Skip to content

Instantly share code, notes, and snippets.

@willirath
Last active September 11, 2023 13:15
Show Gist options
  • Save willirath/e280515afe4d62db083b75307142a4d7 to your computer and use it in GitHub Desktop.
Save willirath/e280515afe4d62db083b75307142a4d7 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "d9f1c9b1-43dc-4415-9236-9f673422f8e9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# !curl -O https://zenodo.org/record/3634491/files/GYRE_5d_00010101_00011230_grid_U.nc\n",
"# !curl -O https://zenodo.org/record/3634491/files/GYRE_5d_00010101_00011230_grid_V.nc"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3c14bbed-2152-4a9d-9258-a236a23c1268",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import xarray as xr"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "79a6a81a-bbeb-4a95-a3eb-874409558222",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ds_U = xr.open_dataset(\"GYRE_5d_00010101_00011230_grid_U.nc\", decode_cf=False)\n",
"U = ds_U.vozocrtx\n",
"ds_V = xr.open_dataset(\"GYRE_5d_00010101_00011230_grid_V.nc\", decode_cf=False)\n",
"V = ds_V.vomecrty"
]
},
{
"cell_type": "markdown",
"id": "67b5cd9a-85d5-4f13-ab17-cd51ae8579ec",
"metadata": {},
"source": [
"These are 360d files coming in 5d steps.\n",
"We'll define EKE as kinetic energy between 10 days (2 time steps) and 60 days (12 time steps) just to cover the general band-pass filtered case.\n",
"\n",
"$$2\\cdot E = \\langle\\langle U\\rangle_{10d}^2\\rangle_{60d} - \\langle\\langle U\\rangle_{10d}\\rangle_{60d}^2\n",
"+ \\langle\\langle V\\rangle_{10d}^2\\rangle_{60d} - \\langle\\langle V\\rangle_{10d}\\rangle_{60d}^2$$\n",
"which simplifies to\n",
"$$2\\cdot E = \\langle\\langle U\\rangle_{10d}^2\\rangle_{60d} - \\langle U\\rangle_{60d}^2 + \\langle\\langle V\\rangle_{10d}^2\\rangle_{60d} - \\langle V\\rangle_{60d}^2$$\n",
"\n",
"So we need $\\langle\\langle U\\rangle_{10d}^2\\rangle_{60d}$, $\\langle U\\rangle_{60d}^2$ etc."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3576527d-98de-4c20-9757-c7a9ebe1969d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"U_10d_sq_60d = (\n",
" (U.coarsen(time_counter=2).mean() ** 2).coarsen(time_counter=6).mean()\n",
")\n",
"U_60d_sq = U.coarsen(time_counter=12).mean() ** 2\n",
"EKE_U_10d_60d = 0.5 * (U_10d_sq_60d - U_60d_sq)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e03fa1c5-9a24-4298-9922-f356365519a9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"V_10d_sq_60d = (\n",
" (V.coarsen(time_counter=2).mean() ** 2).coarsen(time_counter=6).mean()\n",
")\n",
"V_60d_sq = V.coarsen(time_counter=12).mean() ** 2\n",
"EKE_V_10d_60d = 0.5 * (V_10d_sq_60d - V_60d_sq)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7a00fc4c-344f-4ef7-a08c-3c4c8b8fd7ff",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.plot.facetgrid.FacetGrid at 0x7f9429c5f910>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAJOCAYAAABLIHGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNpElEQVR4nO3de3wU1f3/8fdsLpuES7gnRGNERRGxYkERLIIXQGytN5RqS7EqXynegG/124hWar+C+LUY/SFavGKrwrdFqm3Rgl8VpVAKCGqRKraoiCCCSgKEXHbP7w+alSU7Z5JddmeTfT0fj31A9sw5c+bMfM7s7Nk54xhjjAAAAAAA8FHA7woAAAAAAMDFKQAAAADAd1ycAgAAAAB8x8UpAAAAAMB3XJwCAAAAAHzHxSkAAAAAwHdcnAIAAAAAfMfFKQAAAADAd1ycAgAAAAB8x8Vpkrz22mtyHEdfffWV31UBkETEOpA5iHcASC4uTg+BoUOHauLEiVHvDRo0SFu3blVhYaE/lUojsdonnTz33HMaNmyYunbtqvbt22vgwIH685//7JnPcZxGr4cffjhqmf/93/9V3759VVBQoLKyMv3P//zPIVl3ot555x0NGTJE+fn5Ouyww3TnnXfKGBO1TE1NjaZMmaKysjIFg0EdffTRevzxx5Net3RGrNule6xfeeWVMeP2hBNOcM3z5JNPxszjOI62b98uSZo6dWrM9DZt2kSV5UdMEevxI97t0j3et27dqiuuuELHHXecAoFAk+r61ltv6fLLL1dpaany8/N1/PHH6/7772+0nNe5XUrPeI+nDwRSLdvvCrRWubm5Ki4u9rsarUptba1yc3MPebmvv/66hg0bpmnTpqlDhw564okndP7552vlypU6+eSTrXmfeOIJnXvuuZG/D/zA8uKLL+r73/++/t//+38aPny4NmzYoGuuuUb5+fm6/vrrE163mw8//FA9evRo9AG0QWVlpYYNG6YzzzxTq1at0vvvv68rr7xSbdq00X/+539Glrvsssv02Wef6bHHHtMxxxyj7du3q76+Pq46tWbE+qGXrFi///77dffdd0f+rq+v10knnaRLL73UNc/o0aOjYlza/wFv37596tatmyTpJz/5icaPHx+1zNlnn61TTjkl6r1DHVPEeuoR74desuK9pqZGXbt21ZQpU3Tfffc1Kc+aNWvUtWtX/eY3v1FpaamWL1+u//iP/1BWVlbkvN2Uc7uUnvEeTx8IpJxBQsaOHWskRb02bdpkXn31VSPJfPnll8YYY5544glTWFho/vCHP5hjjz3W5Ofnm0suucTs3r3bPPnkk6asrMx06NDBXH/99aa+vj5Sfk1Njbn55ptNSUmJKSgoMKeeeqp59dVXm1y/ZcuWmTPOOMPk5+ebDh06mOHDh5svvvjCGGPMvn37zA033GC6du1qgsGgOf30083f/va3SN6GOh9o4cKF5sDD5o477jAnnXSSeeqpp0xZWZlp3769GT16tKmsrLS2jzHGrF+/3owcOdK0adPGdOvWzfzgBz8wn3/+eaTsIUOGmOuuu85MmjTJdO7c2ZxxxhlN3u5E9e7d2/z85z+3LiPJLFy40DX98ssvN6NGjYp677777jOHH364CYfDzVr3448/bnr16mWCwaA57rjjzIMPPuiaf9OmTcYW2rNnzzaFhYVm3759kfemT59uSkpKIvV68cUXTWFhodm5c6drOZmGWG99sb5w4ULjOI758MMPm5xn+/btJicnxzz11FOuy6xbt85IMq+//nrkvabGFLGeHoj31hXvQ4YMMTfddFNceSdMmGDOPPPMyN9NObena7wfLJ4+EEg2ftaboPvvv18DBw7UuHHjtHXrVm3dulWlpaUxl927d68eeOABzZs3Ty+99JJee+01XXzxxVq0aJEWLVqkX//615ozZ45+97vfRfL86Ec/0l/+8hfNmzdPb7/9ti699FKde+652rhxo2fd1q1bp7PPPlsnnHCCVqxYoWXLlun8889XKBSSJN1yyy1asGCB5s6dqzfffFPHHHOMRowYoS+++KJZbfDPf/5Tv//97/XHP/5Rf/zjH7V06dLIN3Nu7bN161YNGTJEffv21erVq/XSSy/ps88+02WXXRZV9ty5c5Wdna2//OUv+tWvfhVz/U8//bTatm1rfT399NNN3p5wOKyqqip16tTJc9nrr79eXbp00SmnnKKHH35Y4XA4klZTU6O8vLyo5fPz8/XJJ5/oo48+avK6H3nkEU2ZMkV33XWXNmzYoGnTpun222/X3Llzm7xNB1qxYoWGDBmiYDAYeW/EiBH69NNP9eGHH0qSXnjhBfXv31/33HOPDjvsMB177LH6yU9+ourq6rjW2RoQ660v1h977DGdc845Kisra3Kep556SgUFBRo1apTrMo8++qiOPfZYDR48OPJeU2KKWE8fxHvri/d47dq1K+qc3JRze7rG+8Hi6QOBpPP76rg1iPWNXKxvVyWZDz74ILLMtddeawoKCkxVVVXkvREjRphrr73WGGPMBx98YBzHMVu2bIkq++yzzzbl5eWe9br88svN6aefHjNt9+7dJicnxzz99NOR92pra01JSYm55557InVuyrerBQUFkW9TjTHm5ptvNgMGDIj8Hat9br/9djN8+PCo9zZv3mwkmffeey+Sr2/fvp7bWVlZaTZu3Gh9HVg/L/fcc4/p1KmT+eyzz6zL/eIXvzDLly83a9euNffee68pKCgwv/jFLyLpv/rVr0xBQYF5+eWXTSgUMu+9957p1auXkWSWL1/e5HWXlpaaZ555ptG6Bw4cGLMMr29Xhw0bZsaNGxf13pYtW6LqNWLECBMMBs23v/1ts3LlSvOnP/3JlJWVmR/96EfWNmntiPXWE+uffvqpycrKMvPnz2/S8g169+5tfvzjH7um79u3z3Ts2NHMmDEj6v2mxBSxnl6I99YT7/GOnC5fvtzk5OSYxYsXR95ryrk9XeP9QPH2gUCycc9pChUUFOjoo4+O/F1UVKQjjzxSbdu2jXqvYZKNN998U8YYHXvssVHl1NTUqHPnzp7rW7dunet9BP/85z9VV1en008/PfJeTk6OTj31VG3YsKFZ23XkkUeqXbt2kb+7d+8e2QY3a9as0auvvhq17QfWrWGb+/fv77n+du3aRa0/Ec8++6ymTp2q559/PnI/mZvbbrst8v++fftKku68887I++PGjdM///lPfec731FdXZ3at2+vm266SVOnTlVWVlaT1v35559r8+bNuvrqqzVu3LjIsvX19VH3t55wwgmRb2zNv+9HObBty8rKtH79+sjfjuNErbshT8P74XBYjuPo6aefjqxn5syZGjVqlB588EHl5+db2ybTEetfS9dYf/LJJ9WhQwddeOGFTc6zYsUKvfvuu3rqqadcl3nuuedUVVWlH/7wh1Hve8XU7t27ifUWinj/WrrGezzWr1+vCy64QD/72c80bNiwyPtNObena7wfKJ4+EEgFLk5TKCcnJ+pvx3Fivtfw09BwOKysrCytWbOm0cVMrI7/YLYPFW4dljEm8l4gEGh0431dXV2jsmzb4CYcDuv888/XjBkzGqV179498v+DZ7uM5emnn9a1115rXeZXv/qVvv/971uXmT9/vq6++mr99re/1TnnnOO53oOddtppqqys1GeffaaioiI5jqMZM2Zo2rRp2rZtm7p27ar/+7//k7T/pN+UdTe04yOPPKIBAwZE5TnwmFi0aFFk32zZskVDhw7VunXrIukH7qPi4mJt27YtqqyGDxxFRUWS9u+Dww47LOokefzxx8sYo08++UQ9e/ZsVttkGmL9a+kY68YYPf744xozZkyzJmJ59NFH1bdvX/Xr18+6zHe+851Gk+Z4xVT79u0lEestEfH+tXSM93i8++67OuusszRu3LioL6IlNencnq7x3iDePhBIBS5OD4Hc3NzIvR6H0sknn6xQKKTt27dH3bvUVN/4xjf0f//3f/r5z3/eKO2YY45Rbm6uli1bpiuuuELS/pPT6tWrI9Otd+3aVVVVVdqzZ0/kRHJgp9hUsdrnm9/8phYsWKAjjzxS2dmJHYbf/e53G3XuBzu4Yz7Ys88+q6uuukrPPvusvv3tb8dVj7Vr1yovL08dOnSIej8rK0uHHXZYZD0DBw6MGpW1rbuoqEiHHXaY/vWvf1lPwAfeL9LQnsccc0zMZQcOHKhbb701aobExYsXq6SkJHJiPf300/Xb3/5Wu3fvjnxYev/99xUIBHT44Yc3oTVaJ2LdriXEuiQtXbpUH3zwga6++uomr3v37t363//9X02fPt11mU2bNunVV1/VCy+80CjNK6YaHv1ArKcP4t2upcR7c61fv15nnXWWxo4dq7vuust1Odu5PV3jvUE8fSCQMqn7BXHrNW7cOHPKKaeYTZs2mc8//9yEQiHXGf0O1DAb3oHGjh1rLrjggsjf3//+982RRx5pFixYYP71r3+Zv/3tb+buu+82f/rTnzzr9d5775nc3Fzz4x//2Lz11ltmw4YNZvbs2ZFZ82666SZTUlJiXnzxRbN+/XozduxY07Fjx8iMfzt37jRt2rQxN954o9m4caN5+umnTUlJScwZ/Q503333mbKyMmv7bNmyxXTt2tWMGjXKrFy50vzzn/80f/7zn82PfvSjyIyGicyu1xzPPPOMyc7ONg8++KDZunVr5PXVV19FlnnuuefMcccdF/n7hRdeMHPmzDHvvPOO+eCDD8wjjzxi2rdvb2688cbIMp9//rl56KGHzIYNG8zatWvNjTfeaPLy8szKlSubte5HHnnE5Ofnm4qKCvPee++Zt99+2zz++OPml7/8Zczt8bov5auvvjJFRUXm8ssvN++884557rnnTPv27c29994bWaaqqsocfvjhZtSoUWb9+vVm6dKlpmfPnuaaa65pXuO2MsR69Da0tFhv8IMf/CDq3rkDHRzrDR599FGTl5cXabNYbrvtNlNSUhI1K2uDpsQUsZ5eiPfobWiJ8b527Vqzdu1a069fP3PFFVeYtWvXmvXr10fSD473v//976Zr167m+9//ftQ5efv27ZFlmnJuT9d4b2DrAwG/cXF6CLz33nvmtNNOM/n5+Z7TzR+oKSew2tpa87Of/cwceeSRJicnxxQXF5uLLrrIvP32202q22uvvWYGDRpkgsGg6dChgxkxYkSkTtXV1eaGG24wXbp0iTndvDH7J0k45phjTF5envnOd75j5syZ0+wTWKz2McaY999/31x00UWmQ4cOJj8/3/Tq1ctMnDgxMuV5qk5gQ4YMaTQlviQzduzYyDINk140ePHFF03fvn1N27ZtTUFBgenTp4+pqKgwdXV1kWU+//xzc9ppp5k2bdqYgoICc/bZZ5u//vWvzV63McY8/fTTpm/fviY3N9d07NjRnHHGGea5556LuT1eJzBjjHn77bfN4MGDTTAYNMXFxWbq1KmNpprfsGGDOeecc0x+fr45/PDDzeTJk83evXut5bZ2xHr0NrS0WDdm/we4/Px8M2fOnJjpB8d6g4EDB5orrrjCtdxQKGQOP/xwc+utt7ou05SYItbTB/EevQ0tMd5jnV8P3IaD4/2OO+7wzNOUc7sx6RvvXn0g4DfHGJen+QIAAAAAkCI85xQAAAAA4DsuTluwkSNHuj6Yetq0aX5XD8AhQqwDmYN4B5DJ+FlvC7ZlyxZVV1fHTOvUqZM6deqU4hoBSAZiHcgcxDuATMbFKQAAAADAd/ysFwAAAADgOy5OAQAAAAC+y/a7AskWDof16aefql27dnIcx+/qALAwxqiqqkolJSUKBJr33RmxDrQcicS6RLwDLUWise63ffv2qba2NqnryM3NVV5eXlLX0ZK0+ovTTz/9VKWlpX5XA0AzbN68WYcffniz8hDrQMsTT6xLxDvQ0sQb637at2+fepS11bbtoaSup7i4WJs2beIC9d9a/cVpu3btJEnf0nnKVo7PtQFgU686LdOiSNw2B7EOtByJxLpEvAMtRaKx7qfa2lpt2x7SR2uOVPt2yRn1rawKq6zfh6qtreXi9N9a/cVpw899spWjbIcTGJDW/j13eDw/0yPWgRYkgVg/MB/xDqS5BGM9HbRt56htu+TUP6yW2y7J0vJ+/A0AAAAAaHVa/cgpAAAAAMQjZMIKmeSVjWiMnAIAAAAAfMfIKQAAAADEEJZRWMkZOk1WuS0ZI6cAAAAAAN8xcgoAAAAAMYQVVrLuDE1eyS0XI6cAAAAAAN8xcgoAAAAAMYSMUcgk597QZJXbkmX8xWl2Wak1veqbJe5ph2e5pjkhj/VWux+MwV32If68HbWuablbvnLPuK/GXqm6OtckU+ueFq6qshZrwvEFnhNI4MHETiv7UUCSphqPd98kqz7JFgjmuaY5OR7dYbZ7ulOQ757PEleSZCxxaerr3deZm2stVyH3TsjUuZfrtW9tx4yT5d4nGkt9mrJee9bMOo7hLeARH06+e8w6QUvevKB9xZZ+QrY+JuRxLNr6EVs817h/XvBivOLD8rnAhC15vbbVsl5brHv1MbbPFHH3IV7oY4Bm8/UT/PTp03XKKaeoXbt26tatmy688EK99957UcsYYzR16lSVlJQoPz9fQ4cO1fr1632qMQAAAIBM0TBbb7JeiObrxenSpUt13XXX6a9//auWLFmi+vp6DR8+XHv27Iksc88992jmzJmaNWuWVq1apeLiYg0bNkxVHqN1AAAAAICWw9ef9b700ktRfz/xxBPq1q2b1qxZozPOOEPGGFVUVGjKlCm6+OKLJUlz585VUVGRnnnmGV177bV+VBsAAABABgjLKMRzTlMmre453bVrlySpU6dOkqRNmzZp27ZtGj58eGSZYDCoIUOGaPny5TEvTmtqalRT8/U9XJWVlUmuNQA/EOtA5iDeASAzpM2sMcYYTZ48Wd/61rfUp08fSdK2bdskSUVFRVHLFhUVRdIONn36dBUWFkZepaX2CY8AtEzEOpA5iHcAfuGe09RKm4vT66+/Xm+//baeffbZRmmOEz3DmjGm0XsNysvLtWvXrshr8+bNSakvAH8R60DmIN4BIDOkxc96b7jhBr3wwgt6/fXXdfjhh0feLy4ulrR/BLV79+6R97dv395oNLVBMBhUMOgx1TuAFo9YBzIH8Q7ALzznNLV8HTk1xuj666/Xc889p1deeUU9evSISu/Ro4eKi4u1ZMmSyHu1tbVaunSpBg0alOrqAgAAAICvZs+erR49eigvL0/9+vXTG2+8YV1+6dKl6tevn/Ly8nTUUUfp4YcfbrTMggUL1Lt3bwWDQfXu3VsLFy5s9nqvvPJKOY4T9TrttNOatW2+Xpxed911+s1vfqNnnnlG7dq107Zt27Rt2zZVV1dL2v9z3okTJ2ratGlauHCh/v73v+vKK69UQUGBrrjiCj+rDgAAAKCVCyf51Vzz58/XxIkTNWXKFK1du1aDBw/WyJEj9fHHH8dcftOmTTrvvPM0ePBgrV27VrfeeqtuvPFGLViwILLMihUrNHr0aI0ZM0ZvvfWWxowZo8suu0wrV65s9nrPPfdcbd26NfJatGhRs7bP14vThx56SLt27dLQoUPVvXv3yGv+/PmRZW655RZNnDhREyZMUP/+/bVlyxYtXrxY7dq187HmAAAAAJBaM2fO1NVXX61rrrlGxx9/vCoqKlRaWqqHHnoo5vIPP/ywjjjiCFVUVOj444/XNddco6uuukr33ntvZJmKigoNGzZM5eXl6tWrl8rLy3X22WeroqKi2esNBoMqLi6OvBqewtJUvt5zaprwO2vHcTR16lRNnTo1OZXIs9/DEvyyzjUtUO9e//pg/Nf9jsfXKPVt3HdbuEdn17RAbchabta+evc61bjnzapxbyNJUq0lvabWks+SJsnsq3FPq3ffFkkydZZ0474DTNjjmLXkleN+TDhZWdZiremWNK9y5TKxmKeA/fh2cnNc0+o/3xHfOg+BQPu2rmnGdpxKUsg9BkzV7nirZG1Lx3KPnZPj0X0HLH3b3mr3cj36RFO9zz3N0kaOPI5F434s2spNhFd8JGu9SD7Pvtp2/rCde3ZVea3Ynh4nz+1xz2hNdnJz3dM87vF18vPc02znCI/zh32llnOW7fOE7J8LrJ8nPPqBpPUTCXxmiLtOSTp+W7pQEp9z2lDuwY/HcrvPvra2VmvWrNFPf/rTqPeHDx+u5cuXx1zHihUroh7LKUkjRozQY489prq6OuXk5GjFihWaNGlSo2UaLk6bs97XXntN3bp1U4cOHTRkyBDddddd6tatm0sLNJY2s/UCAAAAQKYpLS2NelzW9OnTYy63Y8cOhUKhZj1mc9u2bTGXr6+v144dO6zLNJTZ1PWOHDlSTz/9tF555RX98pe/1KpVq3TWWWdFPafaS1rM1gsAAAAA6SZk9r+SVbYkbd68We3bt4+87zU7eXMes+m2/MHvN6VMr2VGjx4d+X+fPn3Uv39/lZWV6U9/+pMuvvhi2yZFcHEKAAAAAD5p37591MWpmy5duigrK6vRKKntMZvFxcUxl8/Ozlbnzp2tyzSUGc96Jal79+4qKyvTxo0bPbetAT/rBQAAAIAY0mm23tzcXPXr1y/qMZuStGTJEtfHbA4cOLDR8osXL1b//v2Vk5NjXaahzHjWK0k7d+7U5s2b1b1796ZtoBg5BQAAAIAWYfLkyRozZoz69++vgQMHas6cOfr44481fvx4SVJ5ebm2bNmip556SpI0fvx4zZo1S5MnT9a4ceO0YsUKPfbYY3r22WcjZd50000644wzNGPGDF1wwQV6/vnn9fLLL2vZsmVNXu/u3bs1depUXXLJJerevbs+/PBD3XrrrerSpYsuuuiiJm8fF6cAAAAAEENYjkKK8+kGTSi7uUaPHq2dO3fqzjvv1NatW9WnTx8tWrRIZWVlkqStW7dGPXu0R48eWrRokSZNmqQHH3xQJSUleuCBB3TJJZdElhk0aJDmzZun2267TbfffruOPvpozZ8/XwMGDGjyerOysvTOO+/oqaee0ldffaXu3bvrzDPP1Pz585v1CFDHNOV5Li1YZWWlCgsLNVQXKNtp/HiL7OOOseav7e7++++6du7X9ok8Ssb2iBpJyqpx/xFAoM49b7IeJRPgUTJNypvQo2QCls6rFT1Kpt7U6TU9r127djXp3osDecW6JGV37eKa3/NRMuEkTbFva0vb5Aaej5JxL9f48CgZJRA7no9yiPMxG9a4asJ6Eb9EYl3yjncn270Pkjz6Rttxkcg5IAFp+SgZWx/Eo2T+nZjA8dBKHiWTaKz7qaGfefPdIrVtl5w7IXdXhfXN3p+1yPZJFkZOAQAAACCGsPH+XiqRshGNCZEAAAAAAL7L+JHTcJ77T1okKffjL9zTqnbHv+JEftZiY/uVttcvuC1f35iEfupqSbf89MR4/YwyZElP0k+rEmJrw3p7fZP2xZrlZ0PWbB4/KQqE7D8H801Bvnuax896w5afs9p4/fzWybakW9rZ82dbtnRb/+MVz5b62p6x5tX/2OLd8+fplp/p29rJs++KMz7Ssv/JMFlHllrTzbbt7mmWW0rCtltCpOTt+zh/4mn72a4k+3l/715rVlv02NZrva1GSfw5vR9xGW8fInnc6mDPGrCcd6z9nuFWh1hCSbznNFnltmSMnAIAAAAAfJfxI6cAAAAAEAsjp6nFyCkAAAAAwHeMnAIAAABADGHjKOxxP24iZSMaI6cAAAAAAN8xcgoAAAAAMXDPaWoxcgoAAAAA8B0jpwAAAAAQQ0gBhZI0npeZT461Y+QUAAAAAOA7Rk4BAAAAIAaTxNl6DbP1NsLFqdfYcW2da1Loy13u+UzYXq7jvmIn4HGgWvIqy1aux8Y6lvXa8tryeaVnux+CnuFqjHtayOOHEmHL/gm5pzke+9VY1mvClvp6HS8tjK0d/BTu1M41LVBXb83rVFe7piW0vVlZ7uvMzXHPZ4kdSVK9ZXtsWT3i2cl2r6/qLce/rT6SHMt6PfPa+kzLid8ak4mw9dFeWlpf4LWtPm1P9VGdrOnBT7e5piWtr7ad9y39wP6s8X2ANR79mk1Wx0L7Al6fKVwk9FHctk6PfiK8qzKRNbtz4j9erMdaAv1I2LLfbceS53FoSQ/X1npXDGgCLk4BAAAAIAZm600t7jkFAAAAAPiOkVMAAAAAiCFkAgqZJM3Wm6S7S1oyRk4BAAAAAL5j5BQAAAAAYgjLUThJ43lhMXR6MEZOAQAAAAC+Y+QUAAAAAGJgtt7UYuQUAAAAAOA7Rk4BAAAAIIbkztbLPacHY+QUAAAAAOC7jB85DQdzrOm2q3cTClkSw/YVO5ZvSozX788t6w1ZapyVZS82yz2vtUZe5QbccztOcr4fMZZtkSQnZNk/We5p1n0u+/Y4lmPCq1wTth0vHseaveD4stmrK8frmPBJqE2ua1og1z1Nkv04t+0/277zyGvqLbFjLzV+Xt/iOpY1W/sQ++nG1Ne75/U4nqzxYelrnYD9+LeWa+FY+jwvJmzpuxKJ9STx2lavviJZ9pTYz+15lmMqHNoX/4rjPad57FvbceHkum9rVru28dVHkuq9OnpLfGRb4j2RkaKwpZ0C9rYPtGvnmhbaVRlvjRJiix/r54IEPjvZ+zWPzzhpem5Ptv2z9SbnrJusclsyRk4BAAAAAL7L+JFTAAAAAIglrIBCPOc0ZRg5BQAAAAD4jpFTAAAAAIiB2XpTi5FTAAAAAIDvGDkFAAAAgBjCCijMPacpw8gpAAAAAMB3jJwCAAAAQAwh4yhkkvM80mSV25IxcgoAAAAA8F3Gj5wG6kJx53UClm87nJy4y5UJeyS7/z7dCVjyen47E+d3FbZ2kORkZVkSk/ONkeO1LY57OxlL+zsBj3ID7seTqat3L9fSRPtZyg1b6uRxLCWLCcUfV8kUDloaOsu+b51s9+7S1Na6Z/SKZ0tbOZZZ/EzIXq6tvtZt9Zo50JZuW6dHudb2DXscx5Y+yJH7Pjceh6mtP7X1w7a0hDge/Y8P8Z60bU1QXRuPc0tOkj7+xLkPrP24JJm6+Mrds9e+gC1mvdRbzmm2/inX4/ORLd5t52CvfsLS7wXat3VNM7v3WIv1Jd4TiXVbuR59TLrGe7KFkvic0xD3nDbi68jp66+/rvPPP18lJSVyHEe///3vo9KvvPJKOY4T9TrttNP8qSwAAAAAIGl8HTnds2ePTjrpJP3oRz/SJZdcEnOZc889V0888UTk79zc3FRVDwAAAEAGC5uAwkl6zmmY55w24uvF6ciRIzVy5EjrMsFgUMXFxSmqEQAAAADAD2l/z+lrr72mbt26qUOHDhoyZIjuuusudevWzXX5mpoa1dTURP6urKxMRTUBpBixDmQO4h2AX7jnNLXSerbekSNH6umnn9Yrr7yiX/7yl1q1apXOOuusqBPUwaZPn67CwsLIq7S0NIU1BpAqxDqQOYh3AMgMaX1xOnr0aH37299Wnz59dP755+vFF1/U+++/rz/96U+uecrLy7Vr167Ia/PmzSmsMYBUIdaBzEG8A/BLWF8/6/RQv/x5pkJ6S/uf9R6oe/fuKisr08aNG12XCQaDCgaDKawVAD8Q60DmIN4BIDO0qIvTnTt3avPmzerevbvfVQEAAADQyoUVUDhJPzZNVrktma8Xp7t379YHH3wQ+XvTpk1at26dOnXqpE6dOmnq1Km65JJL1L17d3344Ye69dZb1aVLF1100UU+1hoAAAAAcKj5enG6evVqnXnmmZG/J0+eLEkaO3asHnroIb3zzjt66qmn9NVXX6l79+4688wzNX/+fLVr186vKgMAAADIECETUChJzzlNVrktma8Xp0OHDpWxPHz2z3/+c9LrEM7NsqYHLPVzsnPcM2YlcLDV13ssEHJNMWHLlNSOfbpqJ2S5LTvL0k62dXqtN8ux5LOkefF6qLFl/zjuzSvj0YbWOtuOCcs695drOQ4D7vvNeJUbL+NxC79JYN8lUX2B+3EcTOBB2I4lPqwxKXvcWXOGPfaBJd3Js9y75xV3tnay9V3ZHqcbW94ce15bjU1tnXs+W78mr/ixdRQJTHHhtKwPKk7AfrwkrQ/ykLMngcczJLL/krVOy3Fh6t2P8fA+j2JzLf1EjuUzjgdjiWfPs0Mw1z0tZDmgAvHHjmPr1/Lz7Zmrq12TTNijTpb9boutRMq1rjPL0vYeeXkgCg6VFnXPKQAAAACkSliOwt5fq8RdNqK1rK9oAQAAAACtEiOnAAAAABAD95ymFi0CAAAAAPAdI6cAAAAAEENIAYWSNJ6XrHJbMloEAAAAAOA7Rk4BAAAAIIawcRRO0iPyklVuS8bIKQAAAADAd4ycAgAAAEAM4STecxpmnLCRjL84Dedm2RfIyXFNcnJtabnWYo0Ju6fts1dJYWNJDFlW6r7O/enuPy0wIfdynYA9sGzb6rS0nzMEPOprmRLcMe77zVjS9ue17Juwpf0de7mex0ScbMeLn4xt/3kcx7LtI8ey3wNecWdJr7ekZdn7Lus+2FfjmuTkBa3lyrG0oa2N6uvt5Wa7n468egnbUW7Lazzq5Mjj/OBWrtfhn6S4sx2HSYt16/nIPwWfeRxvyZKsfRBnXlNfF3+5Xucl2+ccSz/hdX5wamrdEy2fuxT2aCNbH59A/2Ndb417Xyt5nL9tn508Pot49kGu+Tz2TU7GXzYgBTjKAAAAACCGsAkonKTnkSar3JaMFgEAAAAA+I6RUwAAAACIISRHIe8feMddNqIxcgoAAAAA8B0jpwAAAAAQA/ecphYtAgAAAADwHSOnAAAAABBDSMm7NzQ9H7znLy5OAQAAACAGftabWrQIAAAAAMB3jJwCAAAAQAwhE1AoSSOcySq3Jcv4i9N9XXKt6bkfht0TcyzNl5tjLdf6y/WwseaVsaQb9/oar3Itv3x3HPfgMaqzlurIvS1sNbKtU5IUSMNnQzmWOsWbJkmWtnAClmPU2Ms1YUsbW46lTGTCcbaH13FsX6l7WsjjThVbzNr6kH0exeYFLYkJxGR9vXtatv1UZVurtY+xlioZS50cZXnktpTrx01GXseh7VhL5Bj2ScG6zdZ07/Ohi0TawpbXp/7WWPoRU11tzWtrCSfX8tnKo5+w1cmptWT0+NwlWx+eZYnnHI/Pc4n0ezU1rkkJ9RPxHqcex6Gpte0A4NDI+ItTAAAAAIjFyFE4SRMimSSV25K1vK9DAQAAAACtDiOnAAAAABAD95ymFi0CAAAAAPAdI6cAAAAAEEPYOAp7TDCZSNmIxsgpAAAAAMB3jJwCAAAAQAwhBRRK0nhessptyWgRAAAAAIDvGDkFAAAAgBi45zS1GDkFAAAAAPgu40dOwzkeC2S7N5FjSVOuR8HGuJcb8sgbCsWVZsL19iqF3etkK9frOx+jOkte9201jqU++xdwL9dJw+9dAu51cizHgyRZUy2Hgzza0AmE3dcZTqANjXu5ftrbJcs1rW0iBSeyvbZj1ZbmtU5bumXfmnp7P6F97klOXtCS6NFT2NJtfZ5k76et64z/GLe1kyP348y7YFtMevSJyWI7ltKxr5UU/uIra7r9WE3PbUo34epq1zRbCzq5ufaCLX2BsX0WqbUXq2xLXNr6GNtnPY90Jz/Po1IWNTWuSbZ2kCQnkJzROK/1tlZhBRRO0nhessptyWgRAAAAAIDvMn7kFAAAAABiCRlHoSTdG5qsclsyRk4BAAAAAL5j5BQAAAAAYmC23tRi5BQAAAAA4DtGTgEAAAAgBmMCCpvkjOeZJJXbktEiAAAAAADfNfvi9Morr9Trr7+ejLoAAAAAQNoIyUnqC9GafXFaVVWl4cOHq2fPnpo2bZq2bNmSjHoBAAAAAA4ye/Zs9ejRQ3l5eerXr5/eeOMN6/JLly5Vv379lJeXp6OOOkoPP/xwo2UWLFig3r17KxgMqnfv3lq4cGFC67322mvlOI4qKiqatW3Nvud0wYIF2rlzp37zm9/oySef1B133KFzzjlHV199tS644ALl5OQ0t0hf7extvz4vfMd9e5yaXPeMibRDKGxPr6+PK80JG2uxJhSKK82L7Tshozr3fFlZHiW7p5uAvQ0dJ0m/aA9YttZWJY9ttbahcd+vjqWNJMlYdqvj0YbWcsOW9jXxl5uomg6WREs7ejEesWXnvhOcHEsXbWtjecWsZZ0eMwdat3Sfe5KTF7SWKyeBb49t25ptaUNbXyrJybX08RbGq1xb35VATCZ2HFokq79MIqdNvn2BWsu5x9KP+9bGPvab8QhXV7umeR1N1riz9BNen1OsPUy25VzpEc/WPsaWJsnJz3NPDFhaytK+UgKf2TxjPf7Pgi1Z2CRvVt14upT58+dr4sSJmj17tk4//XT96le/0siRI/Xuu+/qiCOOaLT8pk2bdN5552ncuHH6zW9+o7/85S+aMGGCunbtqksuuUSStGLFCo0ePVq/+MUvdNFFF2nhwoW67LLLtGzZMg0YMKDZ6/3973+vlStXqqSkpNnbF9cZp3Pnzrrpppu0du1a/e1vf9MxxxyjMWPGqKSkRJMmTdLGjRubVM7rr7+u888/XyUlJXIcR7///e+j0o0xmjp1qkpKSpSfn6+hQ4dq/fr18VQZAAAAAFq0mTNn6uqrr9Y111yj448/XhUVFSotLdVDDz0Uc/mHH35YRxxxhCoqKnT88cfrmmuu0VVXXaV77703skxFRYWGDRum8vJy9erVS+Xl5Tr77LOjRj2but4tW7bo+uuv19NPPx3XoGVCX4du3bpVixcv1uLFi5WVlaXzzjtP69evV+/evXXfffd55t+zZ49OOukkzZo1K2b6Pffco5kzZ2rWrFlatWqViouLNWzYMFVVVSVSbQAAAADwFP73bL3JeklSZWVl1KumpiZmXWpra7VmzRoNHz486v3hw4dr+fLlMfOsWLGi0fIjRozQ6tWrVVdXZ12mocymrjccDmvMmDG6+eabdcIJJ3g1bUzNvjitq6vTggUL9J3vfEdlZWX67W9/q0mTJmnr1q2aO3euFi9erF//+te68847PcsaOXKk/vu//1sXX3xxozRjjCoqKjRlyhRdfPHF6tOnj+bOnau9e/fqmWeeaW61AQAAACDtlJaWqrCwMPKaPn16zOV27NihUCikoqKiqPeLioq0bdu2mHm2bdsWc/n6+nrt2LHDukxDmU1d74wZM5Sdna0bb7yxCVsdW7PvOe3evbvC4bAuv/xy/e1vf1Pfvn0bLTNixAh16NAh7kpJ+38fvW3btqgr9GAwqCFDhmj58uW69tprEyofAAAAAGzCchRO0qy6DeVu3rxZ7du3j7wfDNrnaXAOuv/aGNPoPa/lD36/KWXallmzZo3uv/9+vfnmm9a6eGn2xel9992nSy+9VHl57jdxd+zYUZs2bYq7UpIiV+GxrtA/+ugj13w1NTVRQ+GVlZUJ1QNAeiLWgcxBvANozdq3bx91ceqmS5cuysrKajRKun379kbXTA2Ki4tjLp+dna3OnTtbl2kosynrfeONN7R9+/aoyZFCoZD+8z//UxUVFfrwww89t0+K42e9Y8aMsV6YHmrN/WZg+vTpUcPipaWlya4iAB8Q60DmIN4B+CVknKS+miM3N1f9+vXTkiVLot5fsmSJBg0aFDPPwIEDGy2/ePFi9e/fPzJhkdsyDWU2Zb1jxozR22+/rXXr1kVeJSUluvnmm/XnP/+5yduYtvPDFxcXS1KzvhmQpPLycu3atSvy2rx5c1LrCcAfxDqQOYh3ANhv8uTJevTRR/X4449rw4YNmjRpkj7++GONHz9e0v7+8oc//GFk+fHjx+ujjz7S5MmTtWHDBj3++ON67LHH9JOf/CSyzE033aTFixdrxowZ+sc//qEZM2bo5Zdf1sSJE5u83s6dO6tPnz5Rr5ycHBUXF+u4445r8vY1+2e9qdKjRw8VFxdryZIlOvnkkyXtnylq6dKlmjFjhmu+YDDo+TttAC0fsQ5kDuIdgF8OnFU3GWU31+jRo7Vz507deeed2rp1q/r06aNFixaprKxM0v6nqXz88ceR5Xv06KFFixZp0qRJevDBB1VSUqIHHngg8oxTSRo0aJDmzZun2267TbfffruOPvpozZ8/P/KM06as91Dx9eJ09+7d+uCDDyJ/b9q0SevWrVOnTp10xBFHaOLEiZo2bZp69uypnj17atq0aSooKNAVV1zhY60BAAAAwB8TJkzQhAkTYqY9+eSTjd4bMmSI3nzzTWuZo0aN0qhRo+JebyxNvc/0QL5enK5evVpnnnlm5O/JkydLksaOHasnn3xSt9xyi6qrqzVhwgR9+eWXGjBggBYvXqx27dr5VWUAAAAAGSIsR+Fm3hvanLIRzdeL06FDh0amMo7FcRxNnTpVU6dOTV4lvI4J21TIWe5D8SYvx15sfdg9MZjrkbfePTFkKTfs3taSJOOe19jyWvJJkgm5p9ma36O2Hrsuy5pqAu51dhz3/WpLkyRja4uApcb2JpSy3LfH2oaOvWBrXst+8+JYmt/Yjv0kC+6yJNriyotHDFhZjilT514nx3JM7C/Wfe+akPvO9drvccfsPo9y8yw/2UxgSnpZtlXZHqdAyzHh5Nr7aRtjKzdgqZNtW/Yv4L5Or/7fxnZ8e/SJvrGdCyWZ2tqkrDbeuEuoHW15E+mbkiRcXW1Nt7VEsuLO1k5Ojv3znPXc4dFP2/ogx/L5WGGP47vao8N1W6ftc4q8P5cBh0La3nMKAAAAAH4ySXzOqWHktJE0/coTAAAAAJBJGDkFAAAAgBjCJon3nCap3JaMkVMAAAAAgO8YOQUAAACAGNLtOaetHS0CAAAAAPAdI6cAAAAAEAP3nKYWI6cAAAAAAN8xcgoAAAAAMYST+JzTZJXbkjFyCgAAAADwXcaPnNZ2ClnTQ+3yXNOyd++Le70m173pnVDYnjmY6543bMlrS/NSX+eaZMLGmtUJuK/XWJrf67sk21qdgMf3LpamMJb6Oo69XK90V1n2ZGPi23eOY29FaxvaMgbi/6bPWI6lZOv2hw/cE/OC1rxOTo5rmqm1bJPXvotz39piR5KcLPeDyrEcb+G6eo81u6/YdlTYewlJlu7U8dg38jjOXdV7bGu25RRpy5tjP7Va28lWrmWfepVr22+S9/HU0uw+s5c1veAPq+Mr2CteHfd+whZ3XudRxXtuiTefFHfflKjwvhrXNNvWOLZ4lSTb5wLL5y4j+znLdm5QyCOwbDFt2R7H/aOpJClg2VZjaV8vtvOK8drWFox7TlOLkVMAAAAAgO8yfuQUAAAAAGJh5DS1GDkFAAAAAPiOkVMAAAAAiIGR09Ri5BQAAAAA4DtGTgEAAAAgBkZOU4uRUwAAAACA7xg5BQAAAIAYjKSwx5OkEykb0Rg5BQAAAAD4LuNHTgd/8x/W9E//92jXNNMu3z0tYL/ud8Jh97xB+26x5VXY/TuYpP2qvb7OmmwsdZJCca/Wtj1G9jo5OTnuiZbmVZa1WCmQnFZ2wu7Hk7HVybHXx9qGxnIsZXk0hC29utqeN5nygnFndXLdjxmnzj3N1NqPRRlLX2CL54DtQJWMJbQcy3HqtW9NyL1gE653L9faD3jYZ092bPvVIwas6t23R5Y+3nONTnzfCxtbfSR73Hm1v2NJtxyj6argD6vjzms7xuPdd155Ha9zS5z9REK8tjVZx4VtW+s8YsDCybZ8trJ9Zgt59LWWzxvWzxqSvY+xxbPHZ0xlWY61NpbPrnvs52cnN9c9r5/n9iTjntPUYuQUAAAAAOC7jB85BQAAAIBYGDlNLUZOAQAAAAC+Y+QUAAAAAGJg5DS1GDkFAAAAAPiOkVMAAAAAiIGR09Ri5BQAAAAA4DtGTgEAAAAgBmMcmSSNcCar3JaMkVMAAAAAgO8YOQUAAACAGMJyFFaS7jlNUrktWcZfnFbW5VnT93XJdU0zAfcDKmtfvbXcrD217onhsDWvyXevUyKHeNLCo77ONcmEjXtaKGQv17i3k2Oy7FmN+3qdbPewcM/VsIB7KzqO5YcKlmPJK90Ju5drAvZjSXJvJ8fSRrK0kSQ5Wfb290tlvxLXtPbrPrNnDgZdkxyvY9XC1LrHh2PZf7bY8cxrq67tOJXkWI5FW8xa1+nFY1ttnFz3/tIz7mxs/XTA40dJjqX/yXM/zlRrL9fUWY4lr5i09KcJ7bt0ZTvOLfvHk6Udbeu0xdV+lv1nqa/nedQikTolsl4bY/k8kQjbed8znkOW2JG9vk5OjqXcBPadbXscSx8e2GcvN9/ymbm62qtaQJNk/MUpAAAAAMTCbL2pxT2nAAAAAADfMXIKAAAAADEwW29qMXIKAAAAAPAdI6cAAAAAEAP3nKYWI6cAAAAAAN8xcgoAAAAAMXDPaWoxcgoAAAAA8B0jpwAAAAAQg0niPaeMnDbGyCkAAAAAwHdpPXI6depU/fznP496r6ioSNu2bTtk69j0ZSdreugY9+v3cE7QNa3zenvTtvlXnWuak5VlzWsc929ZTNt817RAtr1c5ea41ynbsj01NfZy91m+A6l1bwcTClmLtaWbsLHmdWxl2/Jm2etk23cmYGkHyz6VJAXS65s1J8ej67AdLz5q+88q17RQp3bWvFlf7XFNs+4dr2PRclyY2lr3fB7hHK6rty/gyuMYtx2LjuUYN2Fruabenm5Vb6mTcW9/J+jeh0uKP+7CHttiiw9LXsfSR3vlNSGPOtn2ne2Y8NivvrFuj10gz/24CO/zON/FyfOcFeex6JXPtl7POtk+qzj2vMng9Zkh3mPV6zOZ9fzt0RfY2tga75Z+zbNOlu1x8vPsxabpuT3ZjLybPJGyES3tj7ITTjhBL7/8cuTvLK9OAgAAAADQ4qT9xWl2draKi4v9rgYAAACADBOWI8f+G6mEyka0tL/ndOPGjSopKVGPHj30ve99T//617/8rhIAAAAA4BBL65HTAQMG6KmnntKxxx6rzz77TP/93/+tQYMGaf369ercuXPMPDU1Nao54B7IysrKVFUXQAoR60DmIN4B+IXnnKZWWo+cjhw5UpdccolOPPFEnXPOOfrTn/4kSZo7d65rnunTp6uwsDDyKi0tTVV1AaQQsQ5kDuIdADJDWl+cHqxNmzY68cQTtXHjRtdlysvLtWvXrshr8+bNKawhgFQh1oHMQbwD8Ev43885TdYL0dL6Z70Hq6mp0YYNGzR48GDXZYLBoIJejwcA0OIR60DmIN4BIDOk9cjpT37yEy1dulSbNm3SypUrNWrUKFVWVmrs2LF+Vw0AAABAK2dMcl+IltYjp5988okuv/xy7dixQ127dtVpp52mv/71ryorK/O7agAAAACAQyitL07nzZuX9HXUrepoTQ+ctss17fKj33RNmzfvTGu5eZ/nuqY5YWtWhXPcB7xNtvtv151QnrXcwL6Qe1pNgXva7hrXNElyqve5J1rSwtXV1nJNbZ17Wsh9W7zSTdj9aywn4HFvQFZWfGmOvVzHltcmkKQfR3jU17qtPjLr3e9Xd07oac275/gurmn5W/a4pgVqa+2VyrF0w5Z2NHXux78kBax56+11sjHuHZQtPow9JO2rrLdva9xq7H2XcnNckxzHElte/US9pf1tMevVT+S6n1eMbZ2SHMt9T8a2rZbjwU+H/cX+E+Ct57hvb9hyXgrY4lUe554E2iqR+LEXnMD+sxwz9r4ggY2xHYsebOd22fppS1xJHudnr3Ol7bOIpUqOx3GYtOG4DB3mY7be1Errn/UCAAAAADJDWo+cAgAAAIBfGDlNLUZOAQAAAAC+Y+QUAAAAAGIIG8d6X36iZSMaI6cAAAAAAN8xcgoAAAAAMSTzeaQZOgGyFSOnAAAAAADfMXIKAAAAADHsHzlN1my9SSm2RWPkFAAAAADgO0ZOAQAAACAGnnOaWhl/cXr4fy+PO+8bCrqm1f/vbmveXVvauCd6HKe17dwXCGdZMnqMkwdq3dOyq93TcneHreXm7gq5p1XWuaZlVVpWKilQucc9cY89b7jakl5f75pkQu7b4pluS3M8dk6WpY0DlgPGSU6n51lqVnr+KMPUux9v5q13rXmDb7mnVV16mmta4VeW41SSatwDz8nJcc+3Z6+93LDlmAnH/zsiYwsB475OJ8vWOXnHljWvZb8mwrH0ica2PR7Hv7UtbPvNK54t63WC7ucrSTLV+9zzWvoY6/Hgo08G2M/B8TJefXWcMWASiElbubZ99+8FXJMSOt8li6V9Pdm21db+tZaOQJJyc91X6dHvWSXwWUQ57h/vbUeE43F8+7LPkXEy/uIUAAAAAGIx/34lq2xES8/hDQAAAABARmHkFAAAAABi4J7T1GLkFAAAAADgO0ZOAQAAACAWbjpNKUZOAQAAAAC+Y+QUAAAAAGJJ4j2n4p7TRhg5BQAAAAD4jpFTAAAAAIjBmP2vZJWNaFycAgAAAEAMPEomtbg4TZJQyP6L6c9PDbumOe3qrHm7dK5yTetUsNc1rTaUZS03L7veNW3HnjauaTv35FvLrf0izzUtZ2eBe30+d0+TpIIdndzTPrO3Ye4O93YKfLnHPWPVbmu5pqbGPa3OvX1NKGQv15LuyLJfvX6477h3ik6AX/03VfAr932rfe7HhCSpjeU4t3yl6uR4dN+2vDW17tnq7LHj1Lqnm1r3chNhwh5fLRv3/tTU27cnXtaPE17xnHtIq9I0Xl/PByxb5Nj6Avu2tjaBXPvOsx1v1uPYcgx7MZZd4OS6n38lKWDp523nLEkKxxnvju1Yk/f5MG5xt7H9s5O138vOsea19uOW87Mn277Ltqwzy75OhwsppAAXpwAAAAAQi3GSN3ERF/yNMDQCAAAAAPAdI6cAAAAAEAMTIqUWI6cAAAAAAN8xcgoAAAAAsZh/v5JVNqIwcgoAAAAA8B0jpwAAAAAQA885TS1GTgEAAAAAvuPiFAAAAADcmCS94jR79mz16NFDeXl56tevn9544w3r8kuXLlW/fv2Ul5eno446Sg8//HCjZRYsWKDevXsrGAyqd+/eWrhwYbPXO3XqVPXq1Utt2rRRx44ddc4552jlypXN2jZ+1pskwbcLrOmHDfvYNe22I/9kzTt761muaYM7vu+aNqHDJ9ZyX9vn/tOCLXUdXdOqwvnWcp/68DTXtG31nV3TcnZnWcuty3evb11be95AXZ5rWnbA/Tsbp03QWq5TG3JPC4fdM3rNJR5yLzchIUudLPU1VbutxTq5ufHWqEXKfvlN1zTTvp09s60tc9y7aCfP/RiWJLVr416nDu51ChXY951jOVadOsvxX11nLTewZ697Yk2tNa+x5A3vq3HPV2+vk7HEXcCyb5RtP7U6YUsb5uZY81rZ4jnX3ifKsfy0zNIOmTaXx8bHj7emH3ej+7k99NVXrmlZxSX2FRe4n2fD7S3nYNt5R5JClj1oOyYkBbLc043lPJpVVW0t13y+0z2x1j1mTa1HPxHnedQrn5NliS3j0f6WvsLaF+R49BP57ueHcDv3tMCXe6zFmi+/sq8XKTF//nxNnDhRs2fP1umnn65f/epXGjlypN59910dccQRjZbftGmTzjvvPI0bN06/+c1v9Je//EUTJkxQ165ddckll0iSVqxYodGjR+sXv/iFLrroIi1cuFCXXXaZli1bpgEDBjR5vccee6xmzZqlo446StXV1brvvvs0fPhwffDBB+ratWuTto+RUwAAAACIoeGe02S9mmvmzJm6+uqrdc011+j4449XRUWFSktL9dBDD8Vc/uGHH9YRRxyhiooKHX/88brmmmt01VVX6d57740sU1FRoWHDhqm8vFy9evVSeXm5zj77bFVUVDRrvVdccYXOOeccHXXUUTrhhBM0c+ZMVVZW6u23327y9nFxCgAAAABprra2VmvWrNHw4cOj3h8+fLiWL18eM8+KFSsaLT9ixAitXr1adXV11mUayoxnvbW1tZozZ44KCwt10kknNXkb+VkvAAAAAMSSguecVlZWRr0dDAYVDDa+lWzHjh0KhUIqKiqKer+oqEjbtm2LuYpt27bFXL6+vl47duxQ9+7dXZdpKLM56/3jH/+o733ve9q7d6+6d++uJUuWqEuXLi4N0BgjpwAAAADgk9LSUhUWFkZe06dPty7vHHRPuDGm0Xteyx/8flPKbMoyZ555ptatW6fly5fr3HPP1WWXXabt27dbt+dAjJwCAAAAQEzOv1/JKlvavHmz2rdvH3k31qipJHXp0kVZWVmNRiu3b9/eaFSzQXFxcczls7Oz1blzZ+syDWU2Z71t2rTRMccco2OOOUannXaaevbsqccee0zl5eUx63cwRk4BAAAAwCft27ePerldnObm5qpfv35asmRJ1PtLlizRoEGDYuYZOHBgo+UXL16s/v37K+ffMz+7LdNQZjzrbWCMUU2N+8z5B2PkFAAAAABiScE9p80xefJkjRkzRv3799fAgQM1Z84cffzxxxo/frwkqby8XFu2bNFTTz0lSRo/frxmzZqlyZMna9y4cVqxYoUee+wxPfvss5Eyb7rpJp1xxhmaMWOGLrjgAj3//PN6+eWXtWzZsiavd8+ePbrrrrv03e9+V927d9fOnTs1e/ZsffLJJ7r00kubvH1cnAIAAABACzB69Gjt3LlTd955p7Zu3ao+ffpo0aJFKisrkyRt3bpVH3/89TOXe/TooUWLFmnSpEl68MEHVVJSogceeCDyjFNJGjRokObNm6fbbrtNt99+u44++mjNnz8/8ozTpqw3KytL//jHPzR37lzt2LFDnTt31imnnKI33nhDJ5xwQpO3j4tTAAAAAIglzUZOJWnChAmaMGFCzLQnn3yy0XtDhgzRm2++aS1z1KhRGjVqVNzrzcvL03PPPWfN3xTccwoAAAAA8B0jp0ly2PTYD6SNsMwQ/d/yelDtTteU59U5rrRkaqcP4krzS9jvCrQGVVV+1yC1jPtRE9q1K4UVST7bl7zJ+mLZN5b9Gq6tdc9nS5OkvXvjrBD8dvT311rT6+Mst37Lp3HmbHnibaN0ZUKhuNIkefcVKcbnHxfG2f9KVtmI0iJGTmfPnq0ePXooLy9P/fr10xtvvOF3lQAAAAAAh1DaX5zOnz9fEydO1JQpU7R27VoNHjxYI0eOjLrRFwAAAAAONWOS+0K0tL84nTlzpq6++mpdc801Ov7441VRUaHS0lI99NBDflcNAAAAAHCIpPU9p7W1tVqzZo1++tOfRr0/fPhwLV8e+57OmpqaqAe9VlZWJrWOAPxBrAOZg3gH4Js0nK23NUvrkdMdO3YoFAqpqKgo6v2ioiJt27YtZp7p06ersLAw8iotLU1FVQGkGLEOZA7iHQAyQ1pfnDZwnOiZrIwxjd5rUF5erl27dkVemzdvTkUVAaQYsQ5kDuIdgG8aZutN1gtR0vpnvV26dFFWVlajUdLt27c3Gk1tEAwGFQwGU1E9AD4i1oHMQbwDQGZI65HT3Nxc9evXT0uWLIl6f8mSJRo0aJBPtQIAAACQCRyT3BeipfXIqSRNnjxZY8aMUf/+/TVw4EDNmTNHH3/8scaPH9+k/ObfczTXq46bjoE0V686SV/HbXMQ60DLkUisH5iPeAfSW6KxjsyT9heno0eP1s6dO3XnnXdq69at6tOnjxYtWqSysrIm5a+qqpIkLdOiZFYTwCFUVVWlwsLCZueRiHWgJYkn1hvyScQ70FLEG+tpgdl6U8oxrfyrjHA4rE8//VTt2rWT4ziqrKxUaWmpNm/erPbt2/tdvbREGzUN7dQ0zWknY4yqqqpUUlKiQKB5dx0Q6/GhnbzRRk2TqliXiPd40EZNQzt5S2Ws+6mysnL/7OAVdyqQn5eUdYSr92nzxJ9p165dHG//lvYjp4kKBAI6/PDDG73fvn17DgIPtFHT0E5N09R2ivebVWI9MbSTN9qoaZId6xLxngjaqGloJ2+piPW0kMxZdZmtt5GW9RUGAAAAAKBVavUjpwAAAAAQF+45TamMGzkNBoO64447eF6aBW3UNLRT0/jVTuyfpqGdvNFGTeNnO7GPvNFGTUM7eaONkEytfkIkAAAAAGiOyIRIv/xFcidE+s/bmRDpABk3cgoAAAAASD/ccwoAAAAAsXDPaUoxcgoAAAAA8B0jpwAAAAAQC885TSlGTgEAAAAAvmPkFAAAAABicMz+V7LKRjRGTgEAAAAAvmPkFAAAAABiYbbelGLkFAAAAADgOy5OAQAAAAC+4+IUAAAAAOA77jkFAAAAgBgcJXG23uQU26IxcgoAAAAA8B0Xp0ny2muvyXEcffXVV35XBUASEetA5iDegQxknOS+EIWL00Ng6NChmjhxYtR7gwYN0tatW1VYWOhPpdJIrPZJJ1u3btUVV1yh4447ToFAoMl1XbVqlc4++2x16NBBHTt21PDhw7Vu3bpI+r59+3TllVfqxBNPVHZ2ti688EJreX/5y1+UnZ2tvn37xr0tTfXOO+9oyJAhys/P12GHHaY777xTxnz9m5Urr7xSjuM0ep1wwglJr1s6I9bt0j3Wn3vuOQ0bNkxdu3ZV+/btNXDgQP35z3+25tm5c6fOPfdclZSUKBgMqrS0VNdff70qKysjy7z33ns688wzVVRUpLy8PB111FG67bbbVFdXF1lm2bJlOv3009W5c2fl5+erV69euu+++5K2rQ2I9fgR73atMd4l73P7hx9+GDNmXnrppcgy8X6uSBTxjtaAi9Mkyc3NVXFxsRyHb0QOldra2qSUW1NTo65du2rKlCk66aSTmpSnqqpKI0aM0BFHHKGVK1dq2bJlat++vUaMGBH5QBoKhZSfn68bb7xR55xzjrW8Xbt26Yc//KHOPvvshLen4cTpprKyUsOGDVNJSYlWrVql//f//p/uvfdezZw5M7LM/fffr61bt0ZemzdvVqdOnXTppZcmXL/Whlg/9JIV66+//rqGDRumRYsWac2aNTrzzDN1/vnna+3ata55AoGALrjgAr3wwgt6//339eSTT+rll1/W+PHjI8vk5OTohz/8oRYvXqz33ntPFRUVeuSRR3THHXdElmnTpo2uv/56vf7669qwYYNuu+023XbbbZozZ07c20Ospx7xfuilU7w35dze4OWXX46KnbPOOiuSFs/nCi/Eu49Mkl+IZpCQsWPHNjrMNm3aZF599VUjyXz55ZfGGGOeeOIJU1hYaP7whz+YY4891uTn55tLLrnE7N692zz55JOmrKzMdOjQwVx//fWmvr4+Un5NTY25+eabTUlJiSkoKDCnnnqqefXVV5tcv2XLlpkzzjjD5Ofnmw4dOpjhw4ebL774whhjzL59+8wNN9xgunbtaoLBoDn99NPN3/72t0jehjofaOHChebAw+aOO+4wJ510knnqqadMWVmZad++vRk9erSprKy0to8xxqxfv96MHDnStGnTxnTr1s384Ac/MJ9//nmk7CFDhpjrrrvOTJo0yXTu3NmcccYZTd7ueA0ZMsTcdNNNnsutWrXKSDIff/xx5L23337bSDIffPBBo+XHjh1rLrjgAtfyRo8ebW677bZIex7s8ccfN7169TLBYNAcd9xx5sEHH3Qta9OmTcYW2rNnzzaFhYVm3759kfemT59uSkpKTDgcjpln4cKFxnEc8+GHH7qW29oR660r1hv07t3b/PznP29Wnvvvv98cfvjh1mUmTZpkvvWtb1mXueiii8wPfvCDqPeI9fRAvGdmvDfl3N4Qd2vXrm3SOm2fK4j39LZr1y4jyZRNv8v0uO+XSXmVTb/LSDK7du3ye3PTBiOnCbr//vs1cOBAjRs3LvJNVGlpacxl9+7dqwceeEDz5s3TSy+9pNdee00XX3yxFi1apEWLFunXv/615syZo9/97neRPD/60Y/0l7/8RfPmzdPbb7+tSy+9VOeee642btzoWbd169bp7LPP1gknnKAVK1Zo2bJlOv/88xUKhSRJt9xyixYsWKC5c+fqzTff1DHHHKMRI0boiy++aFYb/POf/9Tvf/97/fGPf9Qf//hHLV26VHfffbe1fbZu3aohQ4aob9++Wr16tV566SV99tlnuuyyy6LKnjt3rrKzs/WXv/xFv/rVr2Ku/+mnn1bbtm2tr6effrpZ2+TluOOOU5cuXfTYY4+ptrZW1dXVeuyxx3TCCSeorKysWWU98cQT+uc//xk1ynKgRx55RFOmTNFdd92lDRs2aNq0abr99ts1d+7cuOq+YsUKDRkyRMFgMPLeiBEj9Omnn+rDDz+Mmeexxx7TOeec0+xta02I9dYX6+FwWFVVVerUqVOT83z66ad67rnnNGTIENdlPvjgA7300kvWZdauXavly5dHLUOspw/iPTPjvTnn9u9+97vq1q2bTj/99Kh921TEewvCyGlq+X113BrE+lYs1rerOmhU7dprrzUFBQWmqqoq8t6IESPMtddea4wx5oMPPjCO45gtW7ZElX322Web8vJyz3pdfvnl5vTTT4+Ztnv3bpOTk2OefvrpyHu1tbWmpKTE3HPPPZE6N+Xb1YKCgsi3qcYYc/PNN5sBAwZE/o7VPrfffrsZPnx41HubN282ksx7770Xyde3b1/P7aysrDQbN260vg6sn01TR06NMebvf/+7Ofroo00gEDCBQMD06tXLfPTRRzGXdRs5ff/99023bt0i2xxr5LS0tNQ888wzUe/94he/MAMHDoy5Lq9vV4cNG2bGjRsX9d6WLVuMJLN8+fJGy3/66acmKyvLzJ8/37XMTEGst55YN8aYe+65x3Tq1Ml89tlnnst+73vfM/n5+UaSOf/88011dXWjZQYOHGiCwaCRZP7jP/7DhEKhRsscdthhJjc31wQCAXPnnXdGpRHr6YV4z8x49zq3f/7552bmzJlm5cqVZtWqVeb22283gUDA/PrXv45ZntvnCuI9/UVGTqfdZXrM/GVSXmXTGDk9GM85TaGCggIdffTRkb+Liop05JFHqm3btlHvbd++XZL05ptvyhijY489Nqqcmpoade7c2XN969atc72P4J///Kfq6up0+umnR97LycnRqaeeqg0bNjRru4488ki1a9cu8nf37t0j2+BmzZo1evXVV6O2/cC6NWxz//79Pdffrl27qPWnQnV1ta666iqdfvrpevbZZxUKhXTvvffqvPPO06pVq5Sfn+9ZRigU0hVXXKGf//znjfZxg88//1ybN2/W1VdfrXHjxkXer6+vj5qQ44QTTtBHH30kSZHJDw5s27KyMq1fvz7y98H3rTTkiXU/y5NPPqkOHTp4TuiErxHrX0vXWH/22Wc1depUPf/88+rWrZvn8vfdd5/uuOMOvffee7r11ls1efJkzZ49O2qZ+fPnq6qqSm+99ZZuvvlm3XvvvbrllluilnnjjTe0e/du/fWvf9VPf/pTHXPMMbr88suJ9RaMeP9aS4/3ppzbu3TpokmTJkXy9O/fX19++aXuuece/eAHP2hSfYj3lsUxSXzOKSOnjXBxmkI5OTlRfzuOE/O9cDgsaf9PULKysrRmzRplZWVFLRer4z+Y7QLJrcMyxkTeCwQCUbO8SWo0IYAUe7satsFNOBzW+eefrxkzZjRK6969e+T/bdq0sZYj7f/pz7XXXmtd5le/+pW+//3ve5bVVM8884w+/PBDrVixQoFAIPJex44d9fzzz+t73/ueZxlVVVVavXq11q5dq+uvv17S/nYxxig7O1uLFy+OzKD3yCOPaMCAAVH5DzwmFi1aFNk3W7Zs0dChQ6NmFzxwHxUXF2vbtm1RZTV84CgqKop63xijxx9/XGPGjFFubq7nNmE/Yv1r6Rjr8+fP19VXX63f/va3npOVNSguLlZxcbF69eqlzp07a/Dgwbr99tujtqHhZ5+9e/dWKBTSf/zHf+g///M/o/Zpjx49JEknnniiPvvsM02dOlWXX355pB2J9ZaHeP9aS4/3eM/tp512mh599FFr2Qci3gF3XJweArm5uZF7PQ6lk08+WaFQSNu3b9fgwYObnf8b3/iG/u///k8///nPG6Udc8wxys3N1bJly3TFFVdI2n9yWr16dWTK865du6qqqkp79uyJnEgO7BSbKlb7fPOb39SCBQt05JFHKjs7scPwu9/9bqPO/WAHd8yJ2rt3rwKBQNQHgIa/vU7eDdq3b6933nkn6r3Zs2frlVde0e9+9zv16NFDbdq00WGHHaZ//etf1hPwgfeLNLTnMcccE3PZgQMH6tZbb1VtbW3kpLR48WKVlJToyCOPjFp26dKl+uCDD3T11Vc3aZtaO2LdriXE+rPPPqurrrpKzz77rL797W/HVY+GD/Y1NTXWZerq6hpdBBy8TEMZRUVFxHqaId7tWmO8x3tuX7t2bdTFtxfivYVJ5r2hjJw2wsXpIXDkkUdq5cqV+vDDD9W2bdtmTa5hc+yxx+r73/++fvjDH+qXv/ylTj75ZO3YsUOvvPKKTjzxRJ133nnW/OXl5TrxxBM1YcIEjR8/Xrm5uXr11Vd16aWXqkuXLvrxj3+sm2++WZ06ddIRRxyhe+65R3v37o10VgMGDFBBQYFuvfVW3XDDDfrb3/6mJ598stnbEat9rrvuOj3yyCO6/PLLdfPNN6tLly764IMPNG/ePD3yyCONvk22ORQ//Wk4Me/evVuff/651q1bp9zcXPXu3VuStHDhQpWXl+sf//iHJGnYsGG6+eabdd111+mGG25QOBzW3XffrezsbJ155pmRct99913V1tbqiy++UFVVVWQ9ffv2VSAQUJ8+faLq0a1bN+Xl5UW9P3XqVN14441q3769Ro4cqZqaGq1evVpffvmlJk+e3Oxtbfgp8ZVXXqlbb71VGzdu1LRp0/Szn/2s0bftjz32mAYMGNConpmKWLdL91h/9tln9cMf/lD333+/TjvttMgoQ35+fuSndAfH+qJFi/TZZ5/plFNOUdu2bfXuu+/qlltu0emnnx75wPf0008rJydHJ554ooLBoNasWaPy8nKNHj068oHywQcf1BFHHKFevXpJ2v/c03vvvVc33HBDpH7Eenoh3u1aY7w35dw+d+5c5eTk6OSTT1YgENAf/vAHPfDAA41Gi70+VxDvgItU3dzamr333nvmtNNOi0yWYZtu/kCxJr85eOKc2tpa87Of/cwceeSRJicnxxQXF5uLLrrIvP32202q22uvvWYGDRpkgsGg6dChgxkxYkSkTtXV1eaGG24wXbp0iTndvDH7J0k45phjTF5envnOd75j5syZE3O6+QPdd999pqyszNo+xuyfDOiiiy4yHTp0MPn5+aZXr15m4sSJkSnPmzM5UaIUY/60A7ehYdKLAy1evNicfvrpprCw0HTs2NGcddZZZsWKFVHLlJWVxSzbjdujZJ5++mnTt29fk5ubazp27GjOOOMM89xzz8Usw2vSBGP2T40/ePBgEwwGTXFxsZk6dWqjqea/+uork5+fb+bMmWMtK5MQ69Hb0NJifciQITHjcezYsZFlDo71V155xQwcONAUFhaavLw807NnT/Nf//VfkbY1xph58+aZb37zm6Zt27amTZs2pnfv3mbatGlRkyY98MAD5oQTTjAFBQWmffv25uSTTzazZ89uNGkSsZ4+iPfobciEeDfG+9z+5JNPmuOPP94UFBSYdu3amX79+sWcDMnrc4UxxHu6a5gQ6chf3GWO+p9fJuV15C+YEOlgjjGW3xwBAAAAQIaprKxUYWGhjvzFXQrk5SVlHeF9+/Th7VO0a9cutW/fPinraGn4WS8AAAAAxMBsvakV8LsCiN/IkSNdH0w9bdo0v6sH4BAh1oHMQbwDyGSMnLZgjz76qKqrq2OmHaqJGwD4j1gHMgfxDqQZ4+x/JatsROHitAU77LDD/K4CgBQg1oHMQbwDyGRcnAIAAABALDznNKW45xQAAAAA4DtGTgEAAAAgBmbrTa1Wf3EaDof16aefql27dnIcbjoG0pkxRlVVVSopKVEg0LwfdhDrQMuRSKxLxDvQUiQa68g8rf7i9NNPP1Vpaanf1QDQDJs3b9bhhx/erDzEOtDyxBPrEvEOtDTxxnpa4J7TlGr1F6ft2rWTJH1L5ylbOT7XBoBNveq0TIsicdscxDrQciQS6xLxDrQUicY6Mk+rvzht+LlPtnKU7XACA9Lav79BjOdnesQ60IIkEOsH5iPegTSXYKynhSTec8rIaWP8+BsAAAAA4LtWP3IKAAAAAHHhntOUYuQUAAAAAOA7Rk4BAAAAIBZGTlOKkVMAAAAAgO8YOQUAAACAGJwkztabtFmAWzBGTgEAAAAAvsv4kVMn2/58tKySIte06l7Frmm7jsq1llvtXqyyqq1ZlbPbPS1Y6f4VTN6XIWu52VV17uv8Yq9rmlO5x1qugkH3tMoq1ySzr8ZarKmtdU+rq7fnrXffVrRegfx897RuXax5a8vc0/ccnueaVnW4/dlu1cXuMRvOD7ummWz3NElystzLdarcu/62H9m/s+y40T22Cl7b4Jpmeh5hLbe+rXufmVVj77sC1e7x7Ox271DNV7us5Ya+tKQbe/v7wrHsu3Ssr58sbeUE3GPWhO3DHLa8juVcGOjW1Vqu8tzjI9Tevf+pLnbv8yQpUOu+PdnV9rjL3bjVNS2880v3tJp91nKTxrLPAznufaIJ2dvBekwQd0Cz+TpyOn36dJ1yyilq166dunXrpgsvvFDvvfde1DLGGE2dOlUlJSXKz8/X0KFDtX79ep9qDAAAAABIBl8vTpcuXarrrrtOf/3rX7VkyRLV19dr+PDh2rPn65G4e+65RzNnztSsWbO0atUqFRcXa9iwYaqqch9xAwAAAICEmSS/EMXXn/W+9NJLUX8/8cQT6tatm9asWaMzzjhDxhhVVFRoypQpuvjiiyVJc+fOVVFRkZ555hlde+21flQbAAAAAHCIpdWESLt27b+/p1OnTpKkTZs2adu2bRo+fHhkmWAwqCFDhmj58uW+1BEAAABAZmiYrTdZL0RLmwmRjDGaPHmyvvWtb6lPnz6SpG3btkmSioqiZw8qKirSRx99FLOcmpoa1dR8PZFOZWVlkmoMwE/EOpA5iHcAyAxpM3J6/fXX6+2339azzz7bKM1xome/M8Y0eq/B9OnTVVhYGHmVlpYmpb4A/EWsA5mDeAfgK+43TZm0uDi94YYb9MILL+jVV1/V4YcfHnm/uHj/o1oaRlAbbN++vdFoaoPy8nLt2rUr8tq8eXPyKg7AN8Q6kDmIdwDIDL7+rNcYoxtuuEELFy7Ua6+9ph49ekSl9+jRQ8XFxVqyZIlOPvlkSVJtba2WLl2qGTNmxCwzGAwqaHuuJoBWgVgHMgfxDsA3yRzlZPS0EV8vTq+77jo988wzev7559WuXbvICGlhYaHy8/PlOI4mTpyoadOmqWfPnurZs6emTZumgoICXXHFFX5WHQAAAABwCPl6cfrQQw9JkoYOHRr1/hNPPKErr7xSknTLLbeourpaEyZM0JdffqkBAwZo8eLFateuXYprCwAAACCTJHNWXWbrbcz3n/V6cRxHU6dO1dSpU5NSByc3x5puvtzlmpb/Vq172j9y7Su2/TwpHLbnDVnSjSWtPmQvt9Z9e0xtnWta2JJvf15LuSGPOsE/juWWdNtxls5cJlKTJLPzS2vW3N173dP+4d5WHXPsfYytTrL1kZ79hCW2bH1IAqx9+oZ/WfNmx9sOsvcj4bAlr8dx7AQsx0uyui5L3Nnq45VXyrJmtfbFLTDenWyPuLPlzXJvK489YFdf75oU+uRTa9Z490+eR5Vs22o/nqSQZb3WNvTYN0k7Fi15w3Xu+8Yr7qxtaOx5TQL9E9Bapc2jZAAAAAAgrXDPaUqlxWy9AAAAAIDMxsgpAAAAAMTAPaepxcgpAAAAAMB3jJwCAAAAQCzcc5pSjJwCAAAAAHzHyCkAAAAAxMLIaUoxcgoAAAAA8B0jpwAAAAAQA7P1phYjpwAAAAAA32X8yGmgsL013eytdk0LV+12z1jlsWJj+aok7PE1SsCJL68JW4sN19XHl9exf8cRyM11z5qdY81rZamT8WhDU18X/3rjZWsnj33ji3SsU4ICbQpc00z1PmvecLV7X2Dj5Hgc41nux4VjO2Zs/YAHEwpZEj36n7At7izHjFe/ZtzrZK2vB6++IG7Jimdbv+bVDJav4J2sLGvWQI77xwFb+3u2r0/9iNf2WrcpgePNscSlta0SaCfbOVbZHh/zEvksYpKzrfY2jH9MJd594308WNI9Ph9Z+fGZwau+rfBzQZNwz2lKMXIKAAAAAPBdxo+cAgAAAEBMjJymFCOnAAAAANBCzJ49Wz169FBeXp769eunN954w7r80qVL1a9fP+Xl5emoo47Sww8/3GiZBQsWqHfv3goGg+rdu7cWLlzYrPXW1dXpv/7rv3TiiSeqTZs2Kikp0Q9/+EN9+umnzdo2Lk4BAAAAIIaG2XqT9Wqu+fPna+LEiZoyZYrWrl2rwYMHa+TIkfr4449jLr9p0yadd955Gjx4sNauXatbb71VN954oxYsWBBZZsWKFRo9erTGjBmjt956S2PGjNFll12mlStXNnm9e/fu1Ztvvqnbb79db775pp577jm9//77+u53v9vM9jZes1+0bJWVlSosLNRQXaBsp/HEJNndi635bRMimboEJtVhQqTEMSFSq1Nv6vSanteuXbvUvr19srKDecW6JGV37eKa32tCJOtkPxZpOSGSNdYTmBDJNnFIyKP9rBMBpeGESPaVpn6dkrWP8ZogyDpZTBImREok1iXveA8E8+zVSuCYsknWhEi2vLbJrJI7IVKc5+AE4iORePZjsqqEJkSyaUETIiUa635q6Gd63ThNWR59SrxCNfv0jwdubVb7DBgwQN/85jf10EMPRd47/vjjdeGFF2r69OmNlv+v//ovvfDCC9qwYUPkvfHjx+utt97SihUrJEmjR49WZWWlXnzxxcgy5557rjp27Khnn302rvVK0qpVq3Tqqafqo48+0hFHHNGk7WPkFAAAAABiMUl+NUNtba3WrFmj4cOHR70/fPhwLV++PGaeFStWNFp+xIgRWr16ter+PdDmtkxDmfGsV5J27dolx3HUoUOHJm2fxIRIAAAAABBTvD+/bWrZ0v5R2gMFg0EFg8FGy+/YsUOhUEhFRUVR7xcVFWnbtm0x17Ft27aYy9fX12vHjh3q3r276zINZcaz3n379umnP/2prrjiimaNmjNyCgAAAAA+KS0tVWFhYeTl9jPZBo4T/TN1Y0yj97yWP/j9ppTZ1PXW1dXpe9/7nsLhsGbPnm3ZksYYOQUAAACAWFLwKJnNmzdHjS7GGjWVpC5duigrK6vRaOX27dsbjWo2KC4ujrl8dna2OnfubF2moczmrLeurk6XXXaZNm3apFdeeaXZ9xpn/MWp6dLBmu58ZpkIwjYhksfkH4lMyJOsG/dtE2Y42ZYbwT0mZnG8JmRIAs+pYkzsoJek0O7dh7QuX68zcyY9sh1LyZqIpEks3yrKY8IYWSYRsm5TvWXyIck6AYWxTJbkJe59kMjERWk4CYpHwfHntU0ckoRJRZrEtm/qPdaZ7TFxlwvrZDySwrW1cZWbsESOt0T6KGPpYxI4Zhxb92SdbC95E4LZ4tI++ZDHtlo/U1g+k3nsN2NLTmAyMfs6EziW0rGPQdK0b9++SRdxubm56tevn5YsWaKLLroo8v6SJUt0wQUXxMwzcOBA/eEPf4h6b/Hixerfv79y/j1p48CBA7VkyRJNmjQpaplBgwY1a70NF6YbN27Uq6++Grn4bY6MvzgFAAAAgJhSMHLaHJMnT9aYMWPUv39/DRw4UHPmzNHHH3+s8ePHS5LKy8u1ZcsWPfXUU5L2z8w7a9YsTZ48WePGjdOKFSv02GOPRWbhlaSbbrpJZ5xxhmbMmKELLrhAzz//vF5++WUtW7asyeutr6/XqFGj9Oabb+qPf/yjQqFQZKS1U6dOym3i0zu4OAUAAACAFmD06NHauXOn7rzzTm3dulV9+vTRokWLVFZWJknaunVr1DNPe/TooUWLFmnSpEl68MEHVVJSogceeECXXHJJZJlBgwZp3rx5uu2223T77bfr6KOP1vz58zVgwIAmr/eTTz7RCy+8IEnq27dvVJ1fffVVDR06tEnbx8UpAAAAAMTgqAm3iyVQdjwmTJigCRMmxEx78sknG703ZMgQvfnmm9YyR40apVGjRsW93iOPPDIy0VIimK0XAAAAAOA7Rk4BAAAAIJY0u+e0tWPkFAAAAADgO0ZOAQAAACAGx+x/JatsRGPkFAAAAADgO0ZOAQAAACAW7jlNKUZOAQAAAAC+y/iR09oubazpwR1fuSdanuVj6uvirJE3J+D+VCQTdv++wZZPkpxg0D0tJ8c9YyhkLVeBOL8DCYfjy9cUjntbBAoKXNPCe/cmozatjgmn51eBpr7ePTErOd/Vhess60yESWJ8JIOTht+F+lUn23p92q/Gqx934WSn4X5V/NvjXbB9/9jOwYGcZD0p0cKrL7ZsT9L6ca82tO06S+w4WV6rtWyPrR28DiVrnTwqZZFQ+6dhH9PipefHmlYpPc8qAAAAAICMkvEjpwAAAAAQC7P1phYjpwAAAAAA3zFyCgAAAACxMFtvSjFyCgAAAADwHSOnAAAAABAD95ymFiOnAAAAAADfMXIKAAAAALFwz2lKMXIKAAAAAPBdxo+c1nS0N0EwHHZPDIUOcW32c7KyrOkm7P41ixNwr68tnySZvXtd0wK5ue7rDAat5crWhokIJPDdiqVOTk6O+yrz8+3FVlfHXSX4y3Hsx5M1eoz78RTIsfcx1ri0lGvCCRz/lnKTxmudHu2fMWzt4Md+85KOdZL3eTRcV++eaItny7nQq9xwba01r1ULiw+TnI9H1s84Xm3k2A4J47gneXx2svbTSWoHT3EeL07AvR0kH7fHZ9xzmlq+9navv/66zj//fJWUlMhxHP3+97+PSr/yyivlOE7U67TTTvOnsgAAAACApPH14nTPnj066aSTNGvWLNdlzj33XG3dujXyWrRoUQprCAAAACBjmSS/EMXXn/WOHDlSI0eOtC4TDAZVXFycohoBAAAAAPyQ9jcxvPbaa+rWrZuOPfZYjRs3Ttu3b/e7SgAAAAAyASOnKZXWEyKNHDlSl156qcrKyrRp0ybdfvvtOuuss7RmzRoFXSbhqampUU1NTeTvysrKVFUXQAoR60DmIN4BIDOk9cjp6NGj9e1vf1t9+vTR+eefrxdffFHvv/++/vSnP7nmmT59ugoLCyOv0tLSFNYYQKoQ60DmIN4B+KVhtt5kvRAtrS9OD9a9e3eVlZVp48aNrsuUl5dr165dkdfmzZtTWEMAqUKsA5mDeAeAzJDWP+s92M6dO7V582Z1797ddZlgMOj6k18ArQexDmQO4h2Ab5J5bygjp434enG6e/duffDBB5G/N23apHXr1qlTp07q1KmTpk6dqksuuUTdu3fXhx9+qFtvvVVdunTRRRdd5GOtAQAAAACHmq8Xp6tXr9aZZ54Z+Xvy5MmSpLFjx+qhhx7SO++8o6eeekpfffWVunfvrjPPPFPz589Xu3bt/KoyAAAAgAzhGCPHJGeIM1nltmS+XpwOHTpUxrJT/vznPye9DvUFHrfd1ofc0xxbXks+DyYUf95kCdfWuqY5YXtgBfLz3BOzstzTkhmwca7Xyc21Fms7IsLV1R6VakVM2O8axOS0a+uaZqp22zNbtslYYsDJtRxrkhxbsq1cjza21cnYuphk7Ttrf4km8WrDRPadLa9tvWm6X522bewLfLkrvnI9flocsLSHqa9zT/M4j8a9f9KxL/Y4ZpyAk6TVupdrwu51cgJefW0CMZCs/RNnuZ7HIZACLeqeUwAAAABIGe45Tan0/MoTAAAAAJBRGDkFAAAAgBiS+TxSnnPaGCOnAAAAAADfMXIKAAAAALFwz2lKMXIKAAAAAPAdI6cAAAAAEAP3nKYWI6cAAAAAAN8xcgoAAAAAsXDPaUoxcgoAAAAA8B0jp4l8Y2HCh6wa0cUmUKkk1cm6ylDImh7eu9c1LZCf754xK8u+Ysexp8fLVq6x7xsnN9c1zfZNULi62qNSOCSyLV2eR9zFG5fhfTXW9ECOe52s6/SI9UTytjROwD1mE+pP/WDbN47H98m29ET2uS1vmh5LTk6OPd16zLi3Y2j3Hmu5gbyge5rlfOd1HpUl3XaMG49ik7b/vI5VH8q1tZPteJC8PovY2t9rB6SZNI1nv3HPaWoxcgoAAAAA8B0jpwAAAAAQC/ecphQjpwAAAAAA3zFyCgAAAAAuuDc0dRg5BQAAAAD4jpFTAAAAAIjFGM+nNSRUNqIwcgoAAAAA8B0jpwAAAAAQA885TS1GTgEAAAAAvsv4kdNgZSjuvCbs/nWHCdnLdbJzLKkedTJhe3qqedTHhN2/A7G1k+O13qws9zTHM7e7gCVvAk3vBIPuq/TIG66ujn/FiAi3zXdNc3Z8Yc9sOc4dyzFj6yckKVxXb19vHPXJNF5tnHbi3Xde+RxLT2JLa0rZbtk8znW+CXhsr7U9LNvk0U7WvtqyTlsfIqVxO7uxtZPHsWiLZ8dy2vfi1cbJ4LlfLZ+PPDLGlw/x4TmnKcXIKQAAAADAdxk/cgoAAAAAsTjh/a9klY1ojJwCAAAAAHzHyCkAAAAAxMI9pynFyCkAAAAAwHeMnAIAAABADDznNLUYOQUAAAAA+I6RUwAAAACIxZj9r2SVjSiMnAIAAAAAfMfIKQAAAADEwD2nqZXxF6fZe0PWdFNf754Wsue1F+z+1F0nK8ue1bZaS7m+sdQpXF3tmhYoKLAW69gSPdpQWXH+aCBgXatd2L0HcoJBj9W6rze8d2/cVco4WZb9F05O7Dgex4yxHBdpGc/xSmRbHH7k0yS2NvZqQ1u6pdyEzoNJZKp2+12FxqztmMJ6+M2rL4jzWExaP+FRrhOw7NdwInkt5wavbW1N5w5knIy/OAUAAACAmHjOaUrxdTQAAAAAwHeMnAIAAABADNxzmlqMnAIAAAAAfMfIKQAAAADEwnNOU4qRUwAAAACA7xg5BQAAAIAYuOc0tZo9cnrllVfq9ddfT0ZdAAAAAAAZqtkXp1VVVRo+fLh69uypadOmacuWLcmoFwAAAAD4yyT5hSjNvjhdsGCBtmzZouuvv16//e1vdeSRR2rkyJH63e9+p7q6umTUEQAAAADQysV1z2nnzp1100036aabbtLatWv1+OOPa8yYMWrbtq1+8IMfaMKECerZs6dnOa+//rr+53/+R2vWrNHWrVu1cOFCXXjhhZF0Y4x+/vOfa86cOfryyy81YMAAPfjggzrhhBPiqXZMwfe2WdNNOHzI1hVVbijknujxA3Qn4LiXG7Z832CSsy3JEt6715oeKChwTXMc9zb69wKWgj3yWou1tH+We5Lx2DdOXtA1zfYNk1cbZpqaru7HTPDvNfEXbNvvnlnd931riueEJGtbE9hv1jolUq4tbybt80Rle328cY936znWcurGIWI5zm19oq0v9cpr41WuLWYdy3lfsh9P9nODx3BbvH0QfUxM3HOaWgnN1rt161YtXrxYixcvVlZWls477zytX79evXv31n333eeZf8+ePTrppJM0a9asmOn33HOPZs6cqVmzZmnVqlUqLi7WsGHDVFVVlUi1AQAAAABpptkjp3V1dXrhhRf0xBNPaPHixfrGN76hSZMm6fvf/77atWsnSZo3b55+/OMfa9KkSdayRo4cqZEjR8ZMM8aooqJCU6ZM0cUXXyxJmjt3roqKivTMM8/o2muvbW7VAQAAAKDpwmb/K1llI0qzL067d++ucDisyy+/XH/729/Ut2/fRsuMGDFCHTp0SKhimzZt0rZt2zR8+PDIe8FgUEOGDNHy5cu5OAUAAACAVqTZF6f33XefLr30UuXl5bku07FjR23atCmhim3btv9e0KKioqj3i4qK9NFHH7nmq6mpUU3N1/eSVFZWJlQPAOmJWAcyB/EOwDfJnFWXgdNGmn3P6ZgxY6wXpofawRPbGGOsk91Mnz5dhYWFkVdpaWmyqwjAB8Q6kDmIdwDIDAlNiJRMxcXFkr4eQW2wffv2RqOpByovL9euXbsir82bNye1ngD8QawDmYN4B+AXR1/P2HvIX35vXBqK61EyqdCjRw8VFxdryZIlOvnkkyVJtbW1Wrp0qWbMmOGaLxgMKhh0f+wGgNaBWAcyB/EOAJnB14vT3bt364MPPoj8vWnTJq1bt06dOnXSEUccoYkTJ2ratGnq2bOnevbsqWnTpqmgoEBXXHGFj7UGAAAAkBGM2f9KVtmI4uvF6erVq3XmmWdG/p48ebIkaezYsXryySd1yy23qLq6WhMmTNCXX36pAQMGaPHixZFH1gAAAAAAWgdfL06HDh0qY/nGwHEcTZ06VVOnTk1eJcJha7Kpr0/eul1X6lGnkHuak51jyWj/ZbuxPWvJo05+CO/d65qW1batPbPtmyrbpgY82tDSTo7jfou3Lc2z3Dz3n7plBezlhnbvtqa7r9TjdvU0PF4kKavaPZ5NyBJYknWbHY/jwsaEbeW6t6MtXxNWGn/e1sSrHbyO81SXG2++RCWyXp+ONVNWYl/g7+/FV3ALbItWxdqGWSmrRhRbnTyOFyfLvc7Wz3qWc8P+KsU5GtdCz+3J1nB/aLLKRrS0nRAJAAAAAJA50nZCJAAAAADwFc85TSlGTgEAAAAAvmPkFAAAAABicIyRk6RZdZNVbkvGyCkAAAAAtBCzZ89Wjx49lJeXp379+umNN96wLr906VL169dPeXl5Ouqoo/Twww83WmbBggXq3bu3gsGgevfurYULFzZ7vc8995xGjBihLl26yHEcrVu3rtnbxsUpAAAAAMQSTvKrmebPn6+JEydqypQpWrt2rQYPHqyRI0fq448/jrn8pk2bdN5552nw4MFau3atbr31Vt14441asGBBZJkVK1Zo9OjRGjNmjN566y2NGTNGl112mVauXNms9e7Zs0enn3667r777uZv2L9xcQoAAAAALcDMmTN19dVX65prrtHxxx+viooKlZaW6qGHHoq5/MMPP6wjjjhCFRUVOv7443XNNdfoqquu0r333htZpqKiQsOGDVN5ebl69eql8vJynX322aqoqGjWeseMGaOf/exnOuecc+LePi5OAQAAACCGhntOk/VqjtraWq1Zs0bDhw+Pen/48OFavnx5zDwrVqxotPyIESO0evVq1dXVWZdpKDOe9caLCZEAAAAAwCeVlZVRfweDQQWDwUbL7dixQ6FQSEVFRVHvFxUVadu2bTHL3rZtW8zl6+vrtWPHDnXv3t11mYYy41lvvBg5BQAAAIBYTJJfkkpLS1VYWBh5TZ8+3Volx3Giq2hMo/e8lj/4/aaU2dz1xiPjR05NZZU9va7eNc3JynLPF/JacRx3QDeBCbmv2Fbf/em2cm0rTc62JCK0e7c1PRDMc01z2uS7pzn273NMktrCtl7rOnNzrOVmtW3rmhbas9e9PgF7R+R5/Pska1988SxJJmz56Y3tuEjkmLCUa4tXr/WacJLq29rQFpI84t2rT6z3pw0re7W3prffYDt/W86jXn1fvP1EIjhOJXm0vSQnYGmnZO0bL5bjyZHtQ5nHxYBjaQvruYHHmvhl8+bNat/+634r1qipJHXp0kVZWVmNRiu3b9/eaFSzQXFxcczls7Oz1blzZ+syDWXGs954MXIKAAAAALEYk9yXpPbt20e93C5Oc3Nz1a9fPy1ZsiTq/SVLlmjQoEEx8wwcOLDR8osXL1b//v2Vk5NjXaahzHjWG6+MHzkFAAAAgJZg8uTJGjNmjPr376+BAwdqzpw5+vjjjzV+/HhJUnl5ubZs2aKnnnpKkjR+/HjNmjVLkydP1rhx47RixQo99thjevbZZyNl3nTTTTrjjDM0Y8YMXXDBBXr++ef18ssva9myZU1eryR98cUX+vjjj/Xpp59Kkt577z1J+0dmi4uLm7R9XJwCAAAAQAyOsf9SOtGym2v06NHauXOn7rzzTm3dulV9+vTRokWLVFZWJknaunVr1LNHe/TooUWLFmnSpEl68MEHVVJSogceeECXXHJJZJlBgwZp3rx5uu2223T77bfr6KOP1vz58zVgwIAmr1eSXnjhBf3oRz+K/P29731PknTHHXdo6tSpTWwT08w5jFuYyspKFRYWaqguULbT+P472z13khTeVxPXem33rOxfIEn3iFjvUfO6Sc2ddXta4P0uftxz6pU3Xgnd51pb55qU2D2n8d10Wm/q9Jqe165du6LuvWgKr1iXJOfUE13zO+ves5ZvuxfHGlse+ydp9/jEe19RC4znFsev+9vilNg9p7H7mERiXfKO992jT7Pmb7/wTde0ePsvyad79ojZ/TyOxXiPY6/zncdK7em2shPop+Pt4z2P3ziOtURj3U8N/cyQQbcrO9v9c2Mi6uv3aenyX7TI9kkWRk4BAAAAIJYD7g1NStmI0rK+vgUAAAAAtEqMnAIAAABADE54/ytZZSMaI6cAAAAAAN8xcgoAAAAAsXDPaUpxcQoAAAAAsZh/v5JVNqJk/MWpU+gxbXP1Z65Jafk4BtsU4R6z4wdyLIeDcZ/u3IQ9fh2ehtPch2trXdMClqndnYICa7m2x8Uk6zEzieQ1ubEfuSJJWXLfVttjZtJZ1pfu9Q57PWopXO+elsjU/OnG63hKw3hucWxt2NIeM2M7b8j9UTLJVvinv1vTw/E+GsqT+4k2aX2B7ZjJpHj1fLyK7XExtj48gUfUJMJarv0YdazHYXztIHl/jgQOhYy/OAUAAACAWBxj5CTp57fJKrcla1lf0QIAAAAAWiVGTgEAAAAgFiZESilGTgEAAAAAvmPkFAAAAABiMZKSNbcYA6eNMHIKAAAAAPAdI6cAAAAAEAOz9aYWI6cAAAAAAN8xcgoAAAAAsRglcbbe5BTbkmX8xWnos8+t6SYUSlFNUsDY7+YO19W7pjlZWZacLbCNLG0R3lcTd7GBggLXNMdx/6GC8dg3tryJsJabn+eetmfvoa9MCoQ/3uKa5hXr9hiw5bOnW9frcVwAKWHpJ+KNi6RznLizmrD7p0UnYC/Xyc5xT7TEeqv6rJGuLP2pCduO8eSsU5JkWa9sx5rX8W2JS8dxP76N52HIcYrky/iLUwAAAACIieecphT3nAIAAAAAfMfIKQAAAADEEpYU/50C3mUjCiOnAAAAAADfMXIKAAAAADHwnNPUYuQUAAAAAOA7Rk4BAAAAIBZm600pRk4BAAAAAL5j5BQAAAAAYmHkNKUYOQUAAAAA+C7jR04D+XnW9PBe9wcQmVDoUFfHX8a2re7ZnID94U+2vGnJ0g7hfTVxF+t4HGtpx3Hfr1ltCqxZQ7t3H+raHBJObo57Yo39YWOmvs5Sbq57xkT6CSeB7w8txzHSmG2/JXI8JIuln/BT3Td7WtOzV/zdNc16bncsfYhk3X/2c2VW3OWasGXkhT6kaWzbajw+44Td29jJ8tivHp+f4mVdr61KHvs8Y8f4GDlNqTQ8031t6tSpchwn6lVcXOx3tQAAAAAAh1jaj5yecMIJevnllyN/Z3l9CwUAAAAAh0JYUrJ+JJJBP1BoqrS/OM3Ozma0FAAAAABaubS/ON24caNKSkoUDAY1YMAATZs2TUcddZTr8jU1Naqp+fq+wMrKylRUE0CKEetA5iDeAfjFMUZOku4NTVa5LVla33M6YMAAPfXUU/rzn/+sRx55RNu2bdOgQYO0c+dO1zzTp09XYWFh5FVaWprCGgNIFWIdyBzEOwBkhrS+OB05cqQuueQSnXjiiTrnnHP0pz/9SZI0d+5c1zzl5eXatWtX5LV58+ZUVRdAChHrQOYg3gH4pmG23mS9ECXtf9Z7oDZt2ujEE0/Uxo0bXZcJBoMKBoMprBUAPxDrQOYg3gEgM6T1yOnBampqtGHDBnXv3t3vqgAAAABo7cImuS9ESeuL05/85CdaunSpNm3apJUrV2rUqFGqrKzU2LFj/a4aAAAAAOAQSuuf9X7yySe6/PLLtWPHDnXt2lWnnXaa/vrXv6qsrMzvqgEAAABo7ZJ5byj3nDaS1hen8+bNS/o6nLZt7OkHTF3fvILtg9Kmvi6+cv1i3J8SbMJpPQB/aFnaQZJMXb17ouN+LDl59nupjGW9ju1YCyTw1GgnkbyWOnm0YTLVnnqsa1rwwy+secOfbHVNs+13J5F9YJNAO9rqZLx+YuTRt1kKji8ffGc9hgPp2f8fcc/71vRPTosvZsO1tdZynawse8XiZYk7J2A7Pyfwwdcr1jMkpr3a0Nb+Mh79v+3zky3uErmgSeTcDqRAWl+cAgAAAIB/kjmrLiOnB0vPrzwBAAAAABmFkVMAAAAAiIV7TlOKkVMAAAAAgO8YOQUAAACAWMJGSbs3lOecNsLIKQAAAADAd4ycAgAAAEAsJpy8RydlyCOZmoORUwAAAACA7xg5BQAAAIBYmK03pTL+4rR+67YklRyKO6eTlWVNN6H4y46b4z7I7gQca1aTrOpa6pTQzyQSKNfU18W/XgsnLxhfRq8b7W37LoEO03YMm3r/fsKS9X9rXNPqEym3XTvXtFBVlTWvV7y7Z0zghy+W49grnuNfZRJ/qMPPohIW7343dcnp8xL1yYDdcee1nbOyOnW05g3vqox7vXGznp89zllMxuLN67xv7dvsH4Aca/dvSXQ84tWWbjm3czwgHWT8xSkAAAAAxMRsvSnFPacAAAAAAN8xcgoAAAAAsXDPaUoxcgoAAAAA8B0jpwAAAAAQi1ESR06TU2xLxsgpAAAAAMB3jJwCAAAAQCzcc5pSjJwCAAAAAHzHyCkAAAAAxBIOSwonsWwciJFTAAAAAIDvGDlNkkBBgTU9XL3PNc3JzrEX7rh/p2Dq6+x542Xcv9kxYY/vOCz1jXedXrLatrWmh6urLau1/P7fa1tsdba1Ya19vzkByz53HPeMWVnWclVv2Vbbt3m2dUpyct2P4aQdoz5yOha6J+7eY81rO96cgL2dbWz7wHqPSyhkLdd4pLvWx+tYTIRxbydrPHuWm2bfaHvVJ96+1iOvtQ1rauJfZwsUrtxtTXeCQfdES9zZzkn7C3bfP4Ec9+M/XGc//q19jMfxZOLrCtIvrhJlO7d7tJGTm+uelm35iO7Rn9r6W3sfnlnx3GTcc5pSjJwCAAAAAHzHyCkAAAAAxMLIaUoxcgoAAAAA8B0jpwAAAAAQS9hIStIIZyLzIrRSjJwCAAAAAHzHyCkAAAAAxGBMWCZJs0wnq9yWjJFTAAAAAIDvGDkFAAAAgFiMSd69oczW2wgjpwAAAAAA3zFymiSBDoXWdFNb554WClnzOgHHPS0315bRWq6y3NOdnBz3tIJ8e7ltClyTwu3d89Z2tpe7u8S9TibLXqX2H9W6pgXf3eKaFvp8p7VcJyfonmjZr1773ITd70kItG1jWafHvQy57m2ooGVbPDi17u0b3rs37nLTVc3RRa5pwep91ry2fW8seU1dvb1S9ZZ0S1/g2I4nSYFOHV3Tqo/u7JpW09EelOFs936t/b+qrXmzP69yL/ejza5pxuObcGMPS1e2PtprvV554+bR/9vWa6uvV9/V6njdH2YZBXFsfeq+Gmuxtv1j+7yxd+BR1nKtcffaRmteBd0/b4S/2uWaFjjiMGuxtcXtXNNyt1a6Z9xtP7eYXe55jeWc5X1+tvQjHsdLuNret7ny+jxnW68tL/c/xmaSOFsvI6eNMHIKAAAAAPAdI6cAAAAAEEs4LDlJGlVmtLoRRk4BAAAAAL5j5BQAAAAAYuGe05Ri5BQAAAAA4DtGTgEAAAAgBhMOyyTpnlPDPaeNMHIKAAAAAPAdI6cAAAAAEAv3nKYUI6cAAAAAAN8xcgoAAAAAsYSN5DBymipcnCZJ/adbk1Z22h3Gu3YlpVivg7NDUtYq1SeQ19TXHbJ6RJW7d69rWtiShtTIenWNa1oix1Mi4u4navbZ07/40jUp54N/uafFW58m8KuN3ZiQP3nt7AWn3XklTZmQRztWV7sn2tI81+ueVr/9c9e0vOfd07wkK67C/9hoTQ/8wz0t3WLdN4lMosMEPEhzLeJnvbNnz1aPHj2Ul5enfv366Y033vC7SgAAAABaO2P2X9Qn5cVXgwdL+4vT+fPna+LEiZoyZYrWrl2rwYMHa+TIkfr444/9rhoAAAAA4BBJ+4vTmTNn6uqrr9Y111yj448/XhUVFSotLdVDDz3kd9UAAAAAtGImbJL6QrS0vue0trZWa9as0U9/+tOo94cPH67ly5fHzFNTU6OamprI35WVlUmtIwB/EOtA5iDeASAzpPXI6Y4dOxQKhVRUVBT1flFRkbZt2xYzz/Tp01VYWBh5lZaWpqKqAFKMWAcyB/EOwDdJu980zARVMaT1xWkDx3Gi/jbGNHqvQXl5uXbt2hV5bd68ORVVBJBixDqQOYh3APhacyeLXbp0qfr166e8vDwdddRRevjhhxsts2DBAvXu3VvBYFC9e/fWwoULm71eY4ymTp2qkpIS5efna+jQoVq/fn2zti2tL067dOmirKysRqOk27dvbzSa2iAYDKp9+/ZRLwCtD7EOZA7iHYBf0u2e0+ZOFrtp0yadd955Gjx4sNauXatbb71VN954oxYsWBBZZsWKFRo9erTGjBmjt956S2PGjNFll12mlStXNmu999xzj2bOnKlZs2Zp1apVKi4u1rBhw1RVVdXk7Uvri9Pc3Fz169dPS5YsiXp/yZIlGjRokE+1AgAAAIDUa+5ksQ8//LCOOOIIVVRU6Pjjj9c111yjq666Svfee29kmYqKCg0bNkzl5eXq1auXysvLdfbZZ6uioqLJ6zXGqKKiQlOmTNHFF1+sPn36aO7cudq7d6+eeeaZJm9fWl+cStLkyZP16KOP6vHHH9eGDRs0adIkffzxxxo/frzfVQMAAADQmqXRPacNk8UOHz486n3bZLErVqxotPyIESO0evVq1dXVWZdpKLMp6920aZO2bdsWtUwwGNSQIUNc6xZLWs/WK0mjR4/Wzp07deedd2rr1q3q06ePFi1apLKysiblN/9+uG296iRmawbSWr32d5ImjodSE+tAy5FIrB+Yj3gH0luisZ4OktnPNLTPwTOQB4NBBYPBRsvHM1nstm3bYi5fX1+vHTt2qHv37q7LNJTZlPU2/BtrmY8++ihm3WJJ+4tTSZowYYImTJgQV96G3zgv06JDWSUASVRVVaXCwsJm55GIdaAliSfWG/JJxDvQUsQb637Kzc1VcXGxlm1Lbj/Ttm3bRjOQ33HHHZo6daprnuZMFuu2/MHvN6XMQ7WMTYu4OE1ESUmJNm/erHbt2slxHFVWVqq0tFSbN29mQgUXtFHT0E5N05x2MsaoqqpKJSUlzV4PsR4f2skbbdQ0qYp1iXiPB23UNLSTt1TGup/y8vK0adMm1dbWJnU9sS7eYo2aSvFNFltcXBxz+ezsbHXu3Nm6TEOZTVlvcXGxpP0jqN27d29S3WJp9RengUBAhx9+eKP3me3PG23UNLRT0zS1neL9ZpVYTwzt5I02appkx7pEvCeCNmoa2slbKmLdb3l5ecrLy/O7GhEHThZ70UUXRd5fsmSJLrjggph5Bg4cqD/84Q9R7y1evFj9+/dXTk5OZJklS5Zo0qRJUcs0TEDblPX26NFDxcXFWrJkiU4++WRJ++9VXbp0qWbMmNHkbWz1F6cAAAAA0BpMnjxZY8aMUf/+/TVw4EDNmTMnarLY8vJybdmyRU899ZQkafz48Zo1a5YmT56scePGacWKFXrsscf07LPPRsq86aabdMYZZ2jGjBm64IIL9Pzzz+vll1/WsmXLmrxex3E0ceJETZs2TT179lTPnj01bdo0FRQU6Iorrmjy9nFxCgAAAAAtgNdksVu3bo169miPHj20aNEiTZo0SQ8++KBKSkr0wAMP6JJLLoksM2jQIM2bN0+33Xabbr/9dh199NGaP3++BgwY0OT1StItt9yi6upqTZgwQV9++aUGDBigxYsXq127dk3evoy7OA0Gg7rjjjtcf8sN2qipaKem8aud2D9NQzt5o42axs92Yh95o42ahnbyRhv5zzZZ7JNPPtnovSFDhujNN9+0ljlq1CiNGjUq7vVK+0dPp06dap3MyYtjWvLczgAAAACAViHgdwUAAAAAAODiFAAAAADgOy5OAQAAAAC+y6iL09mzZ6tHjx7Ky8tTv3799MYbb/hdJV+9/vrrOv/881VSUiLHcfT73/8+Kt0Yo6lTp6qkpET5+fkaOnSo1q9f709lfTJ9+nSdcsopateunbp166YLL7xQ7733XtQytJP00EMP6Rvf+EbkmWcDBw7Uiy++GEn3o42I968R696I9aYh1tMf8e6NeG+adIx3tH4Zc3E6f/58TZw4UVOmTNHatWs1ePBgjRw5Mmqq5UyzZ88enXTSSZo1a1bM9HvuuUczZ87UrFmztGrVKhUXF2vYsGGqqqpKcU39s3TpUl133XX661//qiVLlqi+vl7Dhw/Xnj17IsvQTtLhhx+uu+++W6tXr9bq1at11lln6YILLoicpFLdRsR7NGLdG7HeNMR6+iPevRHvTZNu8Y4MYTLEqaeeasaPHx/1Xq9evcxPf/pTn2qUXiSZhQsXRv4Oh8OmuLjY3H333ZH39u3bZwoLC83DDz/sQw3Tw/bt240ks3TpUmMM7WTTsWNH8+ijj/rSRsS7O2K9aYj1piPW0xfx3jTEe9P5Ge/IDBkxclpbW6s1a9Zo+PDhUe8PHz5cy5cv96lW6W3Tpk3atm1bVJsFg0ENGTIko9ts165dkqROnTpJop1iCYVCmjdvnvbs2aOBAwemvI2I9+bhGI6NWPdGrLc8HMexEe/e/I53ZI6MuDjdsWOHQqGQioqKot4vKirStm3bfKpVemtoF9rsa8YYTZ48Wd/61rfUp08fSbTTgd555x21bdtWwWBQ48eP18KFC9W7d++UtxHx3jwcw40R63bEesvFcdwY8W6XLvGOzJHtdwVSyXGcqL+NMY3eQzTa7GvXX3+93n77bS1btqxRGu0kHXfccVq3bp2++uorLViwQGPHjtXSpUsj6aluI/ZJ89BeXyPW7Yj1lo82+xrxbpdu8Y7WLyNGTrt06aKsrKxG3+Rs37690Tc+2K+4uFiSaLN/u+GGG/TCCy/o1Vdf1eGHHx55n3b6Wm5uro455hj1799f06dP10knnaT7778/5W1EvDcPx3A0Yt0bsd5ycRxHI969pUu8I3NkxMVpbm6u+vXrpyVLlkS9v2TJEg0aNMinWqW3Hj16qLi4OKrNamtrtXTp0oxqM2OMrr/+ej333HN65ZVX1KNHj6h02smdMUY1NTUpbyPivXk4hvcj1uNHrLccHMf7Ee/x8yvekUFSOv2Sj+bNm2dycnLMY489Zt59910zceJE06ZNG/Phhx/6XTXfVFVVmbVr15q1a9caSWbmzJlm7dq15qOPPjLGGHP33XebwsJC89xzz5l33nnHXH755aZ79+6msrLS55qnzo9//GNTWFhoXnvtNbN169bIa+/evZFlaCdjysvLzeuvv242bdpk3n77bXPrrbeaQCBgFi9ebIxJfRsR79GIdW/EetMQ6+mPePdGvDdNusU7MkPGXJwaY8yDDz5oysrKTG5urvnmN78ZmTI8U7366qtGUqPX2LFjjTH7p1K/4447THFxsQkGg+aMM84w77zzjr+VTrFY7SPJPPHEE5FlaCdjrrrqqkhsde3a1Zx99tmRk5cx/rQR8f41Yt0bsd40xHr6I969Ee9Nk47xjtbPMcaY5I7NAgAAAABglxH3nAIAAAAA0hsXpwAAAAAA33FxCgAAAADwHRenAAAAAADfcXEKAAAAAPAdF6cAAAAAAN9xcQoAAAAA8B0XpwAAAAAA33FxCgAAAADwHRenAAAAAADfcXEKAAAAAPAdF6doMT7//HMVFxdr2rRpkfdWrlyp3NxcLV682MeaATiUiHUgcxDvAA7kGGOM35UAmmrRokW68MILtXz5cvXq1Usnn3yyvv3tb6uiosLvqgE4hIh1IHMQ7wAacHGKFue6667Tyy+/rFNOOUVvvfWWVq1apby8PL+rBeAQI9aBzEG8A5C4OEULVF1drT59+mjz5s1avXq1vvGNb/hdJQBJQKwDmYN4ByBxzylaoH/961/69NNPFQ6H9dFHH/ldHQBJQqwDmYN4ByAxcooWpra2Vqeeeqr69u2rXr16aebMmXrnnXdUVFTkd9UAHELEOpA5iHcADbg4RYty880363e/+53eeusttW3bVmeeeabatWunP/7xj35XDcAhRKwDmYN4B9CAn/WixXjttddUUVGhX//612rfvr0CgYB+/etfa9myZXrooYf8rh6AQ4RYBzIH8Q7gQIycAgAAAAB8x8gpAAAAAMB3XJwCAAAAAHzHxSkAAAAAwHdcnAIAAAAAfMfFKQAAAADAd1ycAgAAAAB8x8UpAAAAAMB3XJwCAAAAAHzHxSkAAAAAwHdcnAIAAAAAfMfFKQAAAADAd1ycAgAAAAB89/8BD6TgF3GcYFcAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x600 with 7 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"EKE_10d_60d = EKE_U_10d_60d.rename({\"depthu\": \"depth\"}) + EKE_V_10d_60d.rename({\"depthv\": \"depth\"})\n",
"EKE_10d_60d.isel(depth=0).plot(col=\"time_counter\", col_wrap=3)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment