Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save wolejnr/80c0f4bc70ef5c58a86c7727019bf7b3 to your computer and use it in GitHub Desktop.
Save wolejnr/80c0f4bc70ef5c58a86c7727019bf7b3 to your computer and use it in GitHub Desktop.
Created on Cognitive Class Labs
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"<a href=\"https://cognitiveclass.ai\"><img src = \"https://ibm.box.com/shared/static/9gegpsmnsoo25ikkbl4qzlvlyjbgxs5x.png\" width = 400> </a>\n",
"\n",
"<h1 align=center><font size = 5>Introduction to Matplotlib and Line Plots</font></h1>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"## Introduction\n",
"\n",
"The aim of these labs is to introduce you to data visualization with Python as concrete and as consistent as possible. \n",
"Speaking of consistency, because there is no *best* data visualization library avaiblable for Python - up to creating these labs - we have to introduce different libraries and show their benefits when we are discussing new visualization concepts. Doing so, we hope to make students well-rounded with visualization libraries and concepts so that they are able to judge and decide on the best visualitzation technique and tool for a given problem _and_ audience.\n",
"\n",
"Please make sure that you have completed the prerequisites for this course, namely [**Python for Data Science**](https://cognitiveclass.ai/courses/python-for-data-science/).\n",
"\n",
"**Note**: The majority of the plots and visualizations will be generated using data stored in *pandas* dataframes. Therefore, in this lab, we provide a brief crash course on *pandas*. However, if you are interested in learning more about the *pandas* library, detailed description and explanation of how to use it and how to clean, munge, and process data stored in a *pandas* dataframe are provided in our course [**Data Analysis with Python**](https://cognitiveclass.ai/courses/data-analysis-python/). \n",
"\n",
"------------"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"## Table of Contents\n",
"\n",
"<div class=\"alert alert-block alert-info\" style=\"margin-top: 20px\">\n",
"\n",
"1. [Exploring Datasets with *pandas*](#0)<br>\n",
"1.1 [The Dataset: Immigration to Canada from 1980 to 2013](#2)<br>\n",
"1.2 [*pandas* Basics](#4) <br>\n",
"1.3 [*pandas* Intermediate: Indexing and Selection](#6) <br>\n",
"2. [Visualizing Data using Matplotlib](#8) <br>\n",
"2.1 [Matplotlib: Standard Python Visualization Library](#10) <br>\n",
"3. [Line Plots](#12)\n",
"</div>\n",
"<hr>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Exploring Datasets with *pandas* <a id=\"0\"></a>\n",
"\n",
"*pandas* is an essential data analysis toolkit for Python. From their [website](http://pandas.pydata.org/):\n",
">*pandas* is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python.\n",
"\n",
"The course heavily relies on *pandas* for data wrangling, analysis, and visualization. We encourage you to spend some time and familizare yourself with the *pandas* API Reference: http://pandas.pydata.org/pandas-docs/stable/api.html."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"## The Dataset: Immigration to Canada from 1980 to 2013 <a id=\"2\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Dataset Source: [International migration flows to and from selected countries - The 2015 revision](http://www.un.org/en/development/desa/population/migration/data/empirical2/migrationflows.shtml).\n",
"\n",
"The dataset contains annual data on the flows of international immigrants as recorded by the countries of destination. The data presents both inflows and outflows according to the place of birth, citizenship or place of previous / next residence both for foreigners and nationals. The current version presents data pertaining to 45 countries.\n",
"\n",
"In this lab, we will focus on the Canadian immigration data.\n",
"\n",
"<img src = \"https://ibm.box.com/shared/static/mb48k9fiylkd7z3a21cq38xxfy1wni2y.png\" align=\"center\" width=900>\n",
"\n",
"For sake of simplicity, Canada's immigration data has been extracted and uploaded to one of IBM servers. You can fetch the data from [here](https://ibm.box.com/shared/static/lw190pt9zpy5bd1ptyg2aw15awomz9pu.xlsx).\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"## *pandas* Basics<a id=\"4\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"The first thing we'll do is import two key data analysis modules: *pandas* and **Numpy**."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [],
