Skip to content

Instantly share code, notes, and snippets.

@volnt
Created August 4, 2016 14:03
Show Gist options
  • Save volnt/162e88d315a31e28ea02a1c7a346d0cd to your computer and use it in GitHub Desktop.
Save volnt/162e88d315a31e28ea02a1c7a346d0cd to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.\n",
"Extracting MNIST_data/train-images-idx3-ubyte.gz\n",
"Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.\n",
"Extracting MNIST_data/train-labels-idx1-ubyte.gz\n",
"Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.\n",
"Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n",
"Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.\n",
"Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n"
]
}
],
"source": [
"# Load data\n",
"from tensorflow.examples.tutorials import mnist\n",
"mnist = mnist.input_data.read_data_sets(\"MNIST_data/\", one_hot=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Declare variables\n",
"x = tf.placeholder(tf.float32, [None, 784])\n",
"W = tf.Variable(tf.zeros([784, 10]))\n",
"b = tf.Variable(tf.zeros([10]))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Define model\n",
"y = tf.nn.softmax(tf.matmul(x, W) + b)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Define the cost function\n",
"y_ = tf.placeholder(tf.float32, [None, 10])\n",
"cross_entropy = -tf.reduce_sum(y_ * tf.log(y))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Define the optimization function\n",
"train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Initialize session\n",
"init = tf.initialize_all_variables()\n",
"sess = tf.Session()\n",
"sess.run(init)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Run the training\n",
"for _ in xrange(1000):\n",
" xs, ys = mnist.train.next_batch(100)\n",
" sess.run(train_step, feed_dict={x: xs, y_: ys})"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9144\n"
]
}
],
"source": [
"# Compare results with test results\n",
"correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))\n",
"accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
"print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment