Note: Using Google Cloud is not free of charge!
Running Pytorch on Google Cloud TPUs
I came across this compile error in XCode 4.3.2: In stl_function.h: | |
typename _Operation::result_type | |
operator()(const typename _Operation::second_argument_type& __x) const | |
{ return op(value, __x); } | |
// _GLIBCXX_RESOLVE_LIB_DEFECTS | |
// 109. Missing binders for non-const sequence elements | |
typename _Operation::result_type | |
operator()(typename _Operation::second_argument_type& __x) const <--------- Class member cannot be redeclared |
from keras.layers import Input | |
from keras.layers.recurrent import GRU, LSTM, SimpleRNN | |
from keras.layers.wrappers import TimeDistributed | |
from keras.layers.core import Dense, Activation, RepeatVector | |
from keras.layers.merge import Concatenate | |
from keras.layers import Dropout | |
from keras.optimizers import Adam | |
from keras.models import Model |
# This gist contains shared code for the Colab demo-chatbot.ipynb and demo-chatbot-inference.ipynb | |
# Copyright Globescope and Freddy Snijder. | |
# License "GNU General Public License v3.0" | |
# Also see https://choosealicense.com/licenses/gpl-3.0/ | |
from enum import Enum | |
import re |
Note: Using Google Cloud is not free of charge!
Running Pytorch on Google Cloud TPUs
import tensorflow as tf | |
import numpy as np | |
def load_data(): | |
fashion_mnist = tf.keras.datasets.fashion_mnist | |
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() | |
# Adding a dimension to the array -> new shape == (28, 28, 1) |
python examples/persona_chatbot/pytorch/train.py \ | |
--experiment-name persona-bot-6xMI100 \ | |
--num-dataloader-workers 2 \ | |
--use-mixed-precision \ | |
--batch-size 30 \ | |
--batch-chunk-size 10 \ | |
--num-choices 8 \ | |
--sequence-length-outlier-threshold 0.05 \ | |
--learning-rate 6.25e-5 \ | |
--lr-warmup-schedule \ |