Thank you everybody, Your comments makes it better
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"
//from http://www.saltycrane.com/blog/2015/12/switching-emacs-vim-actually-spacemacs/ | |
Useful Spacemacs commands | |
SPC q q - quit | |
SPC w / - split window vertically | |
SPC w - - split window horizontally | |
SPC 1 - switch to window 1 | |
SPC 2 - switch to window 2 | |
SPC w c - delete current window |
Thank you everybody, Your comments makes it better
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"
{-# LANGUAGE QuasiQuotes #-} | |
module NestedList where | |
import Control.Applicative (empty) | |
import Control.Monad (void) | |
import Data.Char (isAlphaNum) | |
import Data.Text (unpack) | |
import Data.Void (Void) | |
import NeatInterpolation (text) |
public static partial class LinqExtensions | |
{ | |
public static Maybe<C> SelectMany<A, B, C>(this Maybe<A> ma, Func<A, Maybe<B>> f, Func<A, B, C> select) => ma.Bind(a => f(a).Map(b => select(a, b))); | |
} |
/* | |
scalaVersion := "2.12.7" | |
resolvers += Resolver.sonatypeRepo("snapshots") | |
libraryDependencies += "co.fs2" %% "fs2-core" % "1.0.1-SNAPSHOT" | |
*/ | |
import cats._ | |
import cats.implicits._ | |
import cats.effect._ |
In this video we come across about 50 online resources for category theory:
I quickly comment on about 20 major ones. I link to the university sites, arXiv sites or Amazon page - most of the mentioned books are online available.
Here's another category theory list on github
{-# LANGUAGE DeriveFunctor #-} | |
{-# LANGUAGE LambdaCase #-} | |
import Control.Applicative (liftA2) | |
import Data.Char | |
import Data.Foldable (for_) | |
import Data.Functor | |
import qualified Data.HashMap.Strict as M | |
import Data.List (intercalate) | |
import Prelude hiding (any) |
{-# LANGUAGE TypeSynonymInstances #-} | |
data Dual d = D Float d deriving Show | |
type Float' = Float | |
diff :: (Dual Float' -> Dual Float') -> Float -> Float' | |
diff f x = y' | |
where D y y' = f (D x 1) | |
class VectorSpace v where | |
zero :: v |