git init
or
import numpy as np | |
rng = np.random.RandomState(0) | |
print "Trace" | |
A = rng.rand(3, 3) | |
print np.trace(A) | |
print np.einsum("ii", A) | |
A personal diary of DataFrame munging over the years.
Convert Series datatype to numeric (will error if column has non-numeric values)
(h/t @makmanalp)
# New repository | |
mkdir <repo> && cd <repo> | |
git init | |
git remote add –f <name> <url> | |
git config core.sparsecheckout true | |
echo some/dir/ >> .git/info/sparse-checkout | |
echo another/sub/tree >> .git/info/sparse-checkout | |
git pull <remote> <branch> | |
# Existing repository |
import os | |
import random | |
import string | |
from subprocess import call | |
import numpy as np | |
from sklearn.base import BaseEstimator, ClassifierMixin | |
from sklearn.datasets import dump_svmlight_file |
""" | |
Implementation of pairwise ranking using scikit-learn LinearSVC | |
Reference: | |
"Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich, | |
T. Graepel, K. Obermayer 1999 | |
"Learning to rank from medical imaging data." Pedregosa, Fabian, et al., | |
Machine Learning in Medical Imaging 2012. |
# Copyright Mathieu Blondel December 2011 | |
# License: BSD 3 clause | |
import numpy as np | |
import pylab as pl | |
from sklearn.base import BaseEstimator | |
from sklearn.utils import check_random_state | |
from sklearn.cluster import MiniBatchKMeans | |
from sklearn.cluster import KMeans as KMeansGood |