Last active
January 23, 2021 08:09
-
-
Save williamFalcon/146a016187c9a2edbd2f97a63cbc2d0d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import BertModel | |
import torch.nn.functional as F | |
class BertMNLIFinetuner(pl.LightningModule): | |
def __init__(self): | |
super(BertMNLIFinetuner, self).__init__() | |
# use pretrained BERT | |
self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True) | |
# fine tuner (3 classes) | |
self.W = nn.Linear(bert.config.hidden_size, 3) | |
self.num_classes = 3 | |
def forward(self, input_ids, attention_mask, token_type_ids): | |
h, _, attn = self.bert(input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids) | |
h_cls = h[:, 0] | |
logits = self.W(h_cls) | |
return logits, attn | |
def training_step(self, batch, batch_nb): | |
# batch | |
input_ids, attention_mask, token_type_ids, label = batch | |
# fwd | |
y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids) | |
# loss | |
loss = F.cross_entropy(y_hat, label) | |
# logs | |
tensorboard_logs = {'train_loss': loss} | |
return {'loss': loss, 'log': tensorboard_logs} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment