Created
September 29, 2015 21:15
-
-
Save wiso/9ae742a6278f1d17ef45 to your computer and use it in GitHub Desktop.
crash of atlas simulation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas\n", | |
"import numpy as np\n", | |
"import re\n", | |
"from IPython.display import display\n", | |
"from matplotlib import pyplot as plt\n", | |
"from mpl_toolkits.mplot3d import Axes3D\n", | |
"%matplotlib inline\n", | |
"\n", | |
"import matplotlib as mpl\n", | |
"mpl.rcParams['axes.formatter.useoffset'] = False" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"filename = \"data_tracks.txt\"\n", | |
"id_tracks = []\n", | |
"with open(filename) as f:\n", | |
" r = re.compile(\"Track ID = ([0-9]+)\")\n", | |
" split_point = []\n", | |
" for iline, l in enumerate(f):\n", | |
" m = r.search(l)\n", | |
" if m:\n", | |
" id_tracks.append(int(m.group(1)))\n", | |
" split_point.append(iline)\n", | |
"split_point.append(iline + 1)\n", | |
"nlines = np.diff(split_point)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Crash is on track `420438`, Z = -25300" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"head track = 419690\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>6728655-01:01:40</th>\n", | |
" <th>X(mm)</th>\n", | |
" <th>Y(mm)</th>\n", | |
" <th>Z(mm)</th>\n", | |
" <th>KinE(MeV)</th>\n", | |
" <th>dE(MeV)</th>\n", | |
" <th>StepLeng</th>\n", | |
" <th>TrackLeng</th>\n", | |
" <th>NextVolume</th>\n", | |
" <th>ProcName</th>\n", | |
" <th>R</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Step#</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>6728656-01:01:40</td>\n", | |
" <td>-30.5</td>\n", | |
" <td>16.6</td>\n", | |
" <td>-4170</td>\n", | |
" <td>508</td>\n", | |
" <td>0.000</td>\n", | |
" <td>0.00</td>\n", | |
" <td>0.0</td>\n", | |
" <td>SectionF149</td>\n", | |
" <td>initStep</td>\n", | |
" <td>34.724775</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>6728657-01:01:40</td>\n", | |
" <td>-30.5</td>\n", | |
" <td>16.6</td>\n", | |
" <td>-4180</td>\n", | |
" <td>505</td>\n", | |
" <td>2.620</td>\n", | |
" <td>10.20</td>\n", | |
" <td>10.2</td>\n", | |
" <td>SectionF149</td>\n", | |
" <td>eBrem</td>\n", | |
" <td>34.724775</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>6728658-01:01:40</td>\n", | |
" <td>-30.5</td>\n", | |
" <td>16.6</td>\n", | |
" <td>-4180</td>\n", | |
" <td>503</td>\n", | |
" <td>0.838</td>\n", | |
" <td>4.24</td>\n", | |
" <td>14.5</td>\n", | |
" <td>SectionF149</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>34.724775</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>6728659-01:01:40</td>\n", | |
" <td>-30.6</td>\n", | |
" <td>16.6</td>\n", | |
" <td>-4180</td>\n", | |
" <td>502</td>\n", | |
" <td>0.443</td>\n", | |
" <td>2.03</td>\n", | |
" <td>16.5</td>\n", | |
" <td>SectionF149</td>\n", | |
" <td>eBrem</td>\n", | |
" <td>34.812641</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>6728660-01:01:40</td>\n", | |
" <td>-30.6</td>\n", | |
" <td>16.7</td>\n", | |
" <td>-4190</td>\n", | |
" <td>501</td>\n", | |
" <td>0.248</td>\n", | |
" <td>1.53</td>\n", | |
" <td>18.0</td>\n", | |
" <td>SectionF149</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>34.860436</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 6728655-01:01:40 X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng \\\n", | |
"Step# \n", | |
"0 6728656-01:01:40 -30.5 16.6 -4170 508 0.000 0.00 \n", | |
"1 6728657-01:01:40 -30.5 16.6 -4180 505 2.620 10.20 \n", | |
"2 6728658-01:01:40 -30.5 16.6 -4180 503 0.838 4.24 \n", | |
"3 6728659-01:01:40 -30.6 16.6 -4180 502 0.443 2.03 \n", | |
"4 6728660-01:01:40 -30.6 16.7 -4190 501 0.248 1.53 \n", | |
"\n", | |
" TrackLeng NextVolume ProcName R \n", | |
"Step# \n", | |
"0 0.0 SectionF149 initStep 34.724775 \n", | |
"1 10.2 SectionF149 eBrem 34.724775 \n", | |
"2 14.5 SectionF149 eIoni 34.724775 \n", | |
"3 16.5 SectionF149 eBrem 34.812641 \n", | |
"4 18.0 SectionF149 eIoni 34.860436 " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"tail track = 419690\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>6728655-01:01:40</th>\n", | |
" <th>X(mm)</th>\n", | |
" <th>Y(mm)</th>\n", | |
" <th>Z(mm)</th>\n", | |
" <th>KinE(MeV)</th>\n", | |
" <th>dE(MeV)</th>\n", | |
" <th>StepLeng</th>\n", | |
" <th>TrackLeng</th>\n", | |
" <th>NextVolume</th>\n", | |
" <th>ProcName</th>\n", | |
" <th>R</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Step#</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>608</th>\n", | |
" <td>6729264-01:01:41</td>\n", | |
" <td>8760</td>\n", | |
" <td>1980</td>\n", | |
" <td>-49800</td>\n", | |
" <td>0.01460</td>\n", | |
" <td>0.000094</td>\n", | |
" <td>0.224</td>\n", | |
" <td>51900</td>\n", | |
" <td>BeamPipe</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>8980.979902</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>609</th>\n", | |
" <td>6729265-01:01:41</td>\n", | |
" <td>8760</td>\n", | |
" <td>1980</td>\n", | |
" <td>-49800</td>\n", | |
" <td>0.01340</td>\n", | |
" <td>0.000155</td>\n", | |
" <td>0.426</td>\n", | |
" <td>51900</td>\n", | |
" <td>BeamPipe</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>8980.979902</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>610</th>\n", | |
" <td>6729266-01:01:41</td>\n", | |
" <td>8760</td>\n", | |
" <td>1980</td>\n", | |
" <td>-49800</td>\n", | |
" <td>0.00982</td>\n", | |
" <td>0.003550</td>\n", | |
" <td>2.320</td>\n", | |
" <td>51900</td>\n", | |
" <td>BeamPipe</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>8980.979902</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>611</th>\n", | |
" <td>6729267-01:01:41</td>\n", | |
" <td>8760</td>\n", | |
" <td>1980</td>\n", | |
" <td>-49800</td>\n", | |
" <td>0.00374</td>\n", | |
" <td>0.005050</td>\n", | |
" <td>1.780</td>\n", | |
" <td>51900</td>\n", | |
" <td>BeamPipe</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>8980.979902</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>612</th>\n", | |
" <td>6729268-01:01:41</td>\n", | |
" <td>8760</td>\n", | |
" <td>1980</td>\n", | |
" <td>-49800</td>\n", | |
" <td>0.00000</td>\n", | |
" <td>0.003740</td>\n", | |
" <td>0.456</td>\n", | |
" <td>51900</td>\n", | |
" <td>BeamPipe</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>8980.979902</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 6728655-01:01:40 X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng \\\n", | |
"Step# \n", | |
"608 6729264-01:01:41 8760 1980 -49800 0.01460 0.000094 0.224 \n", | |
"609 6729265-01:01:41 8760 1980 -49800 0.01340 0.000155 0.426 \n", | |
"610 6729266-01:01:41 8760 1980 -49800 0.00982 0.003550 2.320 \n", | |
"611 6729267-01:01:41 8760 1980 -49800 0.00374 0.005050 1.780 \n", | |
"612 6729268-01:01:41 8760 1980 -49800 0.00000 0.003740 0.456 \n", | |
"\n", | |
" TrackLeng NextVolume ProcName R \n", | |
"Step# \n", | |
"608 51900 BeamPipe eIoni 8980.979902 \n", | |
"609 51900 BeamPipe eIoni 8980.979902 \n", | |
"610 51900 BeamPipe eIoni 8980.979902 \n", | |
"611 51900 BeamPipe eIoni 8980.979902 \n", | |
"612 51900 BeamPipe eIoni 8980.979902 " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"head track = 420020\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>6733565-01:01:41</th>\n", | |
" <th>X(mm)</th>\n", | |
" <th>Y(mm)</th>\n", | |
" <th>Z(mm)</th>\n", | |
" <th>KinE(MeV)</th>\n", | |
" <th>dE(MeV)</th>\n", | |
" <th>StepLeng</th>\n", | |
" <th>TrackLeng</th>\n", | |
" <th>NextVolume</th>\n", | |
" <th>ProcName</th>\n", | |
" <th>R</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Step#</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>6733566-01:01:41</td>\n", | |
" <td>137</td>\n", | |
" <td>-2320</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.187</td>\n", | |
" <td>0.0000</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>initStep</td>\n", | |
" <td>2324.041523</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>6733567-01:01:41</td>\n", | |
" <td>141</td>\n", | |
" <td>-2290</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.175</td>\n", | |
" <td>0.0102</td>\n", | |
" <td>45.3</td>\n", | |
" <td>45.3</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2294.336723</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>6733568-01:01:41</td>\n", | |
" <td>165</td>\n", | |
" <td>-2240</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.160</td>\n", | |
" <td>0.0147</td>\n", | |
" <td>58.3</td>\n", | |
" <td>104.0</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2246.068788</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>6733569-01:01:41</td>\n", | |
" <td>166</td>\n", | |
" <td>-2210</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.147</td>\n", | |
" <td>0.0103</td>\n", | |
" <td>44.9</td>\n", | |
" <td>149.0</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2216.225620</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>6733570-01:01:41</td>\n", | |
" <td>162</td>\n", | |
" <td>-2170</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.131</td>\n", | |
" <td>0.0153</td>\n", | |
" <td>43.9</td>\n", | |
" <td>192.0</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2176.038603</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 6733565-01:01:41 X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng \\\n", | |
"Step# \n", | |
"0 6733566-01:01:41 137 -2320 -25300 0.187 0.0000 0.0 \n", | |
"1 6733567-01:01:41 141 -2290 -25300 0.175 0.0102 45.3 \n", | |
"2 6733568-01:01:41 165 -2240 -25300 0.160 0.0147 58.3 \n", | |
"3 6733569-01:01:41 166 -2210 -25300 0.147 0.0103 44.9 \n", | |
"4 6733570-01:01:41 162 -2170 -25300 0.131 0.0153 43.9 \n", | |
"\n", | |
" TrackLeng NextVolume ProcName R \n", | |
"Step# \n", | |
"0 0.0 Atlas::Atlas initStep 2324.041523 \n", | |
"1 45.3 Atlas::Atlas eIoni 2294.336723 \n", | |
"2 104.0 Atlas::Atlas eIoni 2246.068788 \n", | |
"3 149.0 Atlas::Atlas eIoni 2216.225620 \n", | |
"4 192.0 Atlas::Atlas eIoni 2176.038603 " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"tail track = 420020\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>6733565-01:01:41</th>\n", | |
" <th>X(mm)</th>\n", | |
" <th>Y(mm)</th>\n", | |
" <th>Z(mm)</th>\n", | |
" <th>KinE(MeV)</th>\n", | |
" <th>dE(MeV)</th>\n", | |
" <th>StepLeng</th>\n", | |
" <th>TrackLeng</th>\n", | |
" <th>NextVolume</th>\n", | |
" <th>ProcName</th>\n", | |
" <th>R</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Step#</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>23</th>\n", | |
" <td>6733589-01:01:41</td>\n", | |
" <td>157</td>\n", | |
" <td>-2020</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.01490</td>\n", | |
" <td>0.00424</td>\n", | |
" <td>3.250</td>\n", | |
" <td>404</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2026.092051</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td>6733590-01:01:41</td>\n", | |
" <td>156</td>\n", | |
" <td>-2020</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.01080</td>\n", | |
" <td>0.00412</td>\n", | |
" <td>2.560</td>\n", | |
" <td>406</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2026.014807</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25</th>\n", | |
" <td>6733591-01:01:41</td>\n", | |
" <td>156</td>\n", | |
" <td>-2020</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.00752</td>\n", | |
" <td>0.00329</td>\n", | |
" <td>1.950</td>\n", | |
" <td>408</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2026.014807</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>26</th>\n", | |
" <td>6733592-01:01:41</td>\n", | |
" <td>155</td>\n", | |
" <td>-2020</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.00257</td>\n", | |
" <td>0.00275</td>\n", | |
" <td>0.862</td>\n", | |
" <td>409</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2025.938054</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>27</th>\n", | |
" <td>6733593-01:01:41</td>\n", | |
" <td>155</td>\n", | |
" <td>-2020</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.00000</td>\n", | |
" <td>0.00257</td>\n", | |
" <td>0.241</td>\n", | |
" <td>409</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>eIoni</td>\n", | |
" <td>2025.938054</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 6733565-01:01:41 X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng \\\n", | |
"Step# \n", | |
"23 6733589-01:01:41 157 -2020 -25300 0.01490 0.00424 3.250 \n", | |
"24 6733590-01:01:41 156 -2020 -25300 0.01080 0.00412 2.560 \n", | |
"25 6733591-01:01:41 156 -2020 -25300 0.00752 0.00329 1.950 \n", | |
"26 6733592-01:01:41 155 -2020 -25300 0.00257 0.00275 0.862 \n", | |
"27 6733593-01:01:41 155 -2020 -25300 0.00000 0.00257 0.241 \n", | |
"\n", | |
" TrackLeng NextVolume ProcName R \n", | |
"Step# \n", | |
"23 404 Atlas::Atlas eIoni 2026.092051 \n", | |
"24 406 Atlas::Atlas eIoni 2026.014807 \n", | |
"25 408 Atlas::Atlas eIoni 2026.014807 \n", | |
"26 409 Atlas::Atlas eIoni 2025.938054 \n", | |
"27 409 Atlas::Atlas eIoni 2025.938054 " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"head track = 420438\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>01:01:42</th>\n", | |
" <th>X(mm)</th>\n", | |
" <th>Y(mm)</th>\n", | |
" <th>Z(mm)</th>\n", | |
" <th>KinE(MeV)</th>\n", | |
" <th>dE(MeV)</th>\n", | |
" <th>StepLeng</th>\n", | |
" <th>TrackLeng</th>\n", | |
" <th>NextVolume</th>\n", | |
" <th>ProcName</th>\n", | |
" <th>R</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Step#</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>01:01:42</td>\n", | |
" <td>166</td>\n", | |
" <td>-2030</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.00187</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>initStep</td>\n", | |
" <td>2036.775884</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 01:01:42 X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng \\\n", | |
"Step# \n", | |
"0 01:01:42 166 -2030 -25300 0.00187 0 0 0 \n", | |
"\n", | |
" NextVolume ProcName R \n", | |
"Step# \n", | |
"0 Atlas::Atlas initStep 2036.775884 " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"tail track = 420438\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>01:01:42</th>\n", | |
" <th>X(mm)</th>\n", | |
" <th>Y(mm)</th>\n", | |
" <th>Z(mm)</th>\n", | |
" <th>KinE(MeV)</th>\n", | |
" <th>dE(MeV)</th>\n", | |
" <th>StepLeng</th>\n", | |
" <th>TrackLeng</th>\n", | |
" <th>NextVolume</th>\n", | |
" <th>ProcName</th>\n", | |
" <th>R</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Step#</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>01:01:42</td>\n", | |
" <td>166</td>\n", | |
" <td>-2030</td>\n", | |
" <td>-25300</td>\n", | |
" <td>0.00187</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>Atlas::Atlas</td>\n", | |
" <td>initStep</td>\n", | |
" <td>2036.775884</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 01:01:42 X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng \\\n", | |
"Step# \n", | |
"0 01:01:42 166 -2030 -25300 0.00187 0 0 0 \n", | |
"\n", | |
" NextVolume ProcName R \n", | |
"Step# \n", | |
"0 Atlas::Atlas initStep 2036.775884 " | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"data = {}\n", | |
"for (nl, sp, id_track) in zip(nlines, split_point, id_tracks):\n", | |
" d = pandas.read_csv(filename, sep=' +', skiprows=sp + 3, nrows = nl - 4, index_col=\"Step#\")\n", | |
" d['R'] = np.hypot(d['X(mm)'], d['Y(mm)'])\n", | |
" print \"head track =\", id_track\n", | |
" display(d.head())\n", | |
" print \"tail track =\", id_track\n", | |
" display(d.tail())\n", | |
"\n", | |
" data[int(id_track)] = d\n", | |
"data = pandas.concat(data, keys=id_tracks, names=['id_track'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAFiCAYAAAAEBkVdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm83GV59/HPNywBhSREFMOWBElEKIgsoiISRBAURaQS\nRCmCVnyoda0VtH0I9WlFq63WikJVwI2aLlIpERKVoyhikCBEFgGVQMIesgAJZLueP+57Mr8zmTln\nzjmzz/f9es3r/Pa555ecmevcc93XrYjAzMzMzMzKxrW7AWZmZmZmncZBspmZmZlZBQfJZmZmZmYV\nHCSbmZmZmVVwkGxmZmZmVmHrdjfAzMx6lySXUDKzjhcRqtzmINnMzJqq2ofPSEmaExFzGtCcrtKv\nrxv697X36+uG5r52ico/2F8fwfz8vFX/mHe6hZmZmZn1m2slJg11gINkMzMzM+t1N1TZ9ruhAmUH\nyWZm1g0G2t2ANhlodwPaaKDdDWiTgXY3oI0GmnjtNwI/q9j2AuDSWifI01KbmVmzSIpG5CSbmTWC\nxGPAzoVNV4Pe6IF7ZmbWEVz1ovn8x4lZVYcA9xXWa8bC7kk2M7OmqdWT7B7m5vL9NatNYj3l4PhZ\n0Phqvy/OSTYzMzOzfrKysDy+1kEOks3MzMysL0hcAtwLPANsGvJYp1uYmVmzON2iPXx/zaqTeBCY\nUrG1ag6/e5LNzMzMrKdJXJJzkYsB8pA9xQ6SzczMzKzXzWRwJYtNwLNDneAg2czMrApJMyQ9I+lb\neX0bSf8p6Y+SNkk6suL4SZIul/RIfpxf5ZoflPQHSU9JukPSjMK+T0paImmVpCsk7VjYN17SN/K+\nhyR9uJmv3awHralYvxFYPNQJDpLNzMyq+zKwkMFfyf4MeCfwMFt+VfvPwHbAVODlwOmS3lXaKek9\nwFnAGyJiB9IMYI/nfWfk674K2BXYHvhS4dpzgBcBewJHAX8t6fUNeI1m/eI04BrKv7evAl461Ake\nuGdmZk3TrQP3JJ0KnATcAewdEadX7H8AeEdE/Kyw7THg+Ij4dV4/L6+/RtI4YAnwZxFxXZXn+0/g\nxoj4XF5/JfATYKeIeEbSMuCMiPhR3n8BMDMi3l6j/R19f83aRWI5MLliqwfumZlZb8iDcAYk5klM\nauy1NQG4APgwMNJAs3j8OOBP8vLuwG7A/pLuzykXcySVjo8q544HZkjaiTTY6NbC/tuA/UbYNjOD\nm+s90EGymZl1o5nAkcDxwMUNvvangK9FxIMMM/q9wjXAxyXtIGlvUmrF9nnf7vnnMaTA+Sjg7cC7\nC+e+R9JUSROBj+ftzwF2yMurCs+1GtgRMxupU4C59RzoINnMzLpRaRDOTcDZjbqopAOBo4EvlDaN\n4PQPkCYouAf4PvBdYFnetzb//GxErI6IJaTg/g15+zeAK4AB0mCin+TtS4Gn8vKEwnNNBJ4cQdvM\nDIhgZQSzgRvypnW1jnWQbGZm3eg0Um/QsRGDppgdqyOBacD9kh4CPgqcLOnXw50YESsi4p0RMSUi\n9ge2An6Vd/+O6h/Gkc+NiJgTEdMjYk9SLvTSiFgWESuAh4ADC+e9FPjt6F6imZEGzs4Fdql1gAfu\nmZlZ03TbwD1J21NOYxDwV6Sg+X0RsVzS+Lz9HlI6xfUR8Uw+dy9SSsRK4Fjgm8BrIuLOvP9y0oCh\ntwOTgAWknuVLc97xZOAPwEuA7wFfjIiv5XM/DbwSeAspP/knpIF882u8jo68v2adqNbvy9bVDjYz\nM+tHEbGWcmoEkp4C1kbE8rzpd6QybAFcC4Sk6RFxP3AwKU1jUj7utFKAnL0fuAR4kBRIXxIRl+Z9\nOwNXAXsAjwFfKAXI2fnAV0gVMtYCF9YKkM2sMdyTbGZmTdNtPcm9wvfXrDaJO0nfyKwDDgXd555k\nMzMzM+t3U0iDXwGur3WQB+6ZmZmZWV+QWEE5QF4LHFHrWAfJZmZmZtYvJhZXIlhS60AHyWZmZmbW\nj3461E4HyWZmZmbWL36ef/6WVI6xJgfJZmZmZtYv3kyaROSI4SYicgk4MzNrGpeAaw/fX7P61fp9\ncU+ymZmZmVkFB8lmZmZm1pMk7pRYKfGoxNSRnOsg2czMrApJMyQ9I+lbef0VkhZIWi7pUUlzJb2w\n4pzPSHo8Py6s2DdN0nWSnpZ0p6SjC/veKOnnklZIekjSv0naobB/vKRvSFqV93+42a/frEeUJg55\nPkNMHFKNg2QzM7PqvgwsBEqDdyYBXwWm5seTwKWlgyWdDZwIHJAfb8rbSq4AbgYmA58E/lPSznnf\nBODvSB/oLwF2A/6xcO4c4EXAnsBRwF9Len2DXqdZL1uXfz7NEBOHVOOBe2Zm1jTdOnBP0qnAScAd\nwN4RcXqVYw4CBiJiQl6/AfhGRHwtr58JvDciXilpJnAb8LyIeDrv/ynw3Yi4uMq1TwIuiIgD8voy\n4IyI+FFevwCYGRFVS1h1+v01a5WcYnE9qZpF1YlDav2+bN3sxpmZmTWaLtAlwExgDXBanB9DlnIa\n0bWlCcAFpB7b9w5x6GtItVZL9gVuLazfBuyXl/cD/lAKkLNbC/srHVm6tqSdSD3Mldc+acgXYmal\nGfX2HM25DpLNzKwbzSQFkgAXA7MbeO1PAV+LiAclVf26VdIBwN+Saq6W7ACsKqyvztuq7Svt363K\ntY8B/gx4eeFcqlx7x2FfiZmNmoNkMzPrRmvyz5uAs4c6cCQkHQgcDbystKnKMXsD84APRMQvCrue\nIuUWl0zM26rtg5TjvLri2q8AvgOcHBH3Fs4ln/944dpP1veqzPqHxOBvmYaZMGQoHrhnZmbd6DTS\nrFnHNjLVgtQ7PQ24X9JDwEeBkyX9GkDSVGAB8HcR8Z2Kc28HDiysv5RyOsbtwF7FihV5/+2lFUkv\nA/4HeFdEXFfaHhErgIeGuLaZlZW+ZTqe9C3TqHngnpmZNU23DdyTtD3lNAYBf0UKmt8HbAf8DLgo\nIj5f5dyzgQ8Cr8vnzge+GBGX5P2/BH5OStN4A/B10qDA5ZL+BPgx8P6I+I8q1/408ErgLaT85J+Q\nBvLNr/E6OvL+mjWbxDxSgHwTcGw9Pcmecc/MzGwYEbE2Ih7Nj0dIqQ5rI2I58B5gOjBH0pP5sbpw\n7sXAVcBi0sC6q0oBcnYqcAjwBPD3pJSK5XnfR4DnAd8oXHtx4dzzgd8DS4DrgM/UCpDN+lz5W6Yx\npFqAe5LNzKyJuq0nuVf4/prVzz3JZmZmZmZ1cnULMzMzM+tqjaxqUeKeZDMzMzPrdg2ralHiINnM\nzMzMul3Da6c7SDYzMzOzbtewqhYlrm5hZmZN4+oW7eH7a1Y/V7cwMzMzM6uTg2QzMzMzG5bEnRIr\nJR6VmNru9jSbg2QzMzMzq8cUYCLwfOD6Nrel6Rwkm5mZVSFphqRnJH0rr79C0gJJyyU9KmmupBdW\nnPMZSY/nx4U1rnukpE2SPlXYdpSk2yStkPSEpPmS9i3snyDp25Iey49vS9qxWa/d+oPEJRIDEvMk\nJtVxyrr882ngiCY2rSM4SDYzM6vuy8BCoDTCfRLwVWBqfjwJXFo6WNLZwInAAfnxpryNwjHbAF8E\nbixcF+B24PiI2AnYBbgF+EZh/xxgZ2A68KJ8zJyxv0TrBzkYflBiucQDEj+XmAfsy8hqCx8KPADs\nF8GSJja5qlEE9WPiGffMzMwqSDoVWAHcAewNEBHXVBzzZWCgsOkM4HMR8WDe/zngvQwOPj4KXEMK\ncjePpo+IRwvHjAM2AQ8Vtu0HfD8insrXvhJ406hfoPWNPBPdKaQ0CYDJwO55ufR/rK7awjkw3rPR\nbRyBE0gpH5D+QD2pmU/mnmQzsz4i6RuSHpG0uLBtck4juDt/zT+psO88SfdIukvSsYXtB0tanPd9\nsdWvA+kSpAGkeRTa25hLawJwAfBhCoFsFa8BfltY3xe4tbB+Gym4LV13KnAm8Klq15W0p6QVpEkR\n3gi8p7D7WuBkSZMk7QScDMwbwcuyHlarpzj3ts6kHCADrM4/bwJeSYNrCzeLxJ1AMb2p6TWMHSSb\nmfWXS4HjKradCyyIiJnAj/M6OSd2Nin4Ow64SFIpuPsK8O6ImAHMkFR5zWZr+BS0BZ8CvpZ7hKt+\nEEs6APhb4GOFzTsAqwrrq/O2kn8B/iYins7XHXTtiLg/p1vsTAq2i+kWX84/lwOPA+tJ/wZmkH4f\nplDuJT6c8u9GaSa6FcDVpFSgUmC8JILZnR4gZ1Mo/3G5Djir2U/oINnMrI9ExPWkD8uiNwOX5+XL\ngbfk5ROBKyJifUTcB9wLHCZpCrBjRCzMx32zcE6rNHwKWgBJBwJHA18obapyzN6kXtwPRMQvCrue\nAiYU1ifmbUh6E7BDRPxH4bpVe6kjYgXwV6Sc5tL1vgP8jhR0TwD+AHx7pK/Pul+NvNw1hUOKPcVn\nU56Jbq8ITmhmYNzknOHSoMENwCGtCOydk2xmZrtExCN5+RFSvizArqQBZiVLgd1IvZhLC9uX5e2t\ndBqpl+xsIhr5YXkkMA24P3ea7wBsJeklEXFITplYAPxdRHyn4tzbgQOBX+f1l1JOx3gtcIikUg7o\nRGCjpD+JiGp5lduQ8pKfzevHAa+MiLUAki6mD0pwWVWlb1Eg/Q7MJv0+fIP0h9eHgM8CZxcCydlt\nbNuo5XzqmaQ/Ao4m9YQf0apBgw6Szcxss4gISQ3N9ZM0p7A6EBEDY75oCoyb8cF/CXBFXhapR3ca\n8D5JuwE/Af41Ii6pcu43gY9ImpfP/QipkgWk1IxPF677RdIfF58CkHQSKci+F3ge8E/AvIgoBcm3\nAX8u6a/z+e9lcP6z9Y8tvkXJwfBbC8e0Kiiu1OhveIpB95MRjRk0KGkWMGu44xwkm5nZI5JeGBEP\n51SKUqWFZcAeheN2J/UgL6M8Or60fVmti0fEnMY2t3lyT+3a0rqkp4C1EbFc0vmkEmxzCoF/RMSE\nvHCxpL2A0qDIfysF07kqxVOF664Fno5yL/huwOeBF5DSYeaRc8Ozd5Fymkv3+VekahrWfzZ/i9KB\nucSD2lbRE3xave0tnFeqFd7QtKr8h/pA+fl0ftV2RDR9cKCZmXUQSdOAqyJi/7z+WWB5RHxG0rnA\npIg4Nw/c+y7wclIQ9yNg79zb/CvgA6Q6wlcD/1JZIi1fOyKiWl5v1e3WGL6/rTfagLCXSQxQ7gl+\nCNi3nvtScd4DwAHNvJ+1fl88cM/MrI9IugK4AXixpAcknQlcCBwj6W5S7uyFABFxB2nAzx3AD4Fz\notyzcg7wNeAe4N5qAbJZnylWXLmjFZNddIHigMIp1KhEU2XAXzFto6kB8lDck2xmZk3jnuT28P1t\nvsqeY9K3LscXDpkb0bbc4I6QA947SAHyTXn5bcC2wErSINhZwPMppwDPJaVWtCylpOb7lINkMzNr\nFgfJ7eH723wVKQGlwK4UED5Gqk6yDXAzcEqdaQYrgB2BjaQyZ4uHOaXj5UA5VaKBKynfM0jVW8YX\n1p8AXtTqnmOnW5iZmZk1zqBKDjmw25cUMN9NKqU4GTiGwRPDVJV7picBW5F6Wm8c+ozuEMHKQl3m\nYvrFGuCXhfUVwEGdlMvtnmQzM2sa9yS3h+9v8xTSLNYBTwNnVgZ2EvMYnHrxDCkorNqrnK95Bik4\nLjmgF3qSi3Kv8reAl5FmBVxFub7zFvexde1yuoWZmbWYg+T28P1tjhzMnkKaDAZq5B3nYPAuUm/y\nUwyennyLcypSNwB+FMExDWy6DcFBspmZtdxQQXI72tNPHCQ3VpUAecj82UIu7k6wOeBdBBxdOkfi\nTlIO8/aUe5FvBWZ1UtpBr3OQbGZmLeceTesFVQLkdcDMeqZHzsFyKaVgFWkGxzXAi0hpGyVrgPm0\nMe2gXzlINjOzlnOQbN1uLAFylWsNMDitoiSA6aO5po1drfcpT0ttZmZmVqEwQG9/GhAgZ6XqDhtJ\nVSxKXu0AufO4J9nMzJrGPcnWbSqC48mFXU+QSpSNOpgt5Cm/FtiZ1IP86ghuGH2LbaycbmFmZi3n\nINm6TZWUiEXA/TQwV1hiKnA9cIR7kNvP6RZmZmZmVVRMMb0ub254cFySA+M9G3lNazz3JJuZWdO4\nJ9k6XZWBed8H1lOeRc96nHuSzczMrK9V9BifloPgmQyufXyWg2MDGNfuBpiZmZm1yExSvvHxpAF0\nUK44URqY5wDZAAfJZmZm1j9KAfFNwNl5+TRgLmn2PA+is82ck2xmZk3jnGRrhxppFcUSbM43ts1c\nAs7MzFrOQbK1WpWBeHMjmN3GJlmH88A9MzMz60kVPccTGDwQ7+xa55kNxUGymZmZda0qPccP5Z8e\niGdj4oF7ZmZm1s0qS7i9Eg/EswZwTrKZmTWNc5Kt0XLP8QnAeODmvPkYyj3HDoxtRGq9T7kn2czM\nzLrJTGAKMJkUHD+Fe46tCZyTbGZmZh2tYmDeusKuRXiGPGsSp1uYmVnTON3CGkFigDRTHsD3S5uB\nMx0g21i5BJyZmZl1q+JMee45tpZwT7KZmTWNe5KtETxTnjWTZ9wzM7OWc5BsZp3O1S3MzMzMzOrk\nINnMzMzMrIKDZDMzMzOzCg6SzczMzMwqOEg2MzMzM6vgINnMzMzMrIKDZDMzMzOzCg6SzczMzMwq\nOEg2MzMzM6vgINnMzMzMrIKDZDMzMzOzCg6SzczMzMwqOEg2MzMzM6vgINnMzMzMrIKDZDMzMzOz\nCg6SzczMzMwqbN3uBpiZmVl/krgEmAmsAU6LYGWbm2S2mYNkMzMza7kcIJ8CTMybLgZmt69FZoM5\n3cLMzMzaYSblAPkJ4Ow2tsVsCw6SzczMrB3W5J9PAAc51cI6jYNkMzMza6mcajEBeIgUIC9pc5PM\ntuAg2czMzFqmkIt8ODAF+Gx7W2RWnYNkMzMzayXnIltXcJBsZmajJuk4SXdJukfSx9vdHusKzkW2\nrqCIaHcbzMysC0naCvgd8DpgGXAT8PaIuLNwTESE2tRE60ASk0jl3s52gGydoNb7lHuSzcxstF4O\n3BsR90XEeuDfgRMb+QQSmyQiP97RyGtbe0SwMoLZDpCt0zlINjOz0doNeKCwvjRva6Ri7863G3xt\nM7OaPOOemZmNlvP1rC6eftq6kYNkMzMbrWXAHoX1PUi9yYNImlNYHYiIgeY2yzrQTODIvOzpp62t\nJM0CZg17nAfumZnZaEjamjRw72jgQWAhDR64Jw3qrV4ewc6jvZa1R+5FPhmYDCwCjnZPsnWSWu9T\n7kk2M7NRiYgNkt4PXAtsBXy9GCA3wXObeG1rnpmkABlgiQNk6xbuSTYzs6ZpcE/yYxG8oAHNshaR\nuBPYm9Qpdyswy0GydRqXgDMzs263Y7sbYCM2hfK31s9zgGzdxEGymZl1i23a3QCrX85Ffk5eXQO8\nuo3NMRsxB8lmZtYtVrS7ATYiJ1D+w+b6CJa0szFmI+Ug2czMOlkxJ3l921phozG+sLymba0wGyUH\nyWZm1i3e1e4G2IjcnH8uAs5qZ0PMRqOnqltI6p0XY2Y9aSyVHrpRA6pbbKI8NfWaCJeB63SF2fXW\nAU8DZ3rAnnWyPqqTXHecHMAA8NZe+eWVNCci5rS7He3ke+B7AJ17D/yH/KgUP7iebFsrbCSKs+vN\n7ZXPWOs/vZpuEflxI/Aw8BDwUwZH0AKOAi5teeuaZ1q7G9ABprW7AR1gWrsb0AGmtbsB1jDF9+37\n29YKG4lS/vFNwNntbIjZWDQ1SJZ0nqTbJS2W9F1J4yVNlrRA0t2S5kuaVHH8PZLuknRsYfvB+Rr3\nSPriME87F5gcwbgIXhnBlAh2jWAWMB3YVHG8SwqZmXWuYk/yoW1rhY3EaaTP4mPdi2zdrGlBsqRp\nwJ8DB0XE/qQpS08FzgUWRMRM4Md5HUn7ArOBfYHjgIskld4cvwK8OyJmADMkHVfreSOYXeuXMpef\n2aticy8Vp7+s3Q3oAJe1uwEd4LJ2N6ADXNbuBlhTOODqAhGsHOqz2KxbNLMneTWpXM9zJG1NKij+\nIPBm4PJ8zOXAW/LyicAVEbE+Iu4D7gUOkzQF2DEiFubjvlk4Z8Sq1Gk8fLTX6jQRMdDuNrSb74Hv\nAfge9LBe6tToORKXSAxIzJOYNPwZZp2taUFyRDwBfJ6UQ/YgsDIiFgC7RMQj+bBHgF3y8q7A0sIl\nlgK7Vdm+LG9vlJsaeK22kjSr3W1oN98D3wPwPehhv2h3A2xIpQF7xwMXt7ktZmPWtOoWkl4EfIg0\ngGYV8B+S3lk8JiKi0aO9JV0G3JdXVwK/KfUqlT84S085AMTLpaMmRbCytL/y+G5ZBw6U1DHtadP6\ngaR/2E5pT8vXSzqlPX2+fiBs7lGbho3GamBCXn6FxFTP3NaxPGDPekrT6iRLmg0cExHvyeunA68A\nXgscFREP51SK6yJiH0nnAkTEhfn4a4DzgSX5mJfk7W8HjoyI91V5zrrqcUpb1Im7NoKaec5mZo0w\n1prB3agBdZLnA8cUNj0SwQvH3jJrtJxicTFwtvORrZvUep9qZk7yXcArJG2fB+C9DrgDuAo4Ix9z\nBnBlXv4BcKqkbSVNB2YACyPiYWC1pMPydU4vnDNaT1SsHzHG65mZWXOcUrG+S9WjrO08YM96TTNz\nkm8lDbL7NXBb3nwJcCFwjKS7Sb3KF+bj7yCVjLkD+CFwTpS7uc8BvgbcA9wbEdeMsXkHVayfNMbr\ndQTnYfoegO8B+B70kioB1+NtaYjV5AF71qt6blrqer/Wk1hFOc/tgQj2bF7LWkPSrH4f1e974HsA\nnXsPnG4x2muwgVRGFGAF8DLnJXcOiQeBKXn1yoje6Hiy/lHrfWrIgXuSTiaNchvqDW5tRMwbY/va\n4dn882l6JN2iE4OCVvM98D0A34Me9DTlTo2dSFUudm9fc6xE4hLg+YVNvdPzZn1vyJ5kSctJucI1\nDwGOiIgXNbphozHCnuSppFrMa0gB86HumTCzZqp/cLE+WsflnoqIji+z1aCe5EcZHIgtj2DnsbXM\nGqGiF3klMN05ydZtar1PDRckfyci3jHMhYc9plVG+mYssYlyL/nDEZt/0btSp37F3Eq+B74H0Ln3\nYARB8kPAV4c6BHhHpFlIO1qDguSplEt7AhAx5Dec1iISy4HJefV/I3hTO9tjNhqjSreoJ/jtlAB5\nlIo3xIMNzKxTfDsiLhjqAEnPbVVj2i2CJRr88fVsjUOtBXKKxUzSN7G3AkcBi0jVp8x6Rl0D95Sm\nlX4jqRh+KbCOiPinOs6dRKpMsR8pV+lMUpWK78Hm3oFTImJlPv484CxgI/CBiJiftx8MXAZsB8yL\niA9Wea6R9iQXX/yaCPrmQ8fMWs8D98ZyncG5ru5Jbh+JAdLMegDfB9bj2sjWxUbVk1xwFbAWWAxs\nGuFzf5EU1P5pDrafC3wSWBARn5X0ceBc4FxJ+wKzgX1JU0//SNKMXAruK8C7I2KhpHmSjmtAKbh1\nwLZ5+WaJSf4lN7NOIWkn4M/YsoPiA21rVGcY6eeQNVZxZr2z/LlpvarenuTbIuKAEV9cmgjcEhF7\nVWy/izRr3iOSXggM5Fn3zgM2RcRn8nHXAHNIs+79pDDr3qnArMpZ90bRk7w/8BvK9aI3AQdGsHik\nr7UTdGoeZiv5HvgeQOfeg5G/R+mXwC8pd1CIFCRf3qQmNlyTepIfjxg0kM+aLKdYnACMJ6VYrALO\ndIBsvWCsPcnzJb0+Iq4d4fNOBx6TdCnwUuBm4EPALhHxSD7mEcozKO0K3Fg4fympR3l9Xi5ZlreP\nSQSLJa4Fjs+bxgG3SRzQrYGymfWU8RHxkXY3okMUy5G6J7mFJFYweNzOUcBcB8jW6+oNkm8Avi9p\nHClghdSbMWGIc0rXPwh4f0TcJOkLpNSKzSIiJDWsrqKkyyiPgl4J/KbUo1SahWvw+j4XwZ05SB7I\np836jcTzQAdueXznrpe2dUp72rVevBed0B6vt349IgY6pD0HUg4upjFy35X0XlLK2+bBahHxxCiu\n1e2KvTzDffZYY+1Ysb4IOLsdDTFrpXrTLe4D3gz8NiLq/gs+p1L8MiKm5/VXA+cBewFHRcTDkqYA\n1+V0i3MBIuLCfPw1wPmkdIvrCukWbyela4wp3aJ83qASNkUbSIH2Ia6hbGZjNYp0i/cDf096Hyq9\n90ZlClsna2C6RbFk5y8iePVYr2lDK1SxOIL0TWsA1wEnuxfZekmt96lx1Q6u4n7g9pEEyAAR8TDw\ngKSZedPrgNtJvSJn5G1nAFfm5R8Ap0raVtJ0YAawMF9ntaTDJIlUZqZ0TiMcVGP71sDOpJzAjlfZ\nk9qPfA98D6Cn7sFHgRdFxNSImJ4fXRMgN1jxA6zWe7Y11kxSFYtxpE6jl0ZwtANk6xf1plv8EbhO\n0g9JFSGgzhJwwF8C35G0LfB7Ugm4rYC5kt5NLgGXL3iHpLnAHaRfyHOi3NV9DqkE3PakahljrWyx\nWa7BeTjws/y84ysO2SXP+ORZ+cysle4hVRaywVz+rYEKg/ImkypX/Jr0uVysYnGsg2PrN/WmW8zJ\ni6WDSyOshyx232qN+Fovz+z0C9IUqNtW7N4E7OVA2cxGYxTpFleSasxfRzknOaKLSsA1Kd3i9RHM\nH+s1+10hnWJ/tkw5nEvKO74Y10C2HlfrfaquILlbNOrNOF2LqcD1wO4M7rVwoGxmozKKIPldVTZH\n9GcJuNWUB5A9EMGeY71mv6uYFKRoETitwvrHmErASToU+ARbFrQfce3kbpGD4D0lHgeeV9g1DviD\n1HmBcqfWhm0l3wPfA+idexARl7W7DR1kh8LyFjOu2qiU0ikWAQ/l5fW4/rEZUH9O8neAvwJ+S//V\npzyYNHBvF8oDHccBd0lM8RuJmTWLpDcBf8eWHRT9WAKt2MszF9imXQ3pIafhdAqzmurNSf5FRBze\ngvaMSSPTLba8NlOBPzC4IsiVEZzUjOczs94zinSL3wMnMcLym52kSTPu3RTBy8d6zX5UyENeA5zm\n4Nhs7CXgLpD0dUlvl3Ryfry1zifeStItkq7K65MlLZB0t6T5kiYVjj1P0j2S7pJ0bGH7wZIW531f\nrLPNDZUgYK8jAAAgAElEQVRTK/aCQW/Ux+fg2cysGZYyivKbfcAl4EavVNbteFIvspnVUG+QfAZp\nWunjSGViTgDeVOe5HySVdCsFl+cCCyJiJvDjvI6kfYHZwL75eS7KNZEBvgK8OyJmADMkHVfnczdU\nDpSLf3WPp4NqKPdQbdhR8z3wPYCeugcfB36YOxA+mh+epjrl0NroFMu6edY8syHUm5N8CLBP1JOb\nUSBpd+ANpBmjSm/sb6Y8mvZy0lzQ5wInAldExHrgPkn3AodJWgLsGBEL8znfBN4CNKxO8gj9Gjim\nTc9tZv3lU8CTwHZsWZKynx0qsX8Ei9vdkG4gcScwhTTPwdGk/1POQzYbRr1B8g2kHt7bR3j9fwY+\nBhQHmewSEY/k5UdIA+IAdgVuLBy3FNiNNNJ2aWH7sry9XU4BllPuhb+5jW0ZpBdG84+V74HvAfTU\nPZgSEf6jPNnE4G8/bwSe26a2dJspwMS8fLXL55nVp94g+ZXAbyT9kcEF7WuWgJN0AvBoRNxS66vP\niAhJDS3ULOky0ix+kFIjflP6wCy1Y6zrED8FjoKrfw/bHSUdvQHYCG9/H/z7Hxv9fF73ute7dv1A\noDTuYhojN0/S6yPi2lGc22uOIE30VHJ9uxrShUoz5T5Nuo9mVod6q1tMq7Y9Iu4b4px/AE4nTfO8\nHak3+b+BQ4FZEfGwpCnAdRGxj6Rz8zUvzOdfA5wPLMnHvCRvfztwZES8r8pzNq26xeDnYRK5bA7w\nOGmabUh519PbVT9ZPVIbdix8D3wPoHPvwUjfoyQ9BTyHFOSsz5u7qgRcI9+XJZ4m3Y8NwEFOtxha\noZLFpvzz8E6r72/WCWq9T9U1cC8i7qv2GOacT0TEHhExHTgV+ElEnA78gDQQkPzzyrz8A+BUSdtK\nmg7MABZGxMPAakmH5YF8pxfOaYsIVkYwO+dzbSzsEnCfxC9yIG1mNmoRsUNEjIuI7SJix/zomgC5\nCTbkn1sDV7ezIV2iVMniKOAXDpDNRmbIIFnSsCOI6zkmK3VZXwgcI+lu4LV5nYi4g1Qg/g7gh8A5\nUe7mPgf4GnAPcG9EtGvQXjWHVNn2KuB/Wt2QTuw5ayaJOyU2SYTExtTLFAsk1ko8LbFe4rF+K9PX\nb/8Pqun2e5C/ZRvzMT2olO63Cfi9OyOG5UoWZmMwZLqFpLXAvcNcY2JEdMQggFalW2z5vPyE9Jd6\npceBQ/zXe2Pkrw7fw+CZt+r1KGngyhrS9LbjSN8CHOKvbK1V6n2PkrQoIoasBVzPMZ2gwekWU4Hf\nU05x+34EddXs70fF1EBXsjCrrdb71HBB8rQ6rr0hIpYOf1jztTFIngT8F6lnvNKjEZsreDS5HZ2Z\nhzlWuXzRTOpKDxoAZm2k/CFar9XAr4BTuv3DpFf/H4xEp96DEQTJGyn3AtayOiLaWemnLo1+X5bY\nQPn3+9oI2lI338x6R633qSGrWwyXd2xJDqqOljgWqByF/gKJjcAREdzQ+tZ1l9xbfAKpZFG91pBq\nV38C1r2cVAf006Qa3dU+nKPK9gn5Go9JjMv7nwAO9jcB1moRMdI/8vpJsWfnSIlJ3f6HbSN52mmz\nxqmrukW3aFdP8uA2MIkUXFVrx2PAoQ66ykaRQrGR9CF5DnARcGStPz4k9ifVUj2GVK97G1KVgM8B\nPx/Bc5a8PoL5IzzHbLNOeI9qtSb0JD8G7FzY5JSLAokHKXcyXBnBSe1sj1k3GFW6RbfplA8giVcB\nPyWlB1SmCARptqNnaWLAnFMU9iJ9W7AaeCovv7Bw2A2kwZDTSLUzS21dRwogtypsq+x9fYzU+1qa\nBay4b2NhfTVp0MhU0sQxE6ocP5xNpPzu9TSohFHObVwIPI8UML+YdG82MPQ3LOvz8W91D42NVKe8\nR7VSE4LkqcAfKL83ORAskFgOTM6r/gPCrA5jKgFX5WKSNLuO4/aQdJ2k2yX9VtIH8vbJkhZIulvS\nfEmTCuecJ+keSXdJOraw/WBJi/O+L46m3a0SwQ0RbEMKPDdQrm8KKTicADyfVC4uJG6WmDfakdq5\nysNK6bqNEs9KbAL2IQWw40iTGezO4AAZUhWON5BKBBX/L2xL6nUtbqv8z/N8YHzeXrmvFFyXnvsY\nYDpp4Fy146t5khRsrwEOjGCXCHYfLkAuTegwnAiW5GtuHcEs4CWk6ioHAc/kw26tcuo2pEGaK3Jl\njU0SqyQe7ZQqGvXeg17W7fdA0g9zKUyrkN8DHsyrq4EPtbE5HUPiEokBUqcCwCLgrPa1yKz7DVcC\nbgdJH5V0kaRzJI2TdBJpeup31HH99cCHI2I/4BXAX0h6CXAusCAiZgI/zutI2heYTZoC+zjgolwb\nGeArwLsjYgYwQ1LHD9YoBMs/L2zeUOXQg4DjgSeqlSzLb34PSmzIpc425fJma3Nx/X2AiaBxpAC3\nWhC6usq2O4DfjOa1jdAiYNUwx2wkpUasBa4B9swB7HNbUX2iUPt6MemryrnALOD1Q5xWCvgn8Dfb\nPp/zdZ/OHxfa4+dR+Pf55Vj+ALK+9Q3gWkmflLRNuxvTgUr3ZALwz+1sSLsVguOTSR0eOwMPAEf7\n2y6zsRmuusV/k4KrXwLHAnuQetk+EBEjDq4kXQn8a34cGRGPSHohMJBn3TsP2BQRn8nHXwPMIc26\n95PCrHunkmbte1/F9Tvyq8wcIF1KSlk4n/Q1/3bDnFZMb6g20KweAfyMlCP9YeALpK/hDgeuA96W\nj7sY+DqpOP8pwJeAW/LPeaTyae8i1X7eGngj8H9IH1TbkaYt/1C+zg2k1I79gcWknuCzSL3I15Py\nj68k3YN9gB2BV3RyGbb87/dt4GWkXvItq5Wcr/K/0EbgU1v8XgXpj0aXnOtjI3mPkrQD8H9Jf6h9\ni/KAtYiIf2pSExuuGe/LFSkFjwD79GNAmNPqXszgz4ebgGP78X6YjdaoqlsAe0fEAfkCXwMeAqZG\nxNpRNGAaKcj4FbBLRDySdz1COejYldSbWLIU2I0UXBTLzC3L27tCfrPanDMnMYVUMu41pICyWi+j\naiwXFUudBakn4UvAXaQ3zldXpCfUytsrpc6Ueme+X9hX/D+yfWG52gC2f6txfYCVQKme9nOGOK7j\n5H+/E2DQHzw7kv44OAn4n4uvYruZy2HNNnDayZu7zYt/3IjUy79IYqvC9tU0OT/dutZ60vvDdqT/\nb5uGPryv3ExK44L0+fEt4E3ta07bTGHw58MyHCCbNcxwQfLmKZcjYqOkZaMMkHcgBYUfjIgnyxkU\nqUtEUsNGD0q6DLgvr64EflOql1rKU+yQ9aPT+tG7wI8+DzwfBvIguFm5+QMU1lfBlb+H5+wJx94K\nvBje/n/hT98LJ+8OvBp0EvDO4vNJTO+Q19uq9QMj4gtNfr6TiusQU2YuZwVLUvR/8VVwKiyFHzwB\nEw6AWTlYvm4TPH0vnLBPOm8AYEL+971PGkibmbUBWAmvez/8+JGRtq+0rUP+PdqyXnkv2tieAyn/\nETyNOuV0sn8CrgJeFhHD1Uyu97pvI307tw9waEQsKuw7j/Stz0bSt4Xz8/aDgctIwfq8iPhg3j4e\n+CYpXWw5MDsiWvWH3ikMriL0shY9b9sVymSOZ3DHxW9JpUYdIJs1SkTUfJDeLJ8sPDYUllcPdW7h\nGtuQagd/qLDtLuCFeXkKcFdePhc4t3DcNcBhpAFndxa2vx34apXninra1IkPiKkQD0I8nH/+COKh\nvHwVxKQ67vWsdr+Odj/adQ+u3psIiF/tSuz2Eb6c/00nQXwP4lUQT0PsDzGPdGi9j2X5/8FyiPn+\nf9DZ/w/qaFfUedz1wH5NeP59SDV0rwMOKmzflzQ+YRtSMH8v5XS8hcDL8/I84Li8fA5wUV6eDfz7\nWF7zyF9LrM2/Ixsg9m/3v23z/+/EJRAD+b2g+B7xNMT/1vPe4IcfflR/1HqfamoJuDzo7nJgeUR8\nuLD9s3nbZySdC0yKiHPzwL3vAi8npVP8iJTyEZJ+BXwgv2FfDfxLRFxT8XwRHZiTbL1v94/qy5+/\nhnM+ehwXLf18/EWt4wqzM76G1Bv2XYbPTx/KOpzn3DXqfY9SPrCJ7bgO+GjknuTRjAfJx5wfEb+S\ntDXwUEQ8v8pzNeV9WeKXpAHhkFIB940e7UXNvcenkMZ2FC3CA/TMxmy0OcljdTjwTuA2SbfkbecB\nFwJzJb2blBpxCkBE3CFpLqnqwgbgnMIHxTmkr/y2J33lNyhANmunpZ+Pv+Dz/MVwdRHzh9nRpfWc\nn14aODmPlJP/KgbnLE+gtm2BGyXuJ9XFFmmg5X35XM+41YWaGSDXMJrxILuRqigQERskrZI0OSKe\naEF7AVYUlku/R8OWJu1SMykHyCtIA6TXA2f699useZoaJEfEz6ldZu51Nc75B+Afqmy/mVQxwWqQ\nNCtyPmS/6rZ7kD/gSh/sWwPkmQJ/RZqQ5n2kqiRBqiqybcUlNpF6064v7xvYDWaVApknJNbl5TXA\n06TewZ4OoLvt/0EjSVrAljXRAT4REVe1uj0AkuYUVgca9G9zGmlSo61JnSr/rwHX7FSlnPQngIPC\ng3zNxiSPGZk13HHN7kk2sxHKqRPFCiB5oCD7k9KN1gA7kWpKvyKCxYVAGNj4NPDcvCLSAB/yz51I\nE8sA3CqxM+Xa2k/jShtdLyKOGf6oLSwjlfgs2Z3Ug7yM8v+X4vbSOXsCD+Z0i4m1epEjYs4o2jSk\nCFbmiZMgfZbNY/Br6Hq5xNsUUq/x1cA7e/UPW7NWyn+oD5TWJZ1f7bhRzbhnnalfe86KevkeRLA4\ngu0jeF4E42LwRCuHkoKW/4Wj9yMFu1UvU1jehRSMb00qJVicCXJDnr1xncRTnTar4HB6+f9BAxXz\n734AnCppW6WZ/mYACyPiYWC1pMPyGJPTSfXSS+eckZf/lDQxVKsVX0O1GTK7UmGCkL1JaRY7Awc4\nQDZrraYO3Gs1D9wzS3Iw+wtSWajSLI/rSAMGn0fqNV5ImmIbqHvCmsjXKVkD7EC5xnaQZph8sz/Q\nt9Tu9yilGVP/hRR0rQJuiYjj875PkErAbSCV67w2by+VgCuNB/lA3j6eVJ/4ZaQScKdGxH1VnrNp\nr1niOtJXprcCs3rl/5zEg6Qe5JKngf38DY9Zc9R6n3KQ3EP6OQ+zxPdg6HuQg+frgSNIQdK3gZeS\n8qJ/TLnSRjFo3sDYUrM2AY/na6whzZRWSidZTwqq39rIAKdT/x/043tUk4PkSaQBe2f3UIBcOYve\nWuAlDpDNmqfW+1RXpVtIOk7SXZLukfTxdrenAx3Y7gZ0AN+DIe5BBEsi2DP/XBnBCRHsEcENpJ6r\nq0k5p69mc/oGB5Gmo6952WHaMw54ASk43p3B+dbbkHqzV0hEfmyS2FhYj7y+qWJbFNJCKgf1+v9B\nH8iB8bHA4zX+H3Sj4ix664BdHSCbtUfXDNyTtBXwr6SqGMuAmyT9ICLubG/LOkq16a37je/BKO9B\nFKbfzjYP2Mql6i6lnFZRsg74HKkXOkiDA4f643u4knaQAoTKv+hrXXOr/LhNKk5xfz4Snyf1VEPq\nwZ5YuM6m/BxPAAc7COlqO1L+f3Aj5UGr3aqUzrSBVAO9J3rIzbpR1wTJpAlG7i3lvEn6d+BEwEGy\nWZPlD+qThjhkexhUgWN13r4DcAzwMVIQ/WHgy8DBeX0cmwPbMau8zjgGV/ao3AcpP/s+iWcpD2AM\n0sDHTZQrf4xjcODuUlydYyPp3w1gkcSkLg8sDyWnRPn/l1l7dVOQvLlwfbaUNGW1lU1rdwM6wLR2\nN6ADTGvXE+dqG9tX2VUMsDf3Vuec0m+TgmaRAtM7gJeQvjE6lFQLdxHp/epw4ElSb+E7SbMXisGB\nEmkulREpBtFi+FkQJ5OC65JSkF3K5d6q+mnWBIeQptQeR0oT6upJRXJgvGe722FmXTRwT9LJwHER\n8ed5/Z3AYRHxl4VjuuPFmFnf8sC9ZjwH95NqJK8CXtpNPbB5yumZpJSgnp3gx6yTtWta6kaqLHa/\nB4OnS+27Dx8zMwPYHCRPBD5Ld/UkzwSOzMtd3Qtu1mu6qbrFr4EZkqZJ2pb0RvKDNrfJzMzar5QD\n/ySwU07j6Xi5F7lUkWMRcHYbm2NmFbomSI6IDcD7gWtJOYvfc2ULMzMDTiPVE96RNFD0G+1tTt1O\nIOW3AzzkVAuzztI1QTJARPwwIl4cEXtHxKfb3Z5WkfRRSZskTS5sOy/Xi75L0rGF7QdLWpz3fbGw\nfbyk7+XtN0qaWth3hqS78+PPWvfKhifpU5JulfQbST+WtEdhX7/cg3+UdGe+D/8taWJhX7/cg7dJ\nul3SRkkHVezri3tgteXgsvh5tm272jJCxQGj62oeZWbtERF+dPCDlGd3DfBHYHLeti9pNPc2pEoG\n91IehLkQeHlenkca7AhwDnBRXp4N/Htengz8nlRbd1Jpud2vu/D6dyws/yXwtT68B8cA4/LyhcCF\nfXgP9iHlbl4HHFTY3jf3oFsfQLTmeWIDROTHNe1+3XW2eX5u780Q/r/mhx9tetR6n+qqnuQ+9U/A\nX1dsOxG4IiLWR6obfS9wmKQppKByYT7um8Bb8vKbgcvz8n8BR+fl1wPzI2JlRKwEFgDHNeWVjEJE\nPFlY3YE0vTH01z1YEBGb8uqvKE/y0U/34K6IuLvKrr65BzasYnWjP2lbK0bmFGAucHQ41cKs43RT\ndYu+I+lEYGlE3CYNKtyxK2lmqZKlpDrS6xlc8WNZ3g6FOtMRsUHSKknPy9daWuVaHUPS3wOnk3IO\nX54399U9KDgLuCIv9+s9KPI9sJKVwM6kUmqHt7ktdcmBsatZmHUoB8ltJmkB8MIquz4JnAccWzy8\nJY1qsSHuwSci4qqI+CTwSUnnAl8AzmxpA1tguHuQj/kksC4ivtvSxrVIPffAbAiH0CUz1bk2sll3\ncJDcZhFxTLXtkv4EmA7cmnuRdwdulnQYW9aM3p3U67WM8lfxxe3kfXsCD0raGpgYEcslLQNmFc7Z\nA/jJGF/WiNS6B1V8l5RbCn12DyS9C3gD5dQA6LN7UENP3QMbvQiWSFwDXC51fPB5AjAlL1/K0FO+\nm1mbOCe5Q0XEbyNil4iYHhHTSR/wB0XEI6T60KdK2lbSdGAGsDAiHgZWSzpMKbI+HfiffMkfAGfk\n5T8FfpyX5wPHSpokaSfSILFrW/Ii6yBpRmH1ROCWvNxP9+A44GPAiRHxTGFX39yDCsVvVPr1Hlh1\n7yBNzHE88K02t2UoxaoWninWrEO5J7l7bH4jjYg7JM0l1YveAJwTeXgmaeT+ZcD2wLyIuCZv/zrw\nLUn3AMuBU/O1npD0KeCmfNwFedBSp/i0pBcDG0nVBv4P9N09+BKppNWC/K3CLyPinH66B5JOAv6F\nlHN6taRbIuL4froHVpdi6beXta0VQ8ipFs/Nq6uBD7exOWY2BJU/T8zMzBpLUkRES8ZTSDxGefDe\nvp2YmywxQHkaaoC5ER68Z9ZOtd6nnG5hZma94hBS5ZKODJCzNYVlT0Vt1sHck2xmZk3Typ7kbiAx\niTRttoAzO3hwoVnfqPU+5SDZzMyaptVBssSdpMoR64BDO7hH2cw6hINkMzNruTYEyZsoV0B5KIJd\nW/XcZtadnJNsZmb9oPhB94K2tcLMup6DZDMz61U3Dn+ImVl1rpNsZma9ZCOwVV6e1sZ2VOUpqc26\nh3uSredIOknSLRWPjZJeX3HcNElrJS1qUju+I2m5pJObcX0zq2p9/rmRNPNep5lJeVbAi9vcFjMb\ngoNk6zkR8f2IeFnpAXwF+FlEVJti+N6IOKhJ7XgHaQpkj441a53V+edWwK8lprazMUW5F3n/vOoa\nyWYdzkGy9TRJM4G/BU6v49hpku6SdKmk3+We4GMl/ULS3ZIOzcfNkXS5pJ9Juk/SWyV9TtJtkn4o\nqTKNyTVizVqn+Pu3LXB9uxpSxUxgcl5e4lQLs87mINl6lqRtgO8CH4mIpXWe9iLgc8A+wIuB2RFx\nOPBXwCcKx00HjgLeDHwbWBARBwBrgTc25hWY2SjcXFheAxzRroZUUZpt7ybgrHY2xMyG5yDZetmn\ngMUR8R8jOOePEXF7pALitwM/ytt/S3kQUAA/jIiNefu4QirHYjpwsJBZHzkFuJ80mchCYFV7mzPI\nacBc4Fj3Ipt1Ple3sJ4kaRZwEjDSfONnC8ubSB+0peXi78s6gIjYJGl9xTn+vTJrkwhWSmxDSrWY\nRZoC+q1tbRRbVLUwsy7gnmTrOZJ2Ai4F/iwinm7GUzThmmbWOOMLy53y++qqFmZdxkGy9aL3Ac8H\nvlpRBu5tdZxbWYkiqixHje211s2stUp5yYuAM9vZkIJD8s8NwP9rZ0PMrD5KqZdm/UfSNOCqiNh/\nmEPH8hyX5ef4r2Y9h1knkxQR0dLeXIlJwK+Bh0kl4do+aYfEKmBCXn0ggj3b2R4zK6v1PuWeZOtn\nG4CJzZxMhDSyfm0zrm9m1eWAeClwOJ2T3lAa7/A0nVVxw8xqcE+ymZk1TTt6ktPz8iSwA+mP4YMi\nWNzqNlS0ZyqpZvMRESxpZ1vMbLBa71MOks3MrGnaGCQ/S6pwAfAMMKXdKRdm1pmcbmFmZv2k+IG3\nHakUXOsbIS6RGJCYl3OlzaxLOEg2M7Ne9IuK9W2rHtVEuTbyKbj0m1lXcpBsZma96CQGl2NsxyQ/\nM4GJefkJ4Ow2tMHMRslBspmZ9Zwq+ccHtKEZe+Wf64FZzok26y4Oks3MzJrj/vxzG+Bv2tkQMxs5\nB8lmZtarVuSfa4BXtuH5V+efN+FUC7Ou4yDZzMx61UHAA8C+bapNfBowFzjWqRZm3cd1ks3MrGna\nVSfZzKxerpNsZmZ9RWKFxAaJZyX2b+HzujayWQ9wT7KZmTVNO3uSJTYAW+XVNRE8t0XPO0CqjQww\nN4LZrXheMxsd9ySbmVm/2Zh/bgJe0YonzBOIlHqtF+EBe2Zdy0GymZn1qkNIlS0OjGBxi57zBGBy\nXn7IA/bMulc7ZiAyMzNruhwYtyTFomB8YXldi5/bzBrIPclmZmaNc3P+uQg4q50NMbOxcZBsZtYn\nJP2jpDsl3SrpvyVNLOw7T9I9ku6SdGxh+8GSFud9XyxsHy/pe3n7jZKmtvr1DKUdFSZyPvJzgIeA\ntzrVwqy7OUg2M+sf84H9IuKlwN3AeQCS9gVmA/sCxwEXSSqN9P4K8O6ImAHMkHRc3v5uYHne/s/A\nZ1r3MupyJqnCxPHAFS16zpnA4cAU4LMtek4zaxIHyWZmfSIiFkTEprz6K2D3vHwicEVErI+I+4B7\ngcMkTQF2jIiF+bhvAm/Jy28GLs/L/wUc3ez2j9BWheUjax7VWGvyT09DbdYDHCSbmfWns4B5eXlX\nYGlh31Jgtyrbl+Xt5J8PAETEBmCVpMl0jk2F5de16Dk9DbVZD3F1CzOzHiJpAfDCKrs+ERFX5WM+\nCayLiO+2qE1zCqsDETEw5mteoOJEIa+P82N+xSG3kErAAXwQuGGszzlke1I+8kzKvclm1qEkzQJm\nDXecg2Qzsx4SEccMtV/Su4A3MDg9YhmwR2F9d1IP8jLKKRnF7aVz9gQelLQ1MDEinqjRpjn1v4L6\nXPwDtpq5HNZsA+84mWvY8pvRx/LPVqU+zKSc1nExeJY9s06V/1AfKK1LOr/acU63MDPrE3nQ3ceA\nEyPimcKuHwCnStpW0nRgBrAwIh4GVks6LA/kOx34n8I5Z+TlPwV+3JIXkc1cDrOWwBvuha9eRbVp\nr1ud+uB8ZLMe4yDZzKx/fAnYAVgg6RZJFwFExB2kgPIO4IfAORER+ZxzgK8B9wD3RsQ1efvXgedJ\nugf4EHBu615G6kEGWLgr/MUJ3Fq5P4KVEcxuYW6w85HNeozK74NmZmaNJSkiolpP75jsdK42fPUq\ntjr7TbBqe66N86NUmq4yP/g0B61mNpRa71MOks3MrGmaESTrAt0J7FPYtDTOj8051RIPkmoVA3w/\ngrc28vnNrLfUep/ywD0zM+s2UwrLAby6tJJ7kZ9f2N/wXuwi91qb9S7nJJuZWbcZX1g+Ls6PJYX1\nmZQ7gFaQZt5rplJVi+NJVS3MrEc4SDYzs25TnCjkW7pAk2Bzr+7+efsK4GUt6NndK/9cBfx1k5/L\nzFrIQbKZmXWbbQvLLwAuzcszgdKsfz+NYAnNd3/+ORH4bAuez8xaxEGymZl1m8re4dII9GKv7oda\n1JbV+afrI5v1GAfJZmbWbQ4BNubl1cCH83LLenUl7pR4Fngd8CjwNg/aM+stDpLNzKyr5IF6N+bV\nCZQD4lb26k4hpX1sQ0r5cKqFWY9xkGxmZt1oz/yzOGCulbPerSss34pTLcx6juskm5lZN7of2AOY\nyO/euFhiEylwPbTZAXKuovF7YEfgp8CpTrUw6z0Oks3MrBul1Ion9nqM739rMrBV3n495V7mZjmB\n8oQmax0gm/Ump1uYmVlX0QW6hJSL/BDfufr3PLNTKUDeABzR1Ofecka/qHWsmXU3B8lmZtZtZgKH\nA1N47d++Im9bBxzUgtrIlTP6ndXk5zOzNnGQbGZm3WXNTocA8MxEmP+50tZ5ESxuxbPnn0/Qmhn9\nzKxNHCSbmVl3WbVHqpG83So45mOQqkuc2aJnL1XQeFGLZvQzszbxwD0zM+saEpfwzl22B2DZwcG8\nf/0xLZjII+cizyT1JJ/mHmSz3qcIjzkwM7PmkBQRocZci0uAU9hu5UROeC/88EtXx1O7nNCIa9fx\n3APAkXl1bgSzW/G8ZtZ8td6nHCSbmVnTNDhIfpBy6bUVwF6N7NGVWEGqfbwROCSCxYUe5H1JVS1u\nojWTlZhZi9R6n3K6hZmZdYvxheUbmhCoTso/twIWAtuTAuRSD/IDOEA26xsOks3MrKPl3twTSL28\nkAbqvbPJT7tWYgPlSUruBg5zgGzWPxwkm5lZp5tJOc0C4I+NCFZzesVEQMD6it07VazPcIBs1l9c\nAh4+gGwAAAzCSURBVM7MzDrdXoXlUZd7k7hT4lmJdRLXkXqmS3mI2wxz+nGjeU4z617uSTYzs053\nP7BHXh5RL3JF6bZdgW3zrlnApjov89YI5tf7nGbWG1zdwszMmqYR1S2kzUHyKuCl9UziUQiO9wcm\n583PUh78dytwDrCA9K3qVlTvTV4asTlAN7MeVOt9yukWZmbW6Uq9vxOBf67znFJVilKAfBNwKLAU\nuBqYFcENETw3gu2Bg0m9zQsL13gaePUY225mXcrpFmZm1umKPbybe3sk7iQN6FsHHFrRw7wm/1xE\nStc4M6dpVO0VjmAx8FyJScC3gZcCr/bU02b9y+kWZmbWNA1Kt5gPHEMKeI8GPkvqKT6ccmfPAxHs\nWThnEnAxcLarUpjZUDzjnpmZtdxYg+ScW7wvqcLFAGnwXTHPGFJaxH7u9TWz0XCQbGZmLdeAIHmA\n8ox3zwDbFXbfCuwMHO4A2cxGy9NSm5lZNyrlFt8E7E05SF5GGnznVAozawpXtzAzs46UB+a9jlTP\n+BngN/+/vbuP1bO+6zj+/kAFYWDZdBkFupVgi4CbW6fCRjqPwlinExY1AyMEN0IW8QGW+DDgj5EY\nM51TRmIgPrDxsA1thiIYNqwocYrKpKyjTw7mCrSsbPKwMmykZ3z94/qdnZt7LZy2534457xfSXtf\n1++6rnN9vydN+z2//h7apXXAD1sgSxoki2RJ0thpY5FPpFvZ4iBgFd3Y4zXAGRbIkgbN4RaSpHG0\ngp7l3prJKs4dRTCSFh4n7kmSBmZ/J+4lfAt4RU/TBmCVPciSZps77kmS5oQ21OJ7+5q3WyBLGiZ7\nkiVJA7M/PckJj9PtpNfra1UcM3uRSVLHnmRJ0lxx6B7aDmjXPknaV07ckySNjYSngcXttJguju8f\nTUSSFip7kiVJY6Gti3wU04XxC+1zPXD+SIKStGBZJEuSxkX/OOS30a2L7M56kobO4RaSpJFrK1oc\n3tP0jiruBe4dUUiSFjhXt5AkDcxMV7foW9HiripWDzYySeq4uoUkaSy1XuRX9zSdmHBPwp0JR40q\nLkkLmz3JkqSBmUlPcsJzTA+12Ak8CJzezte4FbWkQdrb31MWyZKkgZlhkbyb6Tkyk+1zEd2qFk7a\nkzRQDreQJI2VhM0JzzD9b9FzdMu+TRXMr7ZAljQqFsmSpFFZQbdxyEHAt4FTePGqSw+OIihJApeA\nkyQNWZuot4IXd9TsqOKRhJ3wncl6u4YenCQ19iRLkobtXcBP9Jw/x/REvS+0z3XAe4cZlCT1skiW\nJA3NHpZ72wWcUsUj7fw9dLvsneF4ZEmjZJEsSQtEkt9Nsj7JF5PcnWRpz7XLkzyUZEuSs3ra35zk\nwXbtmp72Q5P8VWv/9ySvm2EYK5ge6vc0cAxw5dS6yABVnGuBLGnULJIlaeH4SFX9SFW9EbgN+BBA\nkpOBc4GTgdXAtUmmlkO6DrioqpYDy5NM7YR3EfBka78a+IMZxvC/7fMp4E2tGJ4afvFO4OMHkqAk\nzRaLZElaIKrq2Z7TI4D/acfnALdU1e6q2go8DJyaZAlwZFXd1+67CXh3Oz4buLEd3wqc8XLvb0Mt\nvg/4GrCyZ4jFob237VNSkjQgFsmStIAk+b0kjwK/DHy4NR8DbOu5bRtw7B7at7d22udjAFU1CXwz\nyate5vUr6CboLQE+0tN+f/t0sp6kseEScJI0jyRZCxy9h0tXVNUdVXUlcGWSDwIfYwhFaZKr4MKf\nhWNPgrcDE+uA9/csBfc88DfA+xyLLGnQkkwAEy93n0WyJM0jVfX2Gd76aegmytH1EC/tuXYcXQ/y\n9nbc3z71zGuBx5MsAhZX1VN7iemqhAngsNb0SBXPJKxgeim4NRbIkoahqu4B7pk6T/KhPd3ncAtJ\nWiCSLO85PQd4oB3fDpyX5JAkxwPLgfuqagewM8mpbSLfBcDf9jxzYTv+BeDuvb+XzUyvg7weeF/C\n08DbWtsG4P0HlJwkzTJ7kiVp4fhwkhPptoD+CvArAFW1KckaYBMwCVxSVdWeuQS4ga4X+M6q+lxr\nvx64OclDwJPAeS/x3iVM/3vz/a0XeTHTk/ROsBdZ0rjJ9N+DkiTNriQF9Q26DUSeA04BrgQu7rnt\nripW7+l5SRq0JFVV37WyjkWyJGlgWpG8DPg8sKqKRxIep+tdBtgJvM6eZEmjsrci2eEWkqRBW0+3\ngsXU+OQlPdf+zQJZ0jiySJYkDdri9vl5us1Eeu0aciySNCMOt5AkDUwbbgHdb8/S7fQ3tbLSBroh\nGPYkSxqZvQ23cAk4SdIwhK4X+SC61TX+DgtkSWPM4RaSpGGaBH6wikdGHYgkvRR7kiVJgzY1ru95\nYKUFsqS5wCJZkjRooSuUd7ZfkjT2LJIlScMQ4AeAf9mvh5OJWY1mjlioecPCzX2h5g3jl7tFsiRp\nmNbv53MTsxnEHDIx6gBGaGLUAYzIxKgDGKGJUQfQyyJZkjQsu4HzRx2EJM2ERbIkaVjud8k3SXOF\nm4lIkgam20xEksbbnjYTsUiWJEmS+jjcQpIkSepjkSxJkiT1sUiWJEmS+lgkS5LGVpLVSbYkeSjJ\n74w6ngOVZGmSf0qyMcmGJL/R2l+VZG2SLyf5+yRH9Txzect/S5KzetrfnOTBdu2aUeSzP5IcnOSB\nJHe083mfe5KjknwmyeYkm5KcuhDyhu/ksrHF/ekkh86V3C2SJUljKcnBwJ8Aq4GTgV9MctJoozpg\nu4EPVNUpwGnAr7acPgisraoVwN3tnCQnA+fS5b8auDbJ1Cz864CLqmo5sDzJ6uGmst8uBTbRbVUO\nCyP3a4A7q+ok4A3AFhZA3kmWARcDK6vq9cDBwHnMkdwtkiVJ4+rHgYeramtV7Qb+EjhnxDEdkKra\nUVVfbMffAjYDxwJnAze2224E3t2OzwFuqardVbUVeBg4NckS4Miquq/dd1PPM2MryXHATwN/QbdV\nOczz3JMsBlZV1ccBqmqyqr7JPM+72Un3g+HhSRYBhwOPM0dyt0iWJI2rY4HHes63tbZ5ofWyvQn4\nD+A1VfVEu/QE8Jp2fAxd3lOmvgf97duZG9+bq4HfAl7oaZvvuR8PfCPJJ5KsS/LnSV7B/M+bqnoK\n+CPgUbri+JmqWsscyd0iWZI0rubtQv5JjgBuBS6tqmd7r1W3gcG8yz3Ju4CvV9UDTPciv8g8zX0R\nsBK4tqpWAs/RhhdMmad5k+QE4DJgGV2he0SSF21NP865WyRLksbVdmBpz/lSXtybNCcl+R66Avnm\nqrqtNT+R5Oh2fQnw9dbe/z04ju57sL0d97ZvH2Tcs+CtwNlJvgrcAvxUkpuZ/7lvA7ZV1Rfa+Wfo\niuYd8zxvgB8F7q2qJ6tqEvhr4C3MkdwtkiVJ4+o/6SboLEtyCN2EnttHHNMBaZOQrgc2VdXHei7d\nDlzYji8EbutpPy/JIUmOB5YD91XVDmBnWyUhwAU9z4ylqrqiqpZW1fF0k7f+saouYJ7n3uJ9LMmK\n1nQmsBG4g3mcd7MFOC3JYS3mM+kmbc6J3BcN+gWSJO2PqppM8mvAXXSz4q+vqs0jDutAnQ6cD3wp\nyQOt7XLg94E1SS4CtgLvAaiqTUnW0BUWk8Al7b+nAS4BbgAOo1s54XPDSmKWTOWxEHL/deBT7Ye9\nrwDvpfszPa/zrqr1SW6i+4H3BWAd8GfAkcyB3DP9bkmSJEngcAtJkiTpu1gkS5IkSX0skiVJkqQ+\nFsmSJElSH4tkSZIkqY9FsiRJktTHIlmSJEnqY5EsSZIGLsnSJP+d5JXt/JXt/LV99y1LsivJugHF\n8akkTyb5+UF8fc0fFsmSJGngquox4Dq6HfZon39aVY/u4faHq2rlgOL4Jbrtj91NTS/JIlmSJA3L\n1cBpSS4D3gp89OUeaD3LW5J8Isl/tZ7gs5L8a5IvJ/mxdt9VSW5M8s9Jtib5uSQfTfKlJJ9Nsqj/\nS89+eppPLJIlSdJQVNUk8NvAHwOXVdW3Z/joCXQF9Q8BJwLnVtXpwG8CV/Tcdzzwk8DZwCeBtVX1\nBmAX8DOzkoQWDItkSZI0TO8EHgdevw/PfLWqNlZVARuBf2jtG4Bl7biAz7bCewNwUFXd1a492HOf\nNCMWyZIkaSiSvBE4E3gL8IEkR8/w0f/rOX4BeL7nuHcYxfMAVfUCsLvvmf7hFtJLskiWJEkDlyR0\nE/cubZP4/pAZjEnel1fM4teSLJIlSdJQXAxsraq72/m1wElJVs3g2f6VKGoPx7WX9r2dSy8p3fAe\nSZKk0UuyDLijqvZlzPK+vuOG9o5bB/UOzX32JEuSpHEyCSwe5GYiwCq6FS+kvbInWZIkSepjT7Ik\nSZLUxyJZkiRJ6mORLEmSJPWxSJYkSZL6/D+991NBWKJbqQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x44bf8d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAC8CAYAAACdQvRWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt4XFW5P/Dvu9aemdyTJm1zLW3plUIFKbWUAiIiVEGK\nRyqgIiBHj4Ae/R2rXOTxqOcA3kHxoMhRQEQOKCggUCh3FEspUEBKr/SatE2b5jK5TGbvtd7fH3tP\nmKYtbdPJ7DT7/TzPPJmsvWfPOzPJzLx7rfUuYmYIIYQQQgghhDgwKuwAhBBCCCGEEOJQJMmUEEII\nIYQQQgyAJFNCCCGEEEIIMQCSTAkhhBBCCCHEAEgyJYQQQgghhBADIMmUEEIIIYQQQgyAJFNCCCGE\nEEIIMQCSTAkhhBBCCCHEAEgyJYQQQgghhBADIMmUEEIIIYQQQgyAJFNCCCGEEEIIMQCSTAkhhBBC\nCCHEAEgyJYQQQgghhBADIMmUEEIIIYQQQgyAJFNCCCGEEEIIMQCSTAkhhBBCCCHEAEgyJYQQQggh\nhBADIMmUEEIIIYQQQgyAJFNCCCGEEEIIMQCSTAkhhBBCCCHEADhhByDEULVjx44Rruu+D4AJOxax\n3wgAhx2EEEK8BwXAhh3EUPDKK6+UPPDAA+W//e1v7w07FiEGSpIpIfYiFotd5nneHGZuDjsWsV+O\nDn6+HmoUIuNCAHeFHYQAALwP/hf4ZWEHIkAAzgfwRwBeyLGE7pVXXjly3bp1ywBIMiUOWZJMCbEH\nyWTSUUod7jhOp+u6G8KOR+yXEQDGA5DXa2hgAE0A3LADETgCQBvkf2MoGAWgC8DasAMZCp5++uk5\nkydPvj/sOIQ4GDJnSog9qwWglVLFkJMOh4oWACPDDkL08SD/O0NFEYDusIMQAIA6AFvCDmIosNbq\nTZs2lV9yySXPhB2LEAdDkikh9mwMANZadxDRiL3tlE6Dzjmnat4ll4z4cB5jE3u2A0BV2EGIPh6A\nWNhBCABAMfzeEBG+WkgyBQB44YUXJowYMWLtCSeckA47FiEOhpw1FGLPpgFIEZFRSpUaY7bvaaf2\ndhVbsiR+DAC0tKjnq6ps35Cmxx5L1Hzzm+XnWkuqqsq2jhplWuvrTevYsab1ggu619bV2d48PZao\n6IE/qVu+OA4NLuQzZqiQnqmhoxbAqrCDGAoWLVo0sbq6+sGw4xDiYEnPlBD9JJNJAnAkgA4iatVa\nl+5t31GjbLqpact3Gxq8xq99rfxDTU0qkUpBLV0aq/j2t8vOGjfONP7qV613X3hh1z8mT/a2tbaq\n4oceKjh27tyR/7p0aawif48qMlogvVNDhQzzGzqKIcnUUEAAaiA9UwCAl19+uW727Nl/CjsOIQ6W\nfNAJsbsKAOUANgKAUgrYx5nd732v4+EFC8rnH3dc9Wyl2BYXc9fUqd47t97a+lhNje096aR0S/b+\nF1884rQFC8rPfPrpHXcrOaWRS5l5UxvDDkTAhQzzGyqKIL21Q0EV/M+RnrADCVtra2tJKpWy//qv\n/3pI99IRURkzd4QdhwiXJFNC7K4BWWsVaa07lVIV1tq9JlNz5/Zumzu3+RcdHeTEYmwLC997DZGf\n/rTtublzR1502WUVH7z11rbnchh71Mm8qaFDeqaGhgT84a+RL8M9BMh8qcCjjz46bfTo0S/X1tYe\nsusCEtEMAF8iolcBrIdfoXEjM6dCDUzknZwTF6Kf3t7e+alU6v2Z34moQylVsj+3LStjb1+JFABU\nVrJ7221t9y1cWDDnmmvKjrOyfGOuyDC/oUMKUAwN0is1dNTCXy4g8p577rnDxowZ8+ew4zhI5wM4\nHEAlgI8B+DcAXyeii4joRCKqCzU6kTeSTAnRj9a60vO8Ccx9J8xatdZlyPH/y9FHux3f+Eby/gcf\nLJx9223FE3N57AiTZGrokAIUQ4PMlxo6pCy6j1asWDFy3rx5D4UdyEF6GsB8AD+Cv0D5q0H70QA+\nBeByIvrGe1UEFsODJFNCZEkmk3GtdSEAMsZkvpR7SqluIirL9f19+ctdK7/wha4nb721+MOeB8r1\n8SNoJ/zFe+W9LXwyzG9okJ6poUGKTwTeeuutukQiseP8888/oLlGRPRbItpGRG9mtVUS0SIiWkVE\nTxBRRda2q4loNRGtIKLTs9pnENGbwbafDfRxMPNjzLyTmdPMvISZ72bm6wDcBOCvAN4G8CXIwuXD\nnnzhEGJX9UQEpdQaz/P6eouUUp1EVD4Yd/jv/975tlLgm24qmTYYx48YD0ASfhERES4pQDE0SFn0\noWEEgF7Ia4FHH310ak1NzaIB3PR2AHP7tV0FYBEzTwbwVPA7iGgagPPgL3MyF8AtRJQ5YflLAJcy\n8yQAk4io/zH3iYhU1vUqIjqFiMYDADNvZOYnmPluAA8zc+eBHl8cWiSZEmJXhwEgx3HWWGv7kiki\natda79e8qQOlFHDZZZ1P3XFH0YdSKfmfzAEZ6jc0SM/U0CDrrg0NMl8q8OKLL9ZPmzbtgEuiM/ML\nAFr7NZ8N4M7g+p0AzgmuzwNwDzO7zLwewBoAs4ioFkApMy8J9vtd1m0OhAIAIvpPALfBnz91NRH9\nKBjalzk5+o0BHFscYuSDTohdHQWg23Gc5nQ6PY+ZHSLymLnDdd2PAfjEYNzp5z/fjXvvLdKvvRa/\nZvZsWQz+ICn4k4KlrEe4MicGzgg1CpF5HWaFGoXIvA7XhhpFyJgZp512WtcVV1yxOEeHrGbmbcH1\nbQCqg+t1ALLvYzOAevg95puz2huD9gPCzJnqmB8DcDWA7QDGAhgD/3tEIthPhvhFgCRTQgSCxXqn\nAuhQSqWJaJvrumPj8fhaY0wl/HLpvwHQnOv7JgISCZ735JOJdbNnp9/I9fEjZiaAUQAeDTuQiDsF\nfu/U30KOI+rOhr/u2rKwA4m4zwB4CX4PSeTU1dVlJ5Fl11133XuW6mfmA55DzMxMRHkrtU5ExfA/\nZ9Yy8wYAbxJRAfy5cZvyFYcInyRTQryrCv6QmBYA0FqvMcZMBLDWGNOglNpKRMXGGDMYdz5hgrd1\n2bJYA4DXBuP4EdIMYAqAQXmdxH7LVPOT1yFchfDnEcrrEK5a+D0ikXwdmpqavgsAX//618/u6ur6\n3YMPPnhTjg69jYhqmHlrMIQvc7KzEX4vUUYD/Oe/Mbie3d54IHdIRJqZDYBxAI4A8DwRfR/A08y8\nEsD6rPlZIgJkfoYQ78p+44XWum/elLV2jFJqvda6dLDu/LOf7V6+bFlsak+P/F8eJJkzNTRIAYqh\nQUqjh28E/P+HyM9dW7ZsWc2HPvSh+3N4yIcAXBRcvwjAX7LazyeieFAYYhKAJcy8FUAHEc0KEp4L\ns25zoH4Gvxz6DQA+CuBBImoionmctbaKGP7kS5sQ75oEf1gSAMBxnC3MXGSMKbfWNmit12mtDREN\nSiGK445z26qq7M7f/77o8ME4foR0wD8bHw87kIiTAhRDg5RGD18tpCQ6tm7dOsIYkzrvvPM273vv\n3RHRPQBeBDCFiDYR0SUAvg/gI0S0CsCpwe9g5uUA7gOwHMBjAC7PSnAuB/C/AFYDWMPMCw8kjqBX\nCgBcZv4hM/+Kmc9m5qkAPo1315sSESEfdEK86yj4X8QBAETESqm1rutOYeZKx3G2AkgQUcVglTqd\nPTv99lNPFUz6whe6IzmuPkcY/npTVZAvMGHyID1TQ4H0TIVPKvkBePjhh4+sra39W21t7YB6bZj5\ngr1sOm0v+18P4Po9tL8CYPpAYiAiCuZmjQdQRUSPALgDwOvMvIqZnx3IccWhTXqmhACQTCYL4Vf0\n2eUMbjBv6shgoUBDRO1KqUHpmQKAUaNsV1cXFQzW8SNkB2SoX9gyc6ZEeBz4n/O9YQcScdIzBeD5\n559vGDdu3ANhx3Ewsnq3CH7v1nL4xXa+QUS/JqKzw4pNhEc+6ITwZSak7nLGLBaLrXVd9+Na66VB\nU5vWerzneRqDMJG4oIA915X/yxyQeVPhk2F+4ZMFe4eGOkQ8mbLWqnXr1o1YsGDB42HHkgvM/A6A\nXwMAEVXCH9kyG355dhEx8kEnhG8s/DNNu1BKdcH/UpgKmoxSqjMY6tcyGIEwSxWgHGgBMCHsICJO\nClCETxbsDV85/DXvkmEHEqalS5eOKysr2zR37tyesGMZqKwhfsUAvgzgPPifNX8B8Bdmfj7UAEVo\nZJifEACY+Rhm3u1NPujR18xcnGlTSnUqpcoGI45t23RJebkdlPlYEdMCYGTYQUSc9EyFT3qmwifz\npQAsXLhwUnV19QEVethfRDSXiFYQ0WoiunIw7iOQ+c78aQBnATgXwB/hr+W2hoheGsT7FkOYJFMi\n8pLJpOrp6bnMdd3a/tustRUAPGttX9l0ImobrBLpO3aoku5uKujoIPkSenBkmF/4pABF+KT4RPgi\nP8QPABYvXlx37LHH3pfr4xKRBvALAHMBTANwAREdkev7AXap4tcG4DZmfoeZf83MZzBzIfzkCkQk\n360jRl5wIYDRWuutnuftVpLc87wGpdQGACOstZneqU6llAMg54Uiursp8eqr8elPPFFQk+tjR0wP\n/C/zg1YsROyTFKAIn5RFD1/ki090dXUVJpNJ5ytf+co/B+HwH4Bf3nw9M7sA/g/AvEG4n2ztAC4m\nogVEdCoRjQsW8t1ERIqZ7SDfvxhi5INOCGCM4zibXNf9uD8cmvqKUFhrG5RSmwGw67oTEonEGwDg\nuu4E+Iv05XRhvjfeiMV+//ud3qmn9n4ul8eNKAfAV5Hj10jsN4L/GlwTdiARpoOfx4YaRbTFAIxD\nhN+HCgoK1IwZM56rra0djCSjHsCmrN83A5iV6zvJmi81HcAvATwNP1GeB39O9XYi+qkkUtEkyZQQ\nwBStdRsRdXmeVxeLxRozG6y1DfF4fBER9RhjJgJ4I2ivUUo9Y619OZeBFBXxpV1d9CgifiYzR84C\n0AjgtbADiagSAJ8H8POwA4mwj8F/L5H/gXCUArgUwE1hB5JvdXV1/U+inHrfffftNaFk5oEWXspX\nkkrBfU0F8L/MfEOw1tThAI4E0COJVHRJMiVEsFivUmq1MWZSJpliZoeZRzuO02StbXNd98PMTMwc\nY+bSWCyWTqfTHnL4Zl5TY5qXLYuN+PjHUxtzdcwIawZQAX+4mci/FPzPGHn+w1MIv4qcvAbhGAU/\nmY3c89/U1PTd4Cqdcsop/3b11VcfefHFFw9GBdxGAGOyfh8Dv3cq1zLJ3scBgIjKmHkdgHUAngrm\nbomIkjlTItKSyWQJgNEAuh3HWW2MmZTZ5nleDRHtICJXa90e9FzVGmPqiGib1jpFRDmt6ldXZ1o3\nbtSVuTxmhEkRinBJAYrwyZypcEV+vtTatWtHa63bBimRAoClACYF85bi8MuVP5TrO8kqPrEFwIkA\nthHRS0R0DREdycyGSJY1iSpJpkTUjUHQs+Q4zkZmrswUmjDGZOZLAQCUUmuMMRONMfVKqUalVJKI\nynMZTDKpCt55x6nesEEX5vK4ESXJVLg8vDtnR4RDSqOHK/Jl0R955JEjamtrnxms4zOzB3/Np8cB\nLAdwLzO/ncv7IKKGYGFeMPOVzHw4/LlatwA4GcCDwbbIzouLOkmmRNSNz1whIquUesd13YnALsUn\nAABa6zXGmImZdiJq11oX7+mgA3XJJV2vbt+uqh54oHBcLo8bUTvhD/OT97lwMAADGU4eJimNHq7I\nl0V/4YUXGiZPnvynwbwPZn6Mmacw80RmvmEQ7uJWAKf2u8+dzHwnM89l5omAlESPMnnhRdQdhayV\n6bXWfUP9rLUNWuu+ZCoWi21k5mprbYPjOI0AOrTWRcjhl8Uzzujdlkhwb0ODkYV7D54B0AFgRNiB\nRJgLGeoXFgUgAX+ZAJF/JfB7ZtvCDiQsnuc5TU1Npeedd97zYcdykEYC+D0RLSSiLxNRXf8diCgu\nBSiiS5IpEVnJZNIBMBFZyZTjOGustRM8zysDENda78xsIyKPiBoBxJRSrQCsUqqTiHL6Zb2zUxWX\nlNjITVgeJDLUL1wepGcqLEXwEykZehSOyM+Xev755ydWVlauPuWUUw7pzzNmngVgAoC/AvgXAMuJ\naCMR3UFEZwW7/VyKUESXJFMiymrg/w9kJpZCa91JRK2u6x4TDOXb5QZE1AqgN9NOREmlVE6LUJx6\nau+rN95YenIujxlhkkyFS4pQhEeKT4Qr8kP8Fi1aNKG6uvrhsOPIBWZuZOZfMPOpzFwB4FPwP19+\nSES9AE7OKlIhIkaSKRFlY/BuudM+SqnV1trJ2fOlsjCARGaeKRG1aa1LcxnUDTe0/2PTJl37u98V\njcvlcSOqBf4QDREOF9IzFRaZLxWuyPdMLV26tG7OnDkDmi9FRPOJ6C0iMkR0bL9tVxPRaiJaQUSn\nZ7XPIKI3g20/y2pPENG9QftiIhp7AHF8gHxO5gIAzLyYmb/OzNMAVAL48EAepxgeJJkSUTYNQLp/\no+M4q5l59J6SKWYeCSBtjBkdNHUrpRj+WeCcKCtj7wtf6Fp0440lc9Pp3ZM9cUB2QHqmwiTD/MIj\nPVPhinQytXPnzrJ0Ou1dcskl7wzwEG8C+ASAXeZbEdE0+OXPpwGYC+CWrJLkvwRwKTNPgl8ufW7Q\nfimAlqD9RgA/2J8AgmF7/wngyKBqoA1+gohUkFxpZu5i5si+1kI+5EREJZNJgv9m3N5/m9Z6C/x5\nUR3Z7cGCvbVKqX96njfRcZxmAFBK9RDRdGbekav4vva1zt6HHy6gG28sOePKKztX5+q4EVQEfx2x\nCWEHElEawFj4i8eK/BoL/zNe/vbzrwD+3/wIRLQAzuuvvz6lurp6cW1t7YDm7DHzCgDYw9JN8wDc\nw8wugPVEtAbALCLaAKCUmZcE+/0OwDkAFgI4G35SBAD3A/jFfsZgiOj/APyRiC5j5mezNwMwUg5d\nAJJMiegqZ+YRRLSx/wZr7WgAKWPMWMdx+hIkY8woAJ2O46x0Xfd4AC8CgOu6hzHz0QC25So4pYAb\nbuhIf+UrFTOuvLJThqkdnAIAcwBIpaX8KwUwHTLcLAyZxb9nhxpFNBXB75WN1HNfV1fXP3GfSUSf\n2tv+zDyQkRd1ABZn/b4Z/ppPbnA9ozFoR/BzU3CfHhG1E1ElM+/EPjDzXUS0HcDngh6wpcyclCRK\nZJNkSkSS67rvT6fT84qKim7uf+bL87wGItoalEh/JdOeWcTXcZz16XT6k9bauFIqbYwZEaxB9TBy\n+IV96lTXSSbpyyeeOEo///z2O5UMyh2oLwF4EhFfPDMkFwB4DcCKsAOJoI/BH+a6ZF87ipw7CX7P\n1BNhB5JPTU19b7F00kknfeknP/nJhHnz5u11mQ8iWgS/EFR/1zBz6IUriKgQQAP83sV/ATAKwN+I\naAf8z5O/MXPyPQ4hIkK+nolIchynDEDMGFPdf1uwvtQKa+04Zu4rdWqMqVdKNSql0kTU6HneuGD/\nOsdxthBReS5jrKhgb/Hi5l/s3KnK58wZdcmKFU6Jlb6VgZB5U+GRAhThkQIU4alFhE/evPHGGw1F\nRUXb3iuRAgBm/ggzT9/D5b0SqUb4xaMyGuD3SDUG1/u3Z25zGAAEBSTK99UrRUSjAdwCf1jg+wFc\nAuAu+CdMpwD4JID4ex1DRId8yIlIIqLpSqk1nudNcRxnl+F51tqGeDz+d2PMka7rjo3H4+8AADPX\na61fBYCgJ2qitXYzgEKt9VYiKmfm1lzGWVHB3nPPbf/VRz868qIzz6y6rKdHFcVi7B55pLvSWqg/\n/GHnXyor+ZBewyMPpDx6eKQARXikAEV46gA8FXYQYXn00UenVldXP57DQ2YPH3kIwB+I6Kfwh+9N\nArCEmZmIOohoFvze2AsB/DzrNhfBHx54LvbvtSkB8BIzXxIsyNtXrCpItMYyc8vBPjAxPEjPlIic\nZDIZBzDOcZx/GmMmZ2+z1hYBKNZab9dar85st9bGmbnScZytgL+4rzFmkud5dUTUpJTKeYn0jFGj\nbHrp0ubb1q7d9qNHHtlx07e/3XHvSSelV61Z44w97bRRn//b3+KSKLw3SabC40LWmQqL9EyFozC4\n7HM+znD14osv1r3vfe8bUEn0DCL6BBFtAnA8gEeI6DEAYOblAO4DsBzAYwAuz5q/dDmA/wWwGsAa\nZl4YtP8GQBURrQbwNQBX7ev+mfkdZv5VcD1NRDpTNZCZm5n55YN5fGJ4kTOGIorqAMBxnA29vb1V\n1tpipVQXAHieV09ETUTEjuOsTqVS8wEsNMbUElEzERkA0Fo3A9Ce501USjUBSGqtY67rxrGHcuu5\n8v73u+3vf7/bDgBXXpl881vfKpt58cUjLlmzZtuPB+s+h4EWRGwi+BAiPVPhkZ6pcGRKokeyQEFv\nb298586dBQsWLFh6MMdh5j8D+PNetl0P4Po9tL8Cv+BN//Ze+IvsHkw8fQvyEhFJAQqRTXqmRBQd\nBv/90Cil3nFdt693KigysQkAtNZbAcQ9z6vMzJfK7EdEUEqttdaO11o3AmClVJKIKne7t0GiFPBf\n/9Wx1HFgvvjFilPydb+HIOmZCo8H6ZkKA8HvHZGeqfyL9PpSTzzxxNRRo0a9WVtba/a996FJEinR\nnyRTIoqOBJACAK31yuyhfkHxic1AX8K02vO8Sdbahv6L+Cql1gCoCpIpKKU6lVIl+XsYgOOAH3qo\n5ddPPZX4wHnnVX5MClTsUQp+b+GgDMMU70kKUISjAP7fvLwj5F8dIpxMPfXUU+Nra2tDr8QnRD5J\nMiUipf9ivbFYbI21djwzO8GivPWO4/T1QDmOs8oYM8lau0t7sG07AE1EmbO/O7XWZfl6LBmTJ3td\nzz674+f//Gdswic+UTVv82ZVkO8YDgHSOxUOGeYXDpkvFZ5I90y9/vrrNaeddtqA5ksR0Y+I6G0i\nep2IHsiukEtEVxPRaiJaQUSnZ7XPIKI3g20/y2pPENG9QftiIhp7cI9MiL2TZEpETRX8LxppAFBK\ndRNRs+u644wxIwF0KaX6voQ4jrOOmccAiCmldplQbK2tApDyPO+woKlXa50morz3gIwZY1LPPrv9\nVsdh8+EPj7rstddiOS3TPgy0AJDFj/NPClCEQ+ZLhaMAfhW4HfvacTjavHnzSADdV1xxxUCTyScA\nHMnMRwNYBeBqACCiaQDOg38idC6AWzLFIAD8EsClzDwJwCQimhu0XwqgJWi/EcAPBhiTEPskyZSI\nmjH9GzJD/TKL8mZvU0r1Amglorb+i/saY+qJaIsxZmLW/p1EVDFYwb+XUaNs+v77d/71jDNSS770\npYpPhhHDECZrTYVDeqbCUQTpmQpDLYCtiGjxib/+9a9Ta2pqnh/o7Zl5ETNnhqa+hHfXjZoH4B5m\ndpl5PYA1AGYRUS2AUmbOLEz9OwDnBNfPBnBncP1+AB8eaFxC7It8yImomQhgl4mxjuOsSqVSn2Fm\n3T+ZAoBgGN9uQ+estfVa6xXGmBkIVro3xiSstZ9AiHMVbryxHbNnjyp4/vn4VSefnJY5Ez4N//3u\n6LADiRgdXKaEHUjEZJ73b4YdSMQ48It/RPJ5P/HEE+2mTZtuytHhPg/gnuB6Hfw1ojI2w19jysW7\nC/MC/uK89cH1egCbAICZPSJqJ6LKfS3WK8RASDIlomY6gvlSGVrr7QDYWjsuHo/vqZxrnJnLmRmZ\n3qlgflVtLBb7o+d5HzTGlGmtOzzPq1RKNVtr70NICZXWwAUX9ExdsKB85uLF2+9S0v8MAJUA/gX+\nGiQifybC/5/bY4ljMWiOhz+88oWwA4mYswCsA/BW2IHkS11d3Tf6NT18++23v9dNngRQs4f2a5j5\nYQAgom8BSDPzH3ITpRCDS5IpERnJZLIA/rCBTdntQdW+Ndba92utt2VvC5KmUQB6jDGjHcdpBgBj\nTBWAbq11t1Jqred5E7XWr1pra7XWTcxcwMyhjZv/ylc6X7v99qLZd91VVH3RRd3rwopjCOkFUBb8\nHLYle4egbvhn6mXIWX7F4Z80kuc9v0YDeBYRet6bmpq+CwAvvvjihOuuu27Kq6+++oGDOR4RXQzg\nY9h1WF4jdh2i3wC/R6oR7w4FzG7P3OYwAE1E5AAol14pMVjknLWIkgb4vUW7jWcnolYAHhHt0puU\nKUqhtV7led6krPb6YLFeaK3XZOZNWWvrtNaNSqm8V/XL5jjgj3889dJ99xUeG2YcQ4iB/+VyRNiB\nRIysMxUOKUCRfwn4J2wiWXzi8ccfn1RdXf3owRwjKB7xDQDzmDmVtekhAOcTUZyIxgOYBGAJM28F\n0EFEs4KCFBcCeDDrNhcF188F8NTBxCbEe5FkSkTJWOz9bz4GwLHWFmc3ZopSaK1XG2P6kilrbd8i\nvo7jrLXWjjfGFAIo01qv01qHvqbRKaf0blyxwjn81luLJ+5770iQ8uj5J+tMhUNKo+dfDYBmRHRt\nr5deeql+5syZfzzIw9wMvxriIiJ6jYhuAQBmXg7gPgDLATwG4PKshXMvhz98ezWANcy8MGj/DYAq\nIloN4GsArjrI2ITYK/mQE5Hhuu4ZSinSWu+2jZnriajJdd1JiURiWaY9kzTFYrF16XT6XGttgVIq\nZa2ti8fj/wQArXUnEbW5rjudiLYSUadSigAUAujJ2wPs5yMf6W2eP7/n2UceKTjq3/6ta01YcQwh\nkkzln/RMhUN6pvKvFkBT2EGEoaOjo7irq4suu+yy5QdznKCM+d62XQ/g+j20vwJ/Xmb/9l4AnzqY\neITYX9IzJSIhmUwqz/NOd113Qv9tzAxrbYPW+i1jzOTsbUHFvkYi8pRSGzzPO5yZNTOPdhynby0N\npdQaY8zUzNA/pVRSKRX6kLKiInbXr9f1CxcmqsOOZQiQtabyT3qmwiE9U/lXh4gu1vvYY48dUV1d\n/UptbW0kS8ILIcmUiIrRjuNszh6ql2GtrQTgxuPxN621hzOzBgBmjjFzleM4WwFAKbXa87xJnudV\nE1ErEbmZYziOs4aZa/slUyV5emx79fWvd745ebK34Y47imXulPRMhUHWmQqHrDOVf7WIaDL1zDPP\njG1oaPjmlZYFAAAgAElEQVRL2HEIERZJpkRUNDiO08zMZcaY8uwNnuc1KKU2K6W6iajZdd1xQXst\nEW0nIg8AYrHYamvtpGCx3sbsYziOswlAQinVGjS1aq3L4FcyC01xMZvzz+9Z9uqrsSPWr9eFYcYy\nBMjCvfknw/zyLw5/3o67rx1FzsQBVMCfMxU19Pbbb4+aN2/egJIpIvovInqdiJYR0VNENCZr29VE\ntJqIVhDR6VntM4jozWDbz7LaE0R0b9C+mIjGHtxDE2L/SDIlomIKEblKqVWu607N3mCtbcgs1qu1\nXpUZ6hdU7OtLmrTWbUTUY4yZqLXeJZli5gQANsZkhva5QXIWalU/ADj33J7NM2em37riioqPhR1L\nyJLwv/TstgCzGDQyzC//ZIhf/lUjosUnVq1aVROLxVo//elPt+577z36ITMfzczHAPgLgP8EACKa\nBuA8ANMAzAVwC2UWegR+CeDSYI7VpKAKIABcCqAlaL8RwA8GGJMQB0SSKREVRwFodxxnhTFmSvaG\nYL7UZgBwHGeVMWZKZh5VJsnKUEqtZuZ6rfUuE409z6sF0GqtnZi1bycRVQzeQ9p/N9/c9vSGDbru\nxhtLjgg7lpDJUL/8kmF++SfFJ/IvsvOlHnnkkak1NTUDLjvOzMmsX0vwbmn5eQDuYWaXmdcDWANg\nFhHVAihl5iXBfr8DcE5w/WwAdwbX78eua1UJMWjkQ04Me8lkshj+mcONsVjsnXQ6/YlMVb5gXtTI\nTDEJrXUz/B6m0dba+ng8/nT2sbTW64wxx/df3Deo+rfeWnsEMxMRsbWWrLXz4X+hDFVlJeM3v2nV\nX/ziiPmf/Wx3ctQoG9WJwkUAPg0ZApVvXws7gAhx4K95JM95/hTBf5+P3DIUM2fOVF1dXd8+mGMQ\n0XXw14jqAZBZ9LcOwOKs3TYDqIf/3p19krMxaEfwcxMAMLNHRO1EVCmL9YrBJsmUiIIxCBbqDYb6\nrXddd3IikXgjmBfVnJkXRUTQWq9yXXc6gITWuqXfsTwAYOYCIuobShMs1vsWM4/1PK82Fos1eZ43\ngoiSzHw/hkBCNWuWi+OOS594ySUjyv7615aDWlzxEHZ88HPxe+4lcukyAPcA6A07kIiYBn+B8ifC\nDiRCPgP/+d4ediD5UFdX99V+Tc/ecsst73WTJ+Gvw9XfNcz8MDN/C8C3iOgqADcBuCQ3kQqRH5JM\niSgYl/2L1joz1O+NzKK8/bavSqfTc4mo8d0h2j5rbS2AVtd1JyYSiTey2usSicQia+0aY8zEWCzW\nZK2t1VpvMcYoZm4bvIe3/268sX3hiSeO+rcf/7ikfsGCzrfCjicEjQCmABgSr0dEuPDn8CT3taPI\nCYL/9y1/4/kRg1984h0AJuRY8qKpqem7ALBo0aJpN998c/XLL7/8wRwd+g8AMif6GuGfCM1ogN8j\n1Rhc79+euc1hAJqIyAFQLr1SIh9kzpSIgukAOjO/xGKxVdbaCczs7GleVCwWWw9ghFJqt8pM1to6\npdT67BLr1tpiAHGl1E6t9RpjzMTMvlrrJqVU6WA9sANVVsbed7/b8Zdbby3+6LZtKh52PCGQtaby\nT4pQ5JfMmcqvavjzfCKRSGVbtGjR4TU1NQ8fzDGIKHu5knkAXguuPwTgfCKKE9F4AJMALGHmrQA6\niGhWUJDiQgAPZt3mouD6uQAGPJdLiAMhH3BiWEsmkxr+OPa+xCiosrctnU6Pt9aOSSQSuwyHISID\nIIU9lDUP5lH9OZ1OX8DMiois53l1RNRERIjFYhvS6XS1MaaQmau11quttbOZeciUaP3kJ9P40Y8s\n3XNP8ae++tWuJq3Djih/ggWXRxHRqf17HcXgsNbGiWhO9rBYMXistROCuSKJsGOJAmauZWYopU4N\nO5Z8e+655474+te//sBBHuYGIpoCPxldC39YMJh5ORHdB2A5/GHylzNzZq7v5QDuAFAI4FFmXhi0\n/wbAXUS0Gv6Js/MPMjYh9oskU2K4q4H/d77LWcNgqN9RAEgptctwGGYmAIlgMd8+1toiAIWxWGyT\n67ptnuc1xGKxjUFvVRMAEJGnlNrouu7RAJJKKVcp1Yl3KxQNCdde2+1+5zvFM3p7Vfu113avDjue\nfGHmmOd5xnGcpn3vLXLBWnu0UqpZKdURdixRwMz1RNTev+KoGBzGmAIAOorPd2lp6TRjzEGdjmPm\nc99j2/UArt9D+yvwR5z0b+8F8KmDiUeIgZBkSgx3Y7CHHqZYLLayp6fnZKXUhv49FMaYKgBdzDyW\nmXXQU4WsHihWSq32PG9SJplyHGdZ5vZKqTXGmCOUUlsAlBLRViJaM7gP88Ccc467wnG6V3/5yyWf\nueyy1MKRIzkS1e2YeTSAdiJaEXYsEXI6Ea0hIpm7kB9j4Q+Dkr/xPCCiHmvth6P4fB911FFTX3rp\npQ8CiMwJOSH2ROZMieHuCOyhipjWeif8Cn+7TYoPilJsIqLtruuOy7QH5c8bAcBxnNXW2klBe132\nWUnHcdYwc61SqomZC4OzZUPOWWelt44daxr/3/8rOdlGZKlJZi4DID0k+aURwfkkYSGiFDPLwtR5\nEpwkqNznjsPQMcccs3379u2zw45DiLBJMiWGuyMBtO9lmwd/PZZdZJImrfUqY8zk7PZM0uQ4zmZm\nLnNdtxaAUkr13UdQTl0TUQ8zFzBzZ//7GCquuab76aVLnanf/GbxzLBjyQdmLiMiSabya7dhtmJQ\n9WIP72ticBBRJ4AEM0euoM+sWbM2tra2Hht2HEKETZIpMWwlk8ly+GcMU/23MbMGUBiUOt9FkDQ1\nOo6z0hgzmZnBzH3tABAM9Vvred4xmeITWQgAWWtLARQjq5LgUHPGGW7zvHm9i599NnZUaytFYdhv\nKaREd77pzDpuIi9SAKRnKk+IiAHsZObI9U5Nnz59S2dnZ01LS4t8lxSRJv8AYtjyPG+q53lVe9lW\nQ0QtAAqy92Fmh5lHOY6zRWvdDICMMaOtteUAbPYk+qDn6vBM8YkMY8xIAN3W2sOZ2YNfGnrI+va3\nu18rL+fOSy8tOT3sWAab9EyFQob55RERSc9UnhFRJJMppZRXWFho7r777iFTrVaIMEgyJYYtZp6Z\nSqVOfbea6rsyi/VqrVd6njcl0+55Xi0RbScij4igtV7led5kY0y9UmqXHqhYLLYWQKVSamu/Y9cq\npTYxc521Nj2IDzEniopgL7ww9fKGDXpPK9QPN5JM5Z8kU/klc6byL5LJFABMmjSp5R//+MfJYcch\nRJiiMKxHRJTjOOXpdNozxtQ6jrMle5u1tkFrvZaIOl3XPRnAi0BfktWY2U9rvdJ13Q8y86bsdgDI\nWjdnl5MSQan0RmauSKfTswBMGJQHmEMf/ainf/jDwuo773Qu/PSne1rDjmewMHO9tda11k7e994i\nR8jzvI+FHURUMHMRgNGu654VdixRwcyjmLnIdd2KsGPJt//4j/8YefPNN58K4M6wYxEiLJJMiWEp\nmUzGiGi8Uuot13WP2FMyFY/Hn9Nat6bT6XOttcVKqa5gXlRfmddYLLY+nU7Pt9YiFos91+8Y5QA8\nY0wDgLey2mvj8fhKrbVxXTcOoGuQH+5Bq6oCbrmlPXnxxRXHf+YzqeVhxzNYmPl9RLQZe6jwKAaF\nYmZLRFv2vavIkWJmHivPeV65zDwpSs95TU1NdrL+uXvvvfdze9s3WLtRiGFLkikxXNUBIMdx3k6n\n0+cAeDqzwVpbDKBAa92SKSThuu7kRCLxmrW2Ph6PP5vZl4gMEb3DzJP6L/RqjKkjoq3MPAnA44D/\nocHMNVrrrQAqmflVAEN+qB8AnHwyo6gIU6+8slz/5CddS8KOJ9eY2bHWflRr/Y9g0rgYZMycsNae\n5jjOK2HHEhXMXOy67ix5zvPHWlvued6RUXrOd+zY8QoAWGudE0444fOLFy+ur6qqkvdVEUkyZ0oM\nV2PgJ1ONzBz3PG9kZoPneQ1E1Jj5Qq21XmGMmRokWYVBafM+weK7VinVk91ujKlTSr3DzAljzIig\nrQpAt1KKmdngEEmkAEAp4I47kn+4//74STffXDDshsEFa0wlJZHKK5kvlX9SgCLPgnmYRcwcCzuW\nfFNKeYlEgv/85z83hB2LEGGRZEoMV1MB9ARFJN72PO+IzAZjTIPWelPm91gsttpaO87zvMOyk6yM\noDqWE5RT75NZrFcptcZ13UnBsWuD6n6lzNyNQ8wHPuC1/fjHXf/3/e8X/Us6jWE1NIOZSyEL9uYV\nMzvw13MTeZIpQx889yIPgs+MVmYeEXYsYZg4ceLOZ599VopQiMiSZEoMV38CsAMAHMd52xjTl0xZ\naxuUUpszvyulUkTU6HneUf2LTAAAM48E0OG67tisNjBzneM4TY7jrDbGTAqOXaeU2sLMRcx8SM7L\nOffcdOPIkbblox8tP3f9elUYdjy5EpRFlzWm8kt6psIhvVN5FtXy6ABw9NFH79i6devsA7kNEV1N\nRG8R0ZtE9AciShBRJREtIqJVRPQEEVX02381Ea0gotOz2mcEx1hNRD/L5eMSYn9JMiWGpdLS0jYA\njQDgOM5GZi43xlQwswqSoF2SJq31CmvtGK315v7HstbWK6XWGmMmZ7WNAJBWSnU5jrOWmQ9j5pi1\nNtMzVcDMQ3ax3n159tn226uqbPLUU8u/dPvtifFhx5MjZZCeqXyTZCocUh49/yKbTM2cOXNTW1vb\ncfu7PxGNA/AFAMcy83T47xPnA7gKwCJmngzgqeB3ENE0AOcBmAZgLoBb6N11Sn4J4NJg7vIkIpqb\nkwclxAGQZEoMZ28D/hAMpdQK13WnGmNGEVGHUiqVvaPjOCsBlGqtd6nGxMyamUfFYrHXjDFTMmtW\neZ5Xl1msVynVS0RN6XR6PDPXOo6zhZmLARyyvSAjRrB3333JhV/5Suqxb3yj5HM/+1nBlH3famhj\n5lJZYyrvJJkKRy8zS89UHkW5Z2rmzJmbOjo6DmtpadnfoeEd8BezLyIiB0ARgCYAZ+PdEut3Ajgn\nuD4PwD3M7DLzegBrAMwiolr4Q+ozBZN+l3UbIfJGkikxnPWV+M4M9TPGNASlsftzABhr7S4fhp7n\nVRPRzqAni4wxo4C+4Xx91f201quNMdPhF5+w7Gddh0zxib356ld7Vnz2s6nH/+u/is+/667Eob7K\nfRkO4QT3UBTMM5RkKv9SAKRnKo+inEw5juPGYjE88sgj+7XwOzPvBPATABvhJ1FtzLwIQDUzbwt2\n2wagOrheByD7c3szgPo9tDcG7ULklSRTYtgqLS1tAdAMALFYbB0zjzbGjN/TUL4gyWrxPG9qv/Z6\nImoKClms8jxvMrB7MuU4zmpr7eFB5b9SZh7ya0vtD6WAm27qWnz99V2/v/ba4vkLFhTPDDumgQrm\nTEnPVH5JMhWCoGiO9EzlERHtBBDJZAoAxo8fv/PJJ588aX/2JaIJAL4GYBz8hKiEiD6bvU9wQlIq\nr4pDgiRTYrhbDvjrRSmlVltrx+5jXlTfUL6gvU5r3QgAWutVwXYKhvNl90xtB6CJqJ2Ziw/V4hN7\n88Uvptbee2/Hbx58MD77qquKZoQdzwBJMpV/kkyFo1fmTOUXEbUDKOlf9TUqjj766B1btmw5YT93\nPw7Ai8zcwswegAcAzAawlYhqACAYwtcc7N8If7mTjAb4PVKNwfXs9t2KSAkx2CSZEsNd31A/rfVa\nAMVB4rMLa22D1noFAGWMGZ1pZ+b6TDIVi8XWM/Noz/PqAfRkrzsVzIVNM3McQGK49ExlO/54r/W2\n2zr/cMcdBXMfeSS+X8M5hgpmVgCKieiQLQpyiJLS6OFIQXqm8oqILID2qJZHP+644xrb2tr2d+TC\nCgDHE1FhUEjiNPif1Q8DuCjY5yIAfwmuPwTgfCKKE9F4AJMALGHmrQA6iGhWcJwLs24jRN5IMiWG\ntdLS0mYALQBARCn4owfi2fswsxMUmdiitV6RGepnrY0zc4XWujm4vaeUWue67tHZQ/yCYxCAAmvt\nyEO9+MR7OeUUd8eCBT0PXHZZyYVXXFF8Qns7HRJr2QSvSQ8RSS9Jfml5zkMhw/zCEdl5U8cff/zG\n9vb2sftThIKZX4dfLGIpgDeC5l8D+D6AjxDRKgCnBr+DmZcDuA9+wvUYgMv53SEklwP4XwCrAaxh\n5oW5e1RC7B9JpkQULAcAa20tgFbXdXepTOd5Xg0R7SAi13GclcaYKQBgjKkjom3BGUcA/lC/YG7U\nLsmUMWYEgB4ANdbaGPwvM8PSggU9b//+9x2//ec/ncNmzKi44vrrC4/avFkN6SFFzCxl0cMhw/xC\nQERSGj0EUS5CEY/He7XW+umnnx65P/sz8w+Z+Uhmns7MFwWV+nYy82nMPJmZT2fmtqz9r2fmicw8\nlZkfz2p/JTjGRGb+98F4bELsyyFxVlmIg/Q2gJOMMQ3BvKcjALye2WiM6VvE13GcDb29vSOMMWXG\nmLr+i/jGYrFVrut+XCm1Nbs92LcJQKHruqOJaL8+UA5VJ56YxjPPpJ+8775E/c9/XnT8//xP4dnn\nn596+Qc/6HxNDcFTNMxcDyBlrR3Wr8tQY62tYGZHnvf8YuYYM5fL8553vdbauqg+7yeeeGLno48+\neuL8+fP/HHYsQuQTZU+2F2K46ujo+H9dXV3XFxQU3JZKpb5YVFT0U6VUGgC6u7s/qbVem0gklgW/\nf0IptdlaO05rvTKRSGSGIYCZVVdX17WxWOzeRCKxMtPe09PzESJKERG5rnss/DU0ImPjRq2++MWK\nskQC/OlPd6c+9ameXtrfFUfyoxB+L4nMmcqvAgAxDNNhr0NYIrhIb2x+xeG/17SHHUi+1NXVHVDi\nGAyJF2JYkZ4pEQme53UASDmOs5OINnueNzEej2eG/9XH4/HnM/s6jrPSdd1jmXlkPB5/Ovs4xpiR\nAHqsteMB9CVT1tq6WCz291gsRkR0N4DdilwMZxMnAgsXJum664qO/o//KD/7t78tabziip6/nXtu\nekhUVnJd9zQi6nUc54WwY4kSz/NmMHNdLBZ7OOxYosQYM8EYc0I8Hr8r7FiixFpb5XneZ+Lx+P+E\nHUu+7Nixo+/6U089NeUnP/lJ3UsvvfTBEEMSIu+G4IAcIXIvnU6XZw3le9vzvCMAwFpbBKBIa933\nieA4zhpmHgOgQGu9M/s4wTyqRmPM5EyvLjMjKJW+ZTgXn9iXeBz83e92L3v55bYfTZ/ubfzqV0su\nvOCC0tN37qRY2LHBX7BXztLnn8yZCkcvZNHevCOiNgBlUS2PfsIJJ2xsbW09fH+KUAgxnEgyJSKB\nmf83kUj8GQBisdgKa+1EZtae52UW5e0b76qUShPRdgDt2e1A37pT7wDQxphRQdsIAL1KqXTwIZrK\n3yMbesaNsz0//3nXP555pv3m7dtV2fHHV3zp+eedqjBjYuZSWWMqFJJMhSCoXCrV/PIsqFyZZOby\nsGMJQ2FhYY/W2lmyZElF2LEIkU+STIlIqK2t7dBaLwYApVQXETW7rnu4Maa+f5EJACCiLgC7nV0L\nkqkmrfUqz/MmA4DneXVKqS0ASofj+lIDNXmy6XryyfY/zZ/f+/fPfa704ptuKpiy71sNmjIiimSP\nYchknalwSM9UeCJb0Q8AxowZ03b//ffPOZDbEFEFEf2JiN4mouXBulGVRLSIiFYR0RNEVJG1/9VE\ntJqIVhDR6VntM4jozWDbz3L5uPYQs/x/iT6STIkoyV7A923P844IFuvd3H9HZo4BKM8ersHMiplH\na623aq1XGmMmA37JdaVUEzMXMXOke6X25Lrrul/93ve6//Tf/110/jnnlJ3Z2KjyesY8GI5ZJj1T\noZCeqRBIz1R4olweHQCmT5/esnnz5gNKpgD8DMCjzHwEgPfBX9T3KgCLmHkygKeC30FE0wCcB2Aa\ngLkAbgkW7AWAXwK4lJknAZhERHMP5rEQ0R5HVBDRyQDeJKLIvs5iV5JMiSjZAKALAGKx2NvW2inM\nXK+13qVnKpgDVQ2gxXXdsZl2Y8xoImpTSqVjsdh6Zq621hZaazM9U4XM3J3XR3SI+Nznejc88EDH\nL1wXzplnll2Y53WpCgAYIkrn8T4FAGaWRXvD4QLQUZ27E6aoJ1MzZsxoamtrm7W/+xNROYCTmPm3\nAMDMHjO3AzgbwJ3BbncCOCe4Pg/APcG6VOsBrAEwi4hq4Y8OWRLs97us2wzUtUR0X9BTliDfxwEs\nAHA1M+/c1wFENEgyJSKjtLSU4Z/xgta6HX6ZbKO13qVctrW2AoDVWi83xkzNtAfFJ5oAgIg8pdT6\ndDo9KSg+0cTMRYho8Yn9cfLJXsvDD3c8OGmS2XzmmWUXtrZSXqqJyoK9oZKeqRAEJ+qldyoERLQT\nQGSTqTlz5mxobW2dcAA3GQ9gOxHdTkSvEtFtRFQMoJqZtwX7bANQHVyvA5A9mmQzgPo9tDcG7Qcs\nq6frjwCeAfAdAIsAfA/AFwD8gZn/lLWfiDgpjS6iZjmAGQCglNphrd3tfyCzWG8sFluRSqUuZOZH\niQhBD1RTZj+t9UrP844E4Cql0sYYB0BP3h7JIUgp4N57kwtnzKi49Kyzys77wQ+6HjvxRG9Qz+4F\nyZQkueGQZCo8vcycICLpLc+j4dgzZS2wfTvFN2zQRY2NqqitjRLd3eR0d1Osp4ecnh7EUilyUimK\npVIlTnPzNVUFBeZXvb1awx8ZkLnE4J/EVwCqALwI4HYAxwL4MjO/TEQ3IRjSl8HM3L8Y1GAK7o+Y\n+cUgxl8S0RUAbgTwDwBnEFELMy/KV0xiaJNkSkTNevgJTyH8L3nFmffNzA5BUYqmoFy6Z4ypdRxn\ni7W2Lh6PL8vs5zjOatd15yql1gMokSF++0cp4PHH2++69triWRdcUPavM2Z4y2+9NflEdTUPyjA8\nZpb5UuGRZCo8KUgRirwjolYAFcysiMiGHc+eeB5o0yZVsG6dLm5sVMXbtqmi7dupeOdOVdTaSsXt\n7aoomaSizk4q7upCUXc3FSkFW1TE3cXF3J1IIB2PsxuPwwt+uokEe4mE/7OigrqLi1fZxsYjXoX/\nd9gDvyhKGoDNuvTA703azMwvB+H9CcDVALYSUQ0zbw2G8DUH2xsBjMl6OA3BMRqD69ntA17nkDNr\nnwAgom8AuBTAKfB7yeYB+BwRfZ+ZZwz0PsTwIcmUiJTS0lKTTCZXAjiGmasApDzPq4vFYn1vutba\n+lgs9gIRQWu9wnXdqVrr7cw8ynGczLADBMMD0wB6mLlEik/sv9GjOf3rX3e+sG6dWjp/ftn5c+ZU\nXHbttd0PXnxx7/pBuLtSyDC/sEgyFZ5eZpZhfnlGRB6AruAkTttg3U86Ddq6VSW2blUFzc2qYMcO\nKti5UxW0t1NBezsVdHRQQWcnJbq6qKC7mwq6uqjAT46oqKcHhfE40sXF3FVSwt2lpdxVVsbdFRW2\nq6HBth5zjLd59GjurquzXfX1pnvsWNtTWcnu/sb2ve+9El+16p6WzZsf+/W+92YQ0SYimszMqwCc\nBuCt4HIRgB8EP/8S3OAhAH8gop/CH8Y3CcCSoDepg4hmAVgC4EIAP9/vJ3QPiEjD742qBfAhZt4S\nbPppUHyieq83FpEiyZSIoreZeQYzj1ZKLfY874hMMsXMlJkDBQCO46xIp9NneZ63kohaiKj/B0o6\n+MKSYGYZSnaAxo+3PQsXtv/+v/+7aMa3v108f9ky54Uf/7jrJcdBzoZ0BF9qtux7TzEIpDR6SIhI\nyqOHJzPUb7dkKp0Gbd+u4i0tFG9tVfHWVkq0t1O8o4PiySTFOzsp3tlJieBSkEz6yVDmkkqhIJWi\ngnQa8Xgc6YICThUWIlVYyKmiIv9SUsKpkhLuramxHWVl3FxRwanKSpuqq7Pdhx1mu8aNM91FRRi0\nXrNjjz226eWXX97vIhQAvgLgbiKKA1gL4BL4J2LuI6JL4Y8o+RQAMPNyIroP/pB9D8DlWb1IlwO4\nA/7Ik0eZeeHBPA5mNkTUCeA6Zt5CRIqZLRHpoPiEFKAQACSZEtG01vO8KiJqicfjb6VSqfnM/CQR\nwRgzEkCXUqoHABzH2dzb21tsjJmYKT6REbx/FzNzjbW2CEDT7ncl9mXkSHZvuqlr8Xnn9a68/PKS\nfznhhIop//mf3Y+feWZ6a47uooyIVuboWOLASDW/8KSkZyo3du6k2IYNqrClRSXa2ije1kaJjg4V\nTyYpkUxSvKuLEt3diHd3U7y7mxJFRbaivV3N3bFDpXp7KZ5OI97bS4l0GnFjoGMxuIkE98bjSCcS\nnE4kkC4o4HRBAXoLCjhdWMjpkhLurauzbeXlnMokQyNHcmr0aJuqrbWp0aNtbzyeu5NOuXTiiSdu\nuOGGGz65v/sz8+sAZu5h02l72f96ANfvof0VANP39373039nhvAzsw1+mmBO1ZB8/kX+STIlIqe0\ntNRrbm5OKKU2a623AlDGmNGO4zT3X8SXiFgptcoYM9lxnGXZxwmq/rkAlLV2BKT4xEGZPdtr/cc/\n2m7/1reKj7viiuLPfOc7RS3z5/cu+fKXe1YczFlUZi6VOVOhkWF+4ZGeqb3o6oLevFkXbNigitev\n16WNjaq0uVmVtLZSUXs7FXd0UFFnpz9nqLubiqyFKiri7kQCvYnEu0mPn/igt6iI08XF3DtihO0u\nKeHeceNcXV5unXTaWVxRwemKCpseOZJ7q6psurKSXTXM6yhXVFQkmbng73//e/GcOXMO6YXs9zYX\nWhIpkU2SKRFJ1lrjOM6mYF7U257nHeE4TrO1dpdkCugb6ndUdiU/ADDG1CqlmoioN1iP6si8Pohh\nyHGAH/ygvft738MTd91VWH/33YUf+u1vE2ded11y6bx5vdsHeNgR1tp6a+3InAYr9omZy621DcEi\n2CKPmLkUQJHneYf0l9n90dVFatMmVdDYqBNbt6qCbdt0Yvt2VbBjh0q0tqqC1lZKdHSoRGcnxbq6\nKCMW/BgAACAASURBVG4MVFERp8vKOF1VZXuCS+/hh9vekSNt76hRNjl6tO2trrbpujrTW1HB3oEk\nQMzcxcyHKaXK+m+z1r8Md5/85CfNPffcM2vOnDlPhx3LYCGiMvgl3FeHHYsIF0lyLaIomUzGAHwT\nQMx13THpdPrM4uLiX3V1dX0hHo8vjMVimzL7WmsLuru7rywsLPxJ9ppUPT09HyYiE4vFWlKp1PsR\nLAgscuuRRxIlV11V1nD66b3t3/xmZ3N1tT2Qng5i5mlE9NagBSj2ipnHA2gmIvnfyDNmHgV/mGWu\nhsvmhecBO3Yo3dysnO3blbNjh9ZtbaR7ekh1dCi9Y4dyduxQTkuLcnbuVE5rKznpNNGIEdarrPQv\nI0e+exk92r9UVVkzYoQ1lZXWlJayHczeIWYuADCGiCL1Jbu2tvaoA9mfmQ+ZdZqIqAL4/+3deXxU\n9dU/8M+5986WZLICgbBvCQFZghQFimJVSqmCVn9uj2KttFjaWq1YUV+v6tM+FteKytNqq7QIlQfc\nUFGLaJFaFUFkXwUTJCEhJiHJJJnlLuf3x73BkbIFSG4mc96v17xy5y4zZ7hkcs/9fr/ni14AzgIw\nHMBg2HNbFcGu3ii9H5KYtEyJpBQMBvVQKLQHQGHzuCjDMDozcxdN075x8eGMo4oYhtFfVdVNzest\ny+rm8XjWKopieTyedwAk1EVLorjsMgvDh9cHbrst7cJzz+08ZNQoY+usWU0fn8z8VJZlZRuG0d3j\n8bzcFrGKb4rFYj9SVfV9VVW/dDuWZGMYxtnMnOfxeN5wMw7LAg4cUPxffKGklpaqqeXlSmplJaVW\nVyupdrc6JbW+nlJDIUptbKTUSAR+nw/R5kpzqakcVlVY2dlWKC2NIzk53DhqlNnYrZve0KuX1div\nn9nQo4cVObnkqHmKo9bFzB5d13+tadorbTk/ktuqqqoOf88uW7Zs+Pz5830ffvjhZDdjOh1ENBHA\nJAAFsBMngl1ufSuARQCWA3gB9sTDm47xMiIJSDIlktl2AIVExKqq7ozFYmcfrWKfaZp5RFRhmuYg\nOF+YzAxm7qaqajkz9wEg1eJaUd++Vvi11+qX79qlrpozJzD6uuvSb+7f39z305+GP7rqqljpsY5z\nujrJHUP3yJgp90QBtFoBilgMtGOHGty9W00vLlbTDxxQ0p3kKKW+ngJVVZRVV6ekh8MIeDzQU1Ls\nEtzBIDdmZHBjVpbV2Lu3VdO5s7G/a1ersXt3q7F3b6uxd28z7Pe3XqW5tuD8DYkk83jN8ePHlzzy\nyCNT3Y7jNF0KO1F6FEAxM5ccZZ9E/4ziDJBkSiSz3bBLq2qqqu6IxWKXKoryxZE7WZaVp6rqLsMw\nJjCzRkSGZVkZAFhRlCbLsvwAZMLeNlBQYDb+7W8Nq6qq6N9z5qQU3XNP6hUPP5xSv2RJ/ZL+/a3/\nOAcyYa/rVGfeHdHGiCjifDe1SHNL0q5darC4WAmWlanBigol+NVXFKypUYK1tRSsraX0hgZKS0nh\npowMrs/O5rqcHCuUlcWNAweaB3NyrKbMTI6OHq1/1b+/1ZiRwcn4f6C5PHpSfv/k5OTUM3PK5s2b\n/cOGDUvUORj/Dnv6k8+OtpGIAswcdkqly02jJCbJlEhawWAwGgqFvgCQ7/F4SmKxWFBRlP/oOsbM\neZqmrTFNs0LX9X5er3d3XPGJNGZuBNpnidqOqlMn1h97rHHtAw80fnrNNenfmzo1Y9qLL9YvKiw0\nG47YNR2AzP/lHg3SMuWWY7ZM1dWRtmaNll1crKaXlirBrVu1vNJSpUtdHQVDIQoqCqz0dA6lp3Mo\nK8sKderE9T17WjWjRxv7evSwGgoKzLrCQiPUmnMVJToiak6mStyOxSXcpUuX0Pz580fNnTv33y05\n0Jks91MApcx8qTNB7hIAveHMOcXMtc6+dwP4EezvmVuZ+R1n/dmw55zyw55z6pct/gDMa5zX0gB4\nAXQGUAhgFIALAHwB4MeQv/9JT5Ipkey2A8gnIguAwcyB+I2WZXmZOVNV1UpVVXcahjHISabynIlg\ng8ycqHfdEp7fD+uVV+rf/MlP0s6fMiX9R08/3bD4wgv1w1X/nG42/zFxpmgz0s3PJZWVKu/bp6St\nWhU4q7hYzSorU7IPHlSyq6spKxRSgsGgFera1foqO5vr+/UzKy+7LLqtXz8zVFBghnJzOeZ2/InO\nSaZy3I7DTUOGDKnZs2fPeQBalEwB+CXsv81B5/lsACuZ+WEiust5PpuIBgO4GnYxiO4A3iWigU7Z\n8j8BuJmZ1xLRW0Q06TQm8fUD+BD2mKk6APsA7AeQ0zyR7ym+ruggJJkSyW4XANOZdFczTbN7/EbT\nNLsRUSURWR6PZ1c4HP42M5NTfOJTZvY7LVPCJYoCPPtsw+rf/Cal7oc/DN501VXR9x95pHGtMyA9\nnYik+IF7JJlqReXl5Fu71pO9Y4eavXevmlNaqmQfPKjkVFUp2YYBz4ABhqppVJiXZx0aPtzYP3Cg\nuXnYMLNGWpVaHxFVM/OZnkA2oRQVFVVs27bt3JYcQ0Q9AEwG8ACAXzmrpwA431leAOB92AnVVACL\nmVkHUEJEewCcQ0T7YN/oXOsc8zyAywCcUjLFzA1ENA3Adue9mmN9G8AwABtlEt/kJsmUSGrBYDAc\nCoVKTNO8kIjKmbmbZVkpiqI0AXbxieb5pVRVPUREjbqu92DmPKf4RC9IFb924be/bdp40UWx/bfe\nmnb5iBGZI+64I/zOtdfGpJufu1QikmTqNBQXK4EtW7TMvXvVjC+/VDJWrvQW+Xwcq6pSsmMxeHNy\nuKZLF6ume3eretQoY9+gQeZnI0caNfn5hm6a+h1er/dFtz9DMorr5pe0xo8fXzJ37tzvt/CwxwHc\nCbuLdrNcZj7oLB8EkOss5wFYE7dfKewWKt1ZblbmrD8lzpioTc5yZ9jV/XoByAGQ1OdY2CSZEgLY\nbprmNEVRypi5Xtf1Ap/PtwE4XHxib/OOiqLsNAxjGOziEw2WZQUgxSfajfPOM6o//bT2ublzA4Pu\nuy/lihUrNH9hodnjttuiB4JBGSDsAmmZOgHLAkpLFf/mzVrm7t1q5r59SmZpqZK9f7/auaJC6WKa\nULOyrEM5OVzXqZNVl51t1U2fHvlo5EijZvBgM3SskuDMINOExsyK041ZtCEiOgQgi5lBlDDTKZ1R\nubm5tZZlpW3YsMFXVFQUPdH+RHQJgEpm3kBEE462DzNzW5ebZ2aTiL4DYAaACOzxiP0B7AGQVHOJ\niaOTZEoIYKeTNO0EwKZpDgNwOJnyer3/at5R07Rd0Wj0GkVRyp3iE02AdJdpTzQNPGtWeMfll0e+\n/OQT5Y5589L6z58fGFNUZOwcM8Youf328A5NkwHDbUSSqSPs2aOkzJ/vH7RunafvwYOUU12tZDOD\nsrL4UKdOVm2XLlZtz55WzaRJ+s5x4/TKQYPMhlOZYNa54IzBHjgv4zrbGBFFYVeCCxJRsraOc05O\nTuPixYtHFBUVfXIS+48FMIWIJsMep5RORAsBHCSirsxcQUTdAFQ6+5cB6Bl3fA/YLVJlznL8+rLT\n/CwlsLsX7nXePwygK4A5AK6HPZ5K/q4kKUmmRNILBoONDQ0NuV6v95+KojToun6pZVk+2F+Oaaqq\nVjXvq2nagWg06gNQCyk+0a717WsqPXtGG6+7zlz01lue3JUrvX0WLfKNe/553/iZMyPvzZgR2XMq\nF6miRVTY0w8krbIyxbd4sa/funVar+JitWtZmdKtsNDc8+1v658PHWqsGTnSqOnd2wq30v/FCDP7\niUi+p9zR3NUvWZMpDB48uHrnzp3nAThhMsXM9wC4BwCI6HwAs5j5BiJ6GMCNAB5yfi5zDnkdwAtE\n9AfY3fgGAljrtF7VE9E5ANYCuAHAk6f5UYoB/IX56zL/Thfm7zixy03VJCbJlEh65eXl5PF4Zquq\n2pOIWFGUfbquD1QUpZGIKuK7FDjdNcIAPMzsd5ZFO8TMh8dLTZ6sH5w8WT9oWfjk8ccDhU8+Gfju\n00/7L5g0KbbhF7+IbO3Rw5KLzTOMmRXgcAtJUmlshDp7duroTz7x5JeWKnl9+5pfDh9ulpx3XuSj\n666LFmdltdm8S606ca84vrhxU/vcjsUtRUVFB5csWTLmFA9v/u54EMBSIroZTml0AGDm7US0FHbl\nPwPAzLgiEDNhl0YPwC6NfqqV/OC8FxORj4gKAZwFYATssVO/kYp+gqT4iBBAKBRKB3A7AIpGo0Wm\naQ5QFOUAM6cFAoEVzfsxMxobG+8CcCglJeUjwzD2IYnvOrZnpmkOsixrhMfj+b8jt8VioPnz/f1f\nfNFXtHOn2v+ss4zdEybou/PzzUNDh5q1AwaYjdJqdXqY2aPr+q+9Xu8DbsfSFiIRKMuW+bqvWOEZ\nsHq1Z0QwyA3Tp0dWX3tttLhTp68rgLWlWCx2k6qq/1RVNWkv5t1kGMZ5zOzxeDzvuR2LW0pLS3Ou\nu+66727bti3f7VhOVXOlPiJ6Fvb8UpsBbATwITO/6250oj2QlikhAASDwfpQKFQKoKfH49ml6/p3\nAZCqqjvi97MsKwh7jFSWaZqZsO+IiXbIaZmqP9o2rxd8yy2RPbfcEtmzd6+SMm9eYOjKld7BixdT\n5qFDSqZhQMvM5NqcHKs2N9eq7dbNqk1L42gsRlplpRIMh+GtqlLSy8uVzh4PjJQUDmdkcEPnzlZ9\nIMAxrxeG18umxwPT52PD54Pp9bLp88Hw++31hgElGoXar59Vf+65enWXLh1ubp8OP14qFCL14YcD\nwz76yDNg1y61X2amVTtihLn3gQeaXrr66uh+txNyZ9yOtEy5pwb2JK9Jq0ePHjW6rqdXV1d7c3Jy\nEv077jZmbgAAIuoKoAcRzQBQxszLpYUqeUkyJcTXdgDoqShKExGVW5bVy+v1fuOOYvNkvURkGIaR\nS0SZLsUqTsCyrC5EFLMs67ila/v2tfDYY6HPEVeVqbKSvNu3a8Hdu7X0khIlvbRU7VxRoWiNjeTr\n0sUK5eeboQsusL7KzOTtqalshMNQDxxQU8vKlLRwmAKxGNSGBlJ1HaquK85PUg0DivNTVVVYqspW\nVZUSrKpSMlJSONKzp1nVtatVX1BgVv/gB5GSoUPNhlb/h2olzgTY1on+/dubumid+vj6xwvvH3v/\n1mPts3+/4v/DH1KGvP66b0RurlU7dWp02//+b/Tj/HwzvrJntuXyZRUzs2VZOUSUUOegAzGYuXOi\n/Q6caYWFhbFHH3106Jw5c9a7HcupiOs6mEVEv3WWfQAyYHf3WwJguRuxifZBuvkJ4QiFQpkAbgOA\ncDg8zjTN76Smpv5P/JiPcDg8AYCiaVp9NBo9D0k+uL6dS4U930i7vxtqWcC+faqyZYtH/eADn2fb\nNk3dt09TCwt1c9q0psjkyRFdS7xbXwT7YqPW7UBaYsG2Bb67P7w75cBPDhyKXx+JAO++6/e88Ybf\nu3q1z3PxxRF9+vSmyPDhentufUuB3Tp4wrLUolUQgEwAh060Y0eTl5eX1ZL9mbnd148nonQAv4Bd\nGfAggCrYPVUeZeYL3IxNuCvx/jwL0UqCwWBtKBQqB9BNUZR60zSBI8qdMnM3TdM2apoWBbCEmU+3\n3KpoJbFY7EZVVf+lqmqx27GcjIICoKDAwpVX2jVNQiFSn3zSP3jOnPRv3XlnRuaECfpnt98eXj9s\nmJkQY/Qsy8oyDGOa1+s93SpabSpkhgYBuLo57s8+UzPmzQsULV/uHd+nj/XlBRfEtr3zTt32AQOs\nJvvrwetuwMeh6/pFRBTVNO0Dt2NJVrFY7Ncej+c5Imp0O5a2VFV1uAguFi1aNPqVV15pWL169VUu\nhnTamLmeiOYc2ZWPiHoR0QBm3uNWbMJdMsRaiG/aDgDMnAmgSdf1PvEbnfmoDjBzgJkT4qI2iaUT\n0VHHTCWCYJDNe+8Nb1m/vnb+M880LKqvp8All2Tccs89KSPr6igRboQlZFn0LF9WtKuvd8Uvf5l6\nblFR5s1Tp2bMKC9Xsh54oOnva9fWLnjooaZP7USq/SOiCDPLmCl31SR7N79x48aV1NTUDHU7jtPV\nPCaKiAqI6EYimk9EXwJYAbulCpSsMzQnOUmmhPim7YCdNCmKUmya5uHBw6ZppgFQFUWpd8aDJNWd\nxkTidF9O7yiTZU6cqFe+/HLo7T/9qWHhqlWeIUOHZt1+zTXBiatXe3Lcju04NCRYAYr33vN0fuax\n3t+u3NW/y549au6MGZHVu3bVPPr22/Wv/vjHkS/cju8USAEKl8WVR09affv2rYpGo1nV1dWJcBPo\nqJyKfhYR/Q/s8dXTYRcYeQz2JL4/cHaV6+okJCddiDjBYLAaQKVlWXkej2eDaZqDmvtyxxWfSHUm\n602oC8Uk4wdgElG7Hy/VEt//fqzi44/rFi5ZUv+spsGaNi140+jRmTfOmRM4KxQi1e344jFzQlTz\n+/BDLfsnP0kbP2RI1k+nT0+7IZ8vKfv0V4sefvPN+tduuSWyJyUFiVydKwL7d0G4J+mTKQBWenp6\n5KmnnmpRZUMi6klEq4hoGxFtJaJbnfXZRLSSiHYT0TvxhaCI6G4i+pyIdhLRxLj1ZxPRFmfbEy39\nAHFFKH7LzAozj2fmWcz8BOxJhG9s6WuKjiNh7xII0VoMw6gA4NU0rTgWizUahtHD4/Hstyyrm6Io\nBwAEmVkm623HjlcWvSMYM8Y4NGZM6N3GRqyaNy8w6JVXfGc//XRg0uTJsTWPP97wkd/fLhKAdptM\nlZYq/r//3df/pZd83yopUXqNH69/Ont201vXXhv9UtPA7XkcVEsQUVS6+bnLaZka6HYcbissLKze\nvHnz+QC2tOAwHcDtzLyRiNIArCeilQBuArCSmR8morsAzAYwm4gGA7gawGAA3QG8S0QDnUToTwBu\nZua1RPQWEU06lYl8mTlGRCkAugHoCaAHgO/BLkYBxI2xFslDkikhjhCLxQJEdICIoKrqDsMwCp1k\nKk/TtE3M7IdUx2rXOnoy1Sw1FeZdd4W33XVXeNu//qXl3Hpr2uWTJ2d0e/XV+lczMtjt8UrtKpkK\nhUh99NHA0OXLvUXl5UrX7t2t8iuuiK675prokj59rI56cyTifF8JlxBR0o+ZAoARI0Z89cYbb4wB\nMO9kj2HmCgAVznIDEe2AnSRNAXC+s9sCAO/DTqimAljMzDqAEiLaA+AcItoH+yboWueY5wFcBqDF\nyZTjTgDN5zQKYA2AvzhxtocbWaKNSTIlxBEsy1rh9/uHAICmaTsikci1zPyOZVndVFV9m5nzmLnG\n7TjFsTFzhxkvdbLOO8+oXr68ftG0acEpY8dm/vjKK6MfjxunH5g4Ua90KaR2kUxt3aoG//jHwLAV\nKzzfys21qq6/PvrxjBnh3Qnefe+kyKS97lMUpcY0zaRPpsaOHVuyYMGCb5/q8UTUB0ARgE8A5DLz\nQWfTQQC5znIe7MSmWSns5Et3lpuVOetbGoPGzAbsMVM+APsBlMOetDfi7NMPQICZt7X09UXikmRK\niCN069atKhQKvQdgvKqqlQAsXdf7AtAURalj5gEAEnYy1SQRRBK0TB2pRw8r8u67dUt/97uU4a++\n6v3W00/7u+bmWpVXXx39ePr0yK7cXG7LMWQqEbmSTMVioNde83Z/6qnA+C++UHsVFRk7Hnqo8cUr\nr4wl21QGUciYKbc1wZ7TM0BEHbUF9ITy8/MrI5FITnV1tZqTk9Oi7wWni9/LAH7JzKH4gnnMzPFz\nQbYmJ5ECMy89SowK7P7BtwFIA/CjtohJtA+STAlxdDsAjG/u6qfr+kin+ESKZVlRtIM77uLYnJap\nA27H4QZFAe67r2nTffc1bTIM0FNPBQqWLvWOmjcvcGnv3lbp9Onhf0+bFi32elu9b3+blka3LOCV\nV7zdly71nbVunTbE44FeUGCWrF9/6PE2TiLbDSKKQFqmXOVc+NdYlpWtqmqyJfPxrLS0tNizzz47\n8K677tp5sgcRkQd2IrWQmZc5qw8SUVdmriCibrCr6QF2i1PPuMN7wG6RKnOW49e3+FwQUTaAS5j5\neSLqD6APgHwAvWG3jjHsicp3tfS1RWKTZEqIowgGgwdCoVAtgExN03ZEo9HrVFXdACBoWR12fEVH\nkk5ESf8HTdPAt98e3nn77eGdjY1Qf/Ob1LMffjjl+/ffn5oyfLix8/e/b1w1fLjZKi14bVXNLxKB\n8uijgSELFvgvUBRY48bpW//614bnJ0zQq058dIcXBeC1b963zd178Z/iyqMnczKFgoKC6nXr1p0P\n4KSSKWfOpucAbGfmuXGbXoddPe8h5+eyuPUvENEfYHfjGwhgrdN6VU9E5wBYC+AGAKcymXgYwGNE\ndC6AdOd5DexxXRthdzmscp6LJCLJlBDHtgPAGE3TDkSjUS8RNTjzS0nxiXbOaZlKum5+x5OaCvOx\nxxrXPvZY49rt29W0e+9NPX/ixIxbCwvNz8eO1T+/887w5qysM1q0olXnmbIs4PHHA4Vz5wYu7dzZ\nqr7//qZl114b/VKRCT8OcxIoHXb3I/neck8Nvi5YkLRGjBhRtWLFirEAnjnJQ8YBuB7AZiLa4Ky7\nG8CDAJYS0c0ASgBcBQDMvJ2IlsKeL9IAMDOupPlMAH8DEADw1ilW8gsT0X/DbgmrBPAVgEOwu5Q3\nxr2XSDKSTAlxbNsBjHEuSCxmTmfmOmYudzswcUJBSaaObfBgs+HVV+vfXL7cu37VKk+vDz7wFCxc\n6L/ottvCb9xxR3jHGXqbVmmZisVAzzzjH/iXv/gnWBYps2c3vfqzn0U+P9Pv04FEmdnnFKMQLnBa\npvq6HYfbxowZs++FF14YfbL7M/O/cez5UC86xjG/B/D7o6xfD2Doyb73cTwNwJTEScSTZEqIYysF\nUG9ZVjcAME2zD+w7jFJ8oh1jZg32nfgmt2Np7y65JFZxySWxCgBrn37aP+DBBwNTlyzxjZ45M7z6\nhz+Mlpzmy5/RZOrNN71dFy3yDVuzRjsrGOSGadOiH9x2W3inPS+UOI7miXvl5oJLnPLoZ7sdh9sK\nCwsrmpqacqurq5WcnJyErKbZXIRCiHjSIUKIYwgGgwxgp2EY3ZxiBpmmabbpoHrRcs4cU9+o+CRO\n7JZbIns+/rh23pAhxpf33JN67Q9+EJy8YYOafhovedrJlGUBGzao6VOmpF/685+nXuf1svHssw0L\nN2+u/fOsWeEdkkidFJm412VEJN38ACiKYqampuoLFy5M+lY60bGQtFQKcWyhUKhPJBKZ71yMZFuW\nFYTdR1u0X+nM3JuItrgdSKIqK1M8TzyRlrdsmb/rDTc0lc2a1VAWCLQscWHmHrDLo+9r6ftXVira\n8uX+rDlz0vopClBYaIT+/Ofa3V26WHIjo4WYeYhzM+iQ27EkM2YeQ0RrkeSVYFetWjVg2bJl9y5Z\nsuQ5t2MR4kyRZEqI4wiFQkpTU9MmVVV3aprG0Wi0L4A6t+MSx2ZZVi6AzoqibHU7lkS3Y4cauPvu\n9PwvvlDTfvazpr3XXBP+Khhk82SKPFiW1Q8AK4pSfLz9dB30wQfe9AMHVN+6dZ6Mdes8WRUVSspZ\nZxmHbrghXHbFFZEqKSpx6izLOgvAV4qiHDzhzqLVWJZ1DhFtT7bJxAGga9euF7Zkf2aWbgUioUgy\nJcQJlJeXFwcCgTeIqIthGAchd3jbNcMwxjFzqsfjecftWDqKhQt9vZ94IvCdkhK1V16eWX7xxfrG\nCy+M7Zs4Ua88Vlc7XdcvJKKopmn/jl9fVUWeDz/0dHr/fU+vzz7T+u7dq/bOzLRqc3K4Lj/fPHDh\nhXrxlCnRspQUJOSYivZG1/VLiahc07RP3Y4lmem6fhURbdM0bZvbsbhp48aNvWbNmjViw4YNI92O\nRYgzRZIpIU6gvr5+AIDrmflswzA2wy41LNopXde/R0SHNE1b43YsHU1xsRJYsMCfv3691nv9em2I\nYUAbMsTcNXKkUZKZyZFwGFo4TJ5IhDwZGUZBKKQYFRXqV5EIeaqqlIyvvqKcpiZKyc7mmgEDzNJz\nz9WLL7ssVjJ4sClFXVqJrusXE1GTpmkfuh1LMtN1/SLn5sIHbsfiJsuytLFjx968Zs2a7olahEKI\nI0k1PyFOgIiKAcCyLBOSSCWC4KmM0xEn1revFb7//qZNADZVVdHbn32mZX30kafbxo1az3AYXq8X\nhs/Hus8HPTMTSna2FfX7qcrvZ6NnT2vbyJFG1YgRRp3XK4Uj2goRRZnZ73Ycyc4pj97T7TjcpiiK\n4ff7zZdeeqnnjBkz5HtadAiSTAlxAsFg0AyFQjXM3Oh2LOLEysvLM7t06RJSVdXtUDq0Tp1YnzhR\nr5w4Ua8EsOnI7eXl5Zf5/f4DWVlZa10ITzgaGhpiTU1NGXl5eW6HktQMwzh08ODBot69e7sdiuvy\n8/Or33///fNnzJjx/Jl+bSKaBGAu7GqizzLzQ2f6PYQ4kiRTQpwEy7KaLMvKANDL7VjE8U2ePLnr\n0qVLuwwePFgGMbvo3nvv7Tdq1KjAzJkzK9yOJZktXry4z5o1a/IWLFgg310u2r9/f+aUKVN67Nix\nI+nPw6hRoyLvvffeWABnNJkiIhXAPNgT+pYBWEdErzPzmZqIXIijkjFTQpyE6urqwMiRI//R2NiY\n6XYs4tiYGTU1NUM7deq0Rb7b3BUKhXr5fL56r9db63YsycwwjPRwOJwdDAZL3I4l2VVXVw/Nysra\npihKUo8VMk1TY+b62traMWfydYloDID7mHmS83w2ADDzg2fyfYQ4kiRTQogOg4iyASxh5ovdjiXZ\nEdGDAN5l5nfdjiWZEdG3APyImX/qdizJjoheBvArZpaxQq2AiK4E8F1m/rHz/HoA5zDzL9yNTHR0\n0s1PCNFhMHMNAEmk2gFmnu12DAJg5nUA1rkdhwCY+Qq3Y+jgpHVAuEKmQhRCCCGEEImuDEB85ozo\n5wAABYdJREFUxcSeAEpdikUkEUmmhBBCCCFEovsUwEAi6kNEXgBXA3jd5ZhEEpBufkIIIYQQIqEx\ns0FEPwewAnZp9Oekkp9oC1KAQgghhBBCCCFOgXTzE0IIIYQQQohTIMmUECIhENEdRGQ55c+b191N\nRJ8T0U4imhi3/mwi2uJseyJuvY+Iljjr1xBR77htNxLRbucxre0+WeIgot8R0SYi2khE7xFRz7ht\nci7aCBE9QkQ7nHPxChFlxG2T89BGiOj/EdE2IjKJaOQR2+Q8CJEsmFke8pCHPNr1A3ZVpn8AKAaQ\n7awbDGAjAA+APgD24Ouuy2sBjHaW3wIwyVmeCeCPzvLVAP7PWc4GsBdApvPYCyDT7c/d3h4AgnHL\nvwDwrJwLV87DxQAUZ/lBAA/KeXDlPAwCkA9gFYCRcevlPMhDHkn0kJYpIUQi+AOAXx+xbiqAxcys\nM3MJ7AuWc4ioG+yL/rXOfs8DuMxZngJggbP8MoALneXvAniHmWuZuRbASgCTWuWTJDBmDsU9TQNQ\n5SzLuWhDzLySmS3n6ScAejjLch7aEDPvZObdR9kk50GIJCLV/IQQ7RoRTQVQysybiSh+Ux6ANXHP\nSwF0B6Djm3OLlDnr4fzcDxyu/FRHRDnOa5Ue5bXEEYjoAQA3AAgDGO2slnPhnh8BWOwsy3loH+Q8\nCJFEJJkSQriOiFYC6HqUTfcCuBvAxPjd2ySoJHWcc3EPM7/BzPcCuJeIZgOYC+CmNg0wSZzoPDj7\n3AsgxswvtGlwSeRkzoMQIrlJMiWEcB0zX3y09UR0FoC+ADY5rVI9AKwnonPwn7Pd94B917YMX3d7\nil8PZ1svAAeISAOQwczVRFQGYELcMT0B/PM0P1ZCOta5OIoXYI/5AORcnHEnOg9E9EMAk/F1dzBA\nzsMZ14Lfh3hyHoRIIjJmSgjRbjHzVmbOZea+zNwX9oXHSGY+CHtm+2uIyEtEfQEMBLCWmSsA1BPR\nOWRnYDcAeM15ydcB3OgsXwngPWf5HQATiSiTiLJgD/Bf0SYfMoEQ0cC4p1MBbHCWz8S52ElEGwDc\nA+AmItpMRCbssSSHzwUR9SGiMBF91kqf8e9EVE1EV7TG658JRDQJwJ0ApjJzJG6T/E64J77FXM6D\nEElEWqaEEInk8CzjzLydiJYC2A7AADCTmZu3zwTwNwABAG8x8z+c9c8BWEhEnwOoBnCN81o1RPQ7\nAOuc/f7bGewtvmkOERUAMGFXFfspcObOhTNYH0R0E+wqdVEAs49yLvYw80i0Amb+LyL6K+L+r7VD\nTwHwAljptNh+zMwz5XeibRHR5QCeBNAJwJtEtIGZvyfnQYjkQl//fgshhBDuI6J82HfmxzBz6RHb\n+gB4g5mHxj3/B4CPAYwF8Cnsqmj3AegM4L+YeR0R3Q+7y2hf2N2pfuXsPxF2F6tLmdlwXvOvAJYz\n88ut+DGFEEJ0ANLNTwghRLtBRB7Y47F+dWQidRz9ATwKe96fAgBXM/M4ALNgdxts1hfABbC7Di4C\nsJKZh8GuTPj9M/MJhBBCJBNJpoQQQrQnvwOwhZlfbMExxcy8zelKtQ3Au876rbAnTQXsbntvM7Pp\nrFeYuXnsyZa4/YQQQoiTJmOmhBBCtAtENAHA5QBaOh4qGrdsAYjFLcf/nYsBADNbRKQfcYz8PRRC\nCNFi8sdDCCGE65xKZX+FXYiisTXeohVeUwghRJKTZEoIIUR7cAvsghFPOxXqmv3+JLr8HVlJiY+y\nzMdYf6znQgghxAlJNT8hhBAJ48hqfq30Hn9z3kOq+QkhhDguKUAhhBAikRgAMlpz0l4A42FX+BNC\nCCGOS1qmhBBCCCGEEOIUSMuUEEIIIYQQQpwCSaaEEEIIIYQQ4hRIMiWEEEIIIYQQp+D/A9f8FH9D\ndGB1AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x455ed90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, axs = plt.subplots(1, 2, figsize=(10, 5))\n", | |
"fig3d = plt.figure(figsize=(15, 10))\n", | |
"ax3d = fig3d.add_subplot('111', projection='3d')\n", | |
"\n", | |
"for id_track, track_data in data.groupby(level=0):\n", | |
" axs[0].plot(track_data['Z(mm)'], track_data['R'], marker='.', ls='', label=str(id_track))\n", | |
" axs[1].plot(track_data['X(mm)'], track_data[\"Y(mm)\"], marker='.', ls='', label=str(id_track))\n", | |
"\n", | |
" ax3d.plot(xs=track_data['Z(mm)'], ys=track_data['X(mm)'], zs=track_data['Y(mm)'])\n", | |
"\n", | |
"axs[1].legend(loc=0, numpoints=1)\n", | |
"axs[0].set_xlim(data['Z(mm)'].min(), data['Z(mm)'].max())\n", | |
"axs[0].set_ylim(data['R'].min(), data['R'].max())\n", | |
"axs[1].set_xlim(data['X(mm)'].min(), data['X(mm)'].max())\n", | |
"axs[1].set_ylim(data['Y(mm)'].min(), data['Y(mm)'].max())\n", | |
"for ax in axs[:-1]:\n", | |
" ax.set_aspect('equal')\n", | |
" ax.grid()\n", | |
"axs[0].set_xlabel('Z [mm]')\n", | |
"axs[0].set_ylabel('R [mm]')\n", | |
"axs[1].set_xlabel('X [mm]')\n", | |
"axs[1].set_ylabel('Y [mm]')\n", | |
"\n", | |
"fig.tight_layout()\n", | |
"\n", | |
"ax3d.set_xlim(data['Z(mm)'].min(), data['Z(mm)'].max())\n", | |
"ax3d.set_ylim(data['X(mm)'].min(), data['X(mm)'].max())\n", | |
"ax3d.set_zlim(data['Y(mm)'].min(), data['Y(mm)'].max())\n", | |
"ax3d.view_init(50, -90)\n", | |
"\n", | |
"ax3d.set_xlabel('Z [mm]')\n", | |
"ax3d.set_ylabel('X [mm]')\n", | |
"ax3d.set_zlabel('Y [mm]')\n", | |
"ax3d.set_aspect('equal')\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment