start new:
tmux
start new with session name:
tmux new -s myname
_tm_complete() { | |
local rx | |
local token=${COMP_WORDS[$COMP_CWORD]} | |
local IFS=$'\t' | |
local words | |
if [ $COMP_CWORD -eq 2 ]; then | |
words=$(tmux list-windows -t ${COMP_WORDS[1]} 2> /dev/null | awk '{print $2}' | tr -d '*-' | tr "\n" "\t") | |
elif [ $COMP_CWORD -eq 1 ]; then | |
words=$(tmux -q list-sessions 2> /dev/null | cut -f 1 -d ':' | tr "\n" " ") | |
fi |
1. Download tmux-autocompletion.sh from this gist | |
2. In your ~/.bashrc, Add a line: | |
source /path/to/tmux-autocompletion.sh | |
3. Source ~/.bashrc | |
Bravo!!! |
# unpack the library | |
gzip -d cudnn-6.5-linux-x64-v2.tar.gz | |
tar xf cudnn-6.5-linux-x64-v2.tar | |
# copy the library files into CUDA's include and lib folders | |
sudo cp cudnn-6.5-linux-x64-v2/cudnn.h /usr/local/cuda-7.0/include | |
sudo cp cudnn-6.5-linux-x64-v2/libcudnn* /usr/local/cuda-7.0/lib64 |
__author__ = 'k0emt' | |
class Greeter: | |
def __init__(self): | |
self.message = 'Hello world' | |
# print self.message |
.file "A.cpp" | |
.section .rdata,"dr" | |
.align 8 | |
.LC0: | |
.ascii "bits1: %5lu, bits2: %5lu, builtin: %5lu\12\0" | |
.text | |
.p2align 4,,15 | |
.def _Z6printfPKcz.constprop.0; .scl 3; .type 32; .endef | |
.seh_proc _Z6printfPKcz.constprop.0 | |
_Z6printfPKcz.constprop.0: |
import json | |
import os | |
import time | |
import requests | |
from PIL import Image | |
from StringIO import StringIO | |
from requests.exceptions import ConnectionError | |
def go(query, path): | |
"""Download full size images from Google image search. |
(from https://www.scivision.co/numpy-image-bgr-to-rgb/)
Conversion between any/all of BGR, RGB, and GBR may be necessary when working with Matplotlib expects M x N x 3 image, where last dimension is RGB.
OpenCV expects M x N x 3 image, where last dimension is BGR.
Scientific Cameras, some of which output an M X N x 3 image, where last dimension is GBR
name: "CenterFace_Resnet" | |
input: "data" | |
input_dim: 1 | |
input_dim: 3 | |
input_dim: 112 | |
input_dim: 96 | |
layer { | |
name: "conv1a" | |
type: "Convolution" |