRALjk0fxXXc/fCu5j4QNMzBwkKjsfiqQnCxbC9QeKdiIAOihGJ1xEp6i79WS3hvT05MNYmnZUvYk\n0bat0BFpP003egiQJGOv5dcZMZRmYE0S58mqmw5CUxITKbthSzpgOoCChj6kZ8+q/tb9+4+Tj8+c\nCudHWrWK6K23MqkP9lIK7CgYX5E+CrViyvFKbd1K5OZGlJcndCSvRIh7JxcQjClx52YBXdZvQ9+6\nDtTKdReqJC+P8qZ/Tukm9jTFfhedP1/5W5TPHfWyQHz2jGjKFKJWTbIpRjKAEg3MqRNOaNWEgZUq\nLiZ6/32iefOEjuSVCHHv5DYIxkohAk76LYZ5QxuEO7op3UfodReqxMgIRt8vg8WRXViKWYjrMhLf\nzUuHtIKByiXbFV6IjV2EH374Gx99FAtr62eI+X0ndiW6wIyeImbzFtT2PQgvr2D4+s5DSIgKxzGo\ni0gE/PQTsGaNbGg8Kxe3QTBWysGlV9An8SeYx16B0fiflO4j9LoLFVG6JvSdq+g99QvkLm+JL9Yv\ng/W4/hg4shYaNVJ8b3ldaqP+noaehnuxuSAc3Qr+xif4HmeSbiKkthiRkTo4UrluXeDbb2XdcM+d\nAwwNhY5IO2n6kUWAJBmrsqepBXTdwINuz9tIRNq77kJ5Kqsikh4+SmltvSnbyIJ2Go+gqW+H07eL\nCujWLdkM2W3arFV4b21k0mSspn/1bCgGTehjhJIYT3Wrqq08xcVEvr5EixYJHUmVCHHvFD1PWGNE\nIhE0nCRjVRIeHo1/h29Bm9wbWOYlQWCQL/z8uiI8PBqhoYdL9CDy1tpqFF/fuTh06Jsy21u1Gg8b\nGzv5U8VnI9ugR9o9JK9cC5N7CdiHPsjVM4KVUTb08jJgJDWEKbLhiSs4b1oHf9RpjnVxOwEo9ojy\n8gpGVFSwZk5OHRITZQPpoqIAN+XVidpCiHvna1cxjR07FuHh4ahTpw6uP19TMS0tDUOGDEFCQgJc\nXFywY8cOWFhYqCxYxtQlPDwaK8ZFYsfTP9Eal5B0uB5i78rGHqhsum4NUF5FFI2YGAPk5b0sOGJj\n52DECEdsNvRDUfF4+CEcesXFqG0Zida+Drgcl4VnUgust2yOYTMHImnVISCubHdZba5qq5J69WST\n+Y0dC5yqV+dlAAAgAElEQVQ+XenU7TXO6z56REdH0+XLl6l58+bybTNnzqRly5YREdHSpUtp1qxZ\nZd73BkkypjKlu3K2cp9Ep9CRJmO17vVWKkH5vE3K53Kyth5c5R5aulbV9kqkUqJu3YhWrBA6kgoJ\nce987SeILl26ID4+XmHb3r17cfy4bBGQgIAASCQSLF26tMx7g4OD5b9LJBJIJJLXDYOxV6ZsdtRP\n9IagEIZYg0kK++pEb6USAgN9EBs7R+HcjI2TkJdXdt+iIhOlx1B2zmqfeVVIenrA2rWyWV/79UOZ\nlnuBREVFISoqStAYVNqL6eHDh7CzswMA2NnZ4eHDh0r3K1lAMKZppbtyNsBdzC4+gndxBlRq9hld\nq0JRdiN/9Kg2rlwpu6+BQa7SY5R3zrpU1fbK3n4bmD0bmDgROHq0zNTkQij9x/OCBQs0HoPaxkGI\nRCKItCCTGStNsZ6e8Asm4FtMRpKx4hQRKlu8RsP8/LoiMnIhoqKCERm5EAsXDlE6l9PUqV7qW7BH\nFwUGApmZQFiY0JFoDZU+QdjZ2eHBgwewt7dHSkoK6tSpo8rDM6YSJWdH/QhrYYEMfIdguDebDFvb\n6leFUlH1UNu20dWz2uh1GBjIqpp8fAA/P+B5bUhN9kbdXOPj49G3b195L6bPP/8c1tbWmDVrFpYu\nXYqMjIwybRDczZWpgtLBYFW8sb1ogyiOHYfzaAcJopDnulU3RgEz9fviCyA+Hti2TehIFAhy73zd\n1m1/f39ycHAgQ0NDcnJyovXr19OTJ0+oR48e1KhRI/L29qb09PQy73uDJBkjosoHg1XpGH8do4vG\nzWi28Wzy8ZlbPXrjMNXIySFydSXav1/oSBQIce/kgXJM55Q3GMzXd16Vp31I/WwpboYcguPNI3i7\nIU9Jxko5elQ2NuLGDUAsFjoaAMLcO/mbwXROefMF3bv3CL6+cyGRBMPXdy7Cw6OV7ld86QoMVq3E\n7dkbuHBgyvXoAXTvDsyZU/m+1RhP1sd0jvIlOKNx964I//6rOFoYgGK7Ql4eMvqOQEi97/HVV/XU\nHCnTaStWAM2bA8OGAR06CB2NILiAYK/sTRqIVUHZYDATk9XIzd2usF9s7CKEhsqWl3wR75Q7x2D4\nuCkGXxnOsyqwillbA99/D4wfD1y6VCPXseY2CPZKlI1CdnWdg5AQX40WEqUn0EtOzsL162WXunRz\nm4i8PBvExi5CNxzDbxgFL/NVWLXFhnssscoRAX36AB07AnPnChqKTvViel0CJMlUSPlcP8LPWVRe\nXC/mG7LFQ4pHPfJBpFbEy3RIQgKRrS1VaUk+NRLi3sktdOyVlNdALPScRYGBPkpHBdetWxdGyMNu\nfIBNGIlD8AUgfLxMh9SrB6xeDfj7y0Za1yDcBsFeifIGYtXMWfQmbRvljRZeFXIQM6+PRzLq4it8\nrdJ4WQ3y4Yeyrq8TJwJbt2rFXE2awAUEK5eyG7ayBmLZ/D293jit0m0bSnshVUDZZHKuOzYjR+8S\nOhdflE/Ep4p4WQ30/feyGV/DwmRjJGoAbqRmSlXUGA1A5SusqWLwWxm7diFr/HR0NzkGs6bbUFQk\n1foV4ZiW+/dfQCIBoqOBpk01mrROrSjHqrfSU2IDL7uNRkYuVPkNVuVtG5cuofCjSeiPSGz+uxEa\nN573BtEx9pybG7BkCTBkCHDuHGCifE2N6oILCAagbHVSSkq20v3U1bir0raN+/ch7dcfU/R/RuD6\n1mjc+A2DY6ykceOAI0eAGTOAn34SOhq14gKCKa1OMjEZonRfdTXuqqxt49o1UL9+WGM0HXU/GoB+\n/VQcKGMiEfDzz0CrVsCuXcDAgUJHpDZcQDCl1Um5uR/DxGQScnPXyLeVvmFnZsrWeDc1ffMYVLKk\n5d69oHHjsKphKA5b+2Pv/DePizGlzM2B33+XDaJr3RpwcRE6IrXgRmoGiSQYx48Hl9nu5jYRTk51\n5DfsqVO94ejYFRERQEQEcO0aUFQEGBsDFhZZyMq6D0PDZzAze4Qvv7RCQICG5q8hAlasgPS7HzC5\nzp/IeKc9Nm6s9tXDTBusWiUbI3H0KODkpNakuJGaCaK8+n8npzqIjFyIxERg4UJgwgSgdm1gYI8M\n/NLuDzQx3g69J4+RnpmHxHu5yCt0gBT6SE+xxOkx7RDwdTokM7vjA38jWFioKfj8fGDSJOSfuwpv\n47Po2MsZa5bI1qFnTO0CA4GCAqBrV+DYsWr3JMFPEKycLq2zERLSC0ZGXTFiBDB5bD7GO0Wg7tHN\nsgY6b2/ZLJcNGmDq5B9x/txE6EMKfUhhh4fojJPwMfkLbxc8wiW0RkqjrnAe54t2QR2hZ6iChm4i\n2V9t8+bhyVv2aHtzE2YtrI2JE9/80Iy9sh9/BJYvl303GjVSSxL8BMEEoaz+f+rUXrh+vStCQoCj\n47fB7f+mAi1aACNGAOvWoeQjwQ1jZ1xAO4Vj/omB8Gpnjqi9n8L90BmYrjuOWl9NRcase0hx7w3n\nKX1gNsgXr/xokZ8vq/v97juQVIrznT5Fv91jsOE3PfTu/cZZwdjrmTpVVtcqkQCHDwPNmgkdkUrw\nEwQrIzMTGD0aSLknxcG2c2EWsQ3YvRvw8FC6f1UHuREB/+xPwvGZW9HodhS64ATiatlD3KUFGvTv\nBbi7y+bfr1375RsyM4HHj2U/R44AP/0EqVtLHGr+Kb445oOCQhF+/73c0BjTrM2bgZkzgQMHVH5R\n8hMEE9ytW0D//kCvjk+xM2849GOygQsXABubct9T1S6qIhFwXy8OoUWZiKUDqIVstMs+D/eDl9Dj\n0nF0MP4F1o9vQs/BXlav+/ixbA5+W1vAxgaZrh74pddhLN3XHB1NgOUrgJ49ub2BaZERI2RPEr6+\nwP79QNu2Qkf0RvgJgsk9eiTrsbdy4m0M3vK+bNnF778HDA0rfW/p9RnKm86ivKeNli13wsPjQxw9\nWITGhnEwFBvjMdngWZEJCguBwkIgL0/2ZDNlCuDqqoozZkxN9u2TDaibO1e24JAKutQJce/kAoIB\nAKRS2R89Q22PYNyx4cA338gubBUrr0utl1cwoqKCQSR7isnLk5VLb70l+9fQUPYQY2ys8pAYU48r\nV4AFC2RTcsyYAUya9LL69DVwFRMTTHAwUDfrP4y9NgzYuRPw8lJLOpVNqSESaXwONMbUw9MT2LMH\n+OcfYNEiWS+noCDg449lA+2qKj9fNuhIACovIEJCQrB27VoQEcaPH4+goCBVJ8FULCIC2L4uCzHi\nARAtXqy2wgFQ4ZQajOkKd3dgxw7g5k1g8WJZ/WhAAFC/vqygKP2TmQlcvPjy5+ZNtXWdrYxKq5hu\n3LiBoUOH4sKFCzA0NESvXr2wZs0auJaoMOYqJu0SHw+0b0e47j4cdZyNZV1YVbgYirI1JQDVTxfO\nmM64c0fW2+nJE+Dp07I/JiZAmzYvf9zdgVq1dL+K6datW2jfvj2Mn1cUe3l54c8//8TMmTNVmQxT\nkfx82UJZWzutRp34m8De0yovHJQtAhQS4vv6azwwpusaNpTV6eoAlRYQzZs3x5w5c5CWlgZjY2OE\nh4ejXbt2ZfYLLpE5EokEEolElWGwKpo+HehpegbdTy8EzpxR+eRFFa0pwU8MjFUsKioKUVFRgsag\n0gKiSZMmmDVrFnx8fGBqagpPT0/oKemkHqwjpWd1dugQcDHiEc4VD4Fo3Trg7bdVnobKFwFirAYp\n/cfzggULNB6DyocYjR07FhcvXsTx48dhYWGBd955R9VJsDcQHh4Nb++vMLB/Cn5M64bYThLZlMVq\noNJFgBhjGqfyAuLRo0cAgMTEROzevRvDhg1TdRLsNb1oEzhy5GsMy92LwixL+F1wRHh4tFrSCwz0\ngavrHIVtsh5L3mpJjzGmWiofKNe1a1c8efIEhoaG+P7779GtWzfFBLkXk2BejGK2QDpuoQl8cRD/\nwKPMnEmqVNUR1oyxiul8LyYAiI5Wz1+j7M29aBNYgPnYhYH4B7LJxNTZJuDn1/WNCgRl3WS5gGFM\nM3gkdQ1SVGQON9yAP7ahKW7Kt2trm0B53WQBcCHBmAbwPJg1iLRoBFYbjMQCzEcarAFod5tA+d1k\nDwsUEWM1Cz9B1BB//w143I2Gh2MmljVOhldB8PM2gV5a+9c4d5NlTFhcQFRjL+rv8/IMcfPySPyn\nHwjz7ZsRUarjgLbibrKMCYsLiGqqdP39PHyNM6ZmoBx9+AkcW1XxxH6MCYvXg6imSi7M44xEXEYr\ntMYlNPVdq1PzIHE3WcZkqkU3V6YdStbfL8IcrMbHSER9NNCx+vs37SbLGHt9XEBUUy/q7xvhNnoh\nEq6IBcD194yxquNurtVUYKAP7Oy2Yg4WYRUC8QxmWt2llTGmfbgNopoiAnq4XMWu5K4Y0X4KpLUN\nuf6eMR0mxL2TC4hq6sABIH/4GPQLdIFe8Hyhw2GMvSEuIJhKEAFD2t7Fpv/awSjpDmBhIXRIjLE3\nJMS9k9sgqqETJ4BB/1sMw+lTuHBgjL02foKohkZ1jccvV9rAOOE2YGUldDiMMRXgcRCsUpVNf33x\nIuB7eTEMp03iwoEx9ka4gNAh5U1/feHCDZw5k4z8fAM8u9EJx4t2Qv+zOwJGyhirDriKSYeUnD7j\npWiYmGxFbu4aAMBPmAyY30C9LYu4Sytj1Qg3UrMKKZ/++pC8cKiL+xiC7Zj3dDevmcAYe2NcQOgQ\n5dNfvyw0ghCCjQjAE9jwmgmMsTfGBYQOCQz0gavrHIVtJiaypUPNkYFxWIfv8QkAnnOJMfbmuJFa\nh7xoUwgNnSef/rpDBy9s2vQVBt01RQTeQxLq8ZoJjDGV4EbqamBm4HXM+LEnZrcagGQbG55zibFq\niMdBsFdGBNTafR4GrVth/YX/Ezocxlg1ovI2iCVLlsDNzQ0tWrTAsGHDkJ+fr+okWAnHjhQj4NFy\nWC/7XOhQGGPVjEoLiPj4ePz666+4fPkyrl+/DqlUim3btqkyCVbKqS/3QVxXDFE3idChMMaqGZVW\nMZmZmcHQ0BA5OTnQ19dHTk4OHB0dVZkEK+HmTaDXtW9hHvY5IBIJHQ5jrJpRaQFhZWWFGTNmoF69\nejAxMYGvry969uxZZr/g4GD57xKJBBKJRJVh1Bj7vjiFj8QP8Zb/AKFDYYypWFRUFKKiogSNQaW9\nmGJjY9G3b1+cOHEC5ubm+PDDDzFo0CAMHz78ZYLci0klHj8GLjr2Q+dF70E8c5LQ4TDG1Eznp9q4\nePEi3n33XVhbW8PAwAADBgzA6dOnVZkEe27nghi8a3Ae4qkBQofCGKumVFpANGnSBGfPnkVubi6I\nCEeOHEGzZs1UmQQDkJcHWK1bjoKPPgZMTIQOhzFWTam0DcLd3R2jRo1CmzZtoKenh1atWmHChAmq\nTIIB+DMkCX2lf0EczFN6M8bUh0dS65jiYmCjzafo6S2C8/aVQofDGNMQIe6dXEDomMitaeg4qiHM\n4q5B5OwkdDiMMQ3R+UZqpn73Z6/Gky4fcOHAGFM7foLQIRePZ6N+97dh+c9xGDRvInQ4jDEN4icI\nVqFrn6zH0+aduHBgjGkEP0HoiLjbhTBo2hBWR3bAtFt7ocNhjGkYP0Gwcp2cth0FTm9z4cAY0xhe\nD0IHpKUWo82RpbDYxN1aGWOaw08QWiw8PBq+vnMxs/liSPWKcNbMWOiQGGM1CD9BaKnw8GgEBR1E\nbOw3OIEu+AbBuDj9ECAS8XKijDGN4CcILbVq1SHExi5CdxxDHTzCHxiE2NhFCA09LHRojLEaggsI\nLZWfbwCAsBDzEIxgSJ8/7OXl6QsbGGOsxuACQksZGRWhNw7AHE+xHUPk242NpQJGxRirSbgNQktN\nGO8Ll0OB+ApfoxiypwZX19mYNq2XwJExxmoKLiC0lGFEKsS1ipDT+Qq88q/D2FiKadN6cQM1Y0xj\neCS1FsrJKkaCpTuMv1uCBtP6CB0OY0wL8EhqBgA4NmkH9M1M0WCqn9ChMMZqMK5i0jLZT4vwzrZg\nGPwUCohEQofDGKvB+AlCy0RP3IJCyzpoML6n0KEwxmo4foJQk/DwaKxadQj5+QYwMipCYKAP/Py6\nlrsdALIzCtHsjwWQrt3ATw+MMcFxAaEGL6fJWCTfFhs7Bxcu3MDmzffLbAcAP7+uOD5qLZxsXNFy\nNPdUYowJj3sxqYGv71wcOvRNme3W1kPw5Ml2JfvPw5qF02DavjkKwo/AsXdLTYTJGNMh3IupmpBN\nk1FWUZGJ0u25ufq488FM3O00igsHxpjW4AJCDYyMipRuNzDIVbq97u0MvJN8FF8VG8PXdy7Cw6PV\nGR5jjFWJyguI//77D56envIfc3NzrFq1StXJaLXAQB+4us5R2ObqOhtTp3qV2e5oOwHzHkQiiFbh\n0OlvcOjQNwgKOsiFBGNMcGptgyguLoajoyPOnz8PZ2dnWYI1oA0CkDVUh4YeRl6e/vNpMrzlvZhK\nbu9yMhke2Q/QB/sBvOy55Os7D5GRC4U7AcaYVhHi3qnWXkxHjhyBq6urvHCoSfz8uiqdN6nk9psH\n4mB7sC3a4gJKFg4AT+vNGBOeWguIbdu2YdiwYWW2BwcHy3+XSCSQSCTqDEMrFUsJacOnIdK2N+If\nNyjzOk/rzVjNFhUVhaioKEFjUFsVU0FBARwdHRETEwNbW9uXCdaQKqbKHPl4N1zXz8a/W37E9M+P\nKYyNcHWdjZAQnrmVMfZStapiOnDgAFq3bq1QODCZuHOP0HRNILJ/+g19BnSDyMgQoaHzSrRXcOHA\nGBOe2p4g/P390bt3bwQEBCgmWMOfIDIeF+K2izcMunZCqwOLKn8DY4xBmHunWgqI7Oxs1K9fH3Fx\ncRCLxYoJ1uACoqgI2O8aiIaiWDSP3Qvoc0M0Y6xqqk0Vk6mpKVJTU9VxaJ22vVcYuqYehEPCOS4c\nGGNajyfr05A/Z51D76jPYXAqGgY2FkKHwxhjleKpNjTg5M4UdFgxEHmr18GsfVOhw2GMsSrh2VzV\nLOZKPrLbdYP1iF54O+wrocNhjOmoatNIXWGCNaiA+HPjM5iNH4LGnrVQ78wOQI8f2Bhjr4en+64m\nCgqAr8beQ9MJneHR1xn1Tv7OhQNjTOfwXUvFkpKA8W0uY9rvHVF/7kjY/LEGMDQUOizGGHtl3ItJ\nRYiAyEhg67B9+LlwLIx/WwO9DwcKHRZjjL02foJ4Q7m5wPr1QNtWUlwduRJr9Sei1tH9XDgwxnQe\nFxCvKS4O+PxzoJ4z4drSbdh2qz7eKwrF+GYDEJ6aL3R4jDH2xriKqQqKi4Hbt4GzZ4Fz52T/JiUB\nc3tfwj+2E5ETG49PC9djX15f4IQIp5Nlq8bxhHuMMV3G3VxLIQLu3gUuX5b9XLoEXLgAWFoC7dsD\nHToA3ayvwS18GfSP/40QCw/MuLkX0lJlLa8IxxhTpWozF5OuefgQ+P13YO9e4MoVQCwGWrUCWrcG\nAgOBdu2AOngEbNkChG0E0tKA8eOBX3/G7j4rIL1ZNht5RTjGmK6rsQVEXh6wfz+wcSNw4gTw/vvA\njBlA27ZAnTqldhpXYqfvvgMkEvm4BiOjIqXH5xXhGGO6rsYVEHl5wPz5wNq1gIcH4O7+H3JytiMh\noRirVhUhcGpP+NUm2dPCn38Cnp5AQIDsEaN27TLHCwz0QWzsnDIrwk2b1kuTp8UYYyqn8wVEeHg0\nVq06hPx8AxgZFSEw0KfcxuEbN4ChQ4GmTWXtCzduRCMo6CBiYxfBGYn4GKvR6mg/PK1vB/Mpk4Dr\n1wFHxyqlxSvCMcaqG50uIMLDX97gX4iNLduDiAj48Udg7twCODvvx8OH1zBhQhEeP07Hs9iv8AOC\nMAKbEYYx8JaehlOj7YicMeOV0uICgTFW7ZCGqTJJH585JLv9K/74+s6V7/PgAVHv3kSNGj2levVW\nyPexQBot029OqbCi7xFEdfBA/pqX1/zXSosxxtRFgNs16fRAufx85Q9AL3oQXb8ua0Lw9ATq11+B\nxMQZAAhB+AG30RhWUgN44go+wQ94BDv5+5U1MFeWFmOMVTc6XcVUUQ+iBw+Avn2BFSuAYcMAiUQP\nbyEfv2I8miEGnXAK/8MDGBsvAfL+T/7eFw3MpdsbMjPTy02LMcaqI50uIMrrQTRhwnvo3x8YM0ZW\nOABAHdFTHEUPpMABXRGNXNQC0BjNmm2Cra1iAzOAMu0N9vbjYG//KR48+E4hLe6txBirrnR+JHV4\neDRCQw/Lb/Aff+yNzZu7Ql9f1lNVJALw77/I6eGNsPy3MS0jGvR8CipX19kICSnb48jXdy4OHfqm\nTFqtWo2Hra19icLEmxunGWMawSOpX0PpHkTz5snmSTp27HnhEBkJjBqFWitXwsWqPnxC51faHbW8\n9gax2BGRkcFqOhPGGNMuOl9AlLRpE7B5s2xCPWNjABERwNixwO7dQKdO8EPVJtDj0dGMMaaG6b4z\nMjIwaNAgNG3aFM2aNcPZs2dVnYRSJ0/KpsrYt+/5VBmxsbJGiD//BDp1eqVjBQb6wNV1jsI2WXuD\ntwojZowx7abyNoiAgAB4eXlh7NixKCoqQnZ2NszNzV8mqIZ6tNxcwM0NCAmR9VxCTg7QsSMwYQLw\n8cevdczSbRvc3sAYE5IQbRAqLSCePn0KT09P3L17t/wE1XCSCxcCV68Cu3ZBNn5txAhAX182E59I\npNK0GGNMCDrfSB0XFwdbW1uMGTMG//zzD1q3bo2QkBDUqlVLYb/g4GD57xKJBBKJ5LXTTEwEfvhB\ntm4DACA0FPj3X+D0aS4cGGM6KyoqClFRUYLGoNIniIsXL6Jjx444ffo02rZti+nTp8PMzAxff/31\nywRVXAoOHgw0awYEB0M2JfegQTi2OATLdtyo0gR+jDGmC3T+CcLJyQlOTk5o27YtAGDQoEFYunSp\nKpNQcOwYcP68rCYJycmAvz/OT5mBCUuuVzqBH2OMsYqptBeTvb09nJ2dcfv2bQDAkSNH4Obmpsok\n5AoLZau9ffcdYGJMsh5LEyZg3ulMhcIBAGJjFyE09LBa4mCMsepK5eMgQkNDMXz4cBQUFMDV1RVh\nYWGqTgIA8NNPgIMD8MEHAMLDZY0R+/cj33uR0v15Uj3GGHs1Ki8g3N3dceHCBVUfVmHyPMAIV67M\nwJkzb0FUWAB8+qmsj6uhIQ9yY4wxFdGJkdTKFusxNz+JuLhiNDt4CXB1BXr3BsBLgDLGmKroxGR9\n5U2eN7jbp9h+fRMQHS1bR/Q5HuTGGKtudL4Xk7qUN3ne0P9OvFxkugReApQxxt6cThQQytoVmuM6\nJKkxQPBBASJijLHqTyeWHC07eR5hjUk/3BvzEWBlJVhcjDFWnenEE4SfX1fk5Ohj+PActGr1C3wL\nzqBlKkEcukLo0BhjrNrSiScIAEhI6ISBA2vhbPQULMi6AvEvawBDQ6HDYoyxaksnejEVFMh6sv71\nF9Dqxm+yuTWOHlVThIwxpn24F1M5tm0DGjcGWnkSMHoFsHy50CExxli1p/UFBBGw4kWZcOiQbKOP\nj6AxMcZYTaD1BcTBg7JlHXx8APisAD77jNd5YIwxDdD6NogePYDRo4GRLa4CffoAd+8Cb72lvgAZ\nY0wLcRtEKZcvA7dvA/7+AMasAIKCuHBgjDEN0eoniFGjgBYtgJn+SYCHh+zpwdxczREyxpj2EeIJ\nQmsLiIwMwMUFuHMHsFn6may1euVK9QfIGGNaiKuYSvj9d1nDtI3hUyAsDLh6VeiQGGOsRtHakdRr\n1wLjxgH45RfZWg/OzkKHxBhjNYpWPkFcvQqkpgI9uxYA40KA/fuFDokxxmocrXyCWLcOGDMG0N+5\nTbbWg4eH0CExxliNo3UFRG4usHFjIY4dW46YqbMx74kVwsOjhQ6LMcZqHK0rIL766iaKiuKRfqIX\nxM9EWHxlK4KCDnIhwRhjGqZ1BcT69W8hN7cRxmEdwjAGxdBHbOwihIYeFjo0xhirUbSqkTo2Fnj2\nzB5GyMNwbEFbXJC/lpenL2BkjDFW86ilgHBxcYGZmRn09fVhaGiI8+fPV+l9YWGAg8NVvJuYiCvw\nRAJc5K8ZG0vVESpjjLFyqKWAEIlEiIqKgtUrrBddVCQrIObMMYLHZ1/ih9xv5a+5us7GtGm91BEq\nY4yxcqitiulVh4QfPCgbCzfF1xL5X2Ygt/MVeBXEwNhYimnTesHPr6uaImWMMaaM2p4gevbsCX19\nfUycOBHjx49XeD04OFj+u0QigUQiwbp1z0dOr18Po3Fjse+7JeoIjTHGdEJUVBSioqIEjUEtk/Wl\npKTAwcEBjx8/hre3N0JDQ9GlSxdZgkomnHr8GGjUCEi8WwSz5vWAw4cBNzdVh8UYYzpLiMn61NLN\n1cHBAQBga2uLDz74oNJG6u3bAT8/wOzUAdkUrlw4MMaY4FReQOTk5ODZs2cAgOzsbBw6dAgtWrSo\n8D1btgAjRkA2Q99HH6k6JMYYY69B5W0QDx8+xAcffAAAKCoqwvDhw+Hj41Pu/rGxsnWAvN2SgRMn\nZKUFY4wxwQm+YNDXX8vaIEIdFgMJCcDPP2syHMYY0wk1bsEgItkDw8awYmDkOmDbNiHDYYwxVoKg\nczFdugRIpUD7olOAiQnQpo2Q4TDGGCtB0AJiyxZg+HBAtGUzMHIkIBIJGQ5jjLESBGuDKCoCnJyA\nE4fz0EjiKFtGjpcVZYwxparNOIiqOHYMqFcPaPS/CKBlSy4cGGNMywjSSO3rOxdFRVMxfLg9sPl5\n9RJjjDGtIsgTxKFD3yAqyhypt0ORvS8Cfutvw9d3Lq8axxhjWkSwbq7FxblI/3Unwov6IeLUUgBA\nbOwcAOCZWxljTAsI2IvpKIYUEjbhZfUSLy3KGGPaQ7ACwgXn0AS3cBC+Ctt5aVHGGNMOghUQow0O\nYgcGoxBvKWznpUUZY0w7CFJAvNsxFB+bP8bfjtkK22VLi3oLERJjjLFShBkod/48MHQown9Yh9Af\nj+xiBT0AAATsSURBVCAvT//50qLe3EDNGGNKCDFQTpgCIjAQsLQESiw9yhhjrHw1p4CoUwc4dQpo\n2FCTSTPGmM6qOVNtvP02Fw6MMablhCkgPv5YkGQZY4xVneAryjHGGKtczaliYowxpvW4gGCMMaYU\nFxCMMcaU4gKCMcaYUlxACCgqKkroELQG58VLnBcvcV4ISy0FhFQqhaenJ/r27auOw1cbfPG/xHnx\nEufFS5wXwlJLARESEoJmzZpBJBKp4/CMMcY0QOUFxL179xAREYGPPvqIxzswxpgOU/lAuQ8//BCz\nZ89GZmYmVqxYgX379ikmyE8VjDH2WjT9R7dK16Tev38/6tSpA09Pz3LrDvmpgjHGdINKq5hOnz6N\nvXv3okGDBhg6dCiOHTuGUaNGqTIJxhhjGqK2uZiOHz+utIqJMcaYblDrOAhub2CMMd2ltgLCy8sL\ne/fuVdgWGRmJJk2aoFGjRli2bJm6ktYJLi4uaNmyJTw9PdGuXTuhw9GosWPHws7ODi1atJBvS0tL\ng7e3Nxo3bgwfHx9kZGQIGKHmKMuL4OBgODk5wdPTE56enoiMjBQwQs1JSkpCt27d4ObmhubNm2PV\nqlUAaua1UV5eaPzaIA0pKioiV1dXiouLo4KCAnJ3d6eYmBhNJa91XFxc6MmTJ0KHIYjo6Gi6fPky\nNW/eXL5t5syZtGzZMiIiWrp0Kc2aNUuo8DRKWV4EBwfTypUrBYxKGCkpKXTlyhUiInr27Bk1btyY\nYmJiauS1UV5eaPra0NhUG+fPn0fDhg3h4uICQ0ND+Pv746+//tJU8lqJamiPri5dusDS0lJh2969\nexEQEAAACAgIwJ49e4QITeOU5QVQM68Ne3t7eHh4AABq166Npk2b4v79+zXy2igvLwDNXhsaKyDu\n378PZ2dn+f+dnJzkJ1wTiUQi9OzZE23atMGvv/4qdDiCe/jwIezs7AAAdnZ2ePjwocARCSs0NBTu\n7u4YN25cjahSKS0+Ph5XrlxB+/bta/y18SIvOnToAECz14bGCghusFZ06tQpXLlyBQcOHMDq1atx\n4sQJoUPSGiKRqEZfL5MnT0ZcXByuXr0KBwcHzJgxQ+iQNCorKwsDBw5ESEgIxGKxwms17drIysrC\noEGDEBISgtq1a2v82tBYAeHo6IikpCT5/5OSkuDk5KSp5LWOg4MDAMDW1hYffPABzp8/L3BEwrKz\ns8ODBw8AACkpKahTp47AEQmnTp068hvhRx99VKOujcLCQgwcOBAjR45E//79AdTca+NFXowYMUKe\nF5q+NjRWQLRp0wb/+9//EB8fj4KCAmzfvh39+vXTVPJaJScnB8+ePQMAZGdn49ChQwq9WGqifv36\nYePGjQCAjRs3yr8QNVFKSor89927d9eYa4OIMG7cODRr1gzTp0+Xb6+J10Z5eaHxa0NjzeFEFBER\nQY0bNyZXV1davHixJpPWKnfv3iV3d3dyd3cnNze3GpcX/v7+5ODgQIaGhuTk5ETr16+nJ0+eUI8e\nPahRo0bk7e1N6enpQoepEaXzYt26dTRy5Ehq0aIFtWzZkt5//3168OCB0GFqxIkTJ0gkEpG7uzt5\neHiQh4cHHThwoEZeG8ryIiIiQuPXhtpGUjPGGNNtvKIcY4wxpbiAYIwxphQXEIwxxpTiAoIxxphS\nXEAwxhhTigsIxhhjSv0/N68btVPeBRMAAAAASUVORK5CYII=\n"
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment