Created
June 15, 2018 18:13
-
-
Save vincentsarago/2eac34115860980d5adc05abd5a808cf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Populating the interactive namespace from numpy and matplotlib\n", | |
"{'driver': 'GTiff', 'dtype': 'uint8', 'nodata': None, 'width': 41337, 'height': 41361, 'count': 3, 'crs': CRS({'init': 'epsg:32737'}), 'transform': Affine(0.0725800022482872, 0.0, 531722.25,\n", | |
" 0.0, -0.0725800022482872, 9365190.0)}\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/Users/vincentsarago/Trav/Virtualenv/py4/lib/python3.6/site-packages/IPython/core/magics/pylab.py:160: UserWarning: pylab import has clobbered these variables: ['tile']\n", | |
"`%matplotlib` prevents importing * from pylab and numpy\n", | |
" \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n" | |
] | |
} | |
], | |
"source": [ | |
"%pylab inline\n", | |
"\n", | |
"import rasterio\n", | |
"from rasterio.plot import reshape_as_image\n", | |
"\n", | |
"from rio_tiler import main\n", | |
"\n", | |
"import mercantile\n", | |
"\n", | |
"img = 'https://oin-hotosm.s3.amazonaws.com/5ac626e091b5310010e0d482/0/5ac626e091b5310010e0d483.tif'\n", | |
"\n", | |
"with rasterio.open(img) as src:\n", | |
" print(src.meta)\n", | |
" \n", | |
"zoom = 15" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"meta = main.bounds(img)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"{'url': 'https://oin-hotosm.s3.amazonaws.com/5ac626e091b5310010e0d482/0/5ac626e091b5310010e0d483.tif', 'bounds': [39.28650720617372, -5.770217592244193, 39.31361922118217, -5.743046418788738]}\n" | |
] | |
} | |
], | |
"source": [ | |
"print(meta)\n", | |
"bounds = meta[\"bounds\"]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"tiles = list(mercantile.tiles(*bounds + [[zoom]]))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"tile = tiles[0]\n", | |
"x, y, z = tile\n", | |
"\n", | |
"# Read data \n", | |
"data, mask = main.tile(img, x, y, z) " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(3, 256, 256)\n" | |
] | |
} | |
], | |
"source": [ | |
"print(data.shape)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"## Transform data to PIL compatible format\n", | |
"data = reshape_as_image(data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.image.AxesImage at 0x111558128>" | |
] | |
}, | |
"execution_count": 41, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAElpJREFUeJzt3VuMJFd9x/Hv71T3jL037329twTjLA9GQsZZOZZAiCgK2H5Z84LMA6wiS8uDkUAiDwYewmMSBZCQiKVFWCwRwbEEyKuIJBgLCeUB8C4yvsZ4ASN7tfYGEQEC2zNd55+HqrHbe2Z2pnamp7s9v4/d7urTVTX/Le38fOp2ShGBmdmwNO4CzGzyOBjMrOBgMLOCg8HMCg4GMys4GMysMLJgkHSrpGcknZN0z6h+jpmtPY3iOgZJFfAz4K+BF4BHgA9FxFNr/sPMbM2NqsdwM3AuIn4REXPA/cCxEf0sM1tjvRGt9yDw/NDnF4C/WGpmSb780mz0fh0Re1Yy46iCYVmSTgAnxvXzzTagX610xlEFw3ng8NDnQ23bayLiJHAS3GMwmzSjOsbwCHBE0nWSZoA7gdMj+llmtsZG0mOIiIGkjwH/BVTAfRHx5Ch+lpmtvZGcruxchHclzNbD2Yg4upIZfeWjmRUcDGZWcDCYWcHBYGYFB4OZFRwMZlZwMJhZwcFgZgUHg5kVHAxmVnAwmFnBwWBmBQeDmRUcDGZWcDCYWcHBYGYFB4OZFRwMZlZwMJhZwcFgZgUHg5kVHAxmVnAwmFnBwWBmBQeDmRUcDGZWcDCYWcHBYGYFB4OZFRwMZlZwMJhZwcFgZgUHg5kVHAxmVuitZmFJzwG/B2pgEBFHJe0E/g14C/Ac8MGI+L/VlWlm62ktegx/GRE3RsTR9vM9wMMRcQR4uP1sZlNkFLsSx4BT7fQp4I4R/AwzG6HVBkMA35V0VtKJtm1fRFxop18E9i22oKQTks5IOrPKGsxsja3qGAPw7og4L2kv8JCk/xn+MiJCUiy2YEScBE4CLDWPmY3HqnoMEXG+fb8IfBu4GXhJ0n6A9v3iaos0s/V1xcEgabOkrQvTwPuAJ4DTwPF2tuPAg6st0szW12p2JfYB35a0sJ5/jYj/lPQI8ICku4BfAR9cfZlmtp4UMf7dex9jMFsXZ4cuK7gsX/loZgUHg5kVHAxmVnAwmFnBwWBmBQeDmRUcDGZWcDCYWcHBYGYFB4OZFRwMZlZwMJhZwcFgZgUHg5kVHAxmVnAwmFnBwWBmBQeDmRUcDGZWcDCYWcHBYGYFB4OZFRwMZlZwMJhZwcFgZgUHg5kVHAxmVnAwmFnBwWBmBQeDmRUcDGZWcDCYWcHBYGaFZYNB0n2SLkp6Yqhtp6SHJD3bvu9o2yXpi5LOSXpM0k2jLN7MRmMlPYavArde0nYP8HBEHAEebj8D3AYcaV8ngHvXpkwzW0/LBkNE/AD4zSXNx4BT7fQp4I6h9q9F44fAdkn716pYM1sfV3qMYV9EXGinXwT2tdMHgeeH5nuhbTOzKdJb7QoiIiRF1+UknaDZ3TCzCXOlPYaXFnYR2veLbft54PDQfIfatkJEnIyIoxFx9AprMLMRudJgOA0cb6ePAw8OtX+kPTtxC/DboV0OM5sWEXHZF/AN4AIwT3PM4C5gF83ZiGeB7wE723kFfAn4OfA4cHS59bfLhV9++TXy15mV/D5GBGp/McfqSo5RmFlnZ1e66+4rH82s4GAws4KDwcwKDgYzKzgYzKzgYDCzgoPBzAoOBjMrOBjMrOBgMLOCg8HMCg4GMys4GMys4GAws4KDwcwKDgYzKzgYzKzgYDCzgoPBzAoOBjMrOBjMrOBgMLOCg8HMCg4GMys4GMys4GAws4KDwcwKDgYzKzgYzKzgYDCzgoPBzAoOBjMrOBjMrOBgMLPCssEg6T5JFyU9MdT2WUnnJT3avm4f+u5Tks5JekbS+0dVuJmNzkp6DF8Fbl2k/QsRcWP7+g6ApBuAO4G3t8v8s6RqrYo1s/WxbDBExA+A36xwfceA+yPi1Yj4JXAOuHkV9ZnZGKzmGMPHJD3W7mrsaNsOAs8PzfNC21aQdELSGUlnVlGDmY3AlQbDvcD1wI3ABeBzXVcQEScj4mhEHL3CGsxsRK4oGCLipYioIyIDX+b13YXzwOGhWQ+1bWY2Ra4oGCTtH/r4AWDhjMVp4E5Js5KuA44AP15diWa23nrLzSDpG8B7gd2SXgD+DnivpBuBAJ4DPgoQEU9KegB4ChgAd0dEPZrSzWxUFBHjrgFJ4y/C7M3v7EqP6fnKRzMrOBjMrOBgMLOCg8HMCg4GMys4GMys4GAws4KDwcwKDgYzKzgYzKzgYDCzgoPBzAoOBjMrOBjMrOBgMLOCg8HMCg4GMys4GMys4GAws4KDwcwKDgYzKzgYzN6EJCHpipd3MJi9SQ0/GqJrSDgYzN6EFkJhoefgYDCzIhC6PljKwWD2JrQQChHRORTAwWD2pnRpT6HrrsSyD7U1s+mTc37DZx9jMNsgEhWJCpFAAgFqJhNBiqCXeqAe9K7qtG73GMymlEiIRCYTGjTBEKD2VQGhPlXVI0e3PoB7DGZvVhJ1DtTrQeTl5x/iYDCbcksePZDIkYmU0OxMp3U6GMym2uKnIpWaAw4hyEls2rWr01qXDQZJhyV9X9JTkp6U9PG2faekhyQ9277vaNsl6YuSzkl6TNJNnSoysxWK4uNrvQeJOgAlSIl9h/+k05pX0mMYAJ+MiBuAW4C7Jd0A3AM8HBFHgIfbzwC3AUfa1wng3k4VmVkHS1y8JFETUFUoVew7dKjTWpcNhoi4EBE/aad/DzwNHASOAafa2U4Bd7TTx4CvReOHwHZJ+ztVZWbLEpAQzSUK0fybIQfUOUi9Ppqd5fDbb2D7oQOd1t3pGIOktwDvBH4E7IuIC+1XLwL72umDwPNDi73QtpnZOpESuc70t2xhz/4DvFLXnZZfcTBI2gJ8E/hERPxu+LtorrvsdEG2pBOSzkg602U5Myvpkt/AXq8HEjv2XcuOvXt4eTDotL4VBYOkPk0ofD0ivtU2v7Swi9C+X2zbzwOHhxY/1La9QUScjIijEXG0U8Vm9gZa5H/JAVBVXHvwAP2rriKqqtM6V3JWQsBXgKcj4vNDX50GjrfTx4EHh9o/0p6duAX47dAuh5mtqcU764P5AaTEzl27mSeg1+0i55XM/S7gw8Djkh5t2z4N/D3wgKS7gF8BH2y/+w5wO3AO+CPwN50qMrMVudxtUTkyUmLm6k3M1TW53++07mWDISL++zI1/NUi8wdwd6cqzKyzSO1YCxHMRCIIQokBEP0+Ww8e4OXZHn+oM3XHu6J8E5XZlMqCIJMiqEiAyKliINBMn2379vBqlXi1DlLHi5x9SbTZlAqChc58JgipOdqgxMyWrWzbvoMcQaoS4ZuozDaGyNEMw6Dm1zgQgwhCsG3nTrbt3MEg11RV3wO1mG0c0fQX2nDIEeQI1J9hx569bN6ylUEOUq9H6nhWwsFgNsWk5mSlej3qlAiJTdds55o9u9HMLBkIQaq6/ar74KPZlJKa/0Rk1J+BmKe3ZSt/9o53sHXPXv5IJl01y8vzc1QePt5sY0ipHR6eYJBrshJbduzgmt27qJOYiyC3t113HUDewWA2pV67RUkwyEFUid3XXsvsli0MJGolokrN0G7JpyvNNoScaUeGFlEl+puuZu+BA0SvzzxQKzXjMVQVycFgtkG0ZyBT1Vy/cM2ePWzdsYOoKl6tg/mciSRSlXzw0WyjkCDnoOr32LRtG++46c8ZVBXzCM3OEL0eoUQdma5PqXOPwWxKRTRPmMqR2bV3D5u2boGUyBJVf4aq32/PWnR/fqV7DGZTKoWolKgz7Np/gOjPoP4MUfUg9donVQmhzl0AB4PZlOpHgrqiFlx97bX8YWaWwexVzJHIOVHlhGoRCgaVewxmG0IikWnPPGzaxKu9inmJmoqQUCRShkEF3W6h8jEGs6mVCSJBf/PV7VmHTJ0H5KgJAWoufgqiePr1chwMZlNqTsFgtseht13P7KarmR/MkXNNUIMyucrUKZPbz114V8JsSkWVmN26me17d0NqzlAQub2Horn9umlv76vowD0Gs2nVT2zZuZ3NO7czqAfMzPTIeZ6kgJSbXoICJag8HoPZBjE7w7Y9u+lfvYmIoFclyDVJgRSEMlkZJeglB4PZhtDbuoWte/dAr6KSiEFND0gKqiqaB04okxT0fB2D2cawbfcuNu3cDv0KIqjn5ugnkWiGfKuqgCSqhMdjMNsoDl7/Vjbv3kmdRB4MqF95masrUdVzpDxPlTJVCpQHaDDfad3uMZhNqarfJ9rh3PpJ9CVmUtWOFA05NQ+eyYNML3c7xuBgMJtS83VNHQCJSjDT69FPFXXKIIhKDAaZyDW52zNtHQxm0+rV+TnqyIggMlQIESQJiIXBnagHNTFXd1q3g8FsSs1leCVDpUQSqFc14y8oMYigzoAqUtVDiz0S+zIcDGZTKld9XqFHVQFVIikxVyVyEgNBnYWqiv5shTr+qjsYzKbUzOwmerObSDmIOqhzkOeDOgXzCrIgVVAFaOCDj2YbQvOgazXvdXOcoY4gZ8htMCwca0gdh3ZzMJhNqToHgzpIOdAgIDIRTSBkglyl9pHY0TyOqgMHg9mUygE5AnKQc/se0TyWLgWhtj1ADgazjSFIBFUzFEsOIjcDvzYPt207Cbl5/kTHu64dDGbTqm4fQVdVQlXQU0Wum1Gceog6RK5BqRkStotl75WQdFjS9yU9JelJSR9v2z8r6bykR9vX7UPLfErSOUnPSHp/5z+xmS0rpUTVPkxG7T9Jen3shQhSSqQreHblSnoMA+CTEfETSVuBs5Iear/7QkT80/DMkm4A7gTeDhwAvifpbRHR7dIrM7ssJSBBDII611AHRBCRqdTcQ0EbHtFxaLdlewwRcSEiftJO/x54Gjh4mUWOAfdHxKsR8UvgHHBzp6rMbFkLD5KJqMn1oBnvMdeQc9N7SEA7UEsa5UAtkt4CvBP4Udv0MUmPSbpP0o627SDw/NBiL7BIkEg6IemMpDOdKjYzgOasA5lQc3AxtWM7ikBkiExdD5ifnyfnbh32FQeDpC3AN4FPRMTvgHuB64EbgQvA57r84Ig4GRFHI+Jol+XMrBUBZEQmVSIlvTbwa9N7yERk6nqeQd3t9soVnZWQ1KcJha9HxLeamuKloe+/DPx7+/E8cHho8UNtm5mtoZibJ16eI1RBEnXbe8iCSFD1E/QSdV0THR85s5KzEgK+AjwdEZ8fat8/NNsHgCfa6dPAnZJmJV0HHAF+3KkqM1vWTJ2YmRe9WkRK1FUi9yqY7RPtnZZEc4xBIxjz8V3Ah4HHJT3atn0a+JCkG4EAngM+ChART0p6AHiK5ozG3T4jYTYaWth3aA9EZqK9hyKT1JzShOaip07r7fp47FGQ9L/AH4Bfj7uWFdjNdNQJ01Or61x7i9X6pxGxZyULT0QwAEg6Mw0HIqelTpieWl3n2lttrR4l2swKDgYzK0xSMJwcdwErNC11wvTU6jrX3qpqnZhjDGY2OSapx2BmE2LswSDp1vb27HOS7hl3PZeS9Jykx9tby8+0bTslPSTp2fZ9x3LrGUFd90m6KOmJobZF61Lji+02fkzSTRNQ68Tdtn+ZIQYmaruuy1AIr9+htf4voAJ+DrwVmAF+CtwwzpoWqfE5YPclbf8I3NNO3wP8wxjqeg9wE/DEcnUBtwP/QXOvzS3Ajyag1s8Cf7vIvDe0fw9mgevavx/VOtW5H7ipnd4K/KytZ6K262XqXLNtOu4ew83AuYj4RUTMAffT3LY96Y4Bp9rpU8Ad611ARPwA+M0lzUvVdQz4WjR+CGy/5JL2kVqi1qWM7bb9WHqIgYnarpepcymdt+m4g2FFt2iPWQDflXRW0om2bV9EXGinXwT2jae0wlJ1Tep2vuLb9kftkiEGJna7ruVQCMPGHQzT4N0RcRNwG3C3pPcMfxlNX23iTu1Mal1DVnXb/igtMsTAayZpu671UAjDxh0ME3+LdkScb98vAt+m6YK9tNBlbN8vjq/CN1iqronbzhHxUkTUEZGBL/N613astS42xAATuF2XGgphrbbpuIPhEeCIpOskzdCMFXl6zDW9RtJmNeNcImkz8D6a28tPA8fb2Y4DD46nwsJSdZ0GPtIeRb8F+O1Q13gsJvG2/aWGGGDCtutSda7pNl2Po6jLHGG9neao6s+Bz4y7nktqeyvN0dyfAk8u1AfsAh4GngW+B+wcQ23foOkuztPsM961VF00R82/1G7jx4GjE1Drv7S1PNb+xd0/NP9n2lqfAW5bxzrfTbOb8BjwaPu6fdK262XqXLNt6isfzaww7l0JM5tADgYzKzgYzKzgYDCzgoPBzAoOBjMrOBjMrOBgMLPC/wNInyH1yazR7gAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1181e1da0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"imshow(data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.image.AxesImage at 0x1115ea208>" | |
] | |
}, | |
"execution_count": 42, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAADHBJREFUeJzt3F/o3fV9x/HnaxpTZi2a2YUshmlLdmEvZsMPFSrFIWs1N7E3ohc1FCG9UGihu0jbi3rZjbUFYRNSKo2j00lbMRduq4aC7EJrFBv/zZpaxYRo1lmsrJCqfe/i9409zfv38/fL73fO75zf9nzA4XzP53zP77zzJTw5/1NVSNKoP5r2AJJmj2GQ1BgGSY1hkNQYBkmNYZDUTCwMSa5N8kKSI0n2Tup+JI1fJvE5hiRnAT8D/ho4CjwO3FRVz439ziSN3aQeMVwOHKmql6rqt8C9wK4J3ZekMTt7Qn93K/DqyOWjwBWL7XxONtYHOHdCo0gCeItf/bKqPrycfScVhiUl2QPsAfgAf8wVuWZao0j/Lzxc339luftO6qnEMWDbyOWLhrX3VNW+qpqrqrkNbJzQGJJWYlJheBzYnuSSJOcANwIHJnRfksZsIk8lquqdJLcB/w6cBdxVVc9O4r4kjd/EXmOoqgeBByf19yVNjp98lNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJzdmruXGSl4G3gHeBd6pqLskm4F+Ai4GXgRuq6lerG1PSWhrHI4a/qqrLqmpuuLwXOFhV24GDw2VJ68gknkrsAvYP2/uB6ydwH5ImaLVhKOBHSZ5IsmdY21xVx4ft14DNC90wyZ4kh5IcepuTqxxD0jit6jUG4KqqOpbkT4GHkvzn6JVVVUlqoRtW1T5gH8CHsmnBfSRNx6oeMVTVseH8BHA/cDnwepItAMP5idUOKWltrTgMSc5Nct6pbeBTwDPAAWD3sNtu4IHVDilpba3mqcRm4P4kp/7OP1fVvyV5HLgvyS3AK8ANqx9T0lpacRiq6iXgLxdY/2/gmtUMJWm6/OSjpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6RmyTAkuSvJiSTPjKxtSvJQkheH8wuG9SS5I8mRJIeT7Jjk8JImYzmPGL4LXHva2l7gYFVtBw4OlwGuA7YPpz3AneMZU9JaWjIMVfUI8MZpy7uA/cP2fuD6kfW7a96jwPlJtoxrWElrY6WvMWyuquPD9mvA5mF7K/DqyH5HhzVJ68iqX3ysqgLqTG+XZE+SQ0kOvc3J1Y4haYxWGobXTz1FGM5PDOvHgG0j+100rDVVta+q5qpqbgMbVziGpElYaRgOALuH7d3AAyPrNw/vTlwJvDnylEPSOnH2UjskuQe4GrgwyVHga8DXgfuS3AK8Atww7P4gsBM4AvwG+NwEZpY0YUuGoapuWuSqaxbYt4BbVzuUpOnyk4+SGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKlZMgxJ7kpyIskzI2u3JzmW5KnhtHPkui8nOZLkhSSfntTgkiZnOY8Yvgtcu8D6t6rqsuH0IECSS4EbgY8Nt/nHJGeNa1hJa2PJMFTVI8Aby/x7u4B7q+pkVf0COAJcvor5JE3Bal5juC3J4eGpxgXD2lbg1ZF9jg5rTZI9SQ4lOfQ2J1cxhqRxW2kY7gQ+ClwGHAe+caZ/oKr2VdVcVc1tYOMKx5A0CSsKQ1W9XlXvVtXvgG/z+6cLx4BtI7teNKxJWkdWFIYkW0YufgY49Y7FAeDGJBuTXAJsB36yuhElrbWzl9ohyT3A1cCFSY4CXwOuTnIZUMDLwOcBqurZJPcBzwHvALdW1buTGV3SpKSqpj0DH8qmuiLXTHsM6f+0h+v7T1TV3HL29ZOPkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJIawyCpMQySGsMgqTEMkhrDIKkxDJKaJcOQZFuSHyd5LsmzSb4wrG9K8lCSF4fzC4b1JLkjyZEkh5PsmPQ/QtJ4LecRwzvAl6rqUuBK4NYklwJ7gYNVtR04OFwGuA7YPpz2AHeOfWpJE7VkGKrqeFU9OWy/BTwPbAV2AfuH3fYD1w/bu4C7a96jwPlJtox9ckkTc0avMSS5GPg48BiwuaqOD1e9BmwetrcCr47c7OiwJmmdWHYYknwQ+AHwxar69eh1VVVAnckdJ9mT5FCSQ29z8kxuKmnClhWGJBuYj8L3quqHw/Lrp54iDOcnhvVjwLaRm180rP2BqtpXVXNVNbeBjSudX9IELOddiQDfAZ6vqm+OXHUA2D1s7wYeGFm/eXh34krgzZGnHJLWgbOXsc8ngM8CTyd5alj7CvB14L4ktwCvADcM1z0I7ASOAL8BPjfWiSVN3JJhqKr/ALLI1dcssH8Bt65yLklT5CcfJTWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSs2QYkmxL8uMkzyV5NskXhvXbkxxL8tRw2jlymy8nOZLkhSSfnuQ/QNL4nb2Mfd4BvlRVTyY5D3giyUPDdd+qqr8f3TnJpcCNwMeAPwMeTvIXVfXuOAeXNDlLPmKoquNV9eSw/RbwPLD1fW6yC7i3qk5W1S+AI8Dl4xhW0to4o9cYklwMfBx4bFi6LcnhJHcluWBY2wq8OnKzoywQkiR7khxKcuhtTp7x4JImZ9lhSPJB4AfAF6vq18CdwEeBy4DjwDfO5I6ral9VzVXV3AY2nslNJU3YssKQZAPzUfheVf0QoKper6p3q+p3wLf5/dOFY8C2kZtfNKxJWieW865EgO8Az1fVN0fWt4zs9hngmWH7AHBjko1JLgG2Az8Z38iSJm0570p8Avgs8HSSp4a1rwA3JbkMKOBl4PMAVfVskvuA55h/R+NW35GQ1pdU1bRnIMl/Af8D/HLasyzDhayPOWH9zOqc47fQrH9eVR9ezo1nIgwASQ5V1dy051jKepkT1s+szjl+q53Vj0RLagyDpGaWwrBv2gMs03qZE9bPrM45fquadWZeY5A0O2bpEYOkGTH1MCS5dvh69pEke6c9z+mSvJzk6eGr5YeGtU1JHkry4nB+wVJ/ZwJz3ZXkRJJnRtYWnCvz7hiO8eEkO2Zg1pn72v77/MTATB3XNfkphKqa2gk4C/g58BHgHOCnwKXTnGmBGV8GLjxt7e+AvcP2XuBvpzDXJ4EdwDNLzQXsBP4VCHAl8NgMzHo78DcL7Hvp8P9gI3DJ8P/jrDWacwuwY9g+D/jZMM9MHdf3mXNsx3TajxguB45U1UtV9VvgXua/tj3rdgH7h+39wPVrPUBVPQK8cdryYnPtAu6ueY8C55/2kfaJWmTWxUzta/u1+E8MzNRxfZ85F3PGx3TaYVjWV7SnrIAfJXkiyZ5hbXNVHR+2XwM2T2e0ZrG5ZvU4r/hr+5N22k8MzOxxHedPIYyadhjWg6uqagdwHXBrkk+OXlnzj9Vm7q2dWZ1rxKq+tj9JC/zEwHtm6biO+6cQRk07DDP/Fe2qOjacnwDuZ/4h2OunHjIO5yemN+EfWGyumTvONaNf21/oJwaYweM66Z9CmHYYHge2J7kkyTnM/1bkgSnP9J4k5w6/c0mSc4FPMf/18gPA7mG33cAD05mwWWyuA8DNw6voVwJvjjw0nopZ/Nr+Yj8xwIwd18XmHOsxXYtXUZd4hXUn86+q/hz46rTnOW22jzD/au5PgWdPzQf8CXAQeBF4GNg0hdnuYf7h4tvMP2e8ZbG5mH/V/B+GY/w0MDcDs/7TMMvh4T/ulpH9vzrM+gJw3RrOeRXzTxMOA08Np52zdlzfZ86xHVM/+SipmfZTCUkzyDBIagyDpMYwSGoMg6TGMEhqDIOkxjBIav4XoTFm+s1FrB0AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x111514748>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Mask is not found due to a bug in rasterio (should be fixed today or early next week)\n", | |
"imshow(mask)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment