start new:
tmux
start new with session name:
tmux new -s myname
| _tm_complete() { | |
| local rx | |
| local token=${COMP_WORDS[$COMP_CWORD]} | |
| local IFS=$'\t' | |
| local words | |
| if [ $COMP_CWORD -eq 2 ]; then | |
| words=$(tmux list-windows -t ${COMP_WORDS[1]} 2> /dev/null | awk '{print $2}' | tr -d '*-' | tr "\n" "\t") | |
| elif [ $COMP_CWORD -eq 1 ]; then | |
| words=$(tmux -q list-sessions 2> /dev/null | cut -f 1 -d ':' | tr "\n" " ") | |
| fi |
| 1. Download tmux-autocompletion.sh from this gist | |
| 2. In your ~/.bashrc, Add a line: | |
| source /path/to/tmux-autocompletion.sh | |
| 3. Source ~/.bashrc | |
| Bravo!!! |
| # unpack the library | |
| gzip -d cudnn-6.5-linux-x64-v2.tar.gz | |
| tar xf cudnn-6.5-linux-x64-v2.tar | |
| # copy the library files into CUDA's include and lib folders | |
| sudo cp cudnn-6.5-linux-x64-v2/cudnn.h /usr/local/cuda-7.0/include | |
| sudo cp cudnn-6.5-linux-x64-v2/libcudnn* /usr/local/cuda-7.0/lib64 |
| __author__ = 'k0emt' | |
| class Greeter: | |
| def __init__(self): | |
| self.message = 'Hello world' | |
| # print self.message |
| .file "A.cpp" | |
| .section .rdata,"dr" | |
| .align 8 | |
| .LC0: | |
| .ascii "bits1: %5lu, bits2: %5lu, builtin: %5lu\12\0" | |
| .text | |
| .p2align 4,,15 | |
| .def _Z6printfPKcz.constprop.0; .scl 3; .type 32; .endef | |
| .seh_proc _Z6printfPKcz.constprop.0 | |
| _Z6printfPKcz.constprop.0: |
| import json | |
| import os | |
| import time | |
| import requests | |
| from PIL import Image | |
| from StringIO import StringIO | |
| from requests.exceptions import ConnectionError | |
| def go(query, path): | |
| """Download full size images from Google image search. |
(from https://www.scivision.co/numpy-image-bgr-to-rgb/)
Conversion between any/all of BGR, RGB, and GBR may be necessary when working with Matplotlib expects M x N x 3 image, where last dimension is RGB.
OpenCV expects M x N x 3 image, where last dimension is BGR.
Scientific Cameras, some of which output an M X N x 3 image, where last dimension is GBR
| name: "CenterFace_Resnet" | |
| input: "data" | |
| input_dim: 1 | |
| input_dim: 3 | |
| input_dim: 112 | |
| input_dim: 96 | |
| layer { | |
| name: "conv1a" | |
| type: "Convolution" |