Skip to content

Instantly share code, notes, and snippets.

@virattt
Created November 11, 2024 23:40
Show Gist options
  • Save virattt/30506a0994920041869e6159d4876bf5 to your computer and use it in GitHub Desktop.
Save virattt/30506a0994920041869e6159d4876bf5 to your computer and use it in GitHub Desktop.
backtesting-101.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"collapsed_sections": [
"vKbb1q0Hm67G",
"_rftNYKNm9sb",
"LCYsrLRIopEO",
"S1JJ288JotNT",
"f_Zd_tAypBuD",
"SiqYcJknpF8C"
],
"authorship_tag": "ABX9TyNgOww4M+4q1IyDTxX1T73k",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/virattt/30506a0994920041869e6159d4876bf5/backtesting-101.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# 0. Setup"
],
"metadata": {
"id": "vKbb1q0Hm67G"
}
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "Q88yNgOqmaQM"
},
"outputs": [],
"source": [
"# Install necessary libraries\n",
"!pip install requests pandas matplotlib --quiet"
]
},
{
"cell_type": "code",
"source": [
"import getpass\n",
"import os\n",
"\n",
"\n",
"def _set_if_undefined(var: str):\n",
" if not os.environ.get(var):\n",
" os.environ[var] = getpass.getpass(f\"Please provide your {var}\")\n",
"\n",
"\n",
"_set_if_undefined(\"FINANCIAL_DATASETS_API_KEY\") # For getting financial data. Get from https://financialdatasets.ai"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Gf1vKREfndMR",
"outputId": "d07fe8d6-5a4f-44be-f043-d0df9fd11f7c"
},
"execution_count": 4,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Please provide your FINANCIAL_DATASETS_API_KEY··········\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Import libraries\n",
"import requests\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Enable inline plotting for Google Colab\n",
"%matplotlib inline"
],
"metadata": {
"id": "yIL0R0e2m9T_"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# 1. Get Historical Price Data"
],
"metadata": {
"id": "_rftNYKNm9sb"
}
},
{
"cell_type": "code",
"source": [
"def get_price_data(ticker, start_date, end_date):\n",
" # add your API key to the headers\n",
" headers = {\n",
" \"X-API-KEY\": os.environ.get(\"FINANCIAL_DATASETS_API_KEY\")\n",
" }\n",
"\n",
" # create the URL\n",
" url = (\n",
" f'https://api.financialdatasets.ai/prices/'\n",
" f'?ticker={ticker}'\n",
" f'&interval=day'\n",
" f'&interval_multiplier=1'\n",
" f'&start_date={start_date}'\n",
" f'&end_date={end_date}'\n",
" )\n",
"\n",
" # make API request\n",
" response = requests.get(url, headers=headers)\n",
"\n",
" # parse prices from the response\n",
" prices = response.json().get('prices')\n",
" return prices\n"
],
"metadata": {
"id": "PGAAbbHom_5N"
},
"execution_count": 66,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Parameters for fetching data\n",
"ticker = 'AAPL'\n",
"start_date = '2020-01-01'\n",
"end_date = '2024-11-10'\n",
"\n",
"# Get the price data\n",
"prices = get_price_data(ticker, start_date, end_date)"
],
"metadata": {
"id": "1anOOpAioFGD"
},
"execution_count": 67,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# 2. Create a dataframe"
],
"metadata": {
"id": "LCYsrLRIopEO"
}
},
{
"cell_type": "code",
"source": [
"# Convert the data into a pandas DataFrame\n",
"df = pd.DataFrame(prices)\n",
"\n",
"# Convert 'time' column to datetime\n",
"df['time'] = pd.to_datetime(df['time'])\n",
"\n",
"# Drop time_milliseconds column\n",
"df.drop(columns=['time_milliseconds'], inplace=True)\n",
"\n",
"# Set 'time' as the index\n",
"df.set_index('time', inplace=True)\n",
"\n",
"# Sort the DataFrame by index\n",
"df.sort_index(inplace=True)\n",
"\n",
"# Display the first few rows\n",
"df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 238
},
"id": "oi7nZtwfos7N",
"outputId": "41e57adf-aedd-4e9f-c09c-5afcb537f9a6"
},
"execution_count": 68,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" open close high low volume\n",
"time \n",
"2020-01-02 05:00:00+00:00 74.0600 75.0875 75.150 73.7975 135647456.0\n",
"2020-01-03 05:00:00+00:00 74.2875 74.3575 75.145 74.1250 146535512.0\n",
"2020-01-06 05:00:00+00:00 73.4475 74.9500 74.990 73.1875 118518576.0\n",
"2020-01-07 05:00:00+00:00 74.9600 74.5975 75.225 74.3700 111510620.0\n",
"2020-01-08 05:00:00+00:00 74.2900 75.7975 76.110 74.2890 132363784.0"
],
"text/html": [
"\n",
" <div id=\"df-842e6ea6-91d9-4cfa-a20b-3fdf2ee141d7\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>open</th>\n",
" <th>close</th>\n",
" <th>high</th>\n",
" <th>low</th>\n",
" <th>volume</th>\n",
" </tr>\n",
" <tr>\n",
" <th>time</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2020-01-02 05:00:00+00:00</th>\n",
" <td>74.0600</td>\n",
" <td>75.0875</td>\n",
" <td>75.150</td>\n",
" <td>73.7975</td>\n",
" <td>135647456.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020-01-03 05:00:00+00:00</th>\n",
" <td>74.2875</td>\n",
" <td>74.3575</td>\n",
" <td>75.145</td>\n",
" <td>74.1250</td>\n",
" <td>146535512.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020-01-06 05:00:00+00:00</th>\n",
" <td>73.4475</td>\n",
" <td>74.9500</td>\n",
" <td>74.990</td>\n",
" <td>73.1875</td>\n",
" <td>118518576.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020-01-07 05:00:00+00:00</th>\n",
" <td>74.9600</td>\n",
" <td>74.5975</td>\n",
" <td>75.225</td>\n",
" <td>74.3700</td>\n",
" <td>111510620.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020-01-08 05:00:00+00:00</th>\n",
" <td>74.2900</td>\n",
" <td>75.7975</td>\n",
" <td>76.110</td>\n",
" <td>74.2890</td>\n",
" <td>132363784.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-842e6ea6-91d9-4cfa-a20b-3fdf2ee141d7')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-842e6ea6-91d9-4cfa-a20b-3fdf2ee141d7 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-842e6ea6-91d9-4cfa-a20b-3fdf2ee141d7');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-5b57b11c-a673-406a-9704-50d45bc149e6\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-5b57b11c-a673-406a-9704-50d45bc149e6')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-5b57b11c-a673-406a-9704-50d45bc149e6 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df",
"summary": "{\n \"name\": \"df\",\n \"rows\": 1223,\n \"fields\": [\n {\n \"column\": \"time\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2020-01-02 05:00:00+00:00\",\n \"max\": \"2024-11-08 05:00:00+00:00\",\n \"num_unique_values\": 1223,\n \"samples\": [\n \"2022-08-17 04:00:00+00:00\",\n \"2020-11-13 05:00:00+00:00\",\n \"2020-08-13 04:00:00+00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39.31293610371961,\n \"min\": 57.02,\n \"max\": 236.48,\n \"num_unique_values\": 1170,\n \"samples\": [\n 147.92,\n 119.44,\n 140.42\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39.317107704631404,\n \"min\": 56.0925,\n \"max\": 236.48,\n \"num_unique_values\": 1162,\n \"samples\": [\n 130.96,\n 79.485,\n 234.82\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"high\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39.47356711338159,\n \"min\": 57.1249,\n \"max\": 237.49,\n \"num_unique_values\": 1179,\n \"samples\": [\n 115.59,\n 64.67,\n 153.7701\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 39.12632809621504,\n \"min\": 53.1525,\n \"max\": 234.45,\n \"num_unique_values\": 1187,\n \"samples\": [\n 133.28,\n 189.23,\n 215.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 53268313.72707178,\n \"min\": 24018404.0,\n \"max\": 426884920.0,\n \"num_unique_values\": 1223,\n \"samples\": [\n 79542037.0,\n 81688586.0,\n 210082064.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 68
}
]
},
{
"cell_type": "markdown",
"source": [
"# 3. Implement Simple Moving Average Crossover (SMA) strategy"
],
"metadata": {
"id": "S1JJ288JotNT"
}
},
{
"cell_type": "code",
"source": [
"# Calculate short-term and long-term moving averages\n",
"df['short_ma'] = df['close'].rolling(window=5).mean()\n",
"df['long_ma'] = df['close'].rolling(window=20).mean()\n",
"\n",
"# Generate trading signals\n",
"df['signal'] = 0\n",
"df.loc[df['short_ma'] > df['long_ma'], 'signal'] = 1 # Buy signal\n",
"df.loc[df['short_ma'] <= df['long_ma'], 'signal'] = 0 # Sell signal\n",
"\n",
"# Display the DataFrame with moving averages and signals\n",
"df.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 0
},
"id": "QhloH6ucpAtY",
"outputId": "2f04dde6-12ee-4ae8-a988-e5dd93def07b"
},
"execution_count": 69,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" open close high low volume \\\n",
"time \n",
"2024-11-04 05:00:00+00:00 220.990 222.01 222.790 219.710 40921729.0 \n",
"2024-11-05 05:00:00+00:00 221.795 223.45 223.950 221.140 27254038.0 \n",
"2024-11-06 05:00:00+00:00 222.610 222.72 226.065 221.190 51811157.0 \n",
"2024-11-07 05:00:00+00:00 224.625 227.48 227.875 224.570 40121817.0 \n",
"2024-11-08 05:00:00+00:00 227.170 226.96 228.660 226.405 36726907.0 \n",
"\n",
" short_ma long_ma signal \n",
"time \n",
"2024-11-04 05:00:00+00:00 226.920 230.4530 0 \n",
"2024-11-05 05:00:00+00:00 224.876 230.3370 0 \n",
"2024-11-06 05:00:00+00:00 223.400 229.9960 0 \n",
"2024-11-07 05:00:00+00:00 223.714 229.9180 0 \n",
"2024-11-08 05:00:00+00:00 224.524 229.8885 0 "
],
"text/html": [
"\n",
" <div id=\"df-08fdf879-ef2c-4e7e-912a-db19dac5db32\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>open</th>\n",
" <th>close</th>\n",
" <th>high</th>\n",
" <th>low</th>\n",
" <th>volume</th>\n",
" <th>short_ma</th>\n",
" <th>long_ma</th>\n",
" <th>signal</th>\n",
" </tr>\n",
" <tr>\n",
" <th>time</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2024-11-04 05:00:00+00:00</th>\n",
" <td>220.990</td>\n",
" <td>222.01</td>\n",
" <td>222.790</td>\n",
" <td>219.710</td>\n",
" <td>40921729.0</td>\n",
" <td>226.920</td>\n",
" <td>230.4530</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-05 05:00:00+00:00</th>\n",
" <td>221.795</td>\n",
" <td>223.45</td>\n",
" <td>223.950</td>\n",
" <td>221.140</td>\n",
" <td>27254038.0</td>\n",
" <td>224.876</td>\n",
" <td>230.3370</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-06 05:00:00+00:00</th>\n",
" <td>222.610</td>\n",
" <td>222.72</td>\n",
" <td>226.065</td>\n",
" <td>221.190</td>\n",
" <td>51811157.0</td>\n",
" <td>223.400</td>\n",
" <td>229.9960</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-07 05:00:00+00:00</th>\n",
" <td>224.625</td>\n",
" <td>227.48</td>\n",
" <td>227.875</td>\n",
" <td>224.570</td>\n",
" <td>40121817.0</td>\n",
" <td>223.714</td>\n",
" <td>229.9180</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-08 05:00:00+00:00</th>\n",
" <td>227.170</td>\n",
" <td>226.96</td>\n",
" <td>228.660</td>\n",
" <td>226.405</td>\n",
" <td>36726907.0</td>\n",
" <td>224.524</td>\n",
" <td>229.8885</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-08fdf879-ef2c-4e7e-912a-db19dac5db32')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-08fdf879-ef2c-4e7e-912a-db19dac5db32 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-08fdf879-ef2c-4e7e-912a-db19dac5db32');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-40a6abd0-11fc-44fd-ab1e-84d47f4de466\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-40a6abd0-11fc-44fd-ab1e-84d47f4de466')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-40a6abd0-11fc-44fd-ab1e-84d47f4de466 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"time\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2024-11-04 05:00:00+00:00\",\n \"max\": \"2024-11-08 05:00:00+00:00\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2024-11-05 05:00:00+00:00\",\n \"2024-11-08 05:00:00+00:00\",\n \"2024-11-06 05:00:00+00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.4856855191274643,\n \"min\": 220.99,\n \"max\": 227.17,\n \"num_unique_values\": 5,\n \"samples\": [\n 221.795,\n 227.17,\n 222.61\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.5199265862322284,\n \"min\": 222.01,\n \"max\": 227.48,\n \"num_unique_values\": 5,\n \"samples\": [\n 223.45,\n 226.96,\n 222.72\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"high\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.500746388580821,\n \"min\": 222.79,\n \"max\": 228.66,\n \"num_unique_values\": 5,\n \"samples\": [\n 223.95,\n 228.66,\n 226.065\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.7762690791780242,\n \"min\": 219.71,\n \"max\": 226.405,\n \"num_unique_values\": 5,\n \"samples\": [\n 221.14,\n 226.405,\n 221.19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8825218.322875801,\n \"min\": 27254038.0,\n \"max\": 51811157.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 27254038.0,\n 36726907.0,\n 51811157.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"short_ma\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.383083222369494,\n \"min\": 223.4,\n \"max\": 226.92,\n \"num_unique_values\": 5,\n \"samples\": [\n 224.87599999999998,\n 224.52399999999997,\n 223.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"long_ma\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2587175100375112,\n \"min\": 229.88849999999996,\n \"max\": 230.45300000000003,\n \"num_unique_values\": 5,\n \"samples\": [\n 230.337,\n 229.88849999999996,\n 229.996\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"signal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 69
}
]
},
{
"cell_type": "markdown",
"source": [
"# 4. Backtest the strategy"
],
"metadata": {
"id": "f_Zd_tAypBuD"
}
},
{
"cell_type": "code",
"source": [
"# Calculate daily returns\n",
"df['returns'] = df['close'].pct_change()\n",
"\n",
"# Shift the signals to align the previous day’s signal with the current day’s returns.\n",
"df['strategy_returns'] = df['returns'] * df['signal'].shift(1)\n",
"\n",
"# Calculate cumulative returns for a buy and hold strategy\n",
"df['cumulative_returns'] = (1 + df['returns']).cumprod()\n",
"\n",
"# Calculate cumulative returns for the simple moving average strategy\n",
"df['cumulative_strategy_returns'] = (1 + df['strategy_returns']).cumprod()\n",
"\n",
"# Display the DataFrame with returns\n",
"df.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 0
},
"id": "Fed2AUBJpFug",
"outputId": "825a69e6-31dc-4f15-94a9-da84bc44ae62"
},
"execution_count": 70,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" open close high low volume \\\n",
"time \n",
"2024-11-04 05:00:00+00:00 220.990 222.01 222.790 219.710 40921729.0 \n",
"2024-11-05 05:00:00+00:00 221.795 223.45 223.950 221.140 27254038.0 \n",
"2024-11-06 05:00:00+00:00 222.610 222.72 226.065 221.190 51811157.0 \n",
"2024-11-07 05:00:00+00:00 224.625 227.48 227.875 224.570 40121817.0 \n",
"2024-11-08 05:00:00+00:00 227.170 226.96 228.660 226.405 36726907.0 \n",
"\n",
" short_ma long_ma signal returns \\\n",
"time \n",
"2024-11-04 05:00:00+00:00 226.920 230.4530 0 -0.004038 \n",
"2024-11-05 05:00:00+00:00 224.876 230.3370 0 0.006486 \n",
"2024-11-06 05:00:00+00:00 223.400 229.9960 0 -0.003267 \n",
"2024-11-07 05:00:00+00:00 223.714 229.9180 0 0.021372 \n",
"2024-11-08 05:00:00+00:00 224.524 229.8885 0 -0.002286 \n",
"\n",
" strategy_returns cumulative_returns \\\n",
"time \n",
"2024-11-04 05:00:00+00:00 -0.0 2.956684 \n",
"2024-11-05 05:00:00+00:00 0.0 2.975861 \n",
"2024-11-06 05:00:00+00:00 -0.0 2.966140 \n",
"2024-11-07 05:00:00+00:00 0.0 3.029532 \n",
"2024-11-08 05:00:00+00:00 -0.0 3.022607 \n",
"\n",
" cumulative_strategy_returns \n",
"time \n",
"2024-11-04 05:00:00+00:00 2.595494 \n",
"2024-11-05 05:00:00+00:00 2.595494 \n",
"2024-11-06 05:00:00+00:00 2.595494 \n",
"2024-11-07 05:00:00+00:00 2.595494 \n",
"2024-11-08 05:00:00+00:00 2.595494 "
],
"text/html": [
"\n",
" <div id=\"df-025b7742-c977-4582-be14-0c61fb91d94c\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>open</th>\n",
" <th>close</th>\n",
" <th>high</th>\n",
" <th>low</th>\n",
" <th>volume</th>\n",
" <th>short_ma</th>\n",
" <th>long_ma</th>\n",
" <th>signal</th>\n",
" <th>returns</th>\n",
" <th>strategy_returns</th>\n",
" <th>cumulative_returns</th>\n",
" <th>cumulative_strategy_returns</th>\n",
" </tr>\n",
" <tr>\n",
" <th>time</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2024-11-04 05:00:00+00:00</th>\n",
" <td>220.990</td>\n",
" <td>222.01</td>\n",
" <td>222.790</td>\n",
" <td>219.710</td>\n",
" <td>40921729.0</td>\n",
" <td>226.920</td>\n",
" <td>230.4530</td>\n",
" <td>0</td>\n",
" <td>-0.004038</td>\n",
" <td>-0.0</td>\n",
" <td>2.956684</td>\n",
" <td>2.595494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-05 05:00:00+00:00</th>\n",
" <td>221.795</td>\n",
" <td>223.45</td>\n",
" <td>223.950</td>\n",
" <td>221.140</td>\n",
" <td>27254038.0</td>\n",
" <td>224.876</td>\n",
" <td>230.3370</td>\n",
" <td>0</td>\n",
" <td>0.006486</td>\n",
" <td>0.0</td>\n",
" <td>2.975861</td>\n",
" <td>2.595494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-06 05:00:00+00:00</th>\n",
" <td>222.610</td>\n",
" <td>222.72</td>\n",
" <td>226.065</td>\n",
" <td>221.190</td>\n",
" <td>51811157.0</td>\n",
" <td>223.400</td>\n",
" <td>229.9960</td>\n",
" <td>0</td>\n",
" <td>-0.003267</td>\n",
" <td>-0.0</td>\n",
" <td>2.966140</td>\n",
" <td>2.595494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-07 05:00:00+00:00</th>\n",
" <td>224.625</td>\n",
" <td>227.48</td>\n",
" <td>227.875</td>\n",
" <td>224.570</td>\n",
" <td>40121817.0</td>\n",
" <td>223.714</td>\n",
" <td>229.9180</td>\n",
" <td>0</td>\n",
" <td>0.021372</td>\n",
" <td>0.0</td>\n",
" <td>3.029532</td>\n",
" <td>2.595494</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024-11-08 05:00:00+00:00</th>\n",
" <td>227.170</td>\n",
" <td>226.96</td>\n",
" <td>228.660</td>\n",
" <td>226.405</td>\n",
" <td>36726907.0</td>\n",
" <td>224.524</td>\n",
" <td>229.8885</td>\n",
" <td>0</td>\n",
" <td>-0.002286</td>\n",
" <td>-0.0</td>\n",
" <td>3.022607</td>\n",
" <td>2.595494</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-025b7742-c977-4582-be14-0c61fb91d94c')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-025b7742-c977-4582-be14-0c61fb91d94c button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-025b7742-c977-4582-be14-0c61fb91d94c');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-cdd36cab-5910-4b92-9748-074eafaeed49\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-cdd36cab-5910-4b92-9748-074eafaeed49')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-cdd36cab-5910-4b92-9748-074eafaeed49 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"time\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2024-11-04 05:00:00+00:00\",\n \"max\": \"2024-11-08 05:00:00+00:00\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"2024-11-05 05:00:00+00:00\",\n \"2024-11-08 05:00:00+00:00\",\n \"2024-11-06 05:00:00+00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.4856855191274643,\n \"min\": 220.99,\n \"max\": 227.17,\n \"num_unique_values\": 5,\n \"samples\": [\n 221.795,\n 227.17,\n 222.61\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.5199265862322284,\n \"min\": 222.01,\n \"max\": 227.48,\n \"num_unique_values\": 5,\n \"samples\": [\n 223.45,\n 226.96,\n 222.72\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"high\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.500746388580821,\n \"min\": 222.79,\n \"max\": 228.66,\n \"num_unique_values\": 5,\n \"samples\": [\n 223.95,\n 228.66,\n 226.065\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.7762690791780242,\n \"min\": 219.71,\n \"max\": 226.405,\n \"num_unique_values\": 5,\n \"samples\": [\n 221.14,\n 226.405,\n 221.19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8825218.322875801,\n \"min\": 27254038.0,\n \"max\": 51811157.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 27254038.0,\n 36726907.0,\n 51811157.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"short_ma\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.383083222369494,\n \"min\": 223.4,\n \"max\": 226.92,\n \"num_unique_values\": 5,\n \"samples\": [\n 224.87599999999998,\n 224.52399999999997,\n 223.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"long_ma\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2587175100375112,\n \"min\": 229.88849999999996,\n \"max\": 230.45300000000003,\n \"num_unique_values\": 5,\n \"samples\": [\n 230.337,\n 229.88849999999996,\n 229.996\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"signal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"returns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.010773749397063851,\n \"min\": -0.004037503925351071,\n \"max\": 0.021372126436781658,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.006486194315571403\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"strategy_returns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": -0.0,\n \"max\": -0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n -0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cumulative_returns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03355986797046425,\n \"min\": 2.9566838688196992,\n \"max\": 3.0295322124188337,\n \"num_unique_values\": 5,\n \"samples\": [\n 2.9758614949225795\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cumulative_strategy_returns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 2.59549423416681,\n \"max\": 2.59549423416681,\n \"num_unique_values\": 1,\n \"samples\": [\n 2.59549423416681\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 70
}
]
},
{
"cell_type": "markdown",
"source": [
"# 5. Analyze results"
],
"metadata": {
"id": "SiqYcJknpF8C"
}
},
{
"cell_type": "code",
"source": [
"# Plot the cumulative returns\n",
"plt.figure(figsize=(12,6))\n",
"plt.plot(df.index, df['cumulative_returns'], label='Buy and Hold Returns')\n",
"plt.plot(df.index, df['cumulative_strategy_returns'], label='SMA Strategy Returns')\n",
"plt.title(f\"Simple Moving Average Strategy ({ticker})\")\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Cumulative Returns')\n",
"plt.legend()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 564
},
"id": "EEVnao6PpJ11",
"outputId": "e027c187-da96-4a37-d27b-877acb2d1525"
},
"execution_count": 71,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+oAAAIjCAYAAACUDuEaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wT9f8H8NdltuneA7po2XvKkqFsAVGU4WDjxp8DB4oCigtQXF8XIqCAMmSIyhBk7yF7Q0spdO+0zb7fH5e75DLapLQ0bd/Px6OPJJe7yydtKXnf+/15fxiWZVkQQgghhBBCCCHEI0hqegCEEEIIIYQQQgixoECdEEIIIYQQQgjxIBSoE0IIIYQQQgghHoQCdUIIIYQQQgghxINQoE4IIYQQQgghhHgQCtQJIYQQQgghhBAPQoE6IYQQQgghhBDiQShQJ4QQQgghhBBCPAgF6oQQQgghhBBCiAehQJ0QQuqI+Ph4TJgwoUZee/bs2WAYpkZeu7oxDIPZs2fX9DAIqVKrV69GcHAw1Gp1TQ/FbVu2bIGvry+ys7NreiiEEFJtKFAnhBAPd+bMGTzyyCOIi4uDl5cXGjRogP79++Orr76q6aFVm6VLl4JhGDAMg3379tk9z7IsYmJiwDAMhg4dWgMjvLsuXLgAhmHg5eWFgoKCmh6Ox9m0aRN69+6N8PBwqFQqNGrUCKNGjcKWLVuEfW7fvo3Zs2fj5MmT1TKGlStX4vPPP6+Wc1c1o9GIWbNmYdq0afD19XX4fHR0NBiGwebNmys8X0FBAby8vMAwDC5cuOBwnwkTJgj/phmGgb+/P9q2bYtPP/0UWq1W2I+/6JeTk+P09QYNGoSkpCR89NFHLrxbQgipnShQJ4QQD3bgwAF06tQJp06dwtSpU/H1119jypQpkEgk+OKLL0T7Xrp0CYsWLaqhkVYPLy8vrFy50m777t27kZaWBqVSWe1jKCsrw8yZM6v9dcqzfPlyREZGAgDWrl1bo2PxNAsWLMDw4cPBMAxmzJiBhQsXYuTIkbhy5Qp+++03Yb/bt29jzpw5FKiDu7Bx6dIlPPXUUw6f//fff5Geno74+HisWLGiwvOtWbMGDMMgMjKy3P2VSiV++eUX/PLLL/jwww8RHByM6dOnY/z48W6/h6effhrff/89iouL3T6WEEJqA1lND4AQQohzH3zwAQICAnD06FEEBgaKnsvKyhI9vhtB6902ZMgQrFmzBl9++SVkMst/WStXrkTHjh3LzbpVFS8vr2p/jfKwLIuVK1fiscceQ3JyMlasWIEpU6bc9XGUlpZCpVLd9dctj8FgwPvvv4/+/ftj27Ztds/b/htxhye+36qyZMkS9OjRAw0aNHD4/PLly9GhQweMHz8eb731FkpKSuDj4+P0fMuXL8eQIUMQFxeHlStXYu7cuQ73k8lkeOKJJ4THzz33HO655x6sWrUKn332GaKjo11+DyNHjsS0adOwZs0aTJo0yeXjCCGktqCMOiGEeLBr166hZcuWdkE6AISHh4se285R58vH9+3bhxdffBFhYWEIDAzE008/DZ1Oh4KCAowbNw5BQUEICgrC66+/DpZlheNTUlLAMAwWLFiAhQsXIi4uDt7e3ujduzfOnj3r0viXL1+Ojh07wtvbG8HBwRgzZgxu3rzp8vsfO3YscnNz8c8//wjbdDod1q5di8cee8zhMSUlJXj11VcRExMDpVKJpk2bYsGCBaL31qpVK/Tt29fuWJPJhAYNGuCRRx4RttnOUedLc69evYoJEyYgMDAQAQEBmDhxIkpLS0XnKysrw4svvojQ0FD4+flh+PDhuHXrllvz3vfv34+UlBSMGTMGY8aMwZ49e5CWliY8P3ToUDRq1Mjhsd26dUOnTp1E21z5mfTp0wetWrXC8ePH0atXL6hUKrz11lsAgI0bN+KBBx5AdHQ0lEolEhMT8f7778NoNNq9/v/+9z80atQI3t7e6NKlC/bu3Ys+ffqgT58+ov20Wi1mzZqFpKQkKJVKxMTE4PXXXxeVRDuSk5ODoqIi9OjRw+Hz/L+RXbt2oXPnzgCAiRMnCuXXS5curZL326dPH/z111+4ceOGcO74+Hi3358rvy87d+4EwzBYv3693ftduXIlGIbBwYMHnX7PNBoNtmzZgn79+jl8vqysDOvXr8eYMWMwatQolJWVYePGjU7Pl5qair179wq/n8nJyThw4IDT/a1JJBLhdyElJcWlY3jh4eFo06ZNuWMjhJDajAJ1QgjxYHFxcTh+/LjLgbEj06ZNw5UrVzBnzhwMHz4cP/zwA9555x0MGzYMRqMRH374IXr27In58+fjl19+sTv+559/xpdffonnn38eM2bMwNmzZ3HfffchMzOz3Nf94IMPMG7cODRu3BifffYZXnrpJezYsQO9evVyeZ51fHw8unXrhl9//VXYtnnzZhQWFmLMmDF2+7Msi+HDh2PhwoUYNGgQPvvsMzRt2hSvvfYaXnnlFWG/0aNHY8+ePcjIyBAdv2/fPty+fdvhuW2NGjUKxcXF+OijjzBq1CgsXboUc+bMEe0zYcIEfPXVVxgyZAg++eQTeHt744EHHnDpvfNWrFiBxMREdO7cGcOGDYNKpRJ9P0aPHo3k5GQcPXpUdNyNGzdw6NAh0Xtx52eSm5uLwYMHo127dvj888+FCxtLly6Fr68vXnnlFXzxxRfo2LEj3n33Xbz55pui47/99lu88MILaNiwIebNm4d7770XI0aMEF1kALiLI8OHD8eCBQswbNgwfPXVVxgxYgQWLlyI0aNHl/u9CQ8Ph7e3NzZt2oS8vDyn+zVv3hzvvfceAOCpp54Syq979epVJe/37bffRrt27RAaGiqcmy+Dd+f9ufL70qdPH8TExDgsMed/V7p16+b0e3H8+HHodDp06NDB4fN//PEH1Go1xowZg8jISPTp06fccvZff/0VPj4+GDp0KLp06YLExESXyuV5165dAwCEhIS4fAyvY8eOLl8UIISQWoclhBDisbZt28ZKpVJWKpWy3bp1Y19//XV269atrE6ns9s3Li6OHT9+vPB4yZIlLAB24MCBrMlkErZ369aNZRiGfeaZZ4RtBoOBbdiwIdu7d29hW3JyMguA9fb2ZtPS0oTthw8fZgGwL7/8srBt1qxZrPV/KSkpKaxUKmU/+OAD0RjPnDnDymQyu+22+LEfPXqU/frrr1k/Pz+2tLSUZVmWffTRR9m+ffsK7/mBBx4QjtuwYQMLgJ07d67ofI888gjLMAx79epVlmVZ9tKlSywA9quvvhLt99xzz7G+vr7Ca7EsywJgZ82aZfdeJ02aJDr2oYceYkNCQoTHx48fZwGwL730kmi/CRMm2J3TGZ1Ox4aEhLBvv/22sO2xxx5j27ZtKzwuLCxklUol++qrr4qOnTdvHsswDHvjxg2WZd37mfTu3ZsFwH733Xd2Y7L+3vCefvppVqVSsRqNhmVZltVqtWxISAjbuXNnVq/XC/stXbqUBSD6Pfvll19YiUTC7t27V3TO7777jgXA7t+/39m3h2VZln333XdZAKyPjw87ePBg9oMPPmCPHz9ut9/Ro0dZAOySJUvsnrvT98uyLPvAAw+wcXFxdvu6+v7c+X2ZMWMGq1Qq2YKCAmFbVlYWK5PJKvy9+vHHH1kA7JkzZxw+P3ToULZHjx7C4x9++IGVyWRsVlaWw/1bt27NPv7448Ljt956iw0NDRX93FmWZcePH8/6+Piw2dnZbHZ2Nnv16lX2ww8/ZBmGYdu0aSPsx//7ys7OLvd9sCzLfvjhhywANjMzs8J9CSGktqGMOiGEeLD+/fvj4MGDGD58OE6dOoV58+Zh4MCBaNCgAf744w+XzjF58mTR0mn33HMPWJbF5MmThW1SqRSdOnXC9evX7Y4fMWKEaC5rly5dcM899+Dvv/92+prr1q2DyWTCqFGjkJOTI3xFRkaicePG2Llzp0tjByCU3/75558oLi7Gn3/+6bTs/e+//4ZUKsWLL74o2v7qq6+CZVmhg3WTJk3Qrl07rFq1StjHaDRi7dq1GDZsGLy9vSsc1zPPPCN6fO+99yI3NxdFRUUAIHQcf+6550T7TZs2rcJz8zZv3ozc3FyMHTtW2DZ27FicOnUK586dAwD4+/tj8ODBWL16tai8f9WqVejatStiY2MBuP8zUSqVmDhxot2YrL83xcXFyMnJwb333ovS0lJcvHgRAHDs2DHk5uZi6tSpot4Cjz/+OIKCgkTnW7NmDZo3b45mzZqJxnXfffcBQIW/K3PmzMHKlSvRvn17bN26FW+//TY6duyIDh06OO1A7sidvN/yuPr+3Pl9GTduHLRaraix4KpVq2AwGERzwB3Jzc0FALufA//c1q1bRb9vI0eOBMMwWL16td3+p0+fxpkzZ+x+P3NycrB161a7/UtKShAWFoawsDAkJSXhrbfeQrdu3RyW8buCfw93o1cFIYTcbdRMjhBCPFznzp2xbt066HQ6nDp1CuvXr8fChQvxyCOP4OTJk2jRokW5x/OBGi8gIAAAEBMTY7c9Pz/f7vjGjRvbbWvSpInDD+68K1eugGVZh8cCgFwuL3fM1sLCwtCvXz+sXLkSpaWlMBqNojnk1m7cuIHo6Gj4+fmJtjdv3lx4njd69Gi89dZbuHXrFho0aIBdu3YhKyurwnJrnu33lQ8a8vPz4e/vjxs3bkAikSAhIUG0X1JSkkvnB7j55AkJCVAqlbh69SoAIDExESqVCitWrMCHH34ovJcNGzbg4MGD6N69O65du4bjx4+LupC7+zNp0KABFAqF3X7nzp3DzJkz8e+//woXJXiFhYUALN9n2/cqk8lEc7f5cV24cAFhYWEOx+VKQ7ixY8di7NixKCoqwuHDh7F06VKsXLkSw4YNw9mzZ11qCHgn77c8rr4/d35fmjVrhs6dO2PFihXCBbcVK1aga9euLv9+WV/U4a1atQp6vR7t27cXft8A7uLeihUr8Pzzz4v2X758OXx8fNCoUSNhfy8vL6FbvG3ZvpeXFzZt2gSAuzCSkJCAhg0bujTe8t6D9YVIQgipKyhQJ4SQWkKhUKBz587o3LkzmjRpgokTJ2LNmjWYNWtWucdJpVKXtzv68F4ZJpNJWIPZ0es4Wru5PI899himTp2KjIwMDB482GFzPXeNHj0aM2bMwJo1a/DSSy9h9erVCAgIwKBBg1w63tn3taq+h0VFRdi0aRM0Go3D4HrlypX44IMPwDCMMHd99erV6N69O1avXg2JRIJHH31U2N/dn4mjqoKCggL07t0b/v7+eO+995CYmAgvLy+cOHECb7zxBkwmk9vv02QyoXXr1vjss88cPm97Qak8/v7+6N+/P/r37w+5XI5ly5bh8OHD6N27d4XHVtf7rcr3Z23cuHH4v//7P6SlpUGr1eLQoUP4+uuvKzyOnwuen59vFyTzc8udNee7fv260LiQZVn8+uuvKCkpcXixMCsrC2q1WvR7JZVKnTaxqwz+wmJoaGiVnZMQQjwFBeqEEFIL8Z2809PTq/21rly5Yrft8uXLdplRa4mJiWBZFgkJCWjSpMkdj+Ghhx7C008/jUOHDonK1W3FxcVh+/btKC4uFmXV+RLluLg4YVtCQgK6dOmCVatW4YUXXsC6deswYsSIKlvmLi4uDiaTCcnJyaJA2zpTWZ5169ZBo9Hg22+/tQtELl26hJkzZ2L//v3o2bOn0MxrzZo1+Oyzz7Bq1Srce++9ouWuquJnsmvXLuTm5mLdunWiRmzJycmi/fjv89WrV0Xd9Q0GA1JSUtCmTRvRuE6dOoX777+/SjOjnTp1wrJly4R/I5U5t6vvt7zzu/r+3P19GTNmDF555RX8+uuvKCsrg1wud6kapFmzZsJ7aN26teg9HThwAC+88ILdhQ2TyYQnn3wSK1euxMyZMwEAu3fvRlpaGt577z2hYoWXn5+Pp556Chs2bKiwFP9OJCcnIzQ01Gm1AiGE1GY0R50QQjzYzp07HWZo+fnhTZs2rfYxbNiwAbdu3RIeHzlyBIcPH8bgwYOdHvPwww9DKpVizpw5duNnWVaYJ+sqX19ffPvtt5g9ezaGDRvmdL8hQ4bAaDTaZRYXLlwIhmHsxjx69GgcOnQIP/30E3Jyclwue3fFwIEDAQDffPONaPtXX33l0vHLly9Ho0aN8Mwzz+CRRx4RfU2fPh2+vr6i7tqjR4/G7du38eOPP+LUqVN276UqfiZ8Jt76eJ1OZ/ceO3XqhJCQECxatAgGg0HYvmLFCrvpFaNGjcKtW7ewaNEiu9crKytDSUmJ0/GUlpY6XYqM70fA/xvh1wF3dcUBwPX3y5/fUSm8q+/P3d+X0NBQDB48GMuXL8eKFSswaNAglzLLHTt2hEKhwLFjx0Tb+d+l119/3e73bdSoUejdu7fo940ve3/ttdfs9p86dSoaN27sVvf3yjh+/Hi5He4JIaQ2o4w6IYR4sGnTpqG0tBQPPfQQmjVrBp1OhwMHDmDVqlWIj4932PyqqiUlJaFnz5549tlnodVq8fnnnyMkJASvv/6602MSExMxd+5czJgxAykpKRgxYgT8/PyQnJyM9evX46mnnsL06dPdGsf48eMr3GfYsGHo27cv3n77baSkpKBt27bYtm0bNm7ciJdeegmJiYmi/UeNGoXp06dj+vTpCA4OrtKy3I4dO2LkyJH4/PPPkZubi65du2L37t24fPkygPIzvLdv38bOnTvtmuLxlEolBg4ciDVr1uDLL7+EXC7HkCFD4Ofnh+nTp0MqlWLkyJGiY6riZ9K9e3cEBQVh/PjxePHFF8EwDH755Re7wF+hUGD27NmYNm0a7rvvPowaNQopKSlYunQpEhMTRe/9ySefxOrVq/HMM89g586d6NGjB4xGIy5evIjVq1dj69atdmvB80pLS9G9e3d07doVgwYNQkxMDAoKCrBhwwbs3bsXI0aMQPv27YX3HxgYiO+++w5+fn7w8fHBPffcYzcnvDLvF+B+3qtWrcIrr7yCzp07w9fXF8OGDXP5/VXm92XcuHFCv4b333+/3J8dz8vLCwMGDMD27duFJesALlBv166d01L84cOHY9q0aThx4gRatmyJ33//Hf3793c6/3/48OH44osvkJWVJaxn747PPvsMKpVKtE0ikQjr22dlZeH06dN28+YJIaTOuKs95gkhhLhl8+bN7KRJk9hmzZqxvr6+rEKhYJOSkthp06bZLUnkbHm2o0ePivZztvwRv3wSj1+ebf78+eynn37KxsTEsEqlkr333nvZU6dOOTynrd9//53t2bMn6+Pjw/r4+LDNmjVjn3/+efbSpUvlvm9nY7dluzwby7JscXEx+/LLL7PR0dGsXC5nGzduzM6fP1+0RJ21Hj16sADYKVOmOHweTpZns/3+8WNOTk4WtpWUlLDPP/88GxwczPr6+rIjRowQlob7+OOPnb6vTz/9lAXA7tixw+k+/FJnGzduFLY9/vjjLAC2X79+To9z5WfSu3dvtmXLlg6P379/P9u1a1fW29ubjY6OFpYMBMDu3LlTtO+XX37JxsXFsUqlku3SpQu7f/9+tmPHjuygQYNE++l0OvaTTz5hW7ZsySqVSjYoKIjt2LEjO2fOHLawsNDpe9Hr9eyiRYvYESNGCK+jUqnY9u3bs/Pnz2e1Wq1o/40bN7ItWrRgZTKZaKm2qni/arWafeyxx9jAwEAWgGipNlffn7u/L1qtlg0KCmIDAgLYsrIyp98nW+vWrWMZhmFTU1NZlrUsDffOO+84PSYlJUVYlvH3339nAbCLFy92uv+uXbtYAOwXX3zBsqz93xdn+H9fjr6kUqmw37fffsuqVCq2qKjI1bdNCCG1CsOyVdT1hhBCSJ2SkpKChIQEzJ8/3+3sN3Hu5MmTaN++PZYvX47HH3+8podzV5lMJoSFheHhhx92WApO7JX3+2IwGBAdHY1hw4Zh8eLFLp/TaDSiRYsWGDVqlMuZeE/Tvn179OnTBwsXLqzpoRBCSLWgOeqEEEJINSkrK7Pb9vnnn0MikYiak9VFGo3GrkT8559/Rl5eHvr06VMzg/Jw7v6+bNiwAdnZ2Rg3bpxbryOVSvHee+/hf//7H9RqdaXHW1O2bNmCK1euYMaMGTU9FEIIqTY0R50QQgipJvPmzcPx48fRt29fyGQybN68GZs3b8ZTTz1V6WW5aotDhw7h5ZdfxqOPPoqQkBCcOHECixcvRqtWrUTLxhELV39fDh8+jNOnT+P9999H+/btXVp+ztbo0aOrtHni3TRo0KBaeYGBEELcQYE6IYQQUk26d++Of/75B++//z7UajViY2Mxe/ZsvP322zU9tGoXHx+PmJgYfPnll8jLy0NwcDDGjRuHjz/+GAqFoqaH55Fc/X359ttvsXz5crRr1w5Lly6tmcESQgipVjRHnRBCCCGEEEII8SA0R50QQgghhBBCCPEgFKgTQgghhBBCCCEepN7NUTeZTLh9+zb8/PzAMExND4cQQgghhBBCSB3HsiyKi4sRHR0NiaTifHm9C9Rv375d5zvtEkIIIYQQQgjxPDdv3kTDhg0r3K/eBep+fn4AuG+Qv79/DY+GEEIIIYQQQkhdV1RUhJiYGCEerUi9C9T5cnd/f38K1AkhhBBCCCGE3DWuTr+mZnKEEEIIIYQQQogHoUCdEEIIIYQQQgjxIBSoE0IIIYQQQgghHqTezVF3BcuyMBgMMBqNNT0UQjyKVCqFTCajpQ0JIYQQQgipRhSo29DpdEhPT0dpaWlND4UQj6RSqRAVFQWFQlHTQyGEEEIIIaROokDdislkQnJyMqRSKaKjo6FQKChzSIgZy7LQ6XTIzs5GcnIyGjduDImEZs8QQgghhBBS1ShQt6LT6WAymRATEwOVSlXTwyHE43h7e0Mul+PGjRvQ6XTw8vKq6SERQgghhBBS51A6zAHKEhLiHP37IIQQQgghpHrRJ25CCCGEEEIIIcSDUKBOCCGEEEIIIYR4EArUicdaunQpAgMD78pr7dq1CwzDoKCgwCPGQwghhBBCCKm/KFCvIyZMmACGYYSvkJAQDBo0CKdPn67poVUrhmGwYcMGu+0TJkzAiBEjamQ8/Je/vz86d+6MjRs3unWOmho7IYQQQgghxDNQoF6HDBo0COnp6UhPT8eOHTsgk8kwdOjQmh5WvbNkyRKkp6fj2LFj6NGjBx555BGcOXPmro/DaDTCZDLd9dclhBBCCCGE3BkK1CvAsixKdYYa+WJZ1q2xKpVKREZGIjIyEu3atcObb76JmzdvIjs7G4Dj8u6TJ0+CYRikpKSgpKQE/v7+WLt2rei8GzZsgI+PD4qLix2+7pYtW9CzZ08EBgYiJCQEQ4cOxbVr14TnU1JSwDAM1q1bh759+0KlUqFt27Y4ePCg6DxLly5FbGwsVCoVHnroIeTm5rr1/suj1Wrx4osvIjw8HF5eXujZsyeOHj1a7jGVHU9gYCAiIyPRpEkTvP/++zAYDNi5c6fw/M2bNzFq1CgEBgYiODgYDz74IFJSUgAAs2fPxrJly7Bx40YhM79r164Kf3b8eAMDA/HHH3+gRYsWUCqVSE1NRXx8PD788ENMmjQJfn5+iI2NxQ8//CCcR6fT4YUXXkBUVBS8vLwQFxeHjz76yLVvLCGEEEIIIaTK0TrqFSjTG9Hi3a018trn3xsIlaJyPyK1Wo3ly5cjKSkJISEhLh3j4+ODMWPGYMmSJXjkkUeE7fxjPz8/h8eVlJTglVdeQZs2baBWq/Huu+/ioYcewsmTJ0VLeb399ttYsGABGjdujLfffhtjx47F1atXIZPJcPjwYUyePBkfffQRRowYgS1btmDWrFmVeu+OvP766/j999+xbNkyxMXFYd68eRg4cCCuXr2K4OBgu/2rYjwGgwGLFy8GACgUCgCAXq/HwIED0a1bN+zduxcymQxz584VpilMnz4dFy5cQFFREZYsWQIACA4OxoEDB1x6zdLSUnzyySf48ccfERISgvDwcADAp59+ivfffx9vvfUW1q5di2effRa9e/dG06ZN8eWXX+KPP/7A6tWrERsbi5s3b+LmzZtuvVdCCCGEEEJI1aFAvQ75888/4evrC4ALnqOiovDnn3+6te71lClT0L17d6SnpyMqKgpZWVn4+++/sX37dqfHjBw5UvT4p59+QlhYGM6fP49WrVoJ26dPn44HHngAADBnzhy0bNkSV69eRbNmzfDFF19g0KBBeP311wEATZo0wYEDB7Bly5YKxzx27FhIpVLRNq1WK7xWSUkJvv32WyxduhSDBw8GACxatAj//PMPFi9ejNdee83unFUxnrKyMphMJsTHx2PUqFEAgFWrVsFkMuHHH38EwzAAuAshgYGB2LVrFwYMGABvb29otVpERkZW+Fq29Ho9vvnmG7Rt21a0fciQIXjuuecAAG+88QYWLlyInTt3omnTpkhNTUXjxo3Rs2dPMAyDuLg4t1+XEEIIIYQQUnUoUK+At1yK8+8NrLHXdkffvn3x7bffAgDy8/PxzTffYPDgwThy5IjLwVeXLl3QsmVLLFu2DG+++SaWL1+OuLg49OrVy+kxV65cwbvvvovDhw8jJydHmBedmpoqCtTbtGkj3I+KigIAZGVloVmzZrhw4QIeeugh0Xm7devmUmC8cOFC9OvXT7TtjTfegNFoBABcu3YNer0ePXr0EJ6Xy+Xo0qULLly44PCcVTGe69ev4+WXX8aXX34pZO1PnTqFq1ev2lUnaDQa0XSBylIoFKLvM896G8MwiIyMRFZWFgCueV3//v3RtGlTDBo0CEOHDsWAAQPueCyEEEIIIYTcCY3eiPPpRWgfEygkueoLCtQrwDBMpcvP7zYfHx8kJSUJj3/88UcEBARg0aJFmDt3rpBZt577rtfr7c4zZcoU/O9//8Obb76JJUuWYOLEieX+wxg2bBji4uKwaNEiREdHw2QyoVWrVtDpdKL95HK5cJ8/X1U0O4uMjBS9bwDw8/Mrd6m16sSPJykpCUuWLMGQIUNw/vx5hIeHQ61Wo2PHjlixYoXdcWFhYU7P6erPztvb2+HPyvp7D3Dff/5736FDByQnJ2Pz5s3Yvn07Ro0ahX79+tn1KiCEEEIIIeRuenfjWaw+lob5j7TBo51iano4dxU1k6vDGIaBRCJBWVkZAEsgmJ6eLuxz8uRJu+OeeOIJ3LhxA19++SXOnz+P8ePHO32N3NxcXLp0CTNnzsT999+P5s2bIz8/3+2xNm/eHIcPHxZtO3TokNvncSQxMREKhQL79+8Xtun1ehw9ehQtWrSo1vF06dIFHTt2xAcffACAC4qvXLmC8PBwIZjnvwICAgBwWXG+GoDn6s+usvz9/TF69GgsWrQIq1atwu+//468vLwqOz8hhBBCCCHuyC7WYvWxNADAvK2Xang0dx8F6nWIVqtFRkYGMjIycOHCBUybNg1qtRrDhg0DACQlJSEmJgazZ8/GlStX8Ndff+HTTz+1O09QUBAefvhhvPbaaxgwYAAaNmzo9DWDgoIQEhKCH374AVevXsW///6LV155xe2xv/jii9iyZQsWLFiAK1eu4Ouvv3apzNwVPj4+ePbZZ/Haa69hy5YtOH/+PKZOnYrS0lJMnjy52sfz0ksv4fvvv8etW7fw+OOPIzQ0FA8++CD27t2L5ORk7Nq1Cy+++CLS0rg/RPHx8Th9+jQuXbqEnJwc6PV6l392lfHZZ5/h119/xcWLF3H58mWsWbMGkZGRCAwMrJLzE0IIIYQQ4q7VxyzNjfXG+rfkMAXqdciWLVsQFRWFqKgo3HPPPTh69CjWrFmDPn36AODKn/mArE2bNvjkk08wd+5ch+eaPHkydDodJk2aVO5rSiQS/Pbbbzh+/DhatWqFl19+GfPnz3d77F27dsWiRYvwxRdfoG3btti2bRtmzpzp9nmc+fjjjzFy5Eg8+eST6NChA65evYqtW7ciKCio2sczaNAgJCQk4IMPPoBKpcKePXsQGxuLhx9+GM2bN8fkyZOh0Wjg7+8PAJg6dSqaNm2KTp06ISwsDPv373frZ+cuPz8/zJs3D506dULnzp2RkpKCv//+260mhIQQQgghxHNdSC/CoetVt/RxdTOZWKw8nCo8LtMZy9m7bmJYdxfrruWKiooQEBCAwsJCITDiaTQaJCcnIyEhAV5eXjU0Qs/wyy+/4OWXX8bt27eFpcUIAejfCSGEEEJIbZKr1qLjXG4FpxPv9Eewj+d/tk8vLEO3j/4Vbbv+4RBIJLW3oVx5cagjlDIjIqWlpbh27Ro+/vhjPP300xSkE0IIIYQQUottOnVbuJ+r1tbgSFx3KaMYAOCjsKyCpTHUr6w6BepEZN68eWjWrBkiIyMxY8aMmh4OIYQQQggh5A5cyiwW7mv0nj/Xe+XhVExYchQAEBFgqd4s1Rmx6mgqXll1EjqD57+PO0WBOhGZPXs29Ho9duzYAV9f35oeDiGEEEIIIaQSjCYWhaV6XMsqEbaV6T0jK200sbhdUObwubfWnxHuB6sU8JJzIevR5Dy88fsZrPvvFo6l1P3ViWrHAuGEEEIIIYQQQlw2YckR7L2SI9rmKYH6a2tPYd2JW1g8vhPubx7hdL9AlQLecik0ehNWWXWBLyzT341h1ijKqBNCCCGEEEJIHWMbpAOe0z193YlbAIBvd12ze46x6hcXqJLDW87NU991KVvYXqw1VO8APQAF6oQQQgghhBBSD2g9rCFbiK9942q51RLBgd5yeFs1lOMVayhQJ4QQQgghhBBSB3hCRt1gtDSCC/VV2j0vk1pS6j0ahzoJ1Kn0nRBCCCGEEEJILWIysQ63e8Ic9YwijXDf31sues5kYmEwcmMf3y0OfZqECaXvAODnxbVYU1NGnRBCCCGEEEJIbeIsIPeEQP12gSVQ19sss3aroAw6owlyKYN3hrYAwzBgYMmwD24VCYBK3wkhhBBCCCGE1DIlOnEg2zTCDwCg8YDSd+tl2bQ2gfrVLDUAoFGoL2RSLlTtFB8EAGgQ6I2W0QEAgGItlb6TWiI7OxvPPvssYmNjoVQqERkZiYEDB2L//v3CPvHx8WAYBr/99pvd8S1btgTDMFi6dKndcx999BGkUinmz5/v0lh2796N++67D8HBwVCpVGjcuDHGjx8PnU4HAFi6dCkCAwMr9T4dmT17Ntq1a1dl57tT/PeZYRioVCq0bt0aP/74o1vn8LT3RAghhBBCao9SrTggjwlWAajajPrS/cmY++d5sKzjMntnblkF6jqrQF2tNeByZjEAICnCV9j+6oCm+GRka3zzeAeh9J0y6qTWGDlyJP777z8sW7YMly9fxh9//IE+ffogNzdXtF9MTAyWLFki2nbo0CFkZGTAx8fH4bl/+uknvP766/jpp58qHMf58+cxaNAgdOrUCXv27MGZM2fw1VdfQaFQwGh07w8DH9jXRu+99x7S09Nx9uxZPPHEE5g6dSo2b95818fBsiwMhrr/h4wQQgghhFjYZtSjArwAVG2gPnvTefy4L1m0bJorboky6tx4zt4qRKtZW/HR5osAgMbhlkBdKmEwunMs2sYEwldJgTrhsSygK6mZLxevThUUFGDv3r345JNP0LdvX8TFxaFLly6YMWMGhg8fLtr38ccfx+7du3Hz5k1h208//YTHH38cMpnM7ty7d+9GWVkZ3nvvPRQVFeHAgQPljmXbtm2IjIzEvHnz0KpVKyQmJmLQoEFYtGgRvL29sWvXLkycOBGFhYVC1nn27NkAuEz0+++/j3HjxsHf3x9PPfUUAOCNN95AkyZNoFKp0KhRI7zzzjvQ67lyl6VLl2LOnDk4deqUcD6+KqCgoABTpkxBWFgY/P39cd999+HUqVOi8c6dOxfh4eHw8/PDlClT8OabbwqZ7D179kAulyMjI0N0zEsvvYR777233O+Dn58fIiMj0ahRI7zxxhsIDg7GP//8Izxf3ticvaeUlBQwDIOTJ0+KzsMwDHbt2gUA2LVrFxiGwebNm9GxY0colUrs27cPffr0wYsvvojXX38dwcHBiIyMFL7vABfQz549W6jIiI6OxosvvljueySEEEIIIZ6pxCajHuHPdVcv05kc7e42jVXAfyg5t5w9gR0XMrHsQIqQeXdU+v7n6XTRMU3Mpfq2/Ly45nP1oeu7fWRGxPSlwIfRNfPab90GFI6z3NZ8fX3h6+uLDRs2oGvXrlAq7Zc54EVERGDgwIFYtmwZZs6cidLSUqxatQq7d+/Gzz//bLf/4sWLMXbsWMjlcowdOxaLFy9G9+7dnZ4/MjIS6enp2LNnD3r16mX3fPfu3fH555/j3XffxaVLl4Tx8xYsWIB3330Xs2bNErb5+flh6dKliI6OxpkzZzB16lT4+fnh9ddfx+jRo3H27Fls2bIF27dvBwAEBHBzVx599FF4e3tj8+bNCAgIwPfff4/7778fly9fRnBwMFasWIEPPvgA33zzDXr06IHffvsNn376KRISEgAAvXr1QqNGjfDLL7/gtddeAwDo9XqsWLEC8+bNc/o9sGYymbB+/Xrk5+dDobCsE1ne2Jy9p8zMTJdeEwDefPNNLFiwAI0aNUJQEDevZ9myZXjllVdw+PBhHDx4EBMmTECPHj3Qv39//P7771i4cCF+++03tGzZEhkZGXYXNQghhBBCSO2gtpnDzQe4mirKqBdZBco380rL3XfysmMAgIZB3ri/eYTDQN3fWxyWWmfUrQld37WUUSe1gEwmw9KlS7Fs2TIEBgaiR48eeOutt3D69GmH+0+aNAlLly4Fy7JYu3YtEhMTHc6HLioqwtq1a/HEE08AAJ544gmsXr0aarXa6VgeffRRjB07Fr1790ZUVBQeeughfP311ygqKgIAKBQKBAQEgGEYREZGIjIyUhSo33fffXj11VeRmJiIxMREAMDMmTPRvXt3xMfHY9iwYZg+fTpWr14NAPD29oavry9kMplwPm9vb+zbtw9HjhzBmjVr0KlTJzRu3BgLFixAYGAg1q5dCwD46quvMHnyZEycOBFNmjTBu+++i9atW4vez+TJk0VTBTZt2gSNRoNRo0aV+zN544034OvrC6VSiUceeQRBQUGYMmUKAFQ4NmfvyR3vvfce+vfvj8TERAQHBwMA2rRpg1mzZqFx48YYN24cOnXqhB07dgAAUlNTERkZiX79+iE2NhZdunTB1KlT3XpNQgghhBDiGS6kF4se80ucVVWg/sfJ28L9W/ll5expse6/W2BZVrQ/P0e9xCbwjgtxnKysT3PUKaNeEbmKy2zX1Gu7aOTIkXjggQewd+9eHDp0CJs3b8a8efPw448/YsKECaJ9H3jgATz99NPYs2cPfvrpJ0yaNMnhOX/99VckJiaibdu2AIB27dohLi4Oq1atwuTJkx0eI5VKsWTJEsydOxf//vsvDh8+jA8//BCffPIJjhw5gqioqHLfR6dOney2rVq1Cl9++SWuXbsGtVoNg8EAf3//cs9z6tQpqNVqhISEiLaXlZXh2rVrAIBLly7hueeeEz3fpUsX/Pvvv8LjCRMmYObMmTh06BC6du2KpUuXYtSoUU7n8/Nee+01TJgwAenp6Xjttdfw3HPPISkpyeWx3SlH38c2bdqIHkdFRSErKwsAd4Hl888/R6NGjTBo0CAMGTIEw4YNczgdghBCCCGEeLaD18Tl6Eo5l5+tijnqBqMJc/+6IDxOczFQ33YuA8k5JSix6jzPz1G3LdVXyBznk/nKgFKdEQajCSYWOHYjD13ig4Uu8XUFfQqvCMO4VH7uCby8vNC/f3/0798f77zzDqZMmYJZs2bZBeoymQxPPvkkZs2ahcOHD2P9+vUOz7d48WKcO3dOFKyZTCb89NNPTgN1XoMGDfDkk0/iySefxPvvv48mTZrgu+++w5w5c8o9zjYAPnjwIB5//HHMmTMHAwcOREBAgFCiXh61Wo2oqChh7rY1dzrOh4eHY9iwYViyZAkSEhKwefNmh+e0FRoaiqSkJCQlJWHNmjVo3bo1OnXqhBYtWlR6bBIJ98fHurMmP1fflqMLCXK5XPSYYRiYTNxVzJiYGFy6dAnbt2/HP//8g+eeew7z58/H7t277Y4jhBBCCCGe62ZeKfZfyxFt4zPqVRGo77sqPnduiQ6lOgNUCvvQ0mSy+txqZHHfp7tFz/Ol79al7NHmxneO8M3kAC64/+P0bbyz4SwGtYzEd092dO+NeDgK1OuwFi1aYMOGDQ6fmzRpEhYsWIDRo0cLc5itnTlzBseOHcOuXbuE0mkAyMvLQ58+fXDx4kU0a9bMpXEEBQUhKioKJSUlAOBWB/gDBw4gLi4Ob7/9trDtxo0bon0cna9Dhw7IyMiATCZDfHy8w3M3bdoUR48exbhx44RtR48etdtvypQpGDt2LBo2bIjExET06NHDpbHzYmJiMHr0aMyYMQMbN250aWyO3lNYWBgAID09He3btwcAUWO5O+Xt7Y1hw4Zh2LBheP7559GsWTOcOXMGHTp0qLLXIIQQQggh1Wv54RtgWaB7YgiGtY1Gt0YhuJnPzSMvu4N11I0mFt/tvoYF2y7ZPXcrvwyNHTSA0xkdN697pGNDrD2ehtNphRj30xEhoI8J9saKyV2djkEhk0Apk0BrMKFIo8fKw6kAgC3nMqDRG+FlviBRF9RofcC3336LNm3awN/fH/7+/ujWrVuFS1itWbMGzZo1g5eXF1q3bo2///77Lo3Wc+Xm5uK+++7D8uXLcfr0aSQnJ2PNmjWYN28eHnzwQYfHNG/eHDk5OXZLtfEWL16MLl26oFevXmjVqpXw1atXL3Tu3BmLFy92eNz333+PZ599Ftu2bcO1a9dw7tw5vPHGGzh37hyGDRsGgOvurlarsWPHDuTk5KC01HkDisaNGyM1NRW//fYbrl27hi+//NKuAiA+Ph7Jyck4efIkcnJyoNVq0a9fP3Tr1g0jRozAtm3bkJKSggMHDuDtt9/GsWNcQ4tp06Zh8eLFWLZsGa5cuYK5c+fi9OnTYBhGdP6BAwfC398fc+fOxcSJE52OtTz/93//h02bNuHYsWMujc3Re/L29kbXrl3x8ccf48KFC9i9ezdmzpxZqfHYWrp0KRYvXoyzZ8/i+vXrWL58Oby9vREXF1cl5yeEEEIIIdVPozdi9VFudaeJPRIwtkss4kN97niO+s28UnSc+w/mb73kcGEqZ+XveieBetuYQOH+nsvZQpb+lf5NEBtS/vRf63nqbRsGCNutm9TVBTUaqDds2BAff/wxjh8/jmPHjuG+++7Dgw8+iHPnzjnc/8CBAxg7diwmT56M//77DyNGjMCIESNw9uzZuzxyz+Lr64t77rkHCxcuFALrd955B1OnTsXXX3/t9LiQkBCHTcp0Oh2WL1+OkSNHOjxu5MiR+Pnnnx2WXXfp0gVqtRrPPPMMWrZsid69e+PQoUPYsGEDevfuDYDr/P7MM89g9OjRCAsLK7eD+vDhw/Hyyy/jhRdeQLt27XDgwAG88847duMZNGgQ+vbti7CwMPz6669gGAZ///03evXqJTSLGzNmDG7cuIGIiAgA3FJ1M2bMwPTp09GhQwckJydjwoQJ8PISl9tIJBJMmDABRqNRlH13R4sWLTBgwAC8++67Lo3N0XsCuKX0DAYDOnbsiJdeeglz586t1HhsBQYGYtGiRejRowfatGmD7du3Y9OmTXbz6AkhhBBCiOc6d7sI+aV6hPoqcF+zcGG7VyVL30t1BgxYuBv3f7YbBaWWz/4LR7dFoMoyPZLP2Nvim8UBlk7uSpkELaIc95vycVA+b4ufp67WGoQLD28PaY5GYY47xddWDMu6uFj3XRIcHIz58+c7nAM9evRolJSU4M8//xS2de3aFe3atcN3333n0vmLiooQEBCAwsJCu4ZkGo0GycnJSEhIsAvWSP3Qv39/REZG4pdffhFtnzx5MrKzs/HHH3/U0Mg8B/07IYQQQgjxTFvPZeDpX46jfWwg1j9nma55LVuN+z/dDX8vGU7PHujy+Q5ey8XYRYfstp+aNQD+XjK8/+cF/LQ/GU/1aoS3hjS32y+jUIOuH+2ATMLg6odDkF5YBgnDINxPiXbv/YPCMnHib+XUe9A9MbTcMQ3/eh9OpxVi8fhOWHX0Jradz8TcEa3wRFfPrgQtLw51xGNa4xmNRvz2228oKSlBt27dHO5z8OBB9OvXT7Rt4MCBOHjwoNPzarVaFBUVib4IAYDS0lJ89tlnOHfuHC5evIhZs2Zh+/btGD9+vLBPYWEh9u3bh5UrV2LatGk1OFpCCCGEEELKl6vWAQBCfJSi7ZbSdxNSckowf+tF5JXoKjzf9RxuWWYfhRReckvo6O8lA8MwaBjEVeemVZBR57u4RwV4I8LfCwzDYN8bfe32t24W5wy/T7HGIFQIqBR1Z246r8YD9TNnzgjrTT/zzDNYv349WrRo4XDfjIwMoTSYFxERgYyMDKfn/+ijjxAQECB8xcTEVOn4Se1lXYLesWNHbNq0Cb///rvoYtCDDz6IAQMG4JlnnkH//v1rcLSEEEIIIYSUL1etBQCE+ipE2/lAXWc0YdAXe/C/ndcwb8vFCs93PZtrBj2mSyyGtokWtvM9nWKCufnkzuao883k5A6WTvPzkmP55HtE23xcCNSFOepaA0p1dTdQr/Gu702bNsXJkydRWFiItWvXYvz48di9e7fTYN1dM2bMwCuvvCI8LioqomCdAOC6nG/fvr3cfVxZio0QQgghhBBPkGvOkgf72ATqVoGsRs8Fz5cyiys8X3ohF4A3DPJGozAfrD2eJnreklEvv5mcs3XRGwSJ+2X5uRSoc3PUizV6IVD3dmFue21T4+9IoVAgKSkJANCxY0ccPXoUX3zxBb7//nu7fSMjI5GZmSnalpmZicjISKfnVyqVUCqVTp8nhBBCCCGEkLogx5xRD/EVxz9KmQQB3nLRnPAkF5qv8fsHqRQY1jYaRWUGdE+0NBvmA+28Eh1KtAa7jLhQ+u4gow4AUTZrpruSUReVvuu49dfrYka9xkvfbZlMJmi1WofPdevWDTt27BBt++eff5zOaa8sD+uvR4hHoX8fhBBCCCGeiZ+jblv6zjAMfp3aFdMHNBG2uRIU853eA7zlkEoYPNsnUbS0mr+XHAHeXIbbUVZdL5S+M3bPAbBb99yVgNvfXPp+6HouUnK5ufHedWj9dF6NZtRnzJiBwYMHIzY2FsXFxVi5ciV27dqFrVu3AgDGjRuHBg0a4KOPPgLArUXdu3dvfPrpp3jggQfw22+/4dixY/jhhx+qZDxyOfdLVlpa6nDZMkIIhHXv+X8vhBBCCCHEM+SWmDPqPvYVxS2i/dEi2h8mFvjsn8vQGhyvcW6Nz6gHqJx/7msY5I3CMj3S8kvRNNIPBqMJe65ko1mkv10zOUesM/383Pfy+JoD9f9SC4Rtrlx0qG1q9B1lZWVh3LhxSE9PR0BAANq0aYOtW7cKTbtSU1MhkVh+qN27d8fKlSsxc+ZMvPXWW2jcuDE2bNiAVq1aVcl4pFIpAgMDkZWVBQBQqVQu/bIQUh+wLIvS0lJkZWUhMDAQUmndu3JJCCGEEFKbCV3fbTLq1pTmoFlrqHhN9UJzRj3Q23mgHhOkwrnbRZi/9RK6NgrBh39fwIrDqYjwV+LtB7i+Y46ayfECVXK7ZdrKEx1on1Cti6XvNRqoL168uNznHTXyevTRR/Hoo49W04ggzHfng3VCiFhgYGC5fSEIIYQQQsjdZzSxyCt1J1Dnst1/nLqNLWfTseDRtlBZNWUzGE0o1nJzwAPKCdT5hnIXM4rx8eaLOJVWAADILNJi96VsABVn1N0xsGUk2jQMwOm0QgBAXIgK4X51rydZ3asRuEMMwyAqKgrh4eHQ612/skNIfSCXyymTTgghhBDigfJLdeBbCQWrygnUzfO5tebu7y/++h8AoGV0AJ7vmyTsV2CV5XYlUAeANcdvisru+fXVy8uouxuoy6USfDaqHfp9thsSBlj1VLc6WQVNgboTUqmUAhJCCCGEEEJIrZBZpAHALc0mKycw9pI7Ln3PLhY39N52jlttKy5EVe75GgapRI+zijXCfb7BnLOu7wDwf/c3xt4rOXiofQOn+9hKCvfFXy/2REGpHpE2nePrCgrUCSGEEEIIIaSWu5ZdAgBICPUpdz+lzJxRt2kmJ7HJSp+8mQ8AeLBtdLnni/C3BMr8Gu28WwXmQL2c0vdO8cE48vb9DhvgladldIBb+9c2Hrc8GyGEEEIIIYQQ91zLUgOoeH106znqRpNl2V3b6nG1eX56aAXzvxtH+FbYzM3Z8my8cD8vSCV1r3z9TlCgTgghhBBCCCG1XGoeNx88IczFjLreCLXGIGxfvC8ZJqvAvdj8nG8FS595yaU4NrMfDs24H090jXW4T11cPq26UaBOCCGEEEIIIbUcv8RZeY3kAEBpnqOuM5hQpBE3z952PlO4z2fUKwrUAUClkCEywAszBjdHj6QQPNhOXC7vR4G62+g7RgghhBBCCCG1XLE56PbzKj/Esy59t12/PFttaSjHZ9t9KzifNR+lDCumdEVeiQ4bT94WbSfuoYw6IYQQQgghhNRyxS4G1pZmckbkm9dd53nLLXPN+Yy6n9K95dMAIEglF81LdyfYJxwK1AkhhBBCCCGkluMDdT+v8gNrvvFbjlqH73ZfEz2ntiqFr0xGnccwDML9LN3gXSmfJ2IUqBNCCCGEEEJILVfkYul7dKC3cH//1VzRc3wW3WRioda5PkfdkTCrbvE+CgrU3UWBOiGEEEIIIYTUYiYTaylVryBQt10Gbe0z3TClZwIAS1Y+t0QH1twAvrKBeoS/JVCn0nf3UaBOCCGEEEIIIbWA3mhCdrHWbnuJziAE1v4VlL4DwKePtkVssAqbXuiJTvHBQrl8kTlQX3H4BgCgRZQ/vCtYI90ZKn2/MxSoE0IIIYQQQkgt8NKqk7jnw+24lq0WbecDbJmEEbq6i+z8CPjzZfDR/MiODbHn9b5o3TAAgCXjXazRQ601YMn+FADAc30TKz3WQJXlgoErFw+IGAXqhBBCCCGEEFILHL6eCxMLnLtdJNqeY86yh/kpwTDi0nakHgJ2fwwc+wnIT3F4Xj8hUDdgw3+3UFimR0KoDwa3iqr0WEN8LOu5N4/yq/R56iuqQSCEEEIIIYQQD1ek0SNHzS2nlmNT/p5ZpAEAhPt72R2HK/9Y7utKHJ7b3yqjnppXCgC4v1m43Xx2d4zuHIvrOSUY3jYaMinlh91FgTohhBBCCCGEeLiUHEuQnaO2CdTNgXu4Vad1QdZ5y319qcNz83PUizUGFJZy3eOtS9crw1shxXsPtrqjc9RnFKgTQgghhBBCiIdLLidQzzZn1K07rePIIuDCH0DWBcs2Jxl1vvRdrTUIy7z5e9O88ppEgTohhBBCCCGEeLDr2WrM3HBWeMyXwANcSfzlTK65XIRVp3X8Pd3+RPoyh+e3zqjzgXoABeo1igJ1QgghhBBCCPFgD3y5D2V6o/A415xR1xlM6PbhDpTouOciHM1Rt+a09N2SUc8vMWfUqVN7jaJZ/YQQQgghhBDiwayDdMCSUT9zq1AI0gEgzN/BHHVrFZS+A8DtQi7r7u9NOd2aRIE6IYQQQgghhHioXJv56ACQrdaCZVmcuJEv2i6UvptMjk/mpPRdKZNCYe7MXlBKpe+egAJ1QgghhBBCCPFQtws0dtt0BhOKtQZk2wTxQjM5vePMudPtEGfVASp9r2kUqBNCCCGEEEKIh9IYxGXvvkouoM4p1kKtNYieC1IpuDtatfgkUW25W53jOeqAg0CdMuo1igJ1QgghhBBCCPFQGqv56Sum3INQXy4Yz1HrUGoTqEskDHdHWyw+SVA8d+ukmRxg6fwOAAqZBF5yaeUHTe4YBeqEEEIIIYQQ4qE0em6+eduYQPRICkWoL1fenqPWQq01Oj5IZxOoB8Rwt+UG6paMOpW91zwK1AkhhBBCCCHEQ/EZdS8ZF7pZB+qlOoPjg2xL330juFsXS9+p43vNo0CdEEIIIYQQQjyUEKibS9FDrErfS7ROAvWi2+LHCh/u1sXSd+r4XvMoUCeEEEIIIYQQD6UxcKXvXnL7jLr1GurLJ99jOShln/gkLgXqVPruSaimgRBCCCGEEEI8lNYmox7qZw7Ui7VCRv2PF3qgTcNA7gBNEXDhD/FJ5CrutrzSd6V16TsF6jWNAnVCCCGEEEII8VBaPqMu4wL1MKH03RKoqxRWYd2JnwFtEaAKAaLbA+2ftATq5a6jbgnOg1QUqNc0CtQJIYQQQgghxENZ5qiLS99vF2iEddT9+bJ1ox44/B13//53gY4TuPs3DnC35WTUA62C82AfRRWNnlQWBeqEEEIIIYQQ4qFsm8nxgXpGkQYAEOKjQJi5HB7pp4HCm4BXINBmjOUkQka9zOnrRPh7CfcpUK951EyOEEIIIYQQQjwUv466kl+ejQ/KzdrHBoJhGO5BcTp3G5IEyC2Btyul79aBepCKAvWaRoE6IYQQQgghhHgoPqOuNGfUfRRS0fOTeiZYHqgzuVt+3XSewqqZXNoxYPV4ID9FtEuEv+UCgK8XFV7XNPoJEEIIIYQQQoiHsizPxgXoDMOgQ2wg/rtZgM9Ht0P3xFDLzuos7tY3XHwSPqNu0gM/3s/dZ03A6F+EXazXTldIPSSfy7LcvHtZ/cvwU6BOCCGEEEIIIR5Kbw7UFVJG2LZsUhcUlunRMEgl3tlpRt3H/sRl+aKHDMNg2n1JuJRRjK6NQu543FVi7wJg54fAE78DiffV9GjuKgrUCSGEEEIIIcRDGVkWACCzynL7eclFy6kJSrK5W98w8XapAohqB6SftGwLbWJ3+KsDmro+sMxzgKYQiOvu+jHuKMkF/p3L3d/8JvDCkep5HQ/lITUNhBBCCCGEEEJsGU1coC6VMBXsCecZdYYBpmwH3kwFfMxBPHOHoeC33YElg4GMs3d2Hmf4ZeYAy/uqRyhQJ4QQQgghhBAPZeADdeYOAnUAkMoBrwCg67PmEztfqq3iQeks989vrPx5yjv/ke8tj/XO13+vqyhQJ4QQQgghhBAPZTLxpe8VBOos67yZnDWZN3er11R+UJoCy/2cy5U/jzNFt7iyep5RxzWVq0coUCeEEEIIIYQQD2Uwcc3kKix91xYDBnPw7VNeoG5ehs1wB4H6voWW+wU3Kn8eR3KuAj8P5+5bVwboSoCidCB5b9W+noeiQJ0QQgghhBBCPBQ/R11WUaBenMHdKvws66Y7Iucz6pUsfdeVAoe+sTzOvc5l893l7Jg1E4CCVO6+XxQgMfc/z7sOfNYMWDYUyDzv/uvVMhSoE0IIIYQQQoiH4ueoSyqao55zibsNaVT+fjIv84m17g+mJAfY8qZ4m7bQbqm3Ch1ZBMxPBNJP2T+XecZy3yfMsrTcYas56/nJ7r1eLUSBOiGEEEIIIYR4KJfnqPNZ5vCW5e/HZ9TdaSZnMgEHvuaC6xPL7J/Pu+76uQDg7+lAaS6wfU75+/mEAgpf7v7p3yzbywrce71aiNZRJ4QQQgghhBAPJXR9l1SQY829yt2GVbAWOp9Rd7WZ3IGvgCM/WMrRAUAZwGXSeXnXgYadXDufNUcl+lIF1zwOMAfqPvb7WDezq6Moo04IIYQQQgghHsro6vJsfPm5T2j5+wml7y5k1DPOAttmioN0AHh6FzBkAZB4H/fYnYy69QUCv2j756UKy/2mQwC5g2C+HmTUKVAnhBBCCCGEEA9lyahXEKjzy5l5BZa/n9yNOeqZZx1vD4wDukwF4u/lHrsTqFsH/bYZdb3Gsmb6sC+BuO6W0ncACEnibq2XbqujqPSdEEIIIYQQQjyUy3PUhUA9oPz9+HXUi9OBz1u7ds7OUwGdGjj1K/dYIuVug82N69wJ1K0bwdmW32edB1gToAoBOozjtknlludbPgzsmVcvSt8pUCeEEEIIIYQQD+V+Rr2CQD2gAaD0B7RF9iXtziT0AtSZlkCdV6lAPcVy37b8PsPc8T2yNcCX+vebBay6CiTdDwTGcNvqQek7BeqEEEIIIYQQ4qFcnqPuaqCu9ANePCkOmMvjFQCEJgFGAzcPvlEfy3PBCdxtaS4XPHsHVny+PAcZ9fwU4OcRlmx7pFWmP7o98NIZLnA/v5HbRhl1QgghhBBCCCE1xWAyAaggo27QWrLTFQXqAOATwn25QyoDer8u3qb0A3zCgZIsLsj2bl/xeaxL3/kxn/xVvD2yrfgY/iIFP/++HsxRp2ZyhBBCCCGEEOKhjFyczs1RP7oYWDbcPlAVHjNcWfvd5G75u3Umn8+oyxTifSKdzJ3nM/b1oPSdAnVCCCGEEEII8VBGc0ZdJmGA/V8AybuB5D3indRZ3K0qGKhovfWqxgfqaycBNw6Wv6/J5HiOurZYvB/f3d2WkFEvcHOQtQ8F6oQQQgghhBDioYRmckaNpflbcYZ4p6Lb3K2/g3XJqxsfqAPA+qed71eWD/w0EDBYdXrnM+qaIvG+UicztPmyfoPGvmN8HUOBOiGEEEIIIYR4KH55Nq/CZADcfagzxTsV84F6g7s3MB7fUA6wZPYdWfc0kHaEux8Qy92mHQGS94pL+fvNdn4OpT8A83z1Oj5PnZrJEUIIIYQQQu7Yd7uvYeXhVMx7pA26NnKzURlxis+oKwuuWjZ6UkY9MNZy31AG/Pyg4/2u77Lcb/8EsOtD7v6yoRCC7yELgE6Tnb+WRMJl1TUF3JdfROXH7eEoUCeEEEIIIYTcEbXWgI83XwQALPznMlY93a2GR1R3GE0sWjPXEbxlpmWjdeY695olCK6JQD2smfixdUDuTMOONhvMlQK+4RXPsfcO5IL0Ot5QjgJ1QgghhBBCyB3JL9EJ9w8n5+HQ9Vy0jPaHn5e8BkdV+xVr9DCYWGzymil+Qm3OqOtKgK86WLbXROm7lz/wf6eA7EsVl6MXpgFRbYCE3k7O5cLScvw+dbyhHAXqhBBCCCGEVIEynRHeCmlND6NGFGn0osdjfjiE5lH+2Px/99bQiGq/lYdT8db6MxCyzdaKzXPUUw+Jt9dERh0AguK5L3e8ngzMSxBvc2VpOb7zex3PqFMzOUIIIYQQQu4Ay7JYsPUSWszaglVHU2t6ODWiqMxgt+1CehFY1kGQSVzCBelAQybH/smSLMBkBNKOibf71VCgXhmqYGDCX+JtrmTU+bXU63gzOQrUCSGEEEIIuQP/23kVX++8CpYFfjt6s6aHc1eZTCx2X85GRhG3HnbTCD/R844CeFKxy5mWdcVDYROQMhKANQElOdySZ9b8o+7C6KpQkE1G3aXS90DulkrfCSGEEEIIIY6wLItvdl0THl9ML4bBaIJMWj/yYSuOpOKdDWeFx1GBXugUH4QVh7nKgqxiDQJUlZunXqzRw1cpA8MwVTLW2uSZ5ceF+16MZf4/GvUBMs9zGXV1BqArFh+oFF8o8Xh+NhcWXCp9NwfzVPpOCCGEEEIIAbimafd/ugvztnAdzkt1RpTqjMLzZXojCsr0zg6vc5buTxY99veSY/bwlsLjjCJNpc6740ImWs/ehiX7U+5keLXW9ewS4b4XtAAA1r8B8Ngay5Jk6ixAW+zo8NpDIgFk3pbHMkXFx/Cl7zf2A7vnW74MunIPq20oUCeEEEIIIcRFyw6m4Fp2iZBF33qO676tlEngp+SKVQvrUaAe7CMOrPy9ZZBLJeiZFAoAWHGocnP23//zPADgPfNtfeYF8+9TYCwXyPpGco+LM2p/oA4AqhD39vc1X6hIPwnsnGv5MtatQJ1K3wkhhBBCCDE7dbMAjcJ8nC4rtuVshnDfYDThldWnAABagwlhfkoUaw31KlDPKtaKHof6KgEAozvHYN/VHOy9kg2TiYVE4l75urfCEqbsvpyN3k3C7nywtUSuWvw99TZn1Bm5OfPMB6rqDECrvptDqx4+IUBRmuv7t3iQWzu+NFe8XVK3Qtu69W4IIYQQQgippFM3C/Dg//ajZ1Iolk+5x+75q1lqXMywZDAPXBMHCgHecqTll9WbQN1kYpGWXybaFheiAgAMbhUJpUyCEp0RKblcGXdGoQbdzZn28rAsiyyrkvmt5zLqVaC+eJ9lOoGvUgZvvqRbzn1vhdL34kxxRn3A3Ls0wirm4+bPVukH9JtVPWPxIBSoE0IIIYQQAuB6Dped3Hc1B1ez1EgK9xU9fyJV3GH7z9O3RY8DzU3TCkvrR6A+adlRGE3i5ddig30AADKpBC2j/XEitQBjfjgkZN63v9ILSeHlNzy7ll2C3BJLGfPtgrJy9q5bWJbFH6e436uvH2uPG7mlyN1u/l7IvLhbvvRdnQHozBn1R5dxmebaaOCHwI0DwD1P1/RIPArNUSeEEEIIIQRAidbSFG7NMftl1s7fLhI95gMqAGjTMAAB3uZAvZ5k1HddyrbbxmfUAeCdoS0Q4a8UlccfTcm3O8bW/qvidcNv5defQP2/mwVIyy+Dj0KK+5tFoHWDAKGZHPjSd1EzOfPvZHgLoLZ2xw9rCryZCvSbXdMj8SgUqBNCCCGEEAKgVGdZ8/v3E2nQG02i58+niwN1jZ57fkS7aCwa1wkB3lxjtYJ6klG3tmRCZ3z3RAdhjjoAtI8NwraXemNM5xhhm+3FDkf4QP2Rjg0BALcKymCyydzXBVez1Pjfzqsos1o1YJP54k//FhHwVkhxb+NQ9IznqhSE0nd+jnp+iqX03ZX1xz2ZtHJL+NVlFKgTQgghhBACcUY9R63D59svQ6PntrEsiwvmQH1oG8vaz10bBePTUe0Q4e+FCH8uSK0PpdrWJe8MA/RtFo5BraLs9gtQyfHxyDaY/0gbABDmqztjMJpw8Do3939Upxj4KKQo1Rnx/l/nwbJ1K1h/6Jv9mL/1Er7eeQUA9zvGNysc2iYaAMAwDLrH8oE6X/rOZ9QzAdbErUXuG35Xx06qHwXqhBBCCCGEwJJRl0u5EuL/7byGz7dzQVRafhmKNQYopBIh0wsAX45pD6m5o3lCKBdQJVcQjNYmx2/kYf/VHGgNRtH2Eqvqg00v9KzwPA2CuLLtii5inLlViGKNAf5eMnSMC8JHI7kAf8n+FGy/kOXu8D1asYb7Hu69wlUQZBRpkF6ogVTCoId10z19KXcrNJOLFJ8ovmftLXsnTlGgTgghhBBCCIBScwnyA60tmeHvdnPrpfNl740jfNG7SRi+HNsee17ri3B/L2Hf+BBzoJ5TNwL17GItRn57EI//eBj3frITBvNUgG92XUWPj/4FAMgkDFpG+1d4rugAPlDXlJsZP2cuje8YFwSphMHwttF4uH0DAFwQX1fwlRoA9z0EgFM3uffXJMIP3gqpZWe9uQM+30yOn6vO6zOj2sZJag4F6oQQQgghhMASqLdqEIB+zbnyYobhyrz3XOYapzWP8gfDcAFkrFXjNACIDuQCqOxibZ0o0/77TLpwP6tYixOpBQCAeVsuoVjLZYN9lDIwLmRzIwO4ILNMbyx3Dj/fiC/cz3IBhL8YotYYHB5TG/FZdABQm7+Xp9IKAABtG9rMNzeYqxCsA/QeLwENOgHTTgAhidU4UlJTKFAnhBBCCCEEQIk5YFIpZPj+yY5QKaRgWWDXpSysNneB7xwf5Pjg5L0IXDcGbZmrAAC9sfYH6htP3hI9/u1oKnp8/K9om6/StdWeveRShPpyzfZuFzovfy8o5ZYi45e6AwA/L+411Nq60aTPZGLx6bZLwuPsYi0Ky/RCE722MYHiA4zm923dcK3/HGDqDgrS6zAK1AkhhBBCCIElo+6jlEIqYdC7SRgA4J0NZ6E3sogLUWFkh4b2B17dDiwbCnnyv3hGtgkA7DrGuyKrSINt5zKQo9ZWvHM1+/dippBBbxrBrXu+7sQt3LKZY277uDx8xcHtAo3Tffhsu7+3faBeXAcy6oVlekxcehQXM4qFbfmlerSdsw2n07jSd7uLQSZzmbzEtYsipG6gQJ0QQgghhNR7LMsKmV5vOTc/eGBLrmnX7UIusBzcKgoyqYOPzxunCXd7SM4BYN0K1NVaA0Z9fxBdPtyBp345jtl/nKvku6g6L/56EgAXNK57rjsaBHqXf4ALLPPUy8mom0vfrTPqfNaeLxG/lFGMl1edxL8XM+94THfbD3uuYbd5GsXkngmi5xgGeLpXIySF+4kPMpkvUFCgXq/UaKD+0UcfoXPnzvDz80N4eDhGjBiBS5culXvM0qVLwTCM6MvLy6vcYwghhBBCCCnP8Rv5uJ5dAoVMgjYNAwFwS47xjb4AIDHMBzBogfXPAKdXcxv1GqD4trCPP1OKAJS4Vfp+JDkXR5LzhMdp+TW7vFuRRi8Exa8NbAYfpQz/Tu+N5ZPvEfbpGMdlfUd1clBh4ERUIPeZvbzSd36OeqB5TXrAEqjzGfVJS49i/X+3MGnpMY+oPnAH/7N9oHUUpg9oKmxv0zAAVz8YghlDmtsfRIF6vVSjP+3du3fj+eefR+fOnWEwGPDWW29hwIABOH/+PHx8fJwe5+/vLwroXWlgQQghhBBCiDN8R/FejUOFxmcB3nJ0SwwRGn81CPIGji8DTv3KfbUZBdw6xp1AIgOkSkBfggCmxK2M+s08Sya/TG+E1uB+2XxVumUOJoNUcnRJCAYAKGVS9GwcikMz7septAIMaBGBy5lqNAxyPdPewIXS98JS+4y6nxd3v1jDPWddbv/cihNY/XQ3l8dQ0/gLC/1ahMNLbsmZyqUSYZk/O0KgLnX8PKmTajRQ37Jli+jx0qVLER4ejuPHj6NXr15Oj2MYBpGRkU6fJ4QQQgghxB2XM7k5wx1CDFzzLnPjrgEtIoRAvWGgCji8w3KQyQQsfcB83wD4RQGFJQiE2s1AnVsnu3GEL06nFUKrN1ZwRPXiA/UGDoLwyAAvRAZwn8ObRvrZPV8eyxx15xl1Phi3blJnaSZnEJ7nHUnOw+2CMuHcni6nmGuWF+KjFCUbnQbpAM1Rr6c8ao56YSF3JTM4OLjc/dRqNeLi4hATE4MHH3wQ5845n8ej1WpRVFQk+iKEEEIIIcTatewSJDFpePbYYK603ex+8zJtABDJZgGXrRJNaUfFJ/EOBAAEMq4H6izLYp+523dSmC8A1HhG/ZL5okXDQFUFe7onylypkF5OoK4xv3frdcSFOeoag8PmdRtP3rbb5qn4jHqor1K0XVZuoE6l7/WRxwTqJpMJL730Enr06IFWrVo53a9p06b46aefsHHjRixfvhwmkwndu3dHWlqaw/0/+ugjBAQECF8xMTHV9RYIIYQQQkgtYzCaYDCakF+iQ0smBQxY4OzvQP4NAFwWeN1z3bHphZ5Q3DokPvjMGvFjr0AAQKAbc9QvpBcLHcAHmJvXaWo4o86vn967aViVnpcvfc8o0sDg5EIGX02glFnCFF9zRr1EZ8R/5k707WIC8fHDrQEA6/9LqxXr1huMJuSZl58L9VOInis/o26uIqBAvV7xmED9+eefx9mzZ/Hbb7+Vu1+3bt0wbtw4tGvXDr1798a6desQFhaG77//3uH+M2bMQGFhofB18+bN6hg+IYQQQgipZcp0Rtw7bydGfncQmUUa+DB8YzIWOPGzsF+H2CC0bhgApJ8Wn4BvKAcAwYmAN9dgLcCNjHq+OXBrEuGLZuZS8poO1FNySgAAXRuFVOl5Q32VkEsZmFggs9hxEzg+o+4lt2TU+dJ3AJix7gwAoF/zcAxuHQWFVILLmWphnr8nS8ktActyvQhCfMQZ9fIDdZqjXh95RKD+wgsv4M8//8TOnTvRsKHrnSMBQC6Xo3379rh69arD55VKJfz9/UVfhBBCCCGEJOeUIL1Qg1M3C1CkMUAFqyZn//3CzVW3ln5K/FjLTdtEoz7AE78Lgbo7c9T5TuZ+XnIhOK2p0vddl7LwzoazKDGvJx/so6jgCPdIJIzQqI8vf9cbTcKcdb3RBKOJy4x7ySxBqVJmH6A+0CYaAd5yYR59eZ3kPcW529wU3OZRfkJg3rsJV7UwsUeC0+Nojnr9VKOBOsuyeOGFF7B+/Xr8+++/SEgo5xfUCaPRiDNnziAqKqoaRkgIIYQQQuqSa9lqjP/pCI6m5AlLgfF8GatgT50JbJ8N6LhGb2BZIIPL5qLlQ5b9YrsBj/8OBCcA/tEAgAZMjsul7/wyaL5KmVDubTCxTkvDq9OEJUfxyyGu5F8qYeDvVfWBIb+WOj/XfN6Wi+j+8b946Jv9KLL6eSjlzsMUuZRBQii3QlSYH5eZznKSofck59O5QL1FtCVxuGhcJ+x+rY8QsDtEc9TrpRoN1J9//nksX74cK1euhJ+fHzIyMpCRkYGyMssfyXHjxmHGjBnC4/feew/btm3D9evXceLECTzxxBO4ceMGpkyZUhNvgRBCCCGE1CJvrTuD3Zez8eh3B+0CdRXMwZ7UnEk++DWw8wPufn4Kl0GXKoD2T5iPYIBHlwJScwAVkgQASJBkuJxRV/Ndzr1konJvTQ03lAtSyatlCWTrJdr+S83Hor3JAID/UguE+wwjnqNu69FOlp5T4XygXuR8yTdPcSGd60XQIipA2KaQSRAX4nxZagAUqNdTNRqof/vttygsLESfPn0QFRUlfK1atUrYJzU1Fenp6cLj/Px8TJ06Fc2bN8eQIUNQVFSEAwcOoEWLFjXxFgghhBBCSC2Slm9JCH2+/bLoOR++9L3VI5aNB7/mbvmy9/DmQOL9wKifgf87BfhZLRkckggAaMTcdj1QN2fU/awy6gBqfIm2HLWuWs4bFWgufS8sw7Rf/xM998vBFABckF7eRYJ3HrB87g/3486Xra4FGfXb9hl1lwiBurz8/UidUqOXZVzpzrhr1y7R44ULF2LhwoXVNCJCCCGEEFKXhfophbJrvtt6l4RgFJXp0U4qA3IBRLYCmMeBkysAMNxc9Ut/cyeIasulfFs8aH9yf67XUhhTBJ2LgXaxVem7RMJAIZVAZzTVSEadf+3qZL2WuvVFEwDC3HhHc9J5UQFeoqXbIgO4jDq/Fr0n0hqMWHYgBTlqLSQM0DTCvfXnLXPUqZlcfeIRzeQIIYQQQgi5G3QOAmCWZbHlpV5oGWoOhBQ+wPCvzcutsdwybHyH90Z9nJ9cZmm+ZjK4lpFWm5vJ8UuQ8XOz73ZGXWswioL01wY2rZbX4QP1tPwyeJnf6+/Pdsd9zcKFfbzKmZ/uZzNvvnWDQADAiRsFYFkWGr0Rg7/Yi+lrTjk4umYs2nMdH/59EQCQEOojutDgEip9r5coUCeEEEIIIfXCjguZuGBu6PX3i/cK20u05qBYp+ZuFb6ARAI0HcI9/mMaABaIbA20fNj5C0gtgbpR71optnUzOcCyLJlGf3cz6sL3AMDluYPxfN+kankdvpncxYxiaPQmSCUM2jQMwIj2DYR9HGXUP3yoNYJ9FFjwaFvR9nYxgZBLGWQUabDrcjb2XcnBhfQirD2eBpPJM9ZWX//fLeF+i+iAcvZ0ggL1eokCdUIIIYQQUucZTSwmLzsmPI4NUeGTka3hq5ThnaEtAIMOyLnCPak0zyFuMZy75QOlZkO5sndnRIG63vl+VtTC8mzmjLp5nrrGcHcz6iXmCwZecgkU5TRyu1PR5jnqvIZB3pBLJejfPELYluqgjP2xe2JxfGY/tGkYKNrurZDikY7clIM/T6WLqgJyS6pnnr0rjCYWH2++iANXcyCXWr6fLaIqsVQ0Ber1EgXqhBBCCCGkzruSVSzcbx8bCF+lDKM7x+L0rAHolhgCXN8FFKcD3sFA7D3cjo36Agqr+cTBieW/iEQKk/njtcHgWkbdMkedaxQmrKV+lzPqJ28WAABUiuoNBv285KLydb7jubdCKqwt7oyzBnPdEkMBcPPUrYPz9BpcW337hUx8t/saHvvxsGjc/LrvbqE56vUSBeqEEEIIIaTO+y+1QLj/1dj2wn0JHxxmnOZuk+4HvMzlyXIvoMlAy0mC4ip8HQPDBaGsq6XvtnPUayijzndgz7sLWWi+/B0A4kNUwv3WDSpRFg4gNpg7R2peqWiZtrl/XsCAhbuRWQNLtxmtyu756RYAyl8v3RnKqNdLFKgTQgip94o0eqw4fAP5NVgmSQipXifNgfrzfRPRMEhlv0PWee42oqV4e7MhlvuBsRW+jskcqLvcTM7JHPW72UzOUM2d3m1Zl79bryH+6ai2CFLJ3W5kxwfqGUUabDhpmQ9+JCUPlzPV+Prfq3c44jsX4C3HkbfvR4B3JZZYo0C9XqKfNiGEkHrvjbWnsflsBnZezMaP4zvV9HAIIdXgv5v5AIB2MUGOd8i/wd2GNBZvbzIYCEoA5CrAJ9z+OBtGhgvENFrXsrh8oB7IqIGzOzGx5C9omXbQGtq5dHxVSM4pEe7/9lTXan89vvM7IM6oJ4b54sQ7/ctdQ92RIJUc9zULx78Xs3Azz77cPaMGMup6m4sfYzrHCGu+u0yrBpL3UKBeT9FPmxBCSL23+WwGAG5OISGk7inW6HEli+vo3i4mUPzk5a2AKgQozeUe+4SKn1eogOcOcUGSxIViVKkcMAJpOYVOdynRGrDncjZ6NQlDsUaPSOQiYXlXQKfGUAD+sktI1ztYp72apJnXlW8R5Y+ujUKq/fWsS9ytM+qA83no5WEYBt883gHPrziBHRezIJMwYGEpPy8sc62xX1UyGC2l7zIJg4c7NHT/JFveBP77xfKY5qjXKxSoE0IIIYSQOmfJ/mR8/e9VLJ7QGfmlOrAsEBPsjTA/pWWnonRg5Sjxgd7B9ieTu54JlcqVgA64kZXvdJ83153BplO3MbBlBPRGFh0kVyDhl4YD4M+UIPkOmsllFmmw90oOhrWNcrjUmS1+2k+Ir6KCPatGjyTLxZCY4Eo0V3PASy7F9092xI/7khEd6I2sIg3m/nUBADftoURrgI/y7oU+BhP38+scH4T5j7RFfKhPBUfYYFlxkA5QRr2eoZ82IYSQeun4jXxczizGmM4xwrYKGg4TQmqROZu4OedPLj6MzvFc8N27SRgXAGVf5Erci27bH6hyEKi7Qa5QAiVAXlEJCkv1CFDZz0nedIp73a3nuCqeWCaLe8I3ElBnwAt6aO+gmdzYHw7hek4J8kt0mNqrUYX78w3kglR3GKjfPglc2AR0fQ7wcZ6ZjwlW4edJXaCQSVy6kOAqmVSCZ3pznflNJhYqhQxvrT8DndGEI8l56Nus4qkLVUVvzqgH+yjcD9IB4PhS+20UqNcr1EyOEEJIvTTy2wOYse4M1p2wNB7yllNZISF1gXVjyGKNAf9e5ALh4W0bAP8tB77pCvzzDlDmIOvtFXhHry2VcRl7OWPE8sM3XDqmqYybfoPwZtwQoIOmkhl1lmVx3TznfMdF16bz8IF6sM8dBOoGHbBkMLB3AbDt7Qp379UkrFrL7CUSBo/dE4sH20UDAM5bdV6/G/gGfTJpJcOtP1+y30aBer1CgTohhJA6ae+VbPx9Jh0syyK7WLxMkvXyPfO2XhTul+qNd737MSGk6t3ML3W4PcxPyQXoAHDoG0BTYL+T9A6DISmXQVfAgPlbL2HL2QycvVWIVUdTwbKs3e7+KMEQyUHuQWQbAIAXo4NGb8R/qfnQuNn9/VaBpZlaiK+ynD0t8kurIFAvyQb05u/7ufVA4S3AaKj8+apIiyh/AMD523c5UDfPj5dXZakWBer1CgXqhBBC6qTnVpzA8ytP4K31Z9D5g+1YdTRVeO7MLUuTp8wiSxDPskCJ9u6uXeyqq1nFOJHqfM4rIcSioJRrHiaXioOkIJUc8I2wbPh9svjAwIrXSa+QlAt2ZeCC1J8PpmDoV/vwxu9ncDg5z273JsxNKFktoPAF2nDz5b2gwze7ruGhbw7gm13XAAAXM4rw/p/nK1znfOVhy986V5eczFWbS9/vJFC3rk4waICFLYCVj1b+fFWkSaQfAOBatrqCPasWX/peqYy6s6X9XGlmSOoM+mkTQgipc3QGE4o1BrAs8OuRmwCAmRvOCs+fTnPejblUX/MZIEf6fbYHD39zAGn5pSjW6FGm88wLCoR4Aj5D3CkuGI3CLPOD/b3kXEBsq/FAYPRy4LFVd/7i5kBdDu7fqPWFwdQ8+0x/lJc5KAttDHhx3dC9YAnUlh1IAQB8uu0yFu9Lxp+nHcyrN7uaVSwE9gBw6HouRn57ADlqrdNjAOBiRjEAICboDhq7OZpGcO1f7gpoDYozr7GemlfqsKIBADR6I95afwb/ujhVwBV8dZbtxSKXHFtcZeMgtRcF6oQQQuocR0GsxGrJH+sPzrZKPTAA1hks5fh7r+Sg09zteOCrvTU4IkI8G78cV6BKjjCr8m+JrghIP8U96DfHckB+CtB8GBDe/M5f3Kr0HeDmyAsv4yDD3TvWnMVW+gMyLlD2YvQAuKCSL90+dbMAAMrNqC8/lCp6bGK5xpk7zXP0HUkvLENqXikkDNAxzska8+UxaIHDPwA5l7jH4S3EzzsK4O+iBkHeYBjub3uuk+/dj3uvY+XhVExaeqzKXpdfR13mbhacZYETP3P3hywAer9RZWMitQsF6oQQQuqcMgdzOqXmeYIsywoZdb7JkOhYDwzUizWWNYD/PH0bWoMJ17NL3J67Skh9kV/CB+oKcSfz73sDJvO/p9aPAg27cPdbjqi6Fzdn1F/vn2D3lPVUG16sjzmQ9woQLQOnBDfOIo0emUUaZJl7bVgH/tZKdQb8fiJNeLzh+R7CqhY3ch3P2WdZFv+c57LILaMD4Odl36G+QnvmA5tfA/56lXscGAv0fMXyvKPO+neRUiZFdAB3AcTZ9+FSZtWXxetNfOm7mxn19JNA1nlAquR+R6M7VPnYSO1AgTohhJA6p1Rn/0FWas6oZxRpkKPWQiph8FyfJAfHel7wa/3B/FhKvsPthBCLlUe4buuBKjlGd+GC1e7hOiA/2bJTQAOu1P3hH4GeL1fdi5sD9QZ+MjzZVTznPdOqkSUvUGJu/uZlyagDlvL3wjI9zlhN11E7+Xf/5+l0FGsMiAtR4fqHQ9AuJhCJYVyZf3JuicNjvtl1De9uPAcA6JJQyWXpLv4tfuwVCNz/LhAQyz1OP1m581Yhfq32mw6mHgCA2upiaFWxlL6XE27dPglsfRvQWFV5nVzJ3TYfCngHAo0HAJ0mAQM+qPIxEs9GgTohhJA6x1GwLTFn1PkPvE0i/NA00g/jusWhf4sINI3wMx/recFvkdWHSK1VGXxxNXy4JKS2O3mzQMhch/kq0bdpOH5/tht+6GO1osOjy7hbVTDQ5lFAfgdzs22Zu8YzJj3ee7AlfprQCbOHceXgV7KKRVNZAMAf5uDRKxCQysCaO3s/1T0KABeon7aarlOsdfzv/px5n0GtIoW/d/z63TecBOrzt14S7lc6UFeoxI+9gwCGAWK7co+PLKrceatQXDD/fXAcqFdHE1GhmVx5Xd9/6A0c/BrY+RH3mGW5jvkA0PYx7lYiAYYuBLq/UOVjJJ6NAnVCCCF1Tnml7/z89DYNuKZN7z3YCovGdYKfF/fh+E5K340mtlqCZ2eZ8yLKqBNi56d9lqz5wx0aAAA6xgXDN/sEt7HTpKotdbdlzqgjPwVMxmncF5CBEZG5aMmkQJ51FldP70dLJkX48i8zl6srubnojDmrPrZ9GADu3/9J8/x0/rEjeeZO9+F+lvL5+BAuiL6R47yRGq9zfCUD9bxk8eMgcxXBveby9/RTgLa4cueuIrH89yHP8QWLYq3rf0uLNXo8t+I4/jqdXu5+BpMLGXVeqnl5vtxr3DJ3UiWQ0MvlMZG6iRbjI4QQUueU10yO/8DbumGA6HlvhRSA+6XvZTojFDIJpBIGE5YcwZHkPOx9vS/C/b0qPthFRWWOg39n2wmpr9ILy/D3GS6A+nNaTwRaz0+/eYS7jbmnegchNTevO/g19wUgEMBffE+7P6zuAwDfpN3c8R1yL0BXDD+pJXg8cDVHuF+kMWD/1RzsupSF1wc1EwLBvBKuiiDEaom1mGAVGIYLRHNLdAi1WVc9JtgbN/PK4KOQVm4N9dOrgdIc8bbgRO42vDng3xAoSgN2fQx0nwaY3LwQKlMCPqHuj8tGrLnzu9PSdydVCo4s3peMv89k4O8zGXigzQNO9zOYM+pOu76XWi3Vx6+PfvMwd9ugAyC7g6XySJ1AgTohhJA6x1GwLZVwmZDD17kPR/fYlHmq+EDdnI0/mpKHqAAvNAyyKeu0kqPWou+CXbgnIRiLxnXC3ivcB9Zt5zPxRNcqWI/ZzHlGnQJ1Qqz9cvAGDCYW9yQEo1UDq4txBq1lrnTDztU7iFYPA6kHAL14PnpOiRZ6IwuFlIHOHMT5e8ngo5ABqhCgyQBuR3NGXW7Swc9LhmKNAQaTJRueVaTB4z9yAV3HuCAMasWVyOeZG+hZr4XuJecaqd0qKMOF9CLc2zjM4ZB/nlzJixfrptpvC0m03G//BLD7Y9FFC7cN/Ajo9lzljjXjA3Vnpe/O5v07crugTLhvMJqcrpNe4Trq1lMCSrK5Wz5Qj+ni8nhI3UWBOiGEkDrnWrZ9B18pw+BMWiF0RhMaBnkjKVy8lrJKwZe+G7DlbDqeWX4CbRsGYOMLPZ2+zqqjN1GsMWD7hSxkF1u6OQd4V6JzshMsy2Lb+QyHzxWVUek7qd+yi7VY/18a+jWPQFyID349wi1PNqlnAnDxL+Dw98CwLwB1FmDUAapQILhR9Q4q6X7gxf/sNr++9Cj+tVom7b0HW2Jct3j74/nO74Yy0bKSvPRCywUA67nV/NJvwSpxJrZ7YgjWHE/Dr0dS7QJ1/m9IgHcVhAQdJ3AXJ4Ksut33eZPLrG+ZARTfBiRybv66K1gTYDIAR38Euj7r+nEOxJlL37OKtSjTGYUKKp7aqvSdZVkw5bwWnykHgJv5ZUgw9wGw28/EL8/m4Fyph4Ddn1geF9wA/poOnDD3Tqjuqg9SK1CgTgghpM6xbpDEk0gY5JvncEYHeNt9ELMuff9022UAwCmrTsu2WJYVvc71HMvcR9tmUXdi1dGb2H7B8RrI9TmjrtEb4SWXVrwjqdOeW3EcR1PysezADfz2VFfh3/h9zcKBuU9wwd5vjwERrbgDEnrdUcB3J6yXifPzkmFkh4aOd5SZA3W9RrQEY4C3XFgfnsf342BZFnmlXKAe5CO+UDikdRTWHE9Dco44m8yylp4alVqWzWTzd27YF/b7MAzXD6DJIG49df8o18+vLQYWNAHyrnEl9m1Huz9GswBvOfyUMhRrDbhVUIqkcD/hOZZlhew3AOiMJihlzv+2pFll1K9mqZ0H6kLpu01G/fxGYPU47n5gHBekA8BRc4bdvwHNTycAqqCZnNFoxMmTJ5Gfn1/xzoQQQkg1c9YwSSZhUFDGfZANUNl/KPVTcteu1RqDqHTe2fku26y7eznT0ixJ7UZjovIYTSwWmC8aTB/QxO75+jpH/Yc919Bq1lbsuJBZ00MhNexCOvfv7lZBGd5afwYAEKSSQ65Xc0E6wK1JfWY1d7/DkzUxTABAsFUA/dg9sfBROsmX8R3oDWWiVR5WTLHPspaY/9Zkq7XQGUyQMLCbh84/5jPuwrE6I/iKev/yAvXkPVxwqSkSb9dZ/Q184nfnxwNclYA7QToAKP2AzpO5+9d3uXesDYZh4G+udFLbdHi3/Xtd0YVW6zL5q1nO11/Xm5dns1tH/co/3K3CDxj9i2W7Txhw30xg0lbuvZN6z+1A/aWXXsLixYsBcEF679690aFDB8TExGDXrl1VPT5CCCHELdYfbN8f0Uq4L5EwKDBn2wIdlKbzwXtBmR5Gq/mgGr3jD23JOeIPaNZzH6sqUD95Mx85ai38vWR4unciEsPEmZv6uo76h39fhMHEYvKyYzU9FFIDbuaVorBMD4PRhBKr5RT5HhEhvkog77rjgwNi7sYQHQr24QJmmYTBhO7xzne0yqi3asB1gg9SycVz7s34QH3bOe6iVVyIj12lSbAvl8nPK9GJLjzy2XSZhIGX3ElIUHgLWDaMywB/1gIwmIP9f2YBH5u/lxIZkHi/8/dzJ6Lacbd81vkOCH1IbJbgzLO5gFFRoK41WAL98gJ1vq+AXGLzvVWbLzAO/ACIaG3ZHhQP9HoNCKy531HiWdwO1NeuXYu2bdsCADZt2oTk5GRcvHgRL7/8Mt5+++0qHyAhhBDiDusg+fEusUIm2mBkhbJRR3PIA725D7MFpXohEwI4X6s8xaYpUWpe1Qfq17K5cvp2sUGQSyVY91wPvP9gS7zQNwlA/S59J/XL7D/OYfjX+9Dy3S24d95OjFt8GPmlerAsV10d7mfJIgf7KIDSXMcnUoXcpRHba2teaWJU5xhEBZSzbrtVRv3LMe0xtE0UVk7l1iTv25SbY+5rzsaX6IzYePIWZm44CwB2vTcAy5x1ndGEXZeyhWXF+At9/t5y53OyT6203NcVA8m7ueXY9n9u2a70r77pBIHmppz5KXd8Kn56k8ZqugAg/tsNcN+nYo0eWUXiZoDWz/Mc9UMxmVjM23JR6Edgl1EvNvcc8Yvk1kjnSaqutwmpG9yeo56Tk4PIyEgAwN9//41HH30UTZo0waRJk/DFFw7mphBCCCF3EZ9h8lFIIZEw6NM0HAu2XYbOYEIhn1F3UPrObyss04kC4M1nMzDeQfbLtnuw9bI/fGlkRU2JXH0v/uY13gO85XiyWzxWH7sJoH6Wvq87kSZ67KgxFKlbijR6LD2QItp2Kq1QCLCCVQqE+SmRZW7oGOqrAMpucTvG3wsU3bJk2L3ss9J3S/ekUOx9vS+iA8sJ0gFRRr1RmC++fqyD8NTC0e1w9lYR/kvNx6f/XEaJ1oD/++2k8HxjB4G6t0IKpUwCrcGEiUuPAgDaxd4n/P3w83ISDphMwH/Lxdu2zQSyLzoeb3UIiudui24DV3dwjfoqyVtu6UOi1how8psDuJRZbLd8mlZvwrCvdiFHrcPxmf24Cg0r1hn3a1lqu7/z285n4ptd14THdl3f+Yy6b7h4u4T+jhExtzPqEREROH/+PIxGI7Zs2YL+/fsDAEpLSyGV0i8YIYSQmsVnifj5nwoZ91+d1mC0mqNuvz4tXw5/u0Ajaiw0649zDuepp+aViB5fzBDPUZ+45AgGf7HXaVbGFXzAb/tBmp9PWlTPSt8LSnV44/fTom18Ay1Sd2mdTD85dJ3Lmof4KkRrgIf4KC1rVHsHcc25eDUcDMUEqyB11AXcmlVG3VagSoGejUOFv2+21TuNI+wDdcB+3vrtgjJLRt3Z/PSNz3OZbLkPcP+73DbbIB3gurlXF98woNVIACzXFDDjTKVPxV/QK9MZ8fPBFFwy9xWx/nsPcNOnctTc35WjKfY9uKwD9WKtQbhAxLuYIZ7Lr7C+EGA0WJZi840Un1hKGXUi5nagPnHiRIwaNQqtWrUCwzDo168fAODw4cNo1qxZlQ+QEEIIcQefhfY1B7cKczZDZzC5NEf9VoH9h+O0fPttKeYOyj2S7Etp80p02HkpGxczivH1zquVeRsALB/CfRQ2gbp5KaXjN/JFXaHrui92XLH7UG3bIIvUPdalxtb4VRcaBHqLOqonhvkAZeZAXRXMBeu1iVVG3RkfJRd0XkgXB4UNg1QO93+mTyI6xlm+D7lqrVA55DCjbjQAZ9Zw91s8CPR8Bej6POAb4eq7qDojvgNiuwMGDXBpc6VPw89RL9MbsetStui5afclQWm+qLvsYIqw3dE0Jts57Gn54uoq2znvvkqr/29yr3BNDuU+DjLqtBgXEXM7UJ89ezZ+/PFHPPXUU9i/fz+USu4KnVQqxZtvvlnlAySEEELcwX+w4udw8p1+S3RG3C7kAm7Hpe/2WXbewevi+a46gwnp5nPNGNxc6BjPy7TKot9Jwze1zUUHnnUG7I+T1ZjN8iBagxErDnFrZP88qQuaRXJdkW0/FJO6R++guZeP1XSH/i0iRf+mm0X6AbvncQ+8g4EuU7n7MV2rdZxVhs+oqzOBvZ8BBal2u/AZdb6PBQB0iQ9Gu5hAh6d8smscfn+2Owa04ALtHLVOqMhxmFEvugWYzFNrHviUm4M+6EPg1UtA//eAkCRgwt9AUn9g1M+VfKMukimAhp24+xrnS2ZWhG+yl16owfEb4kz5/93fWGhEuvKw5ftd4KBih98v1Nykz7ayKdsmwy76+337P+42qq2luqPtY9ztvdPdeDekPqjUpZtHHnnEbtv48ePveDCEEELInbIN1IN9FAj1VSJHrcXNPC64dtRMLjrAC4NbRUKjN6JLQgiaRflh1sZzSM0rxaHruRjVydKJNy2/FCaWy9C0jPbH1493wPifjgjPZ1gF6mW6yme8bd8LL8Yqa3budiGAut8luKjMAJ3RBIYBeiaFCqXOFKjXfY4y6jte7YP5Wy+BBYsR7aOx8B9LU6/WhtMAa/535x/NrUn9zH4gKO5uDfnO8Bn1Y9wqS8i+BDz8vWgX21L2Z/sk4o1BFVe28vOtc9RaYVqQw4w632U9JAlQWGXpGQbo8X/cFwDE96jwNasE31tAU1DpU/AZ9a1nM0Qre/h7yeznkZvdtGk0ZzKxQjf3EB8ld8HDpleIbaNR0d9vPlCPbm/Z9uD/gAFzAZ+aa3RIPFOlAvUdO3Zgx44dyMrKgskk/uP5008/VcnACCGEkMoQysWtPhw1j/LD3iuWLAff4d0awzD49omOom3yhyR4YvFhHLqWK2oYxDeSiw1WgWEY9G4ShkXjOuHrf6/gVFqhUGJvPZ5KvReN40A9QCXH2C6x+PVIKkru4EJAbcJ33/dVyCCRMIgM4IIZ2w/SpO7hS40j/b3w2ai2CPFVIjLAC5+OaivsM7JjQ+y7motnejeCz7GXuI0SGdB2LHc/shVqDblNs7mUvXa7xIWIS9y7JAS7dOowcxY4R60VSrL9HGXUs7lpBULX9ZomBOqVz6jzzeSu54j7i/DN/ZpG+Anz1nnrTtzCi/c3Fi5wWF80CvNT4lJmsSijzrIsUmzO7+coo24dqEskFKQTh9wufZ8zZw4GDBiAHTt2ICcnB/n5+aIvQgghpCbxGWxvq7WEezcJE+0T4KD03ZGOcUGQSxncLtQI2XgAuJHLfRCz/rDcv0UEPnq4jd05nC3v5gpnpe8A0CE2EACQVaxFSk4JNp267bDpXV3Bfy/4D72JYVzTLNsP3aTu4UuN5TIG3ZNC0dQ87cFas0h/bP6/e/FgdBFwZRsABnj+CKB03FzNo9l2UXcQLEf4iffp1sgm0Cu6DRxZBBjFf3/4qUDFGgMyzNN3+J4XImfXcbd3K2NeEa9A7vZOAnWbXh9P926EZpF++GxUOwDAiqn34KcJnUT7FGsN+Hz7FeGx1moahlD6bpVRzyzSosymb4hwodWotzTDsw7UCXHC7Yz6d999h6VLl+LJJ5+sjvEQQgghd4T/IOUlt1yLfrRTDOb+dUF4bDun3BlvhRTtYgJxNCUfh67nItYcmKeag/a4EB/R/raZb4D7oFdZjqoDeBH+3Af1rCIN+izYBQCQSyUY1CrSbt+6gJ/r72sTqF/LVuNIch6O38jH070aQVJRR21S6+jNWUyFk/JkkYNfc7fNhwEhidU4qmpkuwZ8mX0iTCJh0CzSDxczijGuW5ww/1rwfS+uu7imEOhlmfvM/43KLNLg5M0CAED3xFD7MfABZdMHKv02qlQVZtQBroL/1f5NMWNwc2FbqK8S9zWzb5a38kgqnuwWhyYRftAaLEF4sA+XZbdezvOQTT8TwFxyn3ke+LYbt0HpDwQ3qvT7IPWH24G6TqdD9+7dq2MshBBCyB3ju6Bbf3AN8JajR1II9l/lPkS5E8x1bRQiBOqjOnNzwUt15uyuTQDtKPN9J83kMgq5ue6hPkq75/jS79tWXepP3iyo84E6X6abFM5dJLmWpcao7w8C4KYiPNAmqmYGSKpUdrEWM9adhkxiCc4VMgdLq6XsBw58CbR/Amg8EDht7lTefdpdGmk1CLOZa+4gUAeA+Y+0xelbBRjdyaZHhclkWQIsebcoUFeZ/2Ydus51xY8PUaFzvFVX/LO/A+c2ADpzCbhfDXR5d0QI1IvK368cwT6WSqpwP6UwR9+WSiFFqbkyq3+LCPxzPhMDFu7BU70aIcRqGcAAq+oEACgs1eOlVSftzscwDLD5dcuGqLZcuTshFXD7t2TKlClYuXJldYyFEEIIuWOOAnUA+PjhNgjxUWBQS/cCWb7MNs0qIOabCdk2IOKXTLKmrmSgXlimR665UVpCmI/d83xDOev5kUonHzzrgnlbuPWb+YxgbLAPpBJGNEf/toOl9UjttPHkLWy/kIUt5zKw5VwGADgOrP6YBlzeAqx6Arh1DDBqubnpDTrZ71tbtBkFDPsSmLSNe+ykgVrrhgF4/J44+0ZouVZLQtosTedr8zfq/uYRQu8NAMDaScCFP7j7Epml5LymVUFGvWV0gHA/KsDb6X4fPdwaAPB0r0a4v5llCbUf9lzHR5st68jzUwYKzaXvh5Pts+mdmYuAOltcJUFl78RFbmfUNRoNfvjhB2zfvh1t2rSBXC6e5/fZZ59V2eAIIYQQd2n05tJ3mw/1McEq7H/zPreDWT6Da50ZN5hLceVScWZe6SDjV6Y3wmA0Oe0q7AzfkCjcT+mwpN5bIUVUgBfSCy0d5u3KX+sIo4kV5qJfzOAyagqZBHHBKtEcdZWDCyWkdrqSqbbbppA6qIRRZ1rurxzD3fqE1e6MpUQKdBwPaM1ZbYMG+GkQABcrgVIPWO7nXAUKbgKBXNZdZTNP2zoQteMdxNWIewLrQJ1lKzUu694Gkf5eTvcb3jYaHWKD0CDQG//ddN5/K9zcJyDdfIHwRGqB8NysYS2w+s/NWKN8D1jwHpdFFw5sDkJc4Xagfvr0abRr1w4AcPbsWdFzjKf8YyaEEFJv8XMIlQ6C1soEsnzzMuumcHo+o+6ghJ5fCs5ajlonlKq7is8ONwxynvmJC1GJAnXbCwd1BT/VAICoo36jMF9xoK6gQL2uuJLFBakB3nIUlunhDQ3i2FtAWQFwfCnXxT2uB6CzCui15myrj4M517WRwhfwiwKK04HUg5U7R9Y54Iu2wNR/geh2oot+fkoZOsXbdIuXKrmqBMBSPu8J+ECdNQKnfgPajXX7FHKpBP97rAO+3X0VY7o4X9KSYRjEBHMVS82j/MEw3LUBWwmhXKVTsvlvUFo+twLFC32TMLFHAkbJ/YG/zTunn7IcGNvV7bGT+smtQN1oNGLOnDlo3bo1goKCKj6AEEIIucuEjHoVZZf9hUDdEiwajdynNqmDLPnrA5vi+I18DG8XjTd+P420/DLczC91O1DnX8/Rmu+8+BAfYa4pIO5IXJeUWpW3z3vE0lk/McwH2y09AqE31t2u9/UNfwFqcKtIrDmagu3K19AgMxf4xLyDTxgwZQd3X6oAAhoCedctz9UFDANM/ge4fcK941aPs9wXAv1DQHQ70cWse5uEiqcTmEyAUWd57ClLswHiJes2PMNND5C4/zf+gTZRbvWxUClkOPZ2P6QXalCk0eOxRYeF5+JDuWA+v1SP/BIdsoq5CxxNzJl7H1/71Qnw5HpqJEdc5lagLpVKMWDAAFy4cIECdUIIIR7JMke9akpf+bWG1VqDsJa6wWQufXeQUR/VOUZoOhcTpOIC9bxSdLbNXFWA7yTsX06gbtt1vlRnwKmbBUgv1GBgy4g6U+lWwne/V0jxYLsGwna+8ztPa7MsEqk9lh+6gf/tvIqfJ3VB4wg/4WfeJSEYW46eRwPGZv5vSTaQcZq77xMOqELrXqAOcCXrgc6zvw69+B9wbAlw76vAvoXA/s+BXG6JMeuMetuGgeLj9CUAzBe7ujxlWYPeE9j+LfvrVUDpIBCuBiHmLwBYm5iPYze4cnjVrkN4xteA79Q9cSGjCDnmQD3cz9z802ZpPNzzLJB4310ZM6kb3C59b9WqFa5fv46EhITqGA8hhBByRzT88myOOkRXAl/6bjSxKNMboVLIhMxtRfPOY4NVOHg9Fym5pW6/bpFGvG64IwmhKtHjMp0JT/1yDJlFWkwf0AQv3NfY7df1RHxGne8XwGsbEyh6XFcrCuqDmRu46ZRvrT+DNc90F9aibh8bBAWcNGQ8upi79Q0DVFbriPtHV+dQPV9wI2DA+9z9UPPfAHODOZVVoN7AdloNPydeIgMGz/Oc+emOHF9SIy/bCUAn/lt4AHgTwE4mFidvNhUy6mGOAnWJHOgwDoS4w+1Afe7cuZg+fTref/99dOzYET4+4qv5/v7+VTY4QgghxF3Our5XlkohhYQBTCxXjq5SyISMuqM56tZaNwzAqmM37dbWvZBehPO3i/BQ+wZOl4rj58TbBqfWbDPqBWU6ZBZxHxbXHk+rM4E6n121bRbXNNIPk3smYPG+ZAAUqNdWJpNlysLtAg10BpNwMSxYpYCC0Ts+8PpO7ja6A2Cw6gsR0aq6hlr7hJj/BuSYA3Wrv4txwTarSeSncLdKP88O0gHPWH7v1G9ASTbCmQIcT8mH2vx3ypJRN08jiO0OjPgGCKYkJ3GP24H6kCFDAADDhw8XldTx5YBGI5WdEUIIqTnaKi59ZxgGvkoZijQGFGv0iPD3gkHIqJf/YbZXY64E98QN7kMcX3b66upTOJ9ehBt5pXilfxOHxxa7kFGPCxFn1G/lW5Ynu5FXKnpNgLuIkV6oEZogeTKjicWqozfRPTEEJTq+9N3+e/HO0BYwGE1YdvAGlb57MI3eiB/2XEfvJmF2lRBpVr+3Gr0RZVY9CbwVUijhIFDv8jRw5HvufrvHgJNWSwdToG4RksTdFqUBulJIFCq80r8J8kp0aNXAJrm26knu1sm67R7DvyEwYG5NjwK4dQIoyYY/SrH1Mtd4L8Jfabm4ajL/3vqEUJBOKsXtQH3nzp3VMQ5CCCGkSlR1MzkACFQpUKQxIN/ccVxYR72CJaBiQ1SIC1HhRm4pDl7LRf8WEQCA8+ncEmPLDqQ4DdSLyirOqNsutWQd8LAskKfWiQL1h745gAvpRfjtqa7o2igEnmzvlWy8tf4MAOCTkdy6xs66uvMd/jWUUfdYX+y4gm93XcOivddxetYAMAwDlmWRW6LD5cxiYb/cEh3yS7lMpEzCQCGTCKXv+awvguLbAmHNgCHzgE6TALDccleZ57gT+EUDYU3v9tvzXD4h3DJrZflAzmUguh1evN9BpY3JCJTm3P3xucM7GCjLAxr3q+mRcMyd6AOYEuHirfVa7ULpu1Rxt0dG6gi3A/XevXtXxzgIIYSQSruQXoT9V3MwoXs8NIaqzagDXJYkNa8UmUVcJ2pn66g70qtxGH7JvYG9V7LRv0UEdFbBpHXJry0+o+5fTkYdAIJUcuECwu3CMtFzpXrx3N4L5gsEG/675fGB+u0Cy7Jz/9t5DQAcricPAEpz52rKqHumEq1BmJ5QrDHg3O0itGoQgFVHb+LNdWfs9n/8R66zNn9hZlirEOAKwCh9gIl/W3YMb2a533YMtyxbQi/PL9u+26LbA9f+Bf5bDkS3c7xPzmXL/bG/3ZVhuW3KduDsOqDrMzU9Eo5XIADAH5YlIrskWDUN5QN1ifOLrYSUx+1Afc+ePeU+36tXr0oPhhBCCKmMp385jtS8UqTmlaLQnIn2cRLUVUZkgDeAfGSYl4ziM+rSCuaoA8C9jUPxy6Eb2H05G9/suorvd18XnjM5WpwXXGBz9ja3JnSkf/nLuv354r1Y+M9lrD2eZrfWr/WyZtZqQzd4FpY3k5rHNeNTVRSoU0bdI608nCq6QJWSW4JWDQKw/r9bDve/VcBdcOIrRqZ0awhcAfx9fR3uDwCQKYFmD1TdoOuS9k9ygXraUef7FKRyt1FtgaaD78643BWSCPR+raZHYWHOqPsz3N+nmGBvTOgeb3men6MupUCdVI7bn2L69Oljt836P3yao04IIeRu4wO5nw/eAABIGG6N8aoS6c81BxICdXOZo7yCru8A0C0xBDIJgxu5pZi35ZLoOWcJ9bXH01CsMaBRqE+Fy7o1CPTGRw+3RuNwX2y/kImL6cUoNjc1KtU6/j/ZhWHXOH4KgzX+52BLae7wT4G6Z9pyLkP0+IWV/6FroxA0DFLhcHIeAGBsl1iUaA3449RtAIAEJgxmDgLnS6DQc/++JTLHP39SAX499NJc5/uUcHOs4RNe/eOpK8yBepxKjwC9HEsmdBFPuTKZK5ooUCeV5Hagnp8vbjCh1+vx33//4Z133sEHH3xQZQMjhBBCXKWQSUQZu4RQnyqdo85l1IF0c+m73sWu7wA3x7xDbBCOpOTZPVemN8JgNImWeTOZWCzZz5UJT+wR77QrvDW5VIKneyfi6d6JAIAR/9uPkzcLUKpzvKyVpBZk1LXmKQyPdmyI0Z1jcCVLjeFtHS+7xU9z0FDpu0fKUXMd2RuF+uB6DlcmvPrYTWGayqxhLTCxRwJYlsVbQ5qj60c7MFRyCLO0XwOrrU5Ec30rxyeUuy3J5ppXOPr3LwTqdWgN+urmHQgAGJTkhZ7D+iLA2yYgpznq5A65HagHBATYbevfvz8UCgVeeeUVHD9+vEoGRgghhLgq1EeB24WWOc3NIqt2qVC+/DzTJqNe0TrqvLgQlcNAHeDWSw/2sXyQO59ehJTcUvgqZXi4Q8NKjdfHvIxZmd6I02kF+PngDbw20NJgqzYE6tZNATvFB6NTOZUFrmTUbxeUIdhHUaUXcIhr8kq4EmDr7/3Ba7nClAVv83aGYRAZwP1bayu5Zn8iyqhXDh+oGzSATs0tv2ZLnS3el1TMLxIAIC1Ksw/SAUvpu6TqpmGR+qXKfnMiIiJw6dKlinckhBBCqphtt++mkQ4+iN4BPnjIMGfUjULXd9cC3vLmyxeW6aFSSIUgJtcc1MQGqyo9z95bzh1XojVi+Nf7AQDZxZZ1pmtDoO7OMnv+3tz7Tbe6WGPtcmYxBizcg1YN/PHntHurbpCkQjqDSWiM+NaQ5nhiMdco7tD1XDSP4i6oedt083+iaywaH0+zPxllJitH4QPIVYC+FNg2E2AdXNC6cYC7pYy664Q16q84rlQQSt/p95ZUjtufAE6fPi16zLIs0tPT8fHHH6Ndu3ZVNS5CCCHEZbYl3s2qKVDPLNLAZGKhN3d9r2gddZ71smLW5b8AsPLwDSzam4z3HmyJcd3irZZlq/y1dP71+OXNAOBShmUJLBevL9QYvdEkZMf5bHl5OsZx2fYL6UXIUWsR6ivOvK41B31nbxVV8UhJRfil1iQM0D0xBFc+GIxBn+/BtewSnE7jGiba/oznjmgNU0oRUACg2VDg4p/cE5RRrzzfcCA/BTi+tPz9guLvwmDqiJBEAAygKQBKcgBfm4sc1EyO3CG3PwW0a9dOWPvSWteuXfHTTz9V2cAIIYQQV5hMrF3jsaoufQ/3U4JhAL2RRVaxVuj67kozOUCcUX/snlg0i/THh39fwPn0Iizay81Hf3fjOYzrFm9Zls1RKaWL+NJ3a/zFBQAuzXuvKV/uuIIf9lxHqC+XhXIlox7mp0SLKH+cTy/Cvis5GNG+gej5XLWuWsZKKsZ/74NUCkgkDCRgMKBlJL7dZSlt91ZIgWs7gWOLgaGfAz6hkGjNF5Ya9bEE6lIK1Cvt/lnA2d8B/wbmgNLB3wCfMM/t+O6J5N5AcAKQdx3IOAUk2azvLsxRp0CdVI7bgXpycrLosUQiQVhYGLy8yl8+hhBCCKlKZ9IK8d2ea3i1fxO75xoGeVfpa8mlEjSN8MPFjGLM+uOsEPS6sjwbAPhYZdTD/JTo2TgU9zQKxvl0+wxvkebOM+qOlmWzbrTmyaXvn/3DreesNneudyWjDgD3NgnF+fQi7LmSbReo81ldcvdlmxvJWVc5DGgRIQrUvWQS4OcR3ANGCoxaBujMVSdx3S0nMzie2kBc0Oph7otUrYaduUD95lHngTqto04qye0FWnbv3o3IyEjExcUhLi4OMTEx8PLygk6nw88//1wdYySEEELsDPt6H/46nY4P/75o91x1ZIw/HtkGCqkEW89lCllvucT9jHqIDxewJIU7XhO62Byo+3tV/sNdhIO1163n8XtwnI7EMPGyeq5k1AGgd2Ou7HTvlRy7qj9+3j+5+26al060vnjWtmEg/K0uRHlb/4xvnQCMBsBo7qngF2V5rji9WsdKiNui2nG32RfsnzNR13dyZ9wO1CdOnIjCwkK77cXFxZg4cWKVDIoQQggpz74rOcL93BLuA71MwuCdoS2w5aXqaRbWLiYQT/duJNrm6hx1UaBuLulOCnMcqBeV3Xnp++SeCZjcM0G0zWi1aLvB6LnrjctsLn4oXezS3jE+CEqZBNnFWtzILRU9l0+Beo25mc/9LGKDlMCJn4Hca5BIGDSJsPSR8NNlWQ4wlAF6Sw8HKKwu3FCgTjxNgLl6p8jB7ybNUSd3yO1AnWVZMA4uxaelpTlcuo0QQgipShtP3sKkZUeFx1rz/HRfLxkm90yo8vnp1qyDC8D1QN3bKtjkA/VEJxn1IiGjXvnS9wh/L7wztAUCVY4/IOqNrMPtnqDMZi10fgmviihlUkQHclnbLKsO94BleTBy96XllQEABhX/DvwxDfjtcYBl0dj8b8kbGvgWXrYcUJIDlOVz9xmpOBvJbyfEU/AVH44uIhn5ru8UqJPKcflTQPv27cEwDBiGwf333w+ZzHKo0WhEcnIyBg0aVC2DJIQQQgAuE/zWujPQWZVx3yrgAgHvu7A+dlSAuKTcNvvrjM4qgx2s4gKPEB8FAlVyFJTqRftmmpeAC1Ldebmkl0wKQG+3Xe/BGXXb+fWFZfbjdybYR4HknBLkqsWBOj/fndwdLMvi3Y3nEKSSI1uthRI6dLr+Dfdk9gUg6zzaNgxA2bF9+Ez+LZi/rf9dscCvj3F3Fb7cPI2WDwPn1gFtH7vr74WQcgmBegaQcQZCkz6GsVSG0Bx1UkkuB+ojRowAAJw8eRIDBw6Er68lE6BQKBAfH4+RI0dW+QAJIYQQXkGZHiXmQO7HcZ0w5edjQiAXcAel4q6KChQ3qXM1ox5oNTaZuVM8wzBIDPPF8RuWLKHJxOKceQkxfo3pO6F0Mr/bkwN1jU1G3VEVnzMhPtzFDes56bbnM5lYj+56XxdcyVLjl0M3AABBKjkel+6A1GRV1ZB9Cb2aDEaMdDckDMuVu1vLOsfd8mXvw78CWgy3b9ZFSE3ziwTAcPPRv+vpeB+ao04qyeVAfdasWQCA+Ph4jB49mrq8E0IIuesKzN27A7zlCPcXL9XUtIrXTnckwk8JCQPw071dbSbXJSEY/3d/Y7sxJtkE6mn5ZSjWGqCQSdA4wnFpvDu8nHRMN3ho6TvLskLp+2sDm+J0WgFGdmhQwVEW/LQC61L3bJsyeL3JBKWk+qsv6qvsYi1e/PU/4XF+qR6DFYfFO62diOjpV2GITwJumoPyNmO4DOSFTZb9FCruVukLtHyomkdOSCVI5UCXp4DzGyzbTEagNMdqn8pPYyL1m9u/OePHj0dBQQGWL1+Oa9eu4bXXXkNwcDBOnDiBiIgINGjg+n+ohBBCiDvySrjseZBKblcaXp1z03kyqQQLR7fD//12EgAgdzGjzjAMXnawjFxiuLjDeVYxV/Ye5qt0eY328jjLqOs8NKOuN7JC07snusYhwDvJreODfewDdX4qgfVrKOlzc7WZvuYULmYUi7aFwdyEOCQJyL3K3T+xDLH+5t/PwfOAe54GTCag8CbwRRtuu5F6C5BaYMg87otXkgPMT7Q8lvvYH0OIC9z+r+r06dPo168fAgICkJKSgqlTpyI4OBjr1q1DamoqLdFGCCGk2vDrYQf5KITsKa9ZVPVn1AHgwXYNUKYzwlshFcrYKyvappSez/56K6om4+sso+6ppe/WjeRUlfge8Gt18xc8ACCzSJxR9+SO93XB7svZdttCGG46B7yDLBuv77KUtsvN/w4kEiAozrKPiX5WpBbyCrR5TM22SeW4/Qnj5ZdfxoQJE3DlyhVR+fuQIUOwZ8+eKh0cIYQQYo1fZitIpYC3XCpaD7z5Xcio88Z0icWD7e68gsy2OV22uQmaTxUF6s4y6p5a+l5m7j8gkzCVqijgL3z8fSZD+F2xzah7ajVBXaSQSqCAHn6MeQ76kPmWJ2/sBwpvcfflKvGBPV8GpEqg67N3Z6CEVCWpDFBa/X/kdff+byJ1i9v/Cx47dgxPP/203fYGDRogIyOjSgZFCCGEOJJv7pAeqJKDYRiwVvFmhM2c9dogKkCcUc8yZ39ViqqpzZY4acTmqcEqn1GvbAf/BlYVCu/+wc19ziwWB+qeepGiLhrVuSGCYc6mS2RAVDtgdiEQ2QZgTUDmGe45mU3fo36zgZmZQPcX7uZwCak61ll1JQXqpHLcDtSVSiWKiorstl++fBlhYWFVMihCCCHEkRLzMlv+XvYd3t3pDu4pwv3EFxf40vfKlH07Yvst8TVPzt57Jccjlyzjf75elXz/DYMsgfqmU7cBWC5+8Piyf5algL2qGYwmoW9Dz6RQTOqRgCiZmntSFWr5hWw+XHygXHzBCoD9Ly8htYnc6uITZdRJJbkdqA8fPhzvvfce9Houq8EwDFL/v737Dm+jytoA/qpZttx7T5ze4/RGQgqkbQiEEiDABlg6yS69h7bLEtgFQgvwUUPPUhMgkAJppPfei+PEcY+bXFTn+2M0ksaSbMmWXN/f8/iRNDMaXSVyOXPOPTc7G4899hiXZyMiaqP2nSvFkt05zT0MVBrFQC5UKw/kIoJbZ3cwtUqJRyb3sD+WSt91fup25hzqbHx8Ap6+rJf98apDLa8K7s/jYqfkLvENa77kvESfNK3Aeak2QGwmt+9cKQb8cxW+sC0hRk6O/gZ8czNQXerzU/fnlMFkERAZosGnfxuGzvFheO8K2zrTYQmOA3tNlz+xduk7UWundPoZHtT4FTyoffI5UH/11Veh1+uRkJCA6upqjB07Fl27dkVYWBj+/e9/B2KMRETUjEwWKy5/eyPu/98e7Dlb2qxjqTKIpdFSafjskWLjqWen92m2MTXWnPFdMbij2GRLaoLmrznqHWMdAW9qVAj6pjqaGpXaphG0JLuzxaXqJvVOatDzFQoFPpg9BICj7L+sqnagbsUj3+5DWbUJ85YcaMRo25BKp6Wkvr5eXGpq3cs+n2bzqWIAwIjOMVDZ1qpPtNguCMV0chyY0BMIc/o/dpdRJ2rNwpMd91kdQg3k8yX7yMhIrFq1Chs2bMC+ffug1+sxaNAgXHrppYEYHxERNbNNJ4vt908W6DEgParZxqKXMuq2QPbpy3rjphEd0S2hdWcsQm0ZdH93fX90Sg+U15jQyRaw90mJxNCMaGzPKsH50mq/vIY/SXPUpWXWGqKXrft/YYUBfx4vxN5zZbL9Zovg17L/fedKkRata9SYm0XhMeC3R8XO60d+Aaa/CQy+2Wn/UZ9Ot/ZoAf6zXHzOqC5xjh0lWeJtdIb8CQm9AL0tiGdGndqalIHAyT+aexTUyjW4tm706NEYPXq0/fGuXbvwzDPP4JdffvHLwIiIqGWQ5voCQG5Z8wZ3VbYASyoN16iU6J7YNMuyBVKYrZS/oELq+u6f0nddkBqvXTtAtm1q32RboF7j/klNrNJgxtqjhRjXIx5Vtq7vwQ1sJgcA8eFaqJQKGC1W/PWjbS77i/QGvzXTO5BThsvf3oiY0CDsenqiX87ZZFY8CZxa43j88z+AfjPtDwVzDXzJA97yyXb7/ZFdYgGzARAEoMQ2vSCqo/wJCb0dr8+MOrU1F/1DXIKw+5TmHgm1Yj6Vvq9YsQIPP/wwnnzySZw6dQoAcOTIEcyYMQNDhw6FletdEhG1KQazBSsOOOYyn73QvIF6pVEqffdPxrmlkAJzqb+ZThu495dqa7iW00Iy6i8sO4w5X+3Ckz/uty/P1piKAq1ahWuHpHvcf+ui7X5bS323bSrIhUojymta3lSCOhkqXLctnWO/W1ruZr8HFqu8MV+3aCXw5iDgo4lAZYG40XmOOgBkXOS4z0Cd2prgSOCOP4CxjzT3SKgV8zpQ/+ijjzB16lQsWrQIL7/8MkaMGIEvvvgCI0eORFJSEg4cOIBff/01kGMlIqImtu5oISqcyoSPF3j/x3sgVNlL31tn8zhPQms1j9M1IqNcH2kJsz1nS/HH4fyAvY63vt6WDQBYuuc8ahq5PJvk8ak9XTrqO/PXEm3xYY7X2H76gl/O2VQsURmuGw/+YL+rLDvr9bnKqx0XKYZlxECRtx8oPwfk7QPO7xF3hETLn9R5nHgbHCUGNUREJON1oP7GG2/g5ZdfRlFREb755hsUFRXhnXfewf79+/Hee++hV69e9Z+EiIhalZ/35QIAxvUQl988nFvhkj1rSo5mcm0rox5ba36zv7q+u5PitNb4bZ/uwLH85r34EqRy/CnS2HXUJZEhGvzzir4e9xvMjoy6qRHZdefvhc1OvRxagxPni+rcH2ktkTeZq0OpU6D+0ZgK4OPJjp2C+H8qW1caEOfGP3QMmLMVULkut0hE1N55HaifPHkSM2eKc5euuuoqqNVq/Pe//0VaWlrABkdERM3HYLZgtS3j+vcJXRGiUaHaZEH2hapmG5Njeba2lVHvVGs5skBWDETrNAhSO37955Q0bwl8pM4RpOWWifPmQ4J8XpTGxZS+SVhwXSZ6JIbjxSv7yfY5z1F3zgb7yuw05W9TKwvUy0rdVwAYBA3KBFtzt/yDbo9Zti8XVyzciKyiSgBAqa2zfmpUCMJ/nO3+BUOiXLeFJwLhDevwT0TU1nn9m7C6uho6nfiDW6FQQKvVIjk5uZ5nERFRa2S2WLFkdw4qjRYkhGsxMD0aUbaASl/jv47ZvgpYRr26BNjyntcZRH/rFCcP1ANZMaBQKGTnb+6LHlY3FRr1NpPLPwSsnAdU1h0cXzkwDSseuBg3DO+Aqwamuj0mr7zhTfVMTiX0h/PKUVJrzfaWLFZjcLv9e8tobLLaljvM2+f2mDlf7cLes6VY8PsxAI6MepROA5g9XPipXfpORER18um384cffoiwMHEJHLPZjEWLFiEuLk52zD/+8Q//jY6IiJrFMz8dxFdbxbnDgzpEQ6lU2Bt8SfPEm5rJYrXPl48I8XOp7JI5wNFlYhfqG/7n33N7ISO26QJ1AAhWqwCIwZVVaL6pDCaLFReqXIPbekvflz8GnF4PnFwL3LPBq9d6ZWYmftid47J9/7ky9Elp2Bxp56Z0giAG67KlyVqwEMF9ZcweoSvihDJMVW2H5dwu1P6fMJgt9vtL95zHi1f2Q5FttYJoXRDgnKiP6wEUHQWUGi7BRkTkI68D9Q4dOuCDDz6wP05KSsLnn38uO0ahUDBQJyJqA6QgHQB62talloInaR6xP205VYwnftiP5y/vg4u7x7s9psQW0CkUtoDAn44uE2+PLffveb0UqlUjMUKL/HKD/XEgaTWOgjqjuflWbLlQaYQgACqlAhd3i8Oao4UAvOj6fnq9eJu/3+vXUioVSIkMxvkyeQZ9f04Zrvdp1KIivQG/Oa2IAAAlla2n87vWLJatr7f0w8Uqx7/jHmtXJCnEaNt8brdLoH7wfLns8fvrT2HfuVIAQJf4UOC8BrDa/h3GPAT8eCegixG/cYmIyGte/yWQlZUVwGEQEVFL1deWbbQH6kb/B+o3f7wNBrMVsz/ehqyXprk95oKtrDhaFwSV0g9/9BsrAWMVEOb+wkBT6xQXag/UmyajLmpMM7XGKrRlYmNDg9AjKcIeqDuPz8WRZfLHphpAE+zV60XqguyBeu/kCBzKLUd+ucFefq/04XN1zbubkF2sx82qVdhh7YGDQob9YlJroLWKGfXnzDfjcXyNSaqdAICuvQfBrC8B8gFt+WmgpkzWlX13dqnsPCcK9Nhl23Z9Tw2w2xak37YKSB4AnN0KpAwM9NshImpzGt+thYiI2pTSWsHGqK6xABxZzkBk1J27cF+oNGL5gTyXucsX9OK4YkL9lE1ffCPwRn+g4Ihjm8rzkl6B5jxPXRfg5efuuLiz/X5zZtSlQD0+XIuUKEew7TFgrsgHvrtNvq2y0OvXS4l0vMaIzuLnOq+8GlPeWI+Z/7cZgg/TALKKqzBWuRfPaz7FMu2TANCq5qhrBfGCRaUQjPfN07DGkolZxqcwoGMsOnXsgHOCrYQ/Vz5PfXd2ifw8aiXKbHPUO5RvFzemDALShwHqIOCy14BBfw3smyEiaoOaNVCfP38+hg4divDwcCQkJGDGjBk4evRovc/79ttv0bNnTwQHB6Nfv35cv52IqAFMFis+/PMUThXqZdvPFDvmrs6b1sseNAay9N3Zv345hLu/2InOT/6KvWdL7duLK30M1LM2AEd/EycPl9Wam1x1QZyPbqoCvrrWsV2wANbAvj9PUp2WTdNpA5tRv3pQqj1rb/Qio/7RhtN44od9PgWy3nAO1L2a2738cddmZZUFXr+e82dnZBcxUD+QU45j+XrsPFOC8mrf+i9EwfG9k4gLKKlyX/p+odKI6W9twH9XHEFWUSXWHfP+4kJAWEzQQHyv1QjCDqEnbjU9hs3WPhiQHo2+qZE4YO0kHpu7R/bU2hn108ViCX20qga6w9+KGzuPDeToiYjahWYN1NetW4c5c+Zgy5YtWLVqFUwmEyZNmoTKykqPz9m0aRNmzZqF2267Dbt378aMGTMwY8YMHDhwoAlHTkTU+i1YdQwvLDuMv360Tbb9jG35taEZ0bh9jCPzas+oB6D03dmPTg2/rli4EVcs3IiKGhOK9I4y6XoJArD4BvFr6RxgQW9gx8eO/We3Ou6XnnHct5oBg3wOblNJiHBke3WNXEe8PgqFAsM6xQDwLqP+r18O4ettZ7HzTEm9x/qi0PZ/Gh+mRdeEMHx/z0iseXic+4ONlcDBH8T7d64Vy6oBnzr1O1dudE8Mc9nvawf4KjgqMC5SHvBY+v7W6uPYn1OGhWtOYtwra3Hzx9v8/m/pE5PjYse3c8cjMz3K/rhfaiT6p0VivxSor5wHLLkXsFpRUmlETqn4XKmLvjRn/eugF6A4tVZ8TudxgX4HRERtXrMG6suXL8ctt9yCPn36IDMzE4sWLUJ2djZ27tzp8TlvvPEGpkyZgkceeQS9evXCv/71LwwaNAhvv/12E46ciKj1+9/2swCAnNJqWJzKzLNtGbIOMe47kQciUNeoHKXO6lplz3vPlmLVoXwczhUDgi7xrgGWC7NBnFsrWIE9X4rbfn3Usf/MJs/PNeg97wug7onh9vtqVeB/PWtsr+G8xJg7zl3+zW6WUmsIi1XAxhNFOGdbwz3S1sV/cMcYl6Xq7Kptga1SIwbpYQni4/LzXr/u6G5i1j5Eo0JcmOs0h9wy79aUl6ZlaOD4XrhIddBjoF67ARsAWbVIkzOLFySsggKhulBcMygVKqUCD1zaHSFBKnSI0eGUpqvj+D1fAgUH7cuwhWnVuHZoOgDpQo+AnsIpx/Hpw5vqnRARtVnNu3hqLWVlZQCAmJgYj8ds3rwZDz74oGzb5MmTsWTJErfHGwwGGAyOtULLy5snU0JE1JKUVZlky2KdLtIjTKuBwWxBti2j3iFGvpxScABL39VKJUwW8bxSMPjt3SMx873NAIAHv9kLKX7vn+bFUlpGN5VZSqdfeVKgrosFqmqtxW1snkB9QHoUHpncA0kR3jVGa6wgtRioG83u/z8FQUC1yYJiveNzUvsiSkN9v/McHv3eMfc5LNiLP0eqS8XbkCixg3hcd+D4SqDwSF3Pkrl6UBoAYHinGIRq1eibGoEzRVX2Zf/yvcyoS8ernQL1UcqD+MbgdFHDYkVWcRXWHSvEttMXXM7RnI3nrIZKKAHUIAg6rQZ/HZmBa4emQ2tr4qdQKCAkZwK5Tk+qLkG1Vny/IUEqxIc7LnSEota/myYERETUOA26ZH/y5EnMmzcPs2bNQkGBODfst99+w8GDBxs8EKvVivvvvx8XXXQR+vbt6/G4vLw8JCYmyrYlJiYiLy/P7fHz589HZGSk/Ss9Pb3BYyQiaivWHiuA83Tj7AtV+Mubf2Lsf9fimx3nAAAdY+WBujRH/Z21J3HnZztcmr356tNNWXj8+32oMVlcgv+06BAMzYjBjAEp9m1WAYjWaewl23UyVrhuU9rKyY2Vjnm3Yx9zPa6ZMuoAMGd8V1w9OK1JXivIKaMuCAIKagWpT/54AIP+tQpfbHFMDagx+afx3Nfbs2WPw7xZjq5GvJhv70Ce0Fu8zT8IlJwBTvxe7ylUSgWuHZKOjrZ163+45yLsemYirh0i/ptLc+brU2abi65ROALzZMUFxBrO2h8v2pSFS19bh3/9csjtOZx7QTQ1Q414IasaQfbva22tTvsZHTJwwur4/kNVsf37NEQjD9SjFU7fM7f/EaBRExG1Lz4H6uvWrUO/fv2wdetW/PDDD9DrxR/Oe/fuxbPPPtvggcyZMwcHDhzA4sWLG3wOd5544gmUlZXZv86ePVv/k4iIWgGzxYpZ72/Bg//bI9t+vrQa/1l+BEfy3FcQCYKAH3bJm6t9vvmMffkzSYdagbrzH/IrD+Xjse8b3lxszZECPPvTQSzefhazP97msl+6SOAcDEzPTMGmxy9BlDdrqLsLtqVA/dx2cS56RBow5G9AVAdAGwmE24ISd0F+GyQF6kaLFW/+cQLDXvwDnzsF5bvOlKDGZMX/rXeUNNf4qZoiutb/oVfrxteUirfBUeJtYh/xNv+g2L3/i6uBrI0+jSNIrYRGpbQHqwYvO+BLDdScM+oAEG10lOG/t+5knec4U+y5H0+gGaqlQF0Lrdr9n4L9UiNxq+kRFAvilIwLhXn2//8QjQrhTv9nUbB9z4SnAGlDAjhyIqL2w+dA/fHHH8cLL7yAVatWISjI8Yt2woQJ2LJlS4MGMXfuXPzyyy9Ys2YN0tLqziQkJSUhPz9fti0/Px9JSUluj9dqtYiIiJB9ERG1BScLK7H5VDF+2J2DrCLxD+/1xwox6qXVeGftSSxYdczt8/aeK7N3nY6wlRxL61c761ir9D0hQj6n99ud57BkT61u6l5yztK6Kwse3VVc29w5KM+I1dkb2tXLXfm6VPp+RiynR8dRgEoD3LkOmLMViLJVXDVjRr0pSaXvBrMVC34XPytPL3E0ZjW4KYlff7wQ419Ziy2nil32+UJfI++u7lVG/Y9/irfBtt/j8T0AhRKodvr85HjucVMXxzQA7wL19ccKMVG5A/M1H8m268xl9vs9k+r+e0Nq2ujvTvreMNky6kYEeVwKr39aJM4KiVhlGQwAqCotQJXRUfquUDie1zHEVo2h86LahYiIvOJzoL5//35ceeWVLtsTEhJQVOR951VA/OU0d+5c/Pjjj1i9ejU6depU73NGjhyJP/6Ql1WtWrUKI0eO9Om1iYhau0qnJl8bTog/f19Y5iizPVXoPmMnZfIy06M8lpGHadUuy6BdMSAF/5ohn5p0IKdhfT+O5LlmrWcOTsOWJy7BvGm9MHtkRwCOJmMAkBDuwxrndQXqp9eJtx1tvzd0MUBEMhAU5vm5bZCjmZwjOA1yamInlblP6Jlg3/bZ5jM4XVSJ699v2IV5yflaTdvqDdQtZsdc9Ny94q0mBIjpIj9OG46GcL5o4Y11xwrxQdBrLttDzaX2+87fnwBwTa0pDaVVJuSUVuPytzfi8rc3NOl69lKgblB4/p5KixbnmZdA/DcNzf4DabtfxYPqbzC7+gtg9Qu4I2gl1DDjL11sPytCogM7cCKidsTnZnJRUVHIzc11Cap3796N1NRUn841Z84cfPXVV1i6dCnCw8Pt88wjIyMREiL+gpg9ezZSU1Mxf/58AMB9992HsWPH4tVXX8W0adOwePFi7NixA++//76vb4WIqFWrcMpKni+thiAIsnmvUofm2spt25MjghGscQRm0zNT8PNesXRXAcgyZgCgC1LjryM64mBOGRbbOsY3pCGWIAj2Zbm+vXskrFYByZEh9lJ75yXhnEuk430J1N2WvqvFuczZmwEogG6T5Pu1YZ6f2wa5yyI7l0HX2DLqT/6lJ8xWAetrrf1ttQoes7H1Kak1zaLe0nfn6QihjgsHSOwDFB93PNbIq0C8FaTyfk35cyVVOFGgB9z0/Au1ODLqpU5rql/UNRavzMzEdzvPyY5/+bcj2J8jPue3A7m4YoBvf0c1lKlG/DlhrCNQVygU+OSWoVj7+QoAQPSFvYi+sBe91AD0ANYDTymBYUN64RJhj/ik6I6BHTgRUTvic0b9+uuvx2OPPYa8vDwoFApYrVZs3LgRDz/8MGbPnu3Tud59912UlZVh3LhxSE5Otn/973//sx+TnZ2N3FxH29FRo0bhq6++wvvvv4/MzEx89913WLJkSZ0N6IiI2qKKGkcgUFBhwIVKoywjWKQ3wGyxYu/ZUtzyyTYcPC8GBGW2QD0yRCPrtt0nxVGq29XNGtOSpy/rjcEdxcyZczDirfIasz047JcaieGdY13mw0sGd4xGalQIYkKDMKijD9m6Xx5w3aZQAQWHxftJfYHIWlOtgmzZ2HYzR10Msk8XOSovtBrnjLoYqGvVKkTrNKitxkO3+PqYLFZU1lrir96MusHp/+Qqpwvz0jx1idm3ddAl0vs2eNEsb90x12kiknCro8Kk1HYR65e/j8YXt4nLlb174yBcNSgVAztEAQC2nnZMIVi45oRsmcSAOL4KWP4kLNXizwKTsu6LX+N7JsDc9zq8Yb4Kn5gn27/WRl0JxPcEAExMqoFSqlIZcFNAh09E1J74nFF/8cUXMWfOHKSnp8NisaB3796wWCy44YYbMG/ePJ/O5c28rLVr17psmzlzJmbOnOnTaxERtTXOGfWCCgPOl4pBSlxYEEqqTLBYBRTpjXhh2SFszyrB2qOF+PL24Y5AXaeB0nmeaYwO398zEq+uPIZ/X9nP4+uGatW48+LOuOvznbhQaYTFKuC1VUdxuqgS/57RD9GhdTd7kzprhwer7Uu+eZIUGYw/Hx0PAL5lb6td571DqQKqbFO0whJd90tl0zXtYxlPKaO++kiBfZvUMFAQBHvpe7BGhWC16/9TjckKb/r6Sf6z/Ag+33wGH9zs2mzM+QKBW1KVgy4OSO7v2F47UDd5tw56bc6N9eqzJ7vU475IoQyCIEAQHBfEEsK19uqUqf2SMbVfMuYt2Y/d2aXIL3d0mT+Wr8fPe89jxsAAZtVXPQMUHEJUyjgAgEnpxVKAwRFYYL5Gtuma1DSMi/xOnI5QdtaxxGFcdz8PmIio/fI5ox4UFIQPPvgAJ0+exC+//IIvvvgCR44cweeffw6VyssmP0RE1GiyjHp5DXJKxXLW1Ggd4sPETFl+eY0s6710T479cWSIRnbBtEOsDoM7xuCrO0agU1xona8tzV8vrTJiy6liLFxzEr/uz8Mnm7LqHbcUqHtbyq5UKnwL0s1OS2wN/KvTiVRApS1Q18W5Pi80Vrytva56G6VRuf4JoHUzVztYo5RNkZDUXlKvLiaLFe+sPYkKgxnP/SQu5RoerMY1g9NwUddYZMTW/XmzZ9S1tSo9Oo8HojMcj80NDNSd1pQ3Waz48M9T2JVd4vbY8hoTgiCvJKlSiRd5wlANo8WKSqMZUnI8IsS1GqFLvPx9SK//1urjLsf6VZnY/DGiYDsA7wJ1nZsGjiEaFRBua+Kbt1+8VWrYTI6IyI98zqhv2LABo0ePRocOHdChQ4dAjImIiLzgnFE/kleBu7/YBQDoFKsDBAF55TX4ee952XE/7s6BySJGEJEhGkQ5lTT3SPS+EZdUCl1SZcKes6X27d9sP4t/TOgKtZsgULL5pBgsd47zXF7fKM4Z8elviLe7PwesFqDSVrYc6iZQl4L3St8ao7ZW7qoZ7E3VTM7z1lVuj602eh+oH851/J9IjQQjQzR4ZWam5ycJAnDkFyBtqFOgXuszGqQDbv0N+HgKUHoGMDWs9N15vv4rK47i/9afQsdYHdY9Mt7lWL3BjEjI+xgYVGHQWSoQrDCixmSF1amE3d0Fka4J8s/+jcM74JONWThVVNmouf91MlYBBrHkXW0WpzsUBdWfvb9tdGecK6lGeowO79uW6tMFqRxVKef3iLfhyYAiAOMmImqnfM6oT5gwAZ06dcKTTz6JQ4cO1f8EIiIKiIpaS1xJUqNDkBAhZso+3HAaeeWO4EUK0gGxUduMAal4eFJ3rH14XJ3BdW3x4eL5y6pN2HTSEdjmlddgrZul3iSCIOBH25Ju0zOTvX49n9TYGnppI8Us+rA7xMfmGke23F2gLm2rakSgLggNLr9uau4auGltAbk0/1ypADQqhdu1tn1ZU7240rXp4LmSev6dTq8D/ncT8GoPoMLWq0brZsmziBSg13TxvqnKdb8XpPdntFjtn98zxVX2eebO9AYL4hVlsm01SrHHQjCMMJgsMDsF6u5i7toZdam6RBDEbvGCIGDVoXycL/XjZ0mf57KpILj+1XaSIoPx7k2DMaWvYxlcXZDakVG32CpYwt1MJyEiogbzOaN+/vx5LF68GF9//TVeeukl9O/fHzfeeCNmzZpV7xroRETUeEV6A77amo3tWW7mYQOICglC7RYgGpUCO56aiM2ninD3F7uQGKHF6K5xCNWqMXdCN5/HEBmiQWpUCHJKq7HxhBj8ZsTqkFVche93ncOlvd3/0b4ruwRnL1QjNEiFSb2T3B7TaFKgHhwp3qrFVURgqq679F3adm47kLUREKwABPFWqGvusgJIHSS+3rc3AyfXAn/fAYQl1PGc5hemdc2SB9sCVikID9aI62XXXgHA+RhvuLuolBxZT9l1abbj/k9/F289Lb+msf0fN7CZnH2OutkqSwofyCnH6G7yz4q+xoRxSnmiokYplu4Hw4QakxUatXgSjcr9v11yZDB0QSr7uuQRwRqolQqYrQL0BjPWHi3E37/ejfSYEPz56IQGvScXFa6BepGui5sD3XNeHnFYpxigdkFMQu+GjoyIiNzwOVCPi4vD3LlzMXfuXJw+fRpfffUVPv30UzzxxBO4+OKLsXr16kCMk4iIAFisAu5fvMe+bjogBgPOmfIbR3SQlRr/55r+iAzRIFKnwZS+yfj+npFIi9Yh0k0nb1/0S41EjlPG77L+KXh7zQmcLfGc1VyyW1z+bXLfJIS4mfvqFzWl4q0UqEtBnLES0OeL991m1OMd9xf9xbfXTBsG/G05cGip+PjYcmCQbyuhNDXnjLoUJEoxpXMjOUBcum/DiSL87aJOeGv1cRzJq/BpjrpzPwXJRzcPrftJFudstu3z7SlQV9uC/oY2k3Oam683OC4qlLlZ4rDSYME45R7ZtmqF+BkLhhE1ZgsUCvHfTeWhhF2hUKBLfJh9aTatWomwYDVKq0zQ15ixeLt4keLsBf9l1E1l5+H8HW8SVNAkeH+RLjkyBMM6xUClUIiBurHWzw+pqoGIiPzC50DdWadOnfD4448jMzMTTz/9NNatW+evcRERkRuLNmXJgnQA+Eu/ZCzdIwbAVw9Kgy5IjUen9ER5jRl3j+2MIRnyBk+DO/qn4VPf1AgsP+jI0mXYGtB5KskHgC2nxOz71L4BKnsHXDPqESni0mvGCiBvn7jNXUY9Mk0M1qsuADGdAIXS8QWF+/m3FiNQdAwoOASUZDm2B9XTHK0FcA7UJ/dNwrJ9ufYLPvaMui2A7ZoQhu/vGQUA+ODPU7Zj6u+QLimvFj8TQzpGI6u4EtcNTUfvFDdl7M6k+eYKpRig15SJ89XdkdZPb2CgLnW7N5qtss+vu6oBi0GP4crDsm2J8fFAJRCsMKLUZLXPS9coPU8n6ZrgFKhrVAjTioF6hcGMHKdpAYIguM3K+6qy6ByinB5nCUnomuT9zwKVUoFv7hrp2FD7okmnixs1PiIikmtwoL5x40Z8+eWX+O6771BTU4MrrrgC8+fP9+fYiIiolvfWnZQ9vmpQKgZ1iLYH6uG2ddGTIoPxoZtlsPypb2qk7HGnODFY8hSoVxstOFkoNuHqnxbp9hi/sAfqtkBQqRJL0087XUyWOrw70wQDc3cAKo33gXZNGfBSB8CoB87vdmw3BGAtdqtFLMFXNa4SQhLuFKhH2TqTm2zLkzmXvtcWYtvWkIx639RIfGcL+OslBd0D/wpMflFsBBjjYU61xpZRLz0DHPnV63FJEvIrcKnyKJJqtCgwGmC1xdexOYVAqGMKw5G8ClxvXokgjQVWbQSUBrFyJTYqCgCgtWXUQ2wnUKk8B9idnVZW0KqVCA/WAKhGSaURWcWOqpRKo6X+debrY7Uiav2z4nuwpqOn8iw2WXtjkA8NJF04XzyISAPU3q3iQERE3vH5J/8TTzyBxYsX4/z585g4cSLeeOMNXHHFFdDpdIEYHxG1cf7KFrUX0TqNfXmz/905AsM7x2LzScdyYo3+g94HtQP15Eix/LeixmT/fzWYLdiTXYohGTE4WaiHVRCXdkvwcmm2BjGKHa0R5DSJttf0WoF6PNwKifLttbQRgCpIzKznH3Rsry717Tze+HQ6UHIGmLsNUKrFTHMjgnbnjHqkLVA32pZlq7Hdat0F6rYpCzU+dH2XLt64W6rMI6kxnEYnLstWe2k2Z9L/9bntwOJZ3r+GTXcAHwYBqAFk9eG7bF82PQH0tO239poB5Z7PxAe2zHkIjKgxWWC2iv+26jq6t8eGOb4HgtRK+4WTP4/LK2aKKgyN/74+/JP97lLLRZhjGowcxGN3QiNXXkgfDpzdCox7vHHnISIiFz7/5F+/fj0eeeQRXHvttYiLc1M6SETkBatVwMPf7sXaY4X4ae5FSIvmxT5vROmC7PfjbMFulwRHZs7dUlCBEhcmD7albL7JIqC82oxInQYfb8jCy8uPIDM9CpP7iA3mEiOCA3txxh7ghTi2DZoN/Pqw43GQn5aGUyjEMvqK82IJvETK6vuLxQSc2SjeP/gjsOZF8WLDXQ2fcuYcqEtrZRstVny74ywe+U6cIhAR7PpngrSmekMy6u7O55Zz93zn/0dPul4K9LzM0YPAR1VGC47klbtsT44MQXyYFnnlNQgJUuFMsXgRSC+EYMyY+wEpULfNSdcoLDAYjDDbvk/VdZS+RzpdtJDmqAPAyoPypm9FeoN9WkmDlZ2TPTwppKJjrK7xfSJmfipO++h6SePOQ0RELnwO1Ddu3BiIcRBRO7Mt6wJ+2C0u07XmaCH+OqJjM4+odZBKk8O0anvpbLxTwFxcaWjS8QzvFIOtpy/g2iFpCA1y/ErJ/OdKfPq3YfhscxYAYO/ZUuy1rbce3cgmdvWyZ9Sdghu1Fpj4L2DV04BK69/1nkNtgXrhEce2mlIgb78YbKYPa/xrVJc47u9cBJTniF+mau8CWTdCnYI0lS2gNFms9iAdcJ8Bl8rhfen6XlIlBepe/N9vegvY+AYQYps/rfHiIp4uBrj+S6/HU9v5Aj2ues31ose9fbrgzIUqLDudK9v+/T0joYh1mt+tdPxbGmuqYLaKnz1PzeSA2oG6yn6h63yZvHO9c3O7hhJKz0AaybrQSUA5MKhDdKPPi4hk8YuIiPzOq0D9p59+wtSpU6HRaPDTTz/Veezll1/ul4ERUdvm3JXc+T7V7YJtPepFtw61Z6Wds9MBLSl345WZmVh1KB83jugAZa2g5OaPtyEj1jXIigp0oO4pEztyrrgtoZd/Xy8iVWxSV3zCsa26BPj0cqD6AnDt50DvRv5urHJaiu/cdvn2yNQGnVLtVH3RJV4MLE1m+bp+7gLrhsxRz7JlotNivLiosPZlsfFfpbieeUMvRPjC3TrxgPged58pkW27fmh6nQ0ZzYZKWKxiDwR1HXPUa2fUa1eoxIdrUVhhgMHsfdM+T0qyDyMGwOOm2zFtbCYeTYlAZlpUo89LRESB41WgPmPGDOTl5SEhIQEzZszweJxCoYDF4v0vbiJqv04U6B338/V1HEmSGpMF+eViti0mNEi27+s7RuDX/bm45SIPzbYCJD1Gh7+N9vyaZ23dqx+c2B2vrRJLwyNDgjwe7xcmW0a9diZWqQSG3eH/1xv0V+DYb/JtZTlikA4AR35pfKBefcH99qriBgfqAPDrP8agtNpoDxINZvnv8IgQ1z8T6grUKw1mLNqUhdIqIwakR2Na/2QYzVacvSBOR+gS78WUg4hkoMipGZ+mnvXW/UDnoQTcXWf7zvFuytAtRhgVQQgSjDAbq+3d8+uao147UE+KkL/PLvGhfgvUtRfELvXHrGlItQoY1yOhnmcQEVFz8ypQt1qtbu8TETWUc6Be4YfSzvbg1/25qDFZkRoVgoxYebAwskssRnZx08m8ic0Z3wUL1zg601usAhLCtRjR2TG2JsuoN9USaT3+Agy/B9j6rmNb6RnHfXON63N8VVXsfrunAN5L0hJpp4vEixtSibrEXUZdKn03uAlil+45j/+uOAoAUCpOY3S3SThfWg2rIJbae1fxUSu49ab0vZFCPTRrc1fe3znOzcUGsxEmhRZBghEWQxUsVilQ926OOgAkRDj+bb69eyTeXi1WaBgbG6jrCxBqLIJVUOCI0AFvDmr4hR0iImo6Pncd+uyzz2AwuM6BNBqN+Oyzz/wyKCJq+6RlugDf5rq2Z19vywYAzBqW7lJm3lI8Mrkn5ozvIts2JCMafVMda2ZLVQEBY3TTTC6QFApgynzgkmccTeqcm5r5owO8vsD9dk8BvI80Hkq03c1RlxqQVbvp+u78f2sVgNIqI1YfEcc+JCPGuyaCUo+BJqRVK2XzyVOjxM+Ou/fYxblTus52Aar7JJiVYqBtNVbbe0nUVfoe7tRYT6tWyYL6AelR9nL82lUOPsvbDwA4LSThyRlD2LiTiKiV8DlQv/XWW1FW5trNtqKiArfeeqtfBkVEbVtplRFFeqP9cZWRGfX6HM+vwPasEqiUCswckt7cw6nTI5N72ju8A0DX+DDogtT2bVcPSgvsAOyl702UUQfEYH3MQ8Btq1z31ZQ27twlZ4C1L7nfV9W4jLokyMMcbfdd3z2XvpfXyDPylQYLVh4SL1pM7pPk3WBMtQL1ijz3x/mRQqGQlb/3ShbXF19+ME/W3E2jUiA92ukC0L1bgb/+CPS5yilQd86oew7UlUoF/nNNfzw+tSc6xOoworM4771LfCg0KqV9aTx3lQs+yRObAx4SOqJ7Y9ZNJyKiJuVz13dPax6fO3cOkZGRbp5BRCTnXPYOuM9akdzX284CAC7pmYDEiMDP2W2sHkkRWHFQDNASI8XxvjVrEM4UV6JboIMFe+l7M2QOg938HmxMRl0QgO/+BlQWAJEdgLJs+X4/ZdTDte6nI/RLc30/0vJs7iphyqrlgfqpIr292/+lvbycFy1l1JP6AQVHgL5Xefe8RgoNUtvXe++VHIHfD7tWMXSI0cma8CEsHgibAACwqMTPudVYBbMtUK+r6zsAXOt00S02TIud8y61l+E7MuqNC9QN5/ZCC+CQNQPjkhmoExG1Fl4H6gMHDoRCoYBCocAll1wCtdrxVIvFgtOnT2PKlCkBGSQRtS1S2Xu3hDAcL9C7bdhEcquPiEHvtS08my7pmeQICBLDxQAmSK0MfJAONH3pu7OQKNdtjQnUc/cCOTvEJeX+9huwoI98v58C9WCNEhqVwt4ETaNSYNGtw9AzKcLl2LqayZXXCtSX7jkPABjYIQoJ3lxgspgAi63a5q9LAZXa/cWPADBaHD+HJvRMwDtrT9oz45LOdTTDkwJ1wVSDTSeKAMg763sj1qnze5CfSt8t58WMelFYd4R7szweERG1CF4H6lK39z179mDy5MkIC3P8sgoKCkJGRgauvvpqvw+QiNoeKaPeLzUSxwv0MFqsMFusPv9R255IUwXcdpxugXo4BerOTbIC5vjvwMEfgEkvACYpUG+Gfyt3jc8MZYDVIltr22u2+cXoOAqITAPm7gS2/Z+4bdv7fgvUFQoFwoM19uX/Hp3cExd1jXN7bEgd66iXV8unsayylb1P6u1l2bvz/HRtOKAO8AoBTqT3DgADO0RjyxOX4NWVR7F4+1n79rq+/6y2QL1CX4FPD4vNBA2N6L8hZdQb1UzOWImQ8lMAAFVK/4afh4iImpzXgfqzzz4LAMjIyMB1112H4OCWX3pJRC2T1GG6T2okftidA0DMzoUzUHfLaLZCb+uMX3tZtpaqY4wjYG2S5lX/u1Hsrl6S5WjkFhId+NetTaEAItKA8nPy7eXngagGVENI89tDbUFzXFfgL/8F9i4WH/tpjjogNjeTgtXkKM+/44PtgbprAFm79F0yyalnQZ2kQF2padIg3Z34cK1LBUgXdx3fbQS1+G92IqfIvk3fiBUttGrbHPXGBOoXTkMBASVCGNI7NO3SjURE1Dg+z1G/+eabAzEOImpHCirElSM6xuigUIjTcKuNFpZlelBaJQZPSoX75bJaIrVKiRX3X4xKo7lpLi5IS6Cd2SjeBoUDsV08Hx9Il78BZG0EukwAlj0IFB0Dio83LFCXyuaDo+TbpW7jp9Y0PFtfi3MX8uTI+gN1d6XvngJ1r9ZPBxzVEM3RX8DGeV750Az5xZ66MurBulCgGAhWODLzzuX0vvJL13dbxUWhEIneya7TGIiIqOXyOX1lsVjwyiuvYNiwYUhKSkJMTIzsi4ioPoW2QD0hQgtdHX/0k0ha2zpKF9Ril2Vzp0dSOAZ1aKKsdmitRmUpA/wSvDZI10uBS58FOo0B4rqL2wqPNexcUka99tx3ndPv20NLG3buWkKDnAN1z/P761qerXbXd5+V2Naf1zZ9c9o0Wzf3y/on27f1S420X2hSKoCedQS7sbaGuuEqRxbdZLbNcbdagA0LgFNrAbPRqyXotLamfY3p+m4sLwQAlCAcfVIYqBMRtSY+B+rPP/88XnvtNVx33XUoKyvDgw8+iKuuugpKpRLPPfdcAIZIRG2J1SqgSC8G6nFhWscf/SYLyqpMeOP34ygI9DrbrYxUjhylax3Z9OYhb/qF1EHNM4zakmzzgk+va9jzPWXUo53KmHN2NuzctRQ7zdFOCPfcV0Cao14702uyWFHV2BUcDv4g3naf1LjzNMAXtw3HA5d2x79m9LVvUygUWPPQOPz56Hjse24ywrSeCxEVGrEK4f6xjuUH7Rn1HR8Dvz8HfHYF8P3fgFe6A2U5dY4nSNXIru+CgPKsXQCACmUk4uv4PyUiopbH50D9yy+/xAcffICHHnoIarUas2bNwocffohnnnkGW7ZsCcQYiagNKas22TtLx4YF2ctoq4wWvLbqKBb8fgzDXvwDX2w5w/XVbfadKwUAxLaS+enNonaGMnVw84yjtl6Xibcn/gBqyn1/fl0Z9cG3ivf9tM64tI53XJi2zsaO0vJstYNy57L320c3cD601F+gGf7/MuJCcd+l3Vyml0TqNEiP0dUZpAOwrzIQDMcFD3szuSO/OI47/DNg1Iu3dZDWUW9wM7kVTyJuz0IAQI0myu3SukRE1HL5HKjn5eWhX79+AICwsDCUlZUBAC677DIsW7bMv6MjolZhye4cjJr/B/bY1kuui5RNjwzRQKtWQWfLqNcYLTicW2E/bt6SA/hg/emAjLc1sVoFLNqUBQCY1i+57oPbG0EQm6lZLY65zZKWEqgn9AZiuwEWA3Bsue/P95RRB4Au48Xb0mzXfQ1wz7iueGxKT6x84OI6j4sKES8YVRktss7vUqAerlXj0Sk9vX9hYxVw5FfxVrrg4q57fksnLQdodlQESRcloXddk91+EcaDRs1RP/E7sOUd+0NjUDM0ViQiokbxOVBPS0tDbm4uAKBLly5YuXIlAGD79u3QallWRdQe3f+/PThfVoNnlh6o91ipC7LUuCrEKaPeMVb+x/mWU/5Zeqo1O3C+DLllNQgNUuH6YR2aezgty7r/AP/pBBz80XVfRGrTj8cdhQLoc6V4390461Mh/r5FaLzrvijb5+HCqYaNrZbUqBDcM65Lvc3/IkLUCLVdYDtfWm3fLq2hHhGiQZBaiXduHITwYDU+uWVo3S/8x/PA4lnAb484AvUgL5vPtSRqW6Bucvyb2Evfy865Hl90vM7TSdVGlb5OJ6guAZbOlW8K8XJ5PCIiajF87vp+5ZVX4o8//sDw4cPx97//HTfddBM++ugjZGdn44EHHgjEGImolfBmfqp0jNS4ynmOekWNGMTfPLIjPt18BrvPlqDGZLH/wdoeHckTqwwGdYxu1/8OLsrPA2tfFO9vftuxXR0MDLpZDJBbij4zgPX/EbOcufvEMXrDqAfKbfOYE3q57o/rDkABVBUB+kIgzE0wHwAKhQIpUSE4XqDH+dIaZMSGQqlU4O4vxLnyUgb4L/2SMbVvUv0l11vfE293fwHE2Dr1N2PX9wazzVGHoQJjlXsRBlvAvrcCMLiZ9lBcd6AeHyYmP4pszTeNZiuC1F7kV3Z8DFTkolDbAW/oL0EwjDAkTff6bRARUcvgc6D+0ksv2e9fd9116NChAzZv3oxu3bph+nT+IiBqb0qcGlDVO4cTQKUto67TikFniFPXd6lj9MAO0fj9cAFySqvR8+nl+P3Bi9E1Idz9Cdu4sxfEku4OMa0wcAmUk2uAJfc4Hittn7vgSOChY46AqaVI6C0G1UXHgP8b4/vzozoCwW46dgeFAjGdxIx6wUEgbFyjh+otKVCft2Q/SqtNWHznCOSXiwFlkd7xM8GredHqYEe5uD2j7nkZtBZLKtff/w0+dS5K8FRIUXxSnL5RegYQrEBMZ9nuxAgxUM8vr8G6Y4W449Md+OcVfeqvrMk/BAD4UH8RvrBMBADMCW+FFQpERO2cz4F6bSNHjsTIkSP9MRYiaoWO5jvmlXuzNJO0DJs0N13KqG85VYxNJ8VS94gQNa4elIo3V58AACxccxILrhvgz2HXy2C2YOHqE+idEoEpfZORXVyF/IoaDM1o2mUosxmoy1nMwHe3iuW9Eqn0Oyis5QXpgJjdv/gRYMVTgMVY//HOlCpg2J2e9yf0Ft9//iGg87hGDdMXKVFimXdWsfj5vPfLXfZ9d4zxsZFcSLSjxF9va4ynaYWBetoQ+91KQYv9ghh4j+gUa5sCMQNY9pDjeKNeXK5t8Q1ij4WrP5JNcUg2WTBSeRAwA+8t2ofBAJYu2Y/r44bXOQzz+X1QAzglOHpapEXz5wcRUWvjVaD+008/eX3Cyy+/vMGDIWqrTBYrLFahTZYuH81zBOrnSqphtljr7BhdaZACdWmOunj7wy7HUkXhwRrMmdAVf54owu7sUqw4mIdKgxmhXmTsG+vdtSfx8vIj9scRwWqcKqrEglXHYLIIWHjDIEzr3zRN3QRBwIEcsWFn7fn77VZVsS1IVwDXfgZ881dxGwDoYpt1aHXqf6345W+JfcSO4iueAFY+5f/zy16rL3D7H4A6CKlR8gsipwrFTHiHGJ1vjeQEQX7RRdIaM+qpg4G+VwMFh/Fx9GN4da8Gs4Z1wIir+jmO+f15eRn82pccjRC/v012uhAAX7trF/BZ3cOQfkoKMV3x2oRMVJssuHpQWp3PISKilserv3pnzJjh1ckUCgUslkauoUrUBk1/awPyymuw5YlL2lyw7pxRN5qtOFlYiR5JnsvUpSXXHBl116A+TKuGVq3CD/eMwvhX1iKruArLD+Th6sGB/WOztMooC9IBoLzGjP8sP2p//NGGUwEP1I/lV2DxtrMY1SUWJwsroVUrMaprXEBfs9WotHXPDo0Ty76dpQxs+vE0t4TejvtCA5fx8lbePqD4BJDY255Rr21CzwRo6rhQ56K6xFH2Hp4CVJwX77fGOeoAcM3HAIC7zFYMG16CgR1qdVu/dwtQcBjY+Yl4geXcNse+eNc+BGcuVMk66wNAj8S6pwGdL6vGhqqOGDZ0OK5igE5E1Gp5FahbrQH+5U/Uhlmsgr0h2MHz5RjcsW0tk+OcUQeAQ7ll9QTqtTPqrhcuonViGkmhUOCawWl4ZeUxfLvzbMADdamZnTspkcE4X1aDXdmlOJ5fgW71/LHcGK+uPIoVB/Px8UZxebpJfZJc1nZut6RlrkITgLBanaydSo/bjcQ+jvt9rgSmvOT52Mb4YILY2M7W0dxToN47xc1c+rqU2wLzkBixNFxaUqw1lr47CVIrMbyzmwqPyFTx69w2MVCXLq5c/CgwwbUi4psVR7BwzUnZtqw50zy+bkWNCaOeE1fj+TC+ffb1ICJqK3xeno2IfOOcDTGY2lbFiSAIOGYL1Id3EuduHzrvpruxk0pbRj3UnlF3XC8MUinx3k2DkBTpKKu9clAaFApgy6kL9sZqgXD2QhW2nb7gcf/QTjH28nNp7nyg7DwjLwW+alALWWqsJZAC9bB4QBcDKJwu9KS2w0DduQGZOhgITwrMl7Rcmq1MO9VDoN7H10BdmpsekSo2zZOoAj/NpVk5V0IAHnsrjOuR4NNpv9vpWAauSwIbyBERtWY+/yb85z//Wef+Z555psGDIWqLnJcsq25jgfr5shpUGMxQKxWYnpmCracv4FBu3YF6tbFWMzmnjPoDE7tjSl95WXlqVAgGpkdhV3YpdmWXID1ATdWuencTCm3LIEmGZcRgW5YYvEeFaPC3izrh2Z8O4lxJFfadK0XPpAjvlkvykXOn7KSIYIxpCWXvW/8POLcDmPEOoGrG7H5loXgbmiA2WguNFxuQBYUB8T2ab1zNRel0oSKQ718jXyM8McI1sNSoFOjm6+oMUkY9IhnoNhFY/lhjRtl61A7UPSzZNzA9ChHBapTXUe3jLK+8xn6/U1zrrkogImrvfA7Uf/xRvs6IyWTC6dOnoVar0aVLFwbqRLU4Z9RLq+rvit6aSNn0zvGhGJAeBQDYd64MFqsAlVKBihoTdEFqqJSOwNPeTM7WGE4K2AFgTDf3AWlKVAh2ZZeiWO9jx2wv1ZgsLkE6ALx1w0AMf/EPAIDRIqBfWiQAYHd2KS5/eyMem9IT94zrErCxLLguE/1SI+tsztckKvKB3x4V7/ebCXSf1HxjqSkVb3W27vthCWKgnjJQHrS2J7f8ChxZBgy/O3CvIS09dn4XsONjBF36rMsh3RLCfb9wVWHr8h6eBMR2Ae5c5/i/bctiOgMqLWCx/dxRa90eplYpMaZ7PJbty7Vvq2s99dJK8XfMQxO7+3e8RETU5HwO1Hfv3u2yrby8HLfccguuvPJKvwyKqC1xzqKXVAUm0GwOpwr1uHXRdgBAj6QI9EwKR7hWjYoaMw7nlsNkseLqdzfhrrFd8JhTF+hqU61mcraMemxoEHonuy+bjQsT/4gt0rsG0/7g7v8lXKuWZQ2rjGaXLOLSPTl+DdSXH8jDppNFAMRu8zMGpHq3DnWg7f7ccb/0TPONAwAMtp4IWlvmNjxJbHKWOqj5xtTcMi4SvwJJyqivnS/eHlsO4EvZIT6VvVcWAT/f5/g8hdh6d6QMaNQwWw2VGojvDuTtFx+r3U8lAIDLM1NkgfqWU8W4uHu822Oln2VRoe7axRMRUWvilzRNREQEnn/+eTz99NP+OB1Rm1JtbJsZ9Wd/Omi/3zMpHGqVEkNt89S3nCrGv5cdhlUQlztzVnt5tt4pEQhSKTFjYCqUSvdBaaztj85AZdTdnfejW4YCAK4bkg6FArjr4i6ID5Nnvfw5B7TGZMHdX+zEZ5vFwGVi76SWEaRbLcCuTx2Pi44F5nUKDgNf3wDk7qv7uBrb1AopUO9zlTi3ud/MwIyLRJragaSAm4bJmzv61Ehu5dNiMzUpUA2ObNz4WqMEp0aAHjLqADC5TxJWPnAxxvUQg/PaP1OdSb9jonVsPklE1Nr5rZ6yrKwMZWVl/jodUZvhPEe9vKbtBOrOpeKZaVEAgBGdxUD9hWWHscOpIdraowX487g4t7iqVjO5vqmR2PvsJMyb5ro0kSQuXPwjtriyaTLqQzOiMcx20WH+Vf2w++mJ4gUFtRK9nLL+zhdhGutcSbXs8WVNtFZ7vU6uBkqzHY/zDgTmdb6+Hji6DFh0Wd3H1c6oD5gF3L8PSOrn+TnUeBrX3hBPTcrAXRc7mtnVt2yYTPk5+WOtj03o2oJ4p/J0lwshct0Tw/Hilf2gViqw+VQxDuS4/3tL+lkmrZxBREStl8+l72+++abssSAIyM3Nxeeff46pU6f6bWBEbYXzHHWTpe0sddglPsy+7FzfVPGP7BHuliMCcMsnYon89qcutV+4CHGam+583x0po55fHphA/UKl+MdtYoQWA9Kj8OBER1MupVKBKKc/er+6fTj+t+MsXvrtCCoN3jV4qo/RbMV/aq3ffpG3DeQOLQV0sUDGaMc2QQAunAKiMxo/b3vHJ+Jt14nAiVXiHGWzEVD7ORAoyRJvDWVA4THgwHdA5izXtdINUka9HQZ2zclNIBkCA/qmOjLhHX1pXqaolSdojxn1UKfy9Toy6pKUqBBM65+MpXvO46MNp7HgugGy/YIg2H+WRTGjTkTU6vkcqC9YsED2WKlUIj4+HjfffDOeeOIJvw2MqK2olgXqQjOOxL/MVvGiw8zBafZAtndyBEKDVKj0kGnOKa22B+qhWu9//HSOF0vMD+eWw2oVPJbIN5RU+j40IwZv31D3XOfo0CB0s5W8bz19AVe8vQEvXd1flmn31WurjmHloXz7417JXnaTLz8PfDNbvP94thjslJ0T5/6e+B0Yfg8wtRHrausLgeMrxPuT/gWc3SYG0hdOAgmeKyAabem9wLntwLqXgcnzgR5THMuQMVBvHm4y6jBWorRKvkKB10pq9Tpoj/+fIU5N8zx0fa/t9tGdsXTPefy89zxuGZWBrglh9p+lO86UoLjSCK1aiY6x7PhORNTa+Vz6fvr0adnXyZMnsWXLFrz44osID/dxWRaidsC5PNrchjLqFbblgkY7dWpXq5ToUMcfiIUVBnvpu/OybPXJsK1fbrYKuPPznQ0Zbp2kctEYLxswOVcA7D1Xhvm/Hanj6Pp9t/Os7PEXtw3z7ol6R3CPY7aAesk9YpAOAGe3NnxQWRuAV7sDVrNYVp7QCwiJEvcZ9A0/ryfOGdZz2x33VzwBvDnQMZe5duk7NY0gN4G6qQpp0Y7tKl8uoEnL7EnaY0bdubt9Hc3knPVLi8SwjBiYrQKuWLgRsz/eBkDsC/I3W+XSlL5JCPPhQigREbVMzbzmD1HbJ8uoW9tORl1vK/sOD5b/Qdi1jgZreWXVqDL4nlFXq5T2Pzy3nCr2daj1Kq70LVCXGuFJCpzWLm4ItdLxo/iXv49GbFj9ZbAAgOpSx/2iY2LJ+zmnCxnOgbyvFk0DBNuFpQ4jxdsg2/+tMQCBusrp314K2p2zrJ9fBSydC5Tbul8zUG9aCjcX1oxVGNcjHv+a0Rc/zfWi67y+UOx5YKpx/QwFt/eMupff8wB6JTs++zvPlKDKaMaLvx5GhcGMYRkxeP7yPnU8m4iIWgufL7nW1NTgrbfewpo1a1BQUACrVZ4h3LVrl98GR9QWtLWM+rmSKuSV1UBvy6iHaeVzIR+b0gM/7z3v9rnny2pQWauZnLf+d9cITHtzA6qMZtSYLAj2ISNfnwu20vdYrwN1+WufvVDV4JL8smoT8myB/qszM2VzfutV7WjYh/Lz4pJXpkrHtopcwGICVI2cr5o6RLwNslVLGCs9H+uL478DhUeAkXMAs9PFDsEKBEcBj5wA/mWr2KgscCwTp1ACYYn+GQN5J01cBQF9rxGXwys6BpgqoVAo8NcRHb07xzezgexNwJSXXfe194y6yvueD7Uvcp4o0Nube867rJespwYREbVePgfqt912G1auXIlrrrkGw4YNaxnLBxG1YDmljm7e5jYwR330y2tkj2uXWKZF6zC1bxJ+O5AHQCxbzyquAgBkF1dBKiqor4Fcbb2TIxAeLK7Tfqa4Cj2S/JdRvSB1Sm5goF5ptCCruNI+l94XB8+L3ZvTokNw9eC0eo6upabUcb/snGNN6vAUsbTYahKD9agOvp236oL8cbeJ4q1Wyqj7IVA//Sfw5dXifXcl+ol9xQsMw+8Btr4rbksZBPS6DEjqD4S5X0eaAqT7JODR02Jw+f54cZupuu7nOKvIE4N0APjjefE2NAH4y3/Fz2qkj5/9tkBaOx4ABO9XkKgdqB/L19sbW9au9iEiotbL55/ov/zyC3799VdcdJEXZW5EhKxiR1DT2kvf3ZWd1y59r+2nv4/GPV/sxMYTxThZ6Ch39fUPSoVCgS7xYdhzthQnCvTokRQOq1XAqSI9usSHNeqi4YVGlr4DwMHz5Q0K1KVllvr5kkmXOJe+l+cA294X78d2Ebuyl2SJAbynQL08F/j5H8DgW4Ce0xzbnddKn/RvR+bPnlH3Q+n7xtcd9w//5Lq/iy0YDHVaSaDrJcCYhxr/2tQwLp8DHy7YFDr1cTBV2Z6vB/rM8MvQWiWVBhjyN/H7ML6n10+r/TP3eH6FfYpVqNZ/lUZERNS8fJ6jnpqayqZxRD7IKnL8MdvaS98f/nav7HFSRDBSoupughQRrME/JnQDABwvEAO80CCVb42nbKT571LA/8mmLFz62np8sTW7rqfVq1gvlo3Ghno3T7R2Rh0QA/VVh/JxxnZhRm8wQxDqvzBzIEfsYu5TybvEOaNefALY9z/xfnwPIDJdvP/JVGD1C8C5HeL8YOfpSsseBI6vBBbfID9v4VHxtvN4YNRcx/YgP2bU8w+6bht2F/DAQWDSC8Dwu8RtOqdl6iJSG/+61HhSB3gp4PaG80UliS/Pb6suWwDcsBjw4UJjaK0LhQfPl9tXFNFpmFEnImorfP6J/uqrr+Kxxx7De++9h44dvZyXRtROmSxWnC1pO6XvtePOa4ekeRVwJ0eKwbzFVlFw19guDXp9KVA/YQv4pbLxo3nlDTofAFQZzSipMonjjPJuiaRgjQr/mtEX+hozwoPVmLfkAL7beRbvrTsJAPjqjuH460fbcPWgVOiC1LhiQAoGdoh2Oc+v+3Pxk20+f58UH5ppWUxAzk5HYzWXAUbJ57+u/6/4BQDTXgOG3gZYLWKQLqksAkJtQbGUUa+d5fPXHHWL2dHo7u+2via6GEcp8Ki/O44NT3bcly4+UPOSOsAbfQnUS1y3zVzkl+G0N7VL3/eeLbXf93VKERERtVw+B+pDhgxBTU0NOnfuDJ1OB41G3qTowoULHp5J1L6UVhmx5VSxPTgFAJO1dWfUDWb5+GcO8S5wSozUIiJYjUqjBf+8og9uHN6wi3xd4uWButRASSpdb4gc24WU8GA1IoK9b7omNdDanS0GIEV6xxhu+ECcc/3NjnMAgEWbsvD6dQMwY6AjI5xfXoN7v3Q03+ztyzrsvz8HbH7b8/7MWcDKeY7HSf3FBmAAsOMTMTMeGisuvSYpOgZ8cbVYQm8W/10R311+XilQX/eS2PBtwlPej9mZPl98vlINRHcClHUUd3UZD4ycK46p89iGvR75l8b2OTD5cMFGqv5IGShWbAz8K9DnSr8PrT2oHYxX2Oana1QKBKm5mA8RUVvhc6A+a9Ys5OTk4MUXX0RiYiKbyRF5cMXCjThTLM84tfaMusHsaHiUGKFFeoybtZUhlnFLzeQAQKtW4cc5Yl+LLg2Yxy2RMuqnivSwWgW/BOrnbM3+Uusp4fekZ1IElAqgvvYDa48WyAL1lQfzZPvjw71cnmn/d65BerdJjux4z8uAuK7AuMeAc9uAif8EBt4krkP+3mggfz/w452u5936HpC7R74trof8sRSgAcD6/4hzyxuS5ZbWQg9PrjtIB8Rlqyb/2/fXoMBpUEa9VLztMBK4bZV4kYYaLTJEg7JqsSLI1Mp/vxARkZzPvyk3bdqEzZs3IzMzMxDjIWoTftufKwvSw7VqVBjMMLXyOeoGkzj+R6f0wPVDPXcSv31MJ1itAsb3TLBva0yALkmPDkGQSokakxW/HcirN1CX5ojXdUFx2T6xfLxjrPuLDvUJCVKhS3yYff69J9IUCIPZgjlf7sL2LHkpsNcXPVc8KX/c9VJ5oB6RIt6mDAQePeU4LqkfcNnrwOaFQPFxx3ZNqJgZPbTU9bXiawXq4Unyx4VH5E3CfOVDAy1qQRo0R932eQ+Jbvxyge2cRuX4WdE3NQIbT7g2+SQiotbP50C9Z8+eqK72YUkWonamymjGPU4lzQDQNTEMu7NLZWXwrY3VKsBou9Bw3ZD0Ojuka9Uq/P2Sbn4fg1qlxOS+Sfh573m8uvIoim0B+oVKk8ux+8+V4Zr3NuGRyT1w+5jObs9XY7LY13y/9aJODR5X1wTPgXr3xDAcy9fj7AUxqNl1phS/Hy6w789Mi8STf+nl/Yvp4hzzu/+2AugwAsje4tgfHOX5uUNuBQbcCKz5t7juet+rgN1fAEd+cT02KMwxZ13SbyYAAfj5Pse2K97xfuzOlCqgyyUNey41L2kKhC+BulT6Xtfnk7wyvFMsxvWIR9f4MOgNZgAM1ImI2iKfA/WXXnoJDz30EP7973+jX79+LnPUIyJ8mGdJ1Ab9tOe8y7ZuCWKgbm7Fgbrz/PRgTfM1LHrhir5YfiAXp5y66ZdUGWG1ClA6Nbb7z4ojMJiteGHZYY+B+pZTxTCYrUiJDMbwTjFuj/FGlM7xczBap7E3pwOA5y/vi1kfbEFBhQH55TWY9YEYVPdJicA7Nw5Cx9hQl/PVKSTK6YVtVQ0JzoF+PZ8xdRAw8XnH48M/O+4Pv1ssgQcc89SdBenEpdw0ocAPtwOXvw0MvNGHwVOboLFNE/Gl9L3UtjJD7aoM8plKqcCiW4cBAJ5deqCZR0NERIHic9eRKVOmYPPmzbjkkkuQkJCA6OhoREdHIyoqCtHRrl2NidoTQRDw2eYzLtu7J4pLGvqj9N1iFbDpRBEqalyzyIFwuqgSxXoDakyO+enaZmxYFKnTIFonz+ZbrALKa/17OI+xSO8m6ASw7lghAGBsj/hG9duICHEE6sOcAv5/XdEHI7vEonuiWPZ/3f9ttu/rGKvzPUgHgBqx0z36Xesocw92WtrNUyd4T5yfm9jH0XF92quen9PvGuCxM8Cgv/r2WtQ2+Fr6brUCBbYpEgm9AzOmduoWp0qgMd3i6jiSiIhaG58z6mvWrAnEOIjahGP5ehzKFZcKu7RXAioNFqTHhGBohhi8+aOZ3Gebs/D8z4cwonMMFt85stHnq8uRvHJMef1P9EuNxAezhwAA1EoF1Krm7SwcqlUDFfLg+0KlEVFOAXx5taOjeZHegLgw12Zt647aAvXu8Y0aT6RToP7XERkoqzbhVGElpmeKgfS1Q9LxwrLDyCpu5LrRggBU2AJx5yXMAKD/deI66sNu9+2czvOF43uKHeP7XAmkDPL8HIVCntmn9sXXZfounATM1YBKC8Q0fIoJueoUF4q9z0xCbnk1Mhpy4Y+IiFosnwP1sWO5PA6RJ1Jzsx6J4fjw5qH27Uds63yb/bA82+dbxIz9llOBXwrx4w2nAQD7c8rsGfXmLHuX6NysFXyh0ojOTvF2VrEjiKg0mF2Ozy6uwqmiSqiVCozq2rhMlPOybqnRIVh850hZKf5tozshLToEX27Nxp/HiwAAeoPF7bnqdHI1UFUslp7H1Crnn/EeMPlF13nl9YlyagqY1E8M3FMH+z42aj98zahLjQo7jBB7E5BfReo0iNSxQR8RUVvjc6C+fv36OvdffPHFDR4MUWsnLV+m1cgzzmrbElT+WD6nKTrH55XVwCoIWH2k0L5tqW3ufXOWvUtCg1x/dDl3fi8or0GBU8b91/15uPuLXXjt2kyM6SZG8+uOiQ3dBnWM9mn9dHec1y6OCxOz+s7z5RUKBab0TcaUvsnIeHwZACCjIV3mN70l3g6aDWhrddFXKn0P0gGxQVzpWfFW07Al6qid8WV5NkEA9n8r3u9/beDGRERE1Mb4HKiPGzfOZZvz3E6LpQFZIqI2osa2fFmwWp41kpbTMfshyDaZA9uQLr+8BpMWrEN5jTwLveD3YwBaSEZd6z6jLtl3rky27yNbZcBfP9qGrJemAXCan97IsndAPqUhTFv3j9X/3TkC3+08hwcu7e7bi+TuA06tARQqYMQ9DRmme8GR8uZyRPXRSF3fvSh9z9svLuGn0gK9pgd2XERERG2Iz6mxkpIS2VdBQQGWL1+OoUOHYuXKlYEYI1Gr4SmjHnH0W9ymWgaTH7q++6N8vi7fbD/rEqQ7a6kZ9WLnQD2nzGW/RBAEWKwCtp4Wpw74owFT1wRHdru+pnTDO8fivzMzEV3H8nZubV4o3vaZAUR39HGERH7kS0Z9/zfibffJ8saFREREVCefM+qRka6/aCdOnIigoCA8+OCD2Llzp18GRtQaSRl1rXNGXRAQvfI+PK0B1hrraNDlJefyeUEQGtWt3B1PHdIlFW7mezc15znqqVEhyCmtRoktUN9wvAhv/nHc43P1BjPOXqhGRY0ZYVo1eic3fknJYZ1isOC6THSJD6v/4IbK+lO8HXxr4F6DyBtSRr2yAHj3orqPvXBKvGXZOxERkU/8lhpLTEzE0aNH/XU6olbJ0XDN6VvLXGO/GyuUwtrIrLpz+bzz2ub+UmHLpodp1XjmMtellCKCfb6+53ehTuXlPZPEpe++3JoNo9mKmz7aat/XLcE1cD5XUo1vdpwFIGbC/dXB/sqBaeifFuWXc7kQBKDS1i8gOiMwr0HkrfAkICgMEKxA/oG6v0xVQFgS0G1Sc4+aiIioVfH5L+59+/bJHguCgNzcXLz00ksYMGCAv8ZF1CpJgbMso+5UHqpTGFBtssgCTV8IgiALzn/cnYNZwzrU8QzfSRnzJ/7SEzcO74j0GB0+33IGf5/QFe+tPYkrBqb69fUaq3tSOP44UoBqkwVzvtol2zckIxrHC/SybVPf+NN+Pz7cdcm2FqmmDLDYSvtDGz+nnqhRtGHAnG1A0THvjk/oDahbyfcaERFRC+FztDBgwAAoFAoIgjwrOGLECHz88cd+GxhRa+Q2o+7UcCkSeny2+QzuGdelQecvrzbD7JSRf/33Y7huSLqsw3hj6W0Z9XBbJ/SJvRMxsXciAGDoLTF+e53GSIoMtt/PTHNMx1l1KF92XLSu7nng0a1lSSMpm66NADTBdR9L1BQiU8UvIiIiCgifA/XTp0/LHiuVSsTHxyM4mH88EknZbllndKMjUI9VVOBUob7207xWXCmfP55fbkD2hSpkxIX6dJ7fD+Xj8y1n8J9r+iMxQv69W2EwAQDCG5j1bwrXDE5DYYUB1w5Jh9423tp+u28M1hwtqPM8/lgur0lIgXpDll8jIiIiolbH57/EO3Zkt2EiT6SMuqwzulPpe4yiHCcq6m7WVhdpCbIOMTpoVAqcLKxETmm1T4F6sd6A2z/bAQD4eMNpPPGXXrL9jox6yw3U48K0eNo2f/5EgfsLH72SI1BldDS+UyjEqd5xYVp7w7zKFtAYzyun1om3oQnNOw4iIiIiahJed1FavXo1evfujfLycpd9ZWVl6NOnD/788083zyRqP6Tl2WQZdafS9whUoaC8pvbTvCYtQRYTGoTUaHGJpJySaq+eKwgC7v1yJwa/8Lt926Fc1+9nvS14DWvBgbqzrglhmJ6ZIts2rJNYoj+oQzSm9k3CyM6x+GnOaFwxIAVL5ozCVbZ59neNbdgUhCZlNgDb/k+8P2BW846FiIiIiJqE13+Jv/7667jjjjsQEeG6lFFkZCTuuusuvPbaaxgzZoxfB0jUmhhMUum7+4y6BmbkNyZQ14uBemxoEBJsJevnSusO1N/64ziO5Ffgsck98ev+PNm+Q+ddA/Vyp67vrcULV/TFz3vPOx7P6AtAXNP83ZsG27e/cf1AAMB/Z2bi8ak97f+GLVrWBqC6BAhPBgb+tblHQ0RERERNwOuM+t69ezFlyhSP+ydNmsQ11KndqzFLpe/Oc9QdpdkahQUlVSZ75t1XF2xz1GNCg9AxVsyon/RQ+i15ddUxLNuXiyd/3G/f9uRfegIQM/T/XnbIvv3shSoYzVaolQrEhraeLs0RIWrZhYUQ54oGN1RKResI0gGg0LbsZfowQFn3+yIiIiKitsHrQD0/Px8ajecOyWq1GoWFhX4ZFFFrVeMuo25yZNS1CjFbXdjAeer20vewIPRLFbud788p83i885rtG04UAQBSo0Jw58WOku8P/nQ0iNxyqhgA0D8tEiFBrScoVCgUSHbqBK9rRWOvV/Fx8Ta2a/OOg4iIiIiajNeBempqKg4cOOBx/759+5CcnOyXQRG1VhU1YgfyMK3TRS2n0vdQtRg455c3LFCXmsnFhWrRN0UM1LMvVGHdsUKXJRMBoNrkmrmXmsQlRjgy5qVV4nm3nLoAABjROda3gVmtQFmOb8/xs5hQx1JsuqDWU7ZfrzxbJURst+YdBxERERE1Ga8D9b/85S94+umnUVPjOr+2uroazz77LC677DK/Do6otXFu9mZXVWS/G2YL1K9+dxNeW3XM9/PrHeeP1Gns5e83f7wNC9eccDneXVdzKVD/+o4R9m0nbUvGSRl1nwP1Nf8GFvQGDv/s2/P8KDbM8W8uq2jwlSAApmrgwmngq+uA9a+IFyL2fQtsWACYjX4YbT0KjwIr5wEnVwPntgMKFdDp4sC/LhERERG1CF6nnebNm4cffvgB3bt3x9y5c9GjRw8AwJEjR7Bw4UJYLBY89dRTARsoUWtQ4i5QL3IE5Dq11X7/zT+O48GJ3es83+Hccvy4Owf3juuCKF2QrPQdAPqlRuJMsZixf2XlMcyd0A1FegMiQzTQqJSoNLrLqIvZ/s7xYRjTLQ5/Hi/CsXw9EsKDkVNaDbVSgcEdo31743++It6ueAroNd235/pJtM7xb65QKBp2EqsV+HACcH63Y9ux5cCRZcD5XeJjswEY93gjRuqFdS8DB74HNr0lPu45DYhMDexrEhEREVGL4XWgnpiYiE2bNuGee+7BE088YS+zVSgUmDx5MhYuXIjExMSADZSopbNYBZRWi6XvskC90BGoh6jk5emCINQZVE59Q1zy8P31p9ApLhSni8Sl3uLDxLL1/mmR+GVfrv34vWdLccXCjbi4ezw++9uwOjPqANAzKRx/Hi/C0bwKlNvG3j8tEqG+dHx3zjAHu64K0VScA/UG0+fLg3SJFKQDwLYPgLGPiQuzB8rp9fLHw+4I3GsRERERUYvj00TOjh074tdff0VJSQlOnDgBQRDQrVs3REf7mH0jaoNKq4yQpolH6Wxz1C1moNhRkh6slGe4q00Wj/Opa885l4J0AEi0dSyX5qlLnloizmdef0xs7Fhly6jHhjqy8c6N7HokiYH1r/tz7RcZrhqUVtfbdFV42GnQvj3Vn8Z0i8Pbbsr/vSYIsmkKLjqPB85sEo9Z/QJwydMNf636xuF88SN1MJDBZS+JiIiI2pMGdVyKjo7G0KFD/T0WolZtzVExOJbKzlFyBji+ErCa7McEK62y55wsqMTnW7IwuU8SLuklr0jJLXO/3rq4dJqYPe6bJg/UD+Q41kU3WayoNIoZ9eSoYAzuGI2Vh/Jlr9MzKRwAUGAL3kd1icWNwzt4/6YBeQb6winAammWZcSGd47Fx7cMQcfY0Iad4NPpQNaf8m1KNWC1VSVEZwDhScDer4GzWwF9ARAa79/MukEPVOQCBlsn//v2AaFxgc3eExEREVGL04iOS0QEAGuOFmDZvlx8s/0sAGBs93hxx8JhwK8Py44NUshL0ae/vQHf7DiH138/7nLe3w/nu329KJ0GSqUYuEUEa7D6obG4dohrFvymD7eiyiBm1HVBarx702D8784RuGmEIxDvmhAGpVMMOLVfsu/zu50DdVMlUHjEt+f70YSeiegSH+b7E81G1yAdAG763umBAAyaLd7N+hN4pZtYBu8vVgvw7ijg7SHi49TBQHRHIKiBFx6IiIiIqNVioE7UCJUGM+78bAfmfLUL27LEpc3uGdcFWPUsYHbKiIeKwXuQwrW5G+C6FnqR3oBnlh50e6xWLc9Wd44Pw82jMlyO23r6gn2OephWDZVSgeGdY2XPD9aokBHnCAQHdYhy/0brcn6P/PG57b6fo7lVFrpu08UCncc5HpuNQGStCyIHvvPfGMrOAaVnHI8H3uS/cxMRERFRq8JAnagRcsuqYbI4JmZH6TTorr0AbHxdfmBiHwCAWnBt7gYA4bWat+2wBf3u3D6mk8sSYX1SIvHG9QMwe2RH2Xap9F0X5LkUXWpMB8D3bLTZAOTbLij0mynetsZAXe+memHWYvF25FxAHQxcdB8Qniw/JjzJP69vNgAra62a0fdq/5ybiIiIiFqdZg3U169fj+nTpyMlJQUKhQJLliyp8/i1a9dCoVC4fOXl5TXNgIkAZBVVYuobf2Lpnhzkl4tzuzNidXh1ZiY+uWUoVFvfc31SYl8AgNJDoF5jtsiax+08U+Lx9Wcm5ALz04ANr8u2XzEgFU9M7SXbJjWTC/XQsA6AOJ/eJljj49zy/IPiHPyQGKDPVeK2s9u8e67VCvx4D/BaHzGb3Jz0BfLHw+4C0oeJ9yf/G3jsDJDQE1BpgB5/cRxn0Pvn9dfOl69Bn9gPCI70fDwRERERtWnNGqhXVlYiMzMTCxcu9Ol5R48eRW5urv0rISEhQCMkcvXczwdxOLcc9y3eg/xysbw9LVqHqwenYWC8Atj1mfwJCpU96FNYTLVPBwAwWQQYzI5GczvqCNRDV9wPWAzA78+67NOq5d/SUum7Tus5AL/z4s4AgEt7+fh9VFkELL5BvJ8yAOg4ElAoxXXjS7PFr/fHAfu+cf/8U6uBvV8B5eeAw7/49tr+VmkL1DuOBqa96rpOuibYcX/W18A1n4j3jZXwi9qfmdlL/HNeIiIiImqVGtT13V+mTp2KqVOn+vy8hIQEREVF+X9ARF6oqHFkxY/mVQAAEiJs5eP5B8SGapHpwF+XAEolYKyCfd0yq/tAHQDKq00I1qhQY7LggG3O+rxpvfDCssOy4xRm993gAdibzEmkjHpYHeuiX9w9Hr/dNwYdY3Uej3Hrj3+KHcoBIGUQEBINpA8HsjeL3e5Prxcbzf1wB9D/Wtfnn9vpuJ+9GRhxt2+v709S6XtMBjD09vqPl7LdRj9k1AXB0VkeAB44KHZ6JyIiIqJ2q1XOUR8wYACSk5MxceJEbNy4sc5jDQYDysvLZV9EjaFyCob/b/0pAECcNM/bVC3e6mKAuK5ATGcgqS+gEpdTg4eMOgCU2y4A7M8pg8kiIC5MixkDUwEAMaFBGNIxGs9O7y0P6uphz6jXUfoOAL2SI+o9xoVziXuHEeJtt4ni7bKHgENLHfurS12fn7vHcb8ky7fX9jep9D0sse7jJFpxWTsYKhr/2sUngRpbM8F/7HFtWEdERERE7U6rCtSTk5Px3nvv4fvvv8f333+P9PR0jBs3Drt27fL4nPnz5yMyMtL+lZ6e3oQjprYoSOX6bRMRbAtyTVXirTpEfoDStt9iwrJ/jJYtix1imxdeXmOCIAjYkSWWvQ/pGI24MC22P3UpNj42Ad/dMwq3XtQJsMgbydVFbwvUQ+sofW+w+B6O+9J87m6T3B/rrsGc87Ju/shMN4YUqId6Wf4fZGu6549xn7Nd8EgfAcR0avz5iIiIiKjVa1WBeo8ePXDXXXdh8ODBGDVqFD7++GOMGjUKCxYs8PicJ554AmVlZfavs2fPNuGIqS1Sq1zXGbeXlptsZemaWoG6lFG3mtAnJRKf/W2YfVeXBHF5tJJKI277dAdeXi6uQ94pXtweH65FiHPXdudA3akBnTslVeKxPmfLvSGV4F90v6MUPLGv2FiutuzN8scV+Y6yecB/Tdkayp5R9zJQ19oCdX+M++xW8TZ9WN3HEREREVG70axz1P1h2LBh2LBhg8f9Wq0WWq3W434iX6kUroF6eLBGvCNl1F0Cddt+W5A9umsc5k3rhd7JEfh4YxYO5JTjdFElVh9xdB/3OK/c4lT6XlMGhER5HGtJpVhqH1rH8mwNJpWzpwx0bFMogLhujuBTkl3rsVT2rgoS/02aPaNum6Pubem7lFG3GICvrgPg+pnw2rHfxFsG6kRERERk0+oD9T179iA5Obn+A4n8pNpkcdkWJpW+m+vJqAtWwGqBQqnC7WPEbusrDorLC+7Klnd6dxtcW0yOiwEA8Mv9wMxFskOUCsBqS7RfsGXUQ+toJuczY6W47rc0r7r2hYJhd7oG6mc2AJveBtS2i2an1oq3GWOAk3+IgbrVKjbfa2qC4Mjue7suujZCrCKoKQOOLffPOFIG+ec8RERERNTqNWugrtfrceLECfvj06dPY8+ePYiJiUGHDh3wxBNPICcnB599Ji5d9Prrr6NTp07o06cPampq8OGHH2L16tVYuXJlc70Faofs876DVKi0dVUP93aOOgBU5AGRqfaHKVHisduzagXq7oLryiLYO8gDwJFlQE05EBxh37TukfEY8581AMRyevFcfsyof3E1kLff8V6Do+T7+10D/PQPsfs9AER2AMqygZVPuZ6rky1QB8TjpSZt/lZTBuz/Fuh/vaNsXVKRJ74XhUrs1u8NlRq4dbn7ufe+WPW044JHRErjzkVEREREbUazBuo7duzA+PHj7Y8ffPBBAMDNN9+MRYsWITc3F9nZ2fb9RqMRDz30EHJycqDT6dC/f3/8/vvvsnMQBZo07/uZ6b3x2Pf7AQDhWqn0XcqoB8ufpHaafrH1XWDSC/aHSZHisYUVBtlT3Ja+V9bqTq7PB4pPAKmObGx6jA5ROg1Kq0ww21LrEVJpfmMd/sV1vrm70vuulwCHfxLv3/gtsPkt1/ncuhhgyN/EZd4Eq7g/UIH6sofEQP30euDaWmuWl5wWbyPTAHWQ9+dM7C1+NYbVJI4toQ/gZkoFEREREbVPzRqojxs3DkIdzbAWLVoke/zoo4/i0UcfDfCoiDzbc7YUZy9UQ61UoF9qlH27TspYm23Ls9UufVdrgegMcRmy8vOyXREh7oNotxl1faFtZwIQFCoG6iVZskAdALRqeQl5anSt8ZiNQOFhIDnT7Wt7tHKe/HFURw9ZaKfv64SewBULPZ8zKBwwlNnK3y1itj6pH6D0YxXA/m/F20NLgUWXyfdJ3edju/jv9bw15DZAFyeuP09EREREZNOqur4TNTep2dvkvknomuAoodZJ88mlddRrl74DwKXPibdlObLN9qXdanFbrm7PqMeLgT/gdg1yrdrx3JjQIHnXd0EA/ncT8H8Xi6Xzvqi9NNzIuY0PqO0d1CuAff8D3h8LvDkQ2P+dOBe+sSy11p3P+lP+JTWyG/K3xr+WrxQKoM8MIIJ9NoiIiIjIodU3kyNqSttOFwMALuoShyC1Es9f3geVRjOSI22Buafl2QAgwjYvvVZGPdxDWbr7jLrTet/SmttFx10Oc86op0Y5jeXAD8DexcDxFeLjfd8APae5fX23pGZ5koE3uj9O4cM1QOc1yXd8It4vPQN8fxswYR5w8SPen8udoqOO+1d/5L7EPL4nkNinca9DREREROQnDNSJvGQwW7A7uxQAMKyTuFb4zaMy5Ad5Wp4NcDQLqzgv63Ae7imj7m7t80pb6XtYvKNLuJuGZjOHpOH134+jymjB2O7x4saaMuC7W+UH5u1z+9oeSRUDSg0w/XWx/N6dCc8AJ9cAw++u/5zOa5LHdAbObXPsO7Ks8YG6VNqeMUZsdEdERERE1MIxUCfy0oGcMhjMVsSGBqFLvIcAVco4q4Nd94UliZlmq1ksYbctBeZpvfRInZtMu3NGPW2IeL/4uJgZ73u1vQz9zou74I4xnaE3mB0Z+8oix3mSB4hrmV84Bez6DBg0u453biMIjgsRDx4CwhI8HxvXFXgsy7uyeOeMerWt8/2EecCaF8Ug+8uZQEwj5o9vfVe8TRnQ8HMQERERETUhBupEXtp6+gIAYGhGDBSeOnTXlIu37rqXq9RisF5xHijPsQfqbjPn8NCp3bnruy4GiO0qdn3/4Q4xqJ0y336oQqGQl9VLy4AFRwJ3rgWejxIf//R37wJ157J3dxUDtXk7d136t8rd6yjJj+8JdJ8KHF0GHPfT8ovJA/xzHiIiIiKiAGOgTuSlbbZAXSp7d0sqTQ+Nd78/IkUM1D+YAESLc8yVANYGVbke+4Zt3XFdDHDFO+KSb3qn0ncASBsqBuoAsOUdWaDuwr5ed5o4Tzs4CqgpFbdVlwAh0a7PEQRgz1fifPj4no7t7prlNZSUUd/8tmNbSAww9SXxgoYmBOgwAkADli8rOwfs/0a8X6szPhERERFRS8VAncgLFquAnVliWXajA3Wp6bu0fjeADHe910qcjnun1vJd4bYu4WlDgb1fO7brCx1BfG1SUB4cKd7e+hvw7kjxfsFhoOMo1+ccWgIsvVe8/8BB8VYVJFYH+Is2zHVbcCQQ1QG4a13jz999MmAoF+e/ExERERG1AgzUibxwNK8CFQYzwrVq9EqOcH+QxQRUi1l3j/O3I9Mc9yPSgJlil/O9Z0txqkiPGQNS5WX1m94EDv/seh6pg3ztLHHuHqDbRPevLWXUQ6LE28TeQPcpwLHlQN4B94H61v9z3C87J956U/bui6BagXpItH+DajaQIyIiIqJWhoE6kReK9OJ63mkxOqiUHkqwpWy6Qum+jBxwdH4HxJL29GEAgMx0INPd8e6aqAWFA8G2iwVJ/YFe0x3B/PGVQFx3969dcka8lTLqAJCcKQbquXuBvP1iCbypBlj9T6AkGzCUOY79eLJ4q9G5P39DOWfUB98KTPwnEOTn1yAiIiIiakUYqBN5wWy1AgCCVHXMk968ULwNT/bcSM05UHfXcK4256Ba4pytV6qA674A9n8nrju+7X3xy9tzJvUXb/d8IX55w+8Zdad/h8xZjosQRERERETtFAN1Ii+YLAIAQK2qNZlcEIAvrgaqioGKXHHbsDs8n0gqWQdcS77dcRe06mJdt/WYCqQMBAqP1n2+oDCgx18cj5Nr5fFDE8RMf+ERz+eQllDzF+k9RqSJc+6JiIiIiNo5BupEXjBZxIy6unbZe/l54OQf8m2DbvZ8Ilmg7kV5t9ZNRv26z123BYWKS675KjJNLNOXgu8rFgLdJ4kXIH5/Vsx2r3lB/py4Hr6/Tl16TAW6ThSXiFO666pHRERERNS+MFAn8oLZllHXqJSAoUIsc+99hXgfEAPa8CSgw3AxI+2Jbe10AOJc8Pq4y6iHemhU1xAKBRDbDTi3TXwsNadTKMS54gCQMVosix/5d2Dru0Cvy/33+oB4oeCm7/x7TiIiIiKiVoyBOpEX7Bl1lQJYMx/YshBYOx+4RuzajsQ+wG0r6j+RSuO4byiv/3jB6rrN31lnTbDjfmic6/6OI8UvAJj+hn9fm4iIiIiIXLDOlMgLZqtTRl3KPgNAabZ4G5nq5ln1qCmr/5jkAbY7CrGb+7gnfX+d+mTeIN76u6SdiIiIiIgahBl1Ii9IGXWNSgEonbLivz8r3oYn+37SCC+C+4hk4L69QHCUY/1zf8u8Xiw/TxkQmPMTEREREZFPmFEnqq3sHLB0DlB0wr7J3vVdqZSXr0uCo7w//63LgZ6XAdNe8e746IzABemAOB+9xxT5/HkiIiIiImo2zKgTSUzVgMUIfHYFUHwCyDsA3LUOAGB2nqOuCnJ9rrv1zj1xnvNNRERERERUCwN1IskX1wB5+xxN3nL32HfZ56grlWIGujZfAnUiIiIiIqI6sPSdCACKTwJnNrh2Yj/8M4BaXd8NetfnM1AnOUrS2QAAJcpJREFUIiIiIiI/YaBOBABnNrrffnAJAOdmckrH2um9r3Acx0CdiIiIiIj8hIE6EQCUnHG/XRsGADDbmsmFCZXAhVPivr7XOI4Ljgjk6IiIiIiIqB1hoE7tW/l54KvrgT+dOrBrdMCov4v3jVUAHF3f+5b+DpgqgdhuQMZox3NU2qYaMRERERERtXFsJkftlyAA398uL3uf9irQdSJw8g/xsbESAGC2iqXvncu3i9v7X2tbe3yQWAofndGEAyciIiIioraMgTq1X+d3u85N7zQWiO4IBIkl7zBVAmYDzGYzFLAivWynuL3zOLH7++2/iwG/it9KRERERETkH4wuqP0qzRZv04cD134OVOQCcd2QU1qNVdsLcIt0zOv9MBsZ2Ku4HCHmMiAoXMykA4BS1UyDJyIiIiKitoqBOrVflYXibVgCEJ6Ick0MqstrcNOHW5F6QY9bgmBvHNcT+Rir7CgenzGaGXQiIiIiIgoYRhvUfukLxNvQBAiCgBs/2IrjBRWoMVkRrXBtDneNar14p/O4phsjERERERG1OwzUqX0yVgLr/yPeD0vA8QI99ueU2XdXIdjlKZ2VebY7Y5tihERERERE1E5xeTZqnw7/7LivjcC20xdku6vgfrm1am0cEN8zkCMjIiIiIqJ2jhl1ap8O/WS/a+11Bc5uKpftrhBCHA+UGuzUDkGpvgah/W7GCIWiqUZJRERERETtEAN1an8Mevs66YcuX4ab3jqEC5VG++6UyGBcO7Qbfl43AtNVW4DLFuCfmztjb0kp3u04qLlGTURERERE7QRL36ltMxuBfd8CFfmObcdXAuYaWKMycMcKgyxIf++mwVj/6HgkRQTjH6a5eDr1I1gzb8Tx/AoAQLfEsKZ+B0RERERE1M4wo05t25Z3gN+fFe8/ehooOQ388U8AQG7KROTsqgEA9EwKR2GFAUMyoqFWKaHTqiFAiRNCGhbvOIcqowVBaiUyYkOb650QEREREVE7wUCd2raDPzjuf3EVkH8IsBgAACdiJwAQMKpLLL66YwQsVgEqpTj/PDRIBQDYfKoYm08VAwAyYnVQq1iEQkREREREgcWog9o2pcZx//xue5COlIE4pu4OAIgPFzu8S0E6AOiCXK9hRemCAjdOIiIiIiIiGwbq1LYp3RSNDL4FuP0PrD8hZsrjw1yXYtPZMurOLFbB36MjIiIiIiJywUCd2jZTpeu2vlfjWGEV/jxeBACI0mlcDgnVugbqZgbqRERERETUBBioU9tlNgBFJ+TbgsKA9BFYsjvHvqlnUoTLU92Vvv99fFe/D5GIiIiIiKg2NpOjtuvcDsBcLd/WaSwElQa/7s8FAEzrl4wJPRNcnhob5piPPmtYB9x1cWdkxLHjOxERERERBR4z6tQ2CAJQWSzfdnqduKvHNMe2rpfg4PlyZBVXQatW4j/X9IfSqYmcRKtW4ft7RuHKgam4d1wXBulERERERNRkmFGntmH9f4E1/wau+QTQxQC7PgcOfAcAeOZwKh4LTkCYpRTWrhPx8+bzAIAJPRMQqvX8LTC4YzQGd4xukuETERERERFJGKhT27Dm3+Ltz/cDSX2BMxvtu9aaemGLqSvmXpSEdxZl4Wh+BQDgsv4pzTBQIiIiIiKiujFQp7ZFEwKUnJFtOiskAFDgvg0AIAbp4Vo1xveMb/LhERERERER1YeBOrUtmmCgqkS8n9QPr1ZfBtS4zkH/+s4Rbju7ExERERERNTc2k6O2RaEEDGXi/Zt/xnrNaJdDFt4wCH1TI5t4YERERERERN5hoE6tn9XquG+sFG+ValiCInG6qFJ2qFqpwJjucU04OCIiIiIiIt8wUKfWr6bUcV+fL96GxuNgbjnKa8yyQ4dmxCAiWNN0YyMiIiIiIvIRA3Vq/aqKXbd1Ho8/jxcBAEZ3dWTQJ/RMaKpRERERERERNQgDdWr9KotkDy2qYLxsvBr/XXEUADCpTyKidRooFMCEXgzUiYiIiIioZWPba2r9quSB+k8hM/DuboP98eiuceiTEoHyajO6xIc19eiIiIiIiIh8wkCdWr9aGfVvDKNkjzvFhaKzggE6ERERERG1DgzUqfVzyqifVqTjgDERgAW9kyNw7/guUChc11EnIiIiIiJqqRioU+uWfwjY9RkA4GPzFHwZcRsqLpgAAF/fOQKRIezwTkRERERErQsDdWq9BAH4+nqgNBtZ1kS8b54Gs1HMngeplIgI5sebiIiIiIhaH0Yy1HoZyoHSMwCAq43PoRiRgN4IAIgP17LknYiIiIiIWiUuz0atl74QAGDRhIlBupPL+ic3x4iIiIiIiIgajYE6tV7ZmwEApuBY2ea4MC3mTujaHCMiIiIiIiJqNAbq1DoZKoCf5or3jZWyXfdf2g3hwWwiR0RERERErRMDdWqdtn1gvxtskK+jPqVvUlOPhoiIiIiIyG8YqFPrU54LrH/F/nBLwrX2+3PGd0FcmLY5RkVEREREROQX7PpOLVvWBuDHe4D0ocAlzwDqYHFJNlMlkDoES2JvwxPbxMD8xSv74YbhHZp5wERERERERI3DQJ1atsU3ADVlQFk2cOB72S7zlJfx8LsFMEPAHWM64dohac00SCIiIiIiIv9h6Xs7UVZtgtUqNPcw6ldZDJSIa6PDahGDdHcuug/FkX1htgpQKRV4YmovqFX8OBMRERERUevHjHo7sPNMCa5+dxPuGtsZT0zt1dzD8cxUA3w4AdAXAP/YDez81LFvzENAWCKQuw+Y9C9AF4PCHDGIjwkNglKpaKZBExERERER+RcD9TZk5cE8WAUBk/skobjSiGv/bzMm90lCXlkNAOD/1p1Cv9RIXNY/pZlH6sGeL4GSLPF+1gZg7YuOfRc/AmhC7A8FQcDNH28DAIRr+TEmIiIiIqK2gxFOG1FaZcRdX+yEIACvzMzE8fwKnCqsxLtrT+JGpwZrT/14AP9dcRSRIRr8eO9FULWUTLTFBGx43fF4x8eO+wNukgXpALDpZDGKK40AgFNF8nXUiYiIiIiIWjMG6m3EmeIqCLYp6KcK9cgprbbv+3Jrtv1+WbUJZdUmAMCh8+XolxbZpOP06PhKsWGc5MxG8bb3DGDGQtmhJosV//z5kP1xp7jQJhggERERERFR02D3rVao2mhBli2LvPFEEb7beQ5nS6rs+ytqzNidXeryvKsGpsoeb8u6ENBx+qTwqHibOli2ubTTX/DB+lPYdLIIZosVALBoYxaO5lcAAC7pmYCFNwxq0qESEREREREFEjPqrYjJYsWFSiMe/34f1hwtxKgusdh0shgA0DFWZz9uV3aJLKMueWBid/x2IA/VJgsA2IP9FqHsrHjbeTxQkQeU5wBQ4LF9SVhx/DAAICkiGKXVRtSYxID95av74bqhXDediIiIiIjaFgbqrcgzSw/i622O8nApSAfE0nfJMVu2uXdyBJbOvQjl1SaUVBmRHqPDygcuxvhX1sJsFZBb5hrMN5tS8X1ZozpAcfdGKKqKgNA4rHh+k/2QvPIa+/2hGdGYOTi9yYdJREREREQUaCx9byVKq4yyID08WI0u8e7nZpss4mT12LAgaFRKxIZp0TUhHACQHqPD+7PF8vLzpTVun98sik8AAF7aXIXRb+5GRVgGfjjsyPinRoVgcp9EpEWH4OWr++GTW4dxSTYiIiIiImqTmFFvJX7elyt7PCwjBh/ePAQmi4CJC9bJMuqSaF2Q23MlR4od1FtMRr0sByjJggAlvj4XhwpUY+upC3jwm732Q367fwwigjXNOEgiIiIiIqKmwYx6K/HdjrOyx31SIqBQKBCkVmJUlzi3z4kJdR+op0WLgXpJlaMDfLPK+hMAcEzVBRUQ59p/4/R+eydHMEgnIiIiIqJ2g4F6K7B0Tw72niuDSqnARV1joVEpMK1/in3/6K7uA/VYD4F6eLAGyZHBAIATBRX+H7CvTq8HAKw29LRvWnkoHwAwtns8fr1vTLMMi4iIiIiIqDmw9L0V+HmvWPZ+5cBU/Ofq/qgxW6ALcvzXjegcY7+vVABW23rq8eFaj+fslhiO3LIaHM/XY3DHGI/HNYmz2wAAW6290Ds5Aodyy+27rhiQ4ulZREREREREbRID9VbgnG2N9Gn9k6FUKmRBOgDEhmnx5e3DIQhAl4RQ/Lg7B3llNZie6TnI7ZYQhvXHCnEsXx/Qsdfp2ApAFwdcOAkAOGjNwLU945FXXoMLlUYAwMTeic03PiIiIiIiombQrKXv69evx/Tp05GSkgKFQoElS5bU+5y1a9di0KBB0Gq16Nq1KxYtWhTwcTYnQRBwrkRs+pZum1vuzkVd4zC6WxySI0Nw77iu+OcVfRGqVUsnAbK3AkZHw7nuiWEAgOPNVfqedwD46lrgwwmAYEW5MgqFiESHGB1W3H8xfp47GtufuhThnJtORERERETtTLMG6pWVlcjMzMTChQu9Ov706dOYNm0axo8fjz179uD+++/H7bffjhUrVgR4pM2ntMoEvcEMAEiL1vn25JIzgKFCzFx/PAn48BIxaAfsy7Udd8qon71QhUkL1uGb7Wfdns6v8g/KHm5BfwAKpMfoEB+uRb+0yDpL94mIiIiIiNqqZi19nzp1KqZOner18e+99x46deqEV199FQDQq1cvbNiwAQsWLMDkyZPdPsdgMMBgMNgfl5eXuz2uxTm5GjjxBypKqvGkOg9hWhWCV2+q/3nBkcCwO4Gyc8B7FwHdpwBBYvYcBYeAVU8D/a9Dd4UVAJBXXoPyGhMigjV48dfDOJavx6Pf78O1Q9MD+OYAVBXJHv6z+mpoVApkpkUF9nWJiIiIiIhauFY1R33z5s249NJLZdsmT56M+++/3+Nz5s+fj+effz7AIwuAs9uBzW+jA4A71QAsADZ7+VyNDig4LN4/thxI6u/Yt+ktYNNbCAfQOfwLnKpQ4ni+Hn1SIvDbgTy/vgXoC4CSLCCpH6CpVbZfcsZ+93j6NTh3PB7DOkQ7yvWJiIiIiIjaqVYVFeXl5SExUd5cLDExEeXl5aiurkZIiOsc7ieeeAIPPvig/XF5eTnS0wOcLfaDfcoe2GadDrOthXuflAiM8bAMm92ZTUDODkCfB5TnOLbn7XN7+LTIU3iroitOFuix+WSR22MaZfGNwDmxozsePAJEJDv2SeNLHYI3tXcDKPC4zBwREREREVF70qoC9YbQarXQalvfXOfvSrriM+MsZMTqMLxTLK6c1B2ICK77Sev/KwbqpdlA1gbX/Ze/Dfw01/5wgOI4gK4oqKjBgRz5lACLVYBKqWjcm5CCdAA4+isw9DbHY32BeHvRP7Bzqfjawzs18zJxRERERERELUCrCtSTkpKQn58v25afn4+IiAi32fTW7LnpfdA1IQzXD+2AILWXPf+0keJt1kbAahLvj3kYMNcAFblA5vVic7kVTwAAkqxisFxYYYDF1mROUlplRGyYHy9wFB4VG9l9f5vY3M4oNrFbetyE82U1AIDeKRH+ez0iIiIiIqJWqlUF6iNHjsSvv/4q27Zq1SqMHDmymUYUOEqlArNHZvj2pGBboC41auswErjkafkxI+8F1Fpg2YOINYtz0j/dfAapUfILHUX6RgbqggAoVIBgER8f/RUY8yBw4HvZYa9vKQUQgvSYEC7FRkREREREhGZenk2v12PPnj3Ys2cPAHH5tT179iA7OxuAOL989uzZ9uPvvvtunDp1Co8++iiOHDmCd955B9988w0eeOCB5hh+yyMF6pLQePfHJWcCACIMjuZxOaXVskOO5DWyO76p2hGkKzVA2Vlgz5cuhxULYhb9mkEtv28AERERERFRU2jWQH3Hjh0YOHAgBg4cCAB48MEHMXDgQDzzzDMAgNzcXHvQDgCdOnXCsmXLsGrVKmRmZuLVV1/Fhx9+6HFptnbH20A9qiMAIKSmAMEwuD1kd3Zp48ZisAX6CiUw9Hbx/pr5LoeVQ1wb/q6xnRv3ekRERERERG1Es5a+jxs3DkKtudHOFi1a5PY5u3fvDuCoWjFvA/WweEAXB0VVEborzmGf0MXlkNNFlY0bS40YqFcIIfhVuATX4V3HvPnO47CrWI31xREAFPjituEI1qga93pERERERERtRLNm1MnPIlIAldO88vBEz8cm9gEA9FCelW1+c5ZY3bDuWCFu+WQb9p8ra9hYDBUAgDIhBI+tN8KkjXbsEwQsiHgUr5uvwfyr+mF0Ny7LRkREREREJGGg3paERAF3rQdGPwD0vx7oc5XnYxP7AgCuS3cE4hqVAj0Sw+2P1x4txNXvbWrYWGwN7SoEsbTdYjHbd/0SeiX+PC7uT4qsZ8k5IiIiIiKidqZVdX0nLyT0BC59rv7jEnsDAJKqT9o3xYdpXQJno9nq+xgEAdjwOgDgkCDOh7daLPbdc3ckyF6TiIiIiIiIHJhRb69spe9xVScAiH0C4iOCERGshi6okfPF930DZG9ClaDFq6aZAADBanF7aBwDdSIiIiIiIhkG6u1VfE9AoUSwqRTxKAUAJIRroVAokBQhz6pvOlHk/XkNFcAqce32t80zcB5xGNk5FnqEuD08NiyoQcMnIiIiIiJqq1j63l5pQoDYrkDRMbwV9DZKhTCkF4cAiyPwkrkEFzRG+6HlnwJCn0QovDlvZSGgz4cpMgMf5v8FuiAVbr0oA3//4u94N+h1PG+ajZ5J4TheoEe3hDBoVLxWRERERERE5IyBenuWNhQoOoYRysPi4zLxaxgA1K5+P+LbqQv73AZjvgbRwWpc0isRD2j6YrDhPQAKDAvWYPtTlyJYwyCdiIiIiIioNgbq7dmkF3A8uB8W/XkMAHDFgFQMy4jG8oP5+PN4oezQhyZ1R4zOyzL14EhkBY8BsAPhwRqolAqoVUrAlpO/pFcCYkJZ8k5EREREROQOA/X2TBeDsJG34NsNa2E0WzFr1GggNRJ5xtP48sgh2aGzuo5GTGqk16f+/pu9AIDUKHFuutUq2PfdNrqTHwZPRERERETUNjFQb+eSI0Ow6fEJqDJY0CFWXPM8KdK18Vtplcnrc246WYTvd52DQgHcf2k3AIBVcATqas5LJyIiIiIi8oiBOolLpIU5HtdeSx0Ayqq9C9QNZgvm/XgAAHDT8I4Y2CEaAGBxCtSJiIiIiIjIM6Y2yUXt5dkAoLTa6OZIVz/vzcWpokrEhWnxyJQe9u1vXD8QADBvWi//DJKIiIiIiKiNYkadXMS5Wdvc29L35QfyAAC3jOqIiGCNffvkPknY++wkRIZoPD2ViIiIiIiIwIw6uaFWKfHz3NGybeVelL4X6Q34/XA+AKBfWpTLfgbpRERERERE9WOgTm71S5N3ePcmo/6QrdM74Oj2TkRERERERL5hoE5eqd1MzmIVoDeYZdvWHXOsvZ4WzUCdiIiIiIioIRiok1dqN5O76cOtyHx+JYr0BrfHB2tUTTEsIiIiIiKiNoeBOnmldun75lPFsFgFrDgoNo+zWAWolAoAwA/3jmry8REREREREbUVDNTJK87N5KxWx5roT/14AOP+uwa/H863B+uZbhrJERERERERkXcYqJNXzpfV4JUVRwEAeqN8bnpWcRUWrDoGQFyDXcqsExERERERke8YqJPX3l5zAoIguF2q7UheBQB2eyciIiIiImosBurkk+JKI8qrzR73p0QFN+FoiIiIiIiI2h51cw+AWpfsC1U4WaD3uD+FGXUiIiIiIqJGYUadPPrmrpEY1CFKtu1IbgUe+W6f/fHQjGjZfgbqREREREREjcNAnTwa1ikGP9x7kWzbD7vO2e/Hh2vx7PQ+sv2co05ERERERNQ4DNTJJzml1YjSaQAAr87MRGSIRrafGXUiIiIiIqLGYaBO9RrWKcZ+X19jhtFsBQBkxIYiPFje5iCZzeSIiIiIiIgahYE61evDm4fglZmZAMQ11KtNFgBAsEaJiGANusSHAgDuvLgzIoI1Hs9DRERERERE9WPXd6pXRLAG0/ol4+Fv90IQHNu1GhWUSgV+vW8MFFAgSM3rPkRERERERI3FQJ28EqxRQqkArE6BeohGBQDQqlXNNCoiIiIiIqK2hylQ8opCoUCY1nFdR6kANCpFM46IiIiIiIiobWKgTl5zDtSDNSooFAzUiYiIiIiI/I2BOnktLFgeqBMREREREZH/MVAnr4U6ZdRDGKgTEREREREFBAN18tqgDtH2+1oNPzpERERERESBwGiLvHbnxZ3t908VVjbjSIiIiIiIiNouBurktcSIYAzNELPquiCWvhMREREREQUC11Enn3w4eyheWHYIf+mX3NxDISIiIiIiapMYqJNPInUa/HdmZnMPg4iIiIiIqM1i6TsRERERERFRC8JAnYiIiIiIiKgFYaBORERERERE1IIwUCciIiIiIiJqQRioExEREREREbUgDNSJiIiIiIiIWhAG6kREREREREQtCAN1IiIiIiIiohaEgToRERERERFRC8JAnYiIiIiIiKgFYaBORERERERE1IIwUCciIiIiIiJqQRioExEREREREbUgDNSJiIiIiIiIWhAG6kREREREREQtCAN1IiIiIiIiohaEgToRERERERFRC8JAnYiIiIiIiKgFUTf3AJqaIAgAgPLy8mYeCREREREREbUHUvwpxaP1aXeBekVFBQAgPT29mUdCRERERERE7UlFRQUiIyPrPU4heBvStxFWqxXnz59HeHg4FApFcw/HrfLycqSnp+Ps2bOIiIho7uEQeY2fXWqN+Lml1oqfXWqN+Lml1qqxn11BEFBRUYGUlBQolfXPQG93GXWlUom0tLTmHoZXIiIi+AOMWiV+dqk14ueWWit+dqk14ueWWqvGfHa9yaRL2EyOiIiIiIiIqAVhoE5ERERERETUgjBQb4G0Wi2effZZaLXa5h4KkU/42aXWiJ9baq342aXWiJ9baq2a+rPb7prJEREREREREbVkzKgTERERERERtSAM1ImIiIiIiIhaEAbqRERERERERC0IA3UiIiIiIiKiFoSBeoDMnz8fQ4cORXh4OBISEjBjxgwcPXpUdkxNTQ3mzJmD2NhYhIWF4eqrr0Z+fr59/969ezFr1iykp6cjJCQEvXr1whtvvOHyWmvXrsWgQYOg1WrRtWtXLFq0KNBvj9qwpvrs5ubm4oYbbkD37t2hVCpx//33N8XbozaqqT63P/zwAyZOnIj4+HhERERg5MiRWLFiRZO8R2p7mupzu2HDBlx00UWIjY1FSEgIevbsiQULFjTJe6S2pyn/xpVs3LgRarUaAwYMCNTbonagqT67a9euhUKhcPnKy8vzabwM1ANk3bp1mDNnDrZs2YJVq1bBZDJh0qRJqKystB/zwAMP4Oeff8a3336LdevW4fz587jqqqvs+3fu3ImEhAR88cUXOHjwIJ566ik88cQTePvtt+3HnD59GtOmTcP48eOxZ88e3H///bj99tv5hyM1WFN9dg0GA+Lj4zFv3jxkZmY26XuktqepPrfr16/HxIkT8euvv2Lnzp0YP348pk+fjt27dzfp+6W2oak+t6GhoZg7dy7Wr1+Pw4cPY968eZg3bx7ef//9Jn2/1DY01edWUlpaitmzZ+OSSy5pkvdHbVdTf3aPHj2K3Nxc+1dCQoJvAxaoSRQUFAgAhHXr1gmCIAilpaWCRqMRvv32W/sxhw8fFgAImzdv9niee++9Vxg/frz98aOPPir06dNHdsx1110nTJ482c/vgNqrQH12nY0dO1a47777/Dpuat+a4nMr6d27t/D888/7Z+DUrjXl5/bKK68UbrrpJv8MnNq1QH9ur7vuOmHevHnCs88+K2RmZvp9/NR+Beqzu2bNGgGAUFJS0qjxMaPeRMrKygAAMTExAMSrMSaTCZdeeqn9mJ49e6JDhw7YvHlzneeRzgEAmzdvlp0DACZPnlznOYh8EajPLlEgNdXn1mq1oqKigp9t8oum+tzu3r0bmzZtwtixY/00cmrPAvm5/eSTT3Dq1Ck8++yzARg5tXeB/pk7YMAAJCcnY+LEidi4caPP41P7/AzymdVqxf3334+LLroIffv2BQDk5eUhKCgIUVFRsmMTExM9zl/YtGkT/ve//2HZsmX2bXl5eUhMTHQ5R3l5OaqrqxESEuLfN0PtSiA/u0SB0pSf21deeQV6vR7XXnut38ZP7VNTfG7T0tJQWFgIs9mM5557Drfffrvf3we1L4H83B4/fhyPP/44/vzzT6jVDFnIvwL52U1OTsZ7772HIUOGwGAw4MMPP8S4ceOwdetWDBo0yOsx8lPfBObMmYMDBw5gw4YNDT7HgQMHcMUVV+DZZ5/FpEmT/Dg6Is/42aXWqKk+t1999RWef/55LF261Pd5Z0S1NMXn9s8//4Rer8eWLVvw+OOPo2vXrpg1a1Zjhk3tXKA+txaLBTfccAOef/55dO/e3V/DJbIL5M/cHj16oEePHvbHo0aNwsmTJ7FgwQJ8/vnnXp+fgXqAzZ07F7/88gvWr1+PtLQ0+/akpCQYjUaUlpbKrtrk5+cjKSlJdo5Dhw7hkksuwZ133ol58+bJ9iUlJck6EUrniIiIYDadGiXQn12iQGiqz+3ixYtx++2349tvv3WZfkTkq6b63Hbq1AkA0K9fP+Tn5+O5555joE4NFsjPbUVFBXbs2IHdu3dj7ty5AMQMqCAIUKvVWLlyJSZMmBDYN0htVnP8jTts2DDfLwo0aoY7eWS1WoU5c+YIKSkpwrFjx1z2S80KvvvuO/u2I0eOuDQrOHDggJCQkCA88sgjbl/n0UcfFfr27SvbNmvWLDaTowZrqs+uMzaTo8Zqys/tV199JQQHBwtLlizx75ugdqc5ft5Knn/+eaFjx46NGj+1T03xubVYLML+/ftlX/fcc4/Qo0cPYf/+/YJerw/Mm6M2rTl/5l566aXClVde6dN4GagHyD333CNERkYKa9euFXJzc+1fVVVV9mPuvvtuoUOHDsLq1auFHTt2CCNHjhRGjhxp379//34hPj5euOmmm2TnKCgosB9z6tQpQafTCY888ohw+PBhYeHChYJKpRKWL1/epO+X2o6m+uwKgiDs3r1b2L17tzB48GDhhhtuEHbv3i0cPHiwyd4rtR1N9bn98ssvBbVaLSxcuFB2TGlpaZO+X2obmupz+/bbbws//fSTcOzYMeHYsWPChx9+KISHhwtPPfVUk75fahua8u8EZ+z6To3VVJ/dBQsWCEuWLBGOHz8u7N+/X7jvvvsEpVIp/P777z6Nl4F6gABw+/XJJ5/Yj6murhbuvfdeITo6WtDpdMKVV14p5Obm2vc/++yzbs9R+wr4mjVrhAEDBghBQUFC586dZa9B5Kum/Ox6cwyRN5rqczt27Fi3x9x8881N92apzWiqz+2bb74p9OnTR9DpdEJERIQwcOBA4Z133hEsFksTvltqK5ry7wRnDNSpsZrqs/vyyy8LXbp0EYKDg4WYmBhh3LhxwurVq30er8I2aCIiIiIiIiJqAbiOOhEREREREVELwkCdiIiIiIiIqAVhoE5ERERERETUgjBQJyIiIiIiImpBGKgTERERERERtSAM1ImIiIiIiIhaEAbqRERERERERC0IA3UiIiIiIiKiFoSBOhEREREREVELwkCdiIionbnlllugUCigUCig0WiQmJiIiRMn4uOPP4bVavX6PIsWLUJUVFTgBkpERNROMVAnIiJqh6ZMmYLc3FxkZWXht99+w/jx43Hffffhsssug9lsbu7hERERtWsM1ImIiNohrVaLpKQkpKamYtCgQXjyySexdOlS/Pbbb1i0aBEA4LXXXkO/fv0QGhqK9PR03HvvvdDr9QCAtWvX4tZbb0VZWZk9O//cc88BAAwGAx5++GGkpqYiNDQUw4cPx9q1a5vnjRIREbVCDNSJiIgIADBhwgRkZmbihx9+AAAolUq8+eabOHjwID799FOsXr0ajz76KABg1KhReP311xEREYHc3Fzk5ubi4YcfBgDMnTsXmzdvxuLFi7Fv3z7MnDkTU6ZMwfHjx5vtvREREbUmCkEQhOYeBBERETWdW265BaWlpViyZInLvuuvvx779u3DoUOHXPZ99913uPvuu1FUVARAnKN+//33o7S01H5MdnY2OnfujOzsbKSkpNi3X3rppRg2bBhefPFFv78fIiKitkbd3AMgIiKilkMQBCgUCgDA77//jvnz5+PIkSMoLy+H2WxGTU0NqqqqoNPp3D5///79sFgs6N69u2y7wWBAbGxswMdPRETUFjBQJyIiIrvDhw+jU6dOyMrKwmWXXYZ77rkH//73vxETE4MNGzbgtttug9Fo9Bio6/V6qFQq7Ny5EyqVSrYvLCysKd4CERFRq8dAnYiIiAAAq1evxv79+/HAAw9g586dsFqtePXVV6FUii1tvvnmG9nxQUFBsFgssm0DBw6ExWJBQUEBxowZ02RjJyIiaksYqBMREbVDBoMBeXl5sFgsyM/Px/LlyzF//nxcdtllmD17Ng4cOACTyYS33noL06dPx8aNG/Hee+/JzpGRkQG9Xo8//vgDmZmZ0Ol06N69O2688UbMnj0br776KgYOHIjCwkL88ccf6N+/P6ZNm9ZM75iIiKj1YNd3IiKidmj58uVITk5GRkYGpkyZgjVr1uDNN9/E0qVLoVKpkJmZiddeew0vv/wy+vbtiy+//BLz58+XnWPUqFG4++67cd111yE+Ph7/+c9/AACffPIJZs+ejYceegg9evTAjBkzsH37dnTo0KE53ioREVGrw67vRERERERERC0IM+pERERERERELQgDdSIiIiIiIqIWhIE6ERERERERUQvCQJ2IiIiIiIioBWGgTkRERERERNSCMFAnIiIiIiIiakEYqBMRERERERG1IAzUiYiIiIiIiFoQBupERERERERELQgDdSIiIiIiIqIWhIE6ERERERERUQvy/xwAqvKi2wLUAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "2OhL0spEpKNA"
},
"execution_count": null,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment