Skip to content

Instantly share code, notes, and snippets.

View walterreade's full-sized avatar

Walter Reade walterreade

View GitHub Profile
@mblondel
mblondel / einsum.py
Created May 22, 2015 05:36
Einstein sum notation
import numpy as np
rng = np.random.RandomState(0)
print "Trace"
A = rng.rand(3, 3)
print np.trace(A)
print np.einsum("ii", A)
print

Git Cheat Sheet

Commands

Getting Started

git init

or

@bsweger
bsweger / useful_pandas_snippets.md
Last active August 10, 2025 13:33
Useful Pandas Snippets

Useful Pandas Snippets

A personal diary of DataFrame munging over the years.

Data Types and Conversion

Convert Series datatype to numeric (will error if column has non-numeric values)
(h/t @makmanalp)

@sumardi
sumardi / gist:5559896
Created May 11, 2013 12:56
Subdirectory checkouts with Git sparse-checkout
# New repository
mkdir <repo> && cd <repo>
git init
git remote add –f <name> <url>
git config core.sparsecheckout true
echo some/dir/ >> .git/info/sparse-checkout
echo another/sub/tree >> .git/info/sparse-checkout
git pull <remote> <branch>
# Existing repository
@tobigue
tobigue / fest.py
Created March 29, 2013 08:38
Python (sklearn) FEST Wrapper
import os
import random
import string
from subprocess import call
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.datasets import dump_svmlight_file
@fabianp
fabianp / ranking.py
Last active February 1, 2024 10:02
Pairwise ranking using scikit-learn LinearSVC
"""
Implementation of pairwise ranking using scikit-learn LinearSVC
Reference:
"Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich,
T. Graepel, K. Obermayer 1999
"Learning to rank from medical imaging data." Pedregosa, Fabian, et al.,
Machine Learning in Medical Imaging 2012.
@mblondel
mblondel / kmeans.py
Last active April 21, 2024 13:41
Fuzzy K-means and K-medians
# Copyright Mathieu Blondel December 2011
# License: BSD 3 clause
import numpy as np
import pylab as pl
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans as KMeansGood