"source": [
"import numpy as np # useful for many scientific computing in Python\n",
"import pandas as pd # primary data structure library"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Let's download and import our primary Canadian Immigration dataset using *pandas* `read_excel()` method. Normally, before we can do that, we would need to download a module which *pandas* requires to read in excel files. This module is **xlrd**. For your convenience, we have pre-installed this module, so you would not have to worry about that. Otherwise, you would need to run the following line of code to install the **xlrd** module:\n",
"```\n",
"!conda install -c anaconda xlrd --yes\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Now we are ready to read in our data."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/jupyterlab/conda/lib/python3.6/site-packages/pandas/util/_decorators.py:188: FutureWarning: the 'skip_footer' keyword is deprecated, use 'skipfooter' instead\n",
" return func(*args, **kwargs)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data read into a pandas dataframe!\n"
]
}
],
"source": [
"df_can = pd.read_excel('https://ibm.box.com/shared/static/lw190pt9zpy5bd1ptyg2aw15awomz9pu.xlsx',\n",
" sheet_name='Canada by Citizenship',\n",
" skiprows=range(20),\n",
" skip_footer=2)\n",
"\n",
"print ('Data read into a pandas dataframe!')"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Let's view the top 5 rows of the dataset using the `head()` function."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Type</th>\n",
" <th>Coverage</th>\n",
" <th>OdName</th>\n",
" <th>AREA</th>\n",
" <th>AreaName</th>\n",
" <th>REG</th>\n",
" <th>RegName</th>\n",
" <th>DEV</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>...</th>\n",
" <th>2004</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Afghanistan</td>\n",
" <td>935</td>\n",
" <td>Asia</td>\n",
" <td>5501</td>\n",
" <td>Southern Asia</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>16</td>\n",
" <td>...</td>\n",
" <td>2978</td>\n",
" <td>3436</td>\n",
" <td>3009</td>\n",
" <td>2652</td>\n",
" <td>2111</td>\n",
" <td>1746</td>\n",
" <td>1758</td>\n",
" <td>2203</td>\n",
" <td>2635</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Albania</td>\n",
" <td>908</td>\n",
" <td>Europe</td>\n",
" <td>925</td>\n",
" <td>Southern Europe</td>\n",
" <td>901</td>\n",
" <td>Developed regions</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>1450</td>\n",
" <td>1223</td>\n",
" <td>856</td>\n",
" <td>702</td>\n",
" <td>560</td>\n",
" <td>716</td>\n",
" <td>561</td>\n",
" <td>539</td>\n",
" <td>620</td>\n",
" <td>603</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Algeria</td>\n",
" <td>903</td>\n",
" <td>Africa</td>\n",
" <td>912</td>\n",
" <td>Northern Africa</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>80</td>\n",
" <td>...</td>\n",
" <td>3616</td>\n",
" <td>3626</td>\n",
" <td>4807</td>\n",
" <td>3623</td>\n",
" <td>4005</td>\n",
" <td>5393</td>\n",
" <td>4752</td>\n",
" <td>4325</td>\n",
" <td>3774</td>\n",
" <td>4331</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>American Samoa</td>\n",
" <td>909</td>\n",
" <td>Oceania</td>\n",
" <td>957</td>\n",
" <td>Polynesia</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Andorra</td>\n",
" <td>908</td>\n",
" <td>Europe</td>\n",
" <td>925</td>\n",
" <td>Southern Europe</td>\n",
" <td>901</td>\n",
" <td>Developed regions</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 43 columns</p>\n",
"</div>"
],
"text/plain": [
" Type Coverage OdName AREA AreaName REG \\\n",
"0 Immigrants Foreigners Afghanistan 935 Asia 5501 \n",
"1 Immigrants Foreigners Albania 908 Europe 925 \n",
"2 Immigrants Foreigners Algeria 903 Africa 912 \n",
"3 Immigrants Foreigners American Samoa 909 Oceania 957 \n",
"4 Immigrants Foreigners Andorra 908 Europe 925 \n",
"\n",
" RegName DEV DevName 1980 ... 2004 2005 2006 \\\n",
"0 Southern Asia 902 Developing regions 16 ... 2978 3436 3009 \n",
"1 Southern Europe 901 Developed regions 1 ... 1450 1223 856 \n",
"2 Northern Africa 902 Developing regions 80 ... 3616 3626 4807 \n",
"3 Polynesia 902 Developing regions 0 ... 0 0 1 \n",
"4 Southern Europe 901 Developed regions 0 ... 0 0 1 \n",
"\n",
" 2007 2008 2009 2010 2011 2012 2013 \n",
"0 2652 2111 1746 1758 2203 2635 2004 \n",
"1 702 560 716 561 539 620 603 \n",
"2 3623 4005 5393 4752 4325 3774 4331 \n",
"3 0 0 0 0 0 0 0 \n",
"4 1 0 0 0 0 1 1 \n",
"\n",
"[5 rows x 43 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.head()\n",
"# tip: You can specify the number of rows you'd like to see as follows: df_can.head(10) "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We can also veiw the bottom 5 rows of the dataset using the `tail()` function."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Type</th>\n",
" <th>Coverage</th>\n",
" <th>OdName</th>\n",
" <th>AREA</th>\n",
" <th>AreaName</th>\n",
" <th>REG</th>\n",
" <th>RegName</th>\n",
" <th>DEV</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>...</th>\n",
" <th>2004</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>190</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Viet Nam</td>\n",
" <td>935</td>\n",
" <td>Asia</td>\n",
" <td>920</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>1191</td>\n",
" <td>...</td>\n",
" <td>1816</td>\n",
" <td>1852</td>\n",
" <td>3153</td>\n",
" <td>2574</td>\n",
" <td>1784</td>\n",
" <td>2171</td>\n",
" <td>1942</td>\n",
" <td>1723</td>\n",
" <td>1731</td>\n",
" <td>2112</td>\n",
" </tr>\n",
" <tr>\n",
" <th>191</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Western Sahara</td>\n",
" <td>903</td>\n",
" <td>Africa</td>\n",
" <td>912</td>\n",
" <td>Northern Africa</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>192</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Yemen</td>\n",
" <td>935</td>\n",
" <td>Asia</td>\n",
" <td>922</td>\n",
" <td>Western Asia</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>124</td>\n",
" <td>161</td>\n",
" <td>140</td>\n",
" <td>122</td>\n",
" <td>133</td>\n",
" <td>128</td>\n",
" <td>211</td>\n",
" <td>160</td>\n",
" <td>174</td>\n",
" <td>217</td>\n",
" </tr>\n",
" <tr>\n",
" <th>193</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Zambia</td>\n",
" <td>903</td>\n",
" <td>Africa</td>\n",
" <td>910</td>\n",
" <td>Eastern Africa</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>11</td>\n",
" <td>...</td>\n",
" <td>56</td>\n",
" <td>91</td>\n",
" <td>77</td>\n",
" <td>71</td>\n",
" <td>64</td>\n",
" <td>60</td>\n",
" <td>102</td>\n",
" <td>69</td>\n",
" <td>46</td>\n",
" <td>59</td>\n",
" </tr>\n",
" <tr>\n",
" <th>194</th>\n",
" <td>Immigrants</td>\n",
" <td>Foreigners</td>\n",
" <td>Zimbabwe</td>\n",
" <td>903</td>\n",
" <td>Africa</td>\n",
" <td>910</td>\n",
" <td>Eastern Africa</td>\n",
" <td>902</td>\n",
" <td>Developing regions</td>\n",
" <td>72</td>\n",
" <td>...</td>\n",
" <td>1450</td>\n",
" <td>615</td>\n",
" <td>454</td>\n",
" <td>663</td>\n",
" <td>611</td>\n",
" <td>508</td>\n",
" <td>494</td>\n",
" <td>434</td>\n",
" <td>437</td>\n",
" <td>407</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 43 columns</p>\n",
"</div>"
],
"text/plain": [
" Type Coverage OdName AREA AreaName REG \\\n",
"190 Immigrants Foreigners Viet Nam 935 Asia 920 \n",
"191 Immigrants Foreigners Western Sahara 903 Africa 912 \n",
"192 Immigrants Foreigners Yemen 935 Asia 922 \n",
"193 Immigrants Foreigners Zambia 903 Africa 910 \n",
"194 Immigrants Foreigners Zimbabwe 903 Africa 910 \n",
"\n",
" RegName DEV DevName 1980 ... 2004 2005 2006 \\\n",
"190 South-Eastern Asia 902 Developing regions 1191 ... 1816 1852 3153 \n",
"191 Northern Africa 902 Developing regions 0 ... 0 0 1 \n",
"192 Western Asia 902 Developing regions 1 ... 124 161 140 \n",
"193 Eastern Africa 902 Developing regions 11 ... 56 91 77 \n",
"194 Eastern Africa 902 Developing regions 72 ... 1450 615 454 \n",
"\n",
" 2007 2008 2009 2010 2011 2012 2013 \n",
"190 2574 1784 2171 1942 1723 1731 2112 \n",
"191 0 0 0 0 0 0 0 \n",
"192 122 133 128 211 160 174 217 \n",
"193 71 64 60 102 69 46 59 \n",
"194 663 611 508 494 434 437 407 \n",
"\n",
"[5 rows x 43 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"When analyzing a dataset, it's always a good idea to start by getting basic information about your dataframe. We can do this by using the `info()` method."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 195 entries, 0 to 194\n",
"Data columns (total 43 columns):\n",
"Type 195 non-null object\n",
"Coverage 195 non-null object\n",
"OdName 195 non-null object\n",
"AREA 195 non-null int64\n",
"AreaName 195 non-null object\n",
"REG 195 non-null int64\n",
"RegName 195 non-null object\n",
"DEV 195 non-null int64\n",
"DevName 195 non-null object\n",
"1980 195 non-null int64\n",
"1981 195 non-null int64\n",
"1982 195 non-null int64\n",
"1983 195 non-null int64\n",
"1984 195 non-null int64\n",
"1985 195 non-null int64\n",
"1986 195 non-null int64\n",
"1987 195 non-null int64\n",
"1988 195 non-null int64\n",
"1989 195 non-null int64\n",
"1990 195 non-null int64\n",
"1991 195 non-null int64\n",
"1992 195 non-null int64\n",
"1993 195 non-null int64\n",
"1994 195 non-null int64\n",
"1995 195 non-null int64\n",
"1996 195 non-null int64\n",
"1997 195 non-null int64\n",
"1998 195 non-null int64\n",
"1999 195 non-null int64\n",
"2000 195 non-null int64\n",
"2001 195 non-null int64\n",
"2002 195 non-null int64\n",
"2003 195 non-null int64\n",
"2004 195 non-null int64\n",
"2005 195 non-null int64\n",
"2006 195 non-null int64\n",
"2007 195 non-null int64\n",
"2008 195 non-null int64\n",
"2009 195 non-null int64\n",
"2010 195 non-null int64\n",
"2011 195 non-null int64\n",
"2012 195 non-null int64\n",
"2013 195 non-null int64\n",
"dtypes: int64(37), object(6)\n",
"memory usage: 65.6+ KB\n"
]
}
],
"source": [
"df_can.info()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"To get the list of column headers we can call upon the dataframe's `.columns` parameter."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"array(['Type', 'Coverage', 'OdName', 'AREA', 'AreaName', 'REG', 'RegName',\n",
" 'DEV', 'DevName', 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987,\n",
" 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,\n",
" 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,\n",
" 2010, 2011, 2012, 2013], dtype=object)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.columns.values "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Similarly, to get the list of indicies we use the `.index` parameter."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n",
" 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,\n",
" 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,\n",
" 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n",
" 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,\n",
" 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,\n",
" 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,\n",
" 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,\n",
" 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,\n",
" 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,\n",
" 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,\n",
" 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,\n",
" 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,\n",
" 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,\n",
" 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.index.values"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Note: The default type of index and columns is NOT list."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.indexes.base.Index'>\n",
"<class 'pandas.core.indexes.range.RangeIndex'>\n"
]
}
],
"source": [
"print(type(df_can.columns))\n",
"print(type(df_can.index))"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"To get the index and columns as lists, we can use the `tolist()` method."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'list'>\n",
"<class 'list'>\n"
]
}
],
"source": [
"df_can.columns.tolist()\n",
"df_can.index.tolist()\n",
"\n",
"print (type(df_can.columns.tolist()))\n",
"print (type(df_can.index.tolist()))"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"To view the dimensions of the dataframe, we use the `.shape` parameter."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"(195, 43)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# size of dataframe (rows, columns)\n",
"df_can.shape "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Note: The main types stored in *pandas* objects are *float*, *int*, *bool*, *datetime64[ns]* and *datetime64[ns, tz] (in >= 0.17.0)*, *timedelta[ns]*, *category (in >= 0.15.0)*, and *object* (string). In addition these dtypes have item sizes, e.g. int64 and int32. "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Let's clean the data set to remove a few unnecessary columns. We can use *pandas* `drop()` method as follows:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>OdName</th>\n",
" <th>AreaName</th>\n",
" <th>RegName</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>...</th>\n",
" <th>2004</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Afghanistan</td>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>16</td>\n",
" <td>39</td>\n",
" <td>39</td>\n",
" <td>47</td>\n",
" <td>71</td>\n",
" <td>340</td>\n",
" <td>...</td>\n",
" <td>2978</td>\n",
" <td>3436</td>\n",
" <td>3009</td>\n",
" <td>2652</td>\n",
" <td>2111</td>\n",
" <td>1746</td>\n",
" <td>1758</td>\n",
" <td>2203</td>\n",
" <td>2635</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Albania</td>\n",
" <td>Europe</td>\n",
" <td>Southern Europe</td>\n",
" <td>Developed regions</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1450</td>\n",
" <td>1223</td>\n",
" <td>856</td>\n",
" <td>702</td>\n",
" <td>560</td>\n",
" <td>716</td>\n",
" <td>561</td>\n",
" <td>539</td>\n",
" <td>620</td>\n",
" <td>603</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" OdName AreaName RegName DevName 1980 1981 \\\n",
"0 Afghanistan Asia Southern Asia Developing regions 16 39 \n",
"1 Albania Europe Southern Europe Developed regions 1 0 \n",
"\n",
" 1982 1983 1984 1985 ... 2004 2005 2006 2007 2008 2009 2010 \\\n",
"0 39 47 71 340 ... 2978 3436 3009 2652 2111 1746 1758 \n",
"1 0 0 0 0 ... 1450 1223 856 702 560 716 561 \n",
"\n",
" 2011 2012 2013 \n",
"0 2203 2635 2004 \n",
"1 539 620 603 \n",
"\n",
"[2 rows x 38 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# in pandas axis=0 represents rows (default) and axis=1 represents columns.\n",
"df_can.drop(['AREA','REG','DEV','Type','Coverage'], axis=1, inplace=True)\n",
"df_can.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Let's rename the columns so that they make sense. We can use `rename()` method by passing in a dictionary of old and new names as follows:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index([ 'Country', 'Continent', 'Region', 'DevName', 1980,\n",
" 1981, 1982, 1983, 1984, 1985,\n",
" 1986, 1987, 1988, 1989, 1990,\n",
" 1991, 1992, 1993, 1994, 1995,\n",
" 1996, 1997, 1998, 1999, 2000,\n",
" 2001, 2002, 2003, 2004, 2005,\n",
" 2006, 2007, 2008, 2009, 2010,\n",
" 2011, 2012, 2013],\n",
" dtype='object')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.rename(columns={'OdName':'Country', 'AreaName':'Continent', 'RegName':'Region'}, inplace=True)\n",
"df_can.columns"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We will also add a 'Total' column that sums up the total immigrants by country over the entire period 1980 - 2013, as follows:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [],
"source": [
"df_can['Total'] = df_can.sum(axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We can check to see how many null objects we have in the dataset as follows:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Country 0\n",
"Continent 0\n",
"Region 0\n",
"DevName 0\n",
"1980 0\n",
"1981 0\n",
"1982 0\n",
"1983 0\n",
"1984 0\n",
"1985 0\n",
"1986 0\n",
"1987 0\n",
"1988 0\n",
"1989 0\n",
"1990 0\n",
"1991 0\n",
"1992 0\n",
"1993 0\n",
"1994 0\n",
"1995 0\n",
"1996 0\n",
"1997 0\n",
"1998 0\n",
"1999 0\n",
"2000 0\n",
"2001 0\n",
"2002 0\n",
"2003 0\n",
"2004 0\n",
"2005 0\n",
"2006 0\n",
"2007 0\n",
"2008 0\n",
"2009 0\n",
"2010 0\n",
"2011 0\n",
"2012 0\n",
"2013 0\n",
"Total 0\n",
"dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.isnull().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Finally, let's view a quick summary of each column in our dataframe using the `describe()` method."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>1986</th>\n",
" <th>1987</th>\n",
" <th>1988</th>\n",
" <th>1989</th>\n",
" <th>...</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>Total</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>...</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" <td>195.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>508.394872</td>\n",
" <td>566.989744</td>\n",
" <td>534.723077</td>\n",
" <td>387.435897</td>\n",
" <td>376.497436</td>\n",
" <td>358.861538</td>\n",
" <td>441.271795</td>\n",
" <td>691.133333</td>\n",
" <td>714.389744</td>\n",
" <td>843.241026</td>\n",
" <td>...</td>\n",
" <td>1320.292308</td>\n",
" <td>1266.958974</td>\n",
" <td>1191.820513</td>\n",
" <td>1246.394872</td>\n",
" <td>1275.733333</td>\n",
" <td>1420.287179</td>\n",
" <td>1262.533333</td>\n",
" <td>1313.958974</td>\n",
" <td>1320.702564</td>\n",
" <td>32867.451282</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>1949.588546</td>\n",
" <td>2152.643752</td>\n",
" <td>1866.997511</td>\n",
" <td>1204.333597</td>\n",
" <td>1198.246371</td>\n",
" <td>1079.309600</td>\n",
" <td>1225.576630</td>\n",
" <td>2109.205607</td>\n",
" <td>2443.606788</td>\n",
" <td>2555.048874</td>\n",
" <td>...</td>\n",
" <td>4425.957828</td>\n",
" <td>3926.717747</td>\n",
" <td>3443.542409</td>\n",
" <td>3694.573544</td>\n",
" <td>3829.630424</td>\n",
" <td>4462.946328</td>\n",
" <td>4030.084313</td>\n",
" <td>4247.555161</td>\n",
" <td>4237.951988</td>\n",
" <td>91785.498686</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.500000</td>\n",
" <td>0.500000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>...</td>\n",
" <td>28.500000</td>\n",
" <td>25.000000</td>\n",
" <td>31.000000</td>\n",
" <td>31.000000</td>\n",
" <td>36.000000</td>\n",
" <td>40.500000</td>\n",
" <td>37.500000</td>\n",
" <td>42.500000</td>\n",
" <td>45.000000</td>\n",
" <td>952.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>13.000000</td>\n",
" <td>10.000000</td>\n",
" <td>11.000000</td>\n",
" <td>12.000000</td>\n",
" <td>13.000000</td>\n",
" <td>17.000000</td>\n",
" <td>18.000000</td>\n",
" <td>26.000000</td>\n",
" <td>34.000000</td>\n",
" <td>44.000000</td>\n",
" <td>...</td>\n",
" <td>210.000000</td>\n",
" <td>218.000000</td>\n",
" <td>198.000000</td>\n",
" <td>205.000000</td>\n",
" <td>214.000000</td>\n",
" <td>211.000000</td>\n",
" <td>179.000000</td>\n",
" <td>233.000000</td>\n",
" <td>213.000000</td>\n",
" <td>5018.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>251.500000</td>\n",
" <td>295.500000</td>\n",
" <td>275.000000</td>\n",
" <td>173.000000</td>\n",
" <td>181.000000</td>\n",
" <td>197.000000</td>\n",
" <td>254.000000</td>\n",
" <td>434.000000</td>\n",
" <td>409.000000</td>\n",
" <td>508.500000</td>\n",
" <td>...</td>\n",
" <td>832.000000</td>\n",
" <td>842.000000</td>\n",
" <td>899.000000</td>\n",
" <td>934.500000</td>\n",
" <td>888.000000</td>\n",
" <td>932.000000</td>\n",
" <td>772.000000</td>\n",
" <td>783.000000</td>\n",
" <td>796.000000</td>\n",
" <td>22239.500000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>22045.000000</td>\n",
" <td>24796.000000</td>\n",
" <td>20620.000000</td>\n",
" <td>10015.000000</td>\n",
" <td>10170.000000</td>\n",
" <td>9564.000000</td>\n",
" <td>9470.000000</td>\n",
" <td>21337.000000</td>\n",
" <td>27359.000000</td>\n",
" <td>23795.000000</td>\n",
" <td>...</td>\n",
" <td>42584.000000</td>\n",
" <td>33848.000000</td>\n",
" <td>28742.000000</td>\n",
" <td>30037.000000</td>\n",
" <td>29622.000000</td>\n",
" <td>38617.000000</td>\n",
" <td>36765.000000</td>\n",
" <td>34315.000000</td>\n",
" <td>34129.000000</td>\n",
" <td>691904.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>8 rows × 35 columns</p>\n",
"</div>"
],
"text/plain": [
" 1980 1981 1982 1983 1984 \\\n",
"count 195.000000 195.000000 195.000000 195.000000 195.000000 \n",
"mean 508.394872 566.989744 534.723077 387.435897 376.497436 \n",
"std 1949.588546 2152.643752 1866.997511 1204.333597 1198.246371 \n",
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
"25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
"50% 13.000000 10.000000 11.000000 12.000000 13.000000 \n",
"75% 251.500000 295.500000 275.000000 173.000000 181.000000 \n",
"max 22045.000000 24796.000000 20620.000000 10015.000000 10170.000000 \n",
"\n",
" 1985 1986 1987 1988 1989 \\\n",
"count 195.000000 195.000000 195.000000 195.000000 195.000000 \n",
"mean 358.861538 441.271795 691.133333 714.389744 843.241026 \n",
"std 1079.309600 1225.576630 2109.205607 2443.606788 2555.048874 \n",
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
"25% 0.000000 0.500000 0.500000 1.000000 1.000000 \n",
"50% 17.000000 18.000000 26.000000 34.000000 44.000000 \n",
"75% 197.000000 254.000000 434.000000 409.000000 508.500000 \n",
"max 9564.000000 9470.000000 21337.000000 27359.000000 23795.000000 \n",
"\n",
" ... 2005 2006 2007 2008 \\\n",
"count ... 195.000000 195.000000 195.000000 195.000000 \n",
"mean ... 1320.292308 1266.958974 1191.820513 1246.394872 \n",
"std ... 4425.957828 3926.717747 3443.542409 3694.573544 \n",
"min ... 0.000000 0.000000 0.000000 0.000000 \n",
"25% ... 28.500000 25.000000 31.000000 31.000000 \n",
"50% ... 210.000000 218.000000 198.000000 205.000000 \n",
"75% ... 832.000000 842.000000 899.000000 934.500000 \n",
"max ... 42584.000000 33848.000000 28742.000000 30037.000000 \n",
"\n",
" 2009 2010 2011 2012 2013 \\\n",
"count 195.000000 195.000000 195.000000 195.000000 195.000000 \n",
"mean 1275.733333 1420.287179 1262.533333 1313.958974 1320.702564 \n",
"std 3829.630424 4462.946328 4030.084313 4247.555161 4237.951988 \n",
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
"25% 36.000000 40.500000 37.500000 42.500000 45.000000 \n",
"50% 214.000000 211.000000 179.000000 233.000000 213.000000 \n",
"75% 888.000000 932.000000 772.000000 783.000000 796.000000 \n",
"max 29622.000000 38617.000000 36765.000000 34315.000000 34129.000000 \n",
"\n",
" Total \n",
"count 195.000000 \n",
"mean 32867.451282 \n",
"std 91785.498686 \n",
"min 1.000000 \n",
"25% 952.000000 \n",
"50% 5018.000000 \n",
"75% 22239.500000 \n",
"max 691904.000000 \n",
"\n",
"[8 rows x 35 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"---\n",
"## *pandas* Intermediate: Indexing and Selection (slicing)<a id=\"6\"></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Select Column\n",
"**There are two ways to filter on a column name:**\n",
"\n",
"Method 1: Quick and easy, but only works if the column name does NOT have spaces or special characters.\n",
"```python\n",
" df.column_name \n",
" (returns series)\n",
"```\n",
"\n",
"Method 2: More robust, and can filter on multiple columns.\n",
"\n",
"```python\n",
" df['column'] \n",
" (returns series)\n",
"```\n",
"\n",
"```python \n",
" df[['column 1', 'column 2']] \n",
" (returns dataframe)\n",
"```\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Example: Let's try filtering on the list of countries ('Country')."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"0 Afghanistan\n",
"1 Albania\n",
"2 Algeria\n",
"3 American Samoa\n",
"4 Andorra\n",
"5 Angola\n",
"6 Antigua and Barbuda\n",
"7 Argentina\n",
"8 Armenia\n",
"9 Australia\n",
"10 Austria\n",
"11 Azerbaijan\n",
"12 Bahamas\n",
"13 Bahrain\n",
"14 Bangladesh\n",
"15 Barbados\n",
"16 Belarus\n",
"17 Belgium\n",
"18 Belize\n",
"19 Benin\n",
"20 Bhutan\n",
"21 Bolivia (Plurinational State of)\n",
"22 Bosnia and Herzegovina\n",
"23 Botswana\n",
"24 Brazil\n",
"25 Brunei Darussalam\n",
"26 Bulgaria\n",
"27 Burkina Faso\n",
"28 Burundi\n",
"29 Cabo Verde\n",
" ... \n",
"165 Suriname\n",
"166 Swaziland\n",
"167 Sweden\n",
"168 Switzerland\n",
"169 Syrian Arab Republic\n",
"170 Tajikistan\n",
"171 Thailand\n",
"172 The former Yugoslav Republic of Macedonia\n",
"173 Togo\n",
"174 Tonga\n",
"175 Trinidad and Tobago\n",
"176 Tunisia\n",
"177 Turkey\n",
"178 Turkmenistan\n",
"179 Tuvalu\n",
"180 Uganda\n",
"181 Ukraine\n",
"182 United Arab Emirates\n",
"183 United Kingdom of Great Britain and Northern I...\n",
"184 United Republic of Tanzania\n",
"185 United States of America\n",
"186 Uruguay\n",
"187 Uzbekistan\n",
"188 Vanuatu\n",
"189 Venezuela (Bolivarian Republic of)\n",
"190 Viet Nam\n",
"191 Western Sahara\n",
"192 Yemen\n",
"193 Zambia\n",
"194 Zimbabwe\n",
"Name: Country, Length: 195, dtype: object"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.Country # returns a series"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Let's try filtering on the list of countries ('OdName') and the data for years: 1980 - 1985."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Country</th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Afghanistan</td>\n",
" <td>16</td>\n",
" <td>39</td>\n",
" <td>39</td>\n",
" <td>47</td>\n",
" <td>71</td>\n",
" <td>340</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Albania</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Algeria</td>\n",
" <td>80</td>\n",
" <td>67</td>\n",
" <td>71</td>\n",
" <td>69</td>\n",
" <td>63</td>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>American Samoa</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Andorra</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Angola</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>6</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Antigua and Barbuda</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>42</td>\n",
" <td>52</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Argentina</td>\n",
" <td>368</td>\n",
" <td>426</td>\n",
" <td>626</td>\n",
" <td>241</td>\n",
" <td>237</td>\n",
" <td>196</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Armenia</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Australia</td>\n",
" <td>702</td>\n",
" <td>639</td>\n",
" <td>484</td>\n",
" <td>317</td>\n",
" <td>317</td>\n",
" <td>319</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Austria</td>\n",
" <td>234</td>\n",
" <td>238</td>\n",
" <td>201</td>\n",
" <td>117</td>\n",
" <td>127</td>\n",
" <td>165</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Azerbaijan</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Bahamas</td>\n",
" <td>26</td>\n",
" <td>23</td>\n",
" <td>38</td>\n",
" <td>12</td>\n",
" <td>21</td>\n",
" <td>28</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Bahrain</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Bangladesh</td>\n",
" <td>83</td>\n",
" <td>84</td>\n",
" <td>86</td>\n",
" <td>81</td>\n",
" <td>98</td>\n",
" <td>92</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Barbados</td>\n",
" <td>372</td>\n",
" <td>376</td>\n",
" <td>299</td>\n",
" <td>244</td>\n",
" <td>265</td>\n",
" <td>285</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Belarus</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Belgium</td>\n",
" <td>511</td>\n",
" <td>540</td>\n",
" <td>519</td>\n",
" <td>297</td>\n",
" <td>183</td>\n",
" <td>181</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Belize</td>\n",
" <td>16</td>\n",
" <td>27</td>\n",
" <td>13</td>\n",
" <td>21</td>\n",
" <td>37</td>\n",
" <td>26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Benin</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Bhutan</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Bolivia (Plurinational State of)</td>\n",
" <td>44</td>\n",
" <td>52</td>\n",
" <td>42</td>\n",
" <td>49</td>\n",
" <td>38</td>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Bosnia and Herzegovina</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Botswana</td>\n",
" <td>10</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>7</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Brazil</td>\n",
" <td>211</td>\n",
" <td>220</td>\n",
" <td>192</td>\n",
" <td>139</td>\n",
" <td>145</td>\n",
" <td>130</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>Brunei Darussalam</td>\n",
" <td>79</td>\n",
" <td>6</td>\n",
" <td>8</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Bulgaria</td>\n",
" <td>24</td>\n",
" <td>20</td>\n",
" <td>12</td>\n",
" <td>33</td>\n",
" <td>11</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>Burkina Faso</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Burundi</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>Cabo Verde</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>11</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>165</th>\n",
" <td>Suriname</td>\n",
" <td>15</td>\n",
" <td>10</td>\n",
" <td>21</td>\n",
" <td>12</td>\n",
" <td>5</td>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>166</th>\n",
" <td>Swaziland</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>167</th>\n",
" <td>Sweden</td>\n",
" <td>281</td>\n",
" <td>308</td>\n",
" <td>222</td>\n",
" <td>176</td>\n",
" <td>128</td>\n",
" <td>158</td>\n",
" </tr>\n",
" <tr>\n",
" <th>168</th>\n",
" <td>Switzerland</td>\n",
" <td>806</td>\n",
" <td>811</td>\n",
" <td>634</td>\n",
" <td>370</td>\n",
" <td>326</td>\n",
" <td>314</td>\n",
" </tr>\n",
" <tr>\n",
" <th>169</th>\n",
" <td>Syrian Arab Republic</td>\n",
" <td>315</td>\n",
" <td>419</td>\n",
" <td>409</td>\n",
" <td>269</td>\n",
" <td>264</td>\n",
" <td>385</td>\n",
" </tr>\n",
" <tr>\n",
" <th>170</th>\n",
" <td>Tajikistan</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>171</th>\n",
" <td>Thailand</td>\n",
" <td>56</td>\n",
" <td>53</td>\n",
" <td>113</td>\n",
" <td>65</td>\n",
" <td>82</td>\n",
" <td>66</td>\n",
" </tr>\n",
" <tr>\n",
" <th>172</th>\n",
" <td>The former Yugoslav Republic of Macedonia</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>173</th>\n",
" <td>Togo</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>174</th>\n",
" <td>Tonga</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>175</th>\n",
" <td>Trinidad and Tobago</td>\n",
" <td>958</td>\n",
" <td>947</td>\n",
" <td>972</td>\n",
" <td>766</td>\n",
" <td>606</td>\n",
" <td>699</td>\n",
" </tr>\n",
" <tr>\n",
" <th>176</th>\n",
" <td>Tunisia</td>\n",
" <td>58</td>\n",
" <td>51</td>\n",
" <td>55</td>\n",
" <td>46</td>\n",
" <td>51</td>\n",
" <td>57</td>\n",
" </tr>\n",
" <tr>\n",
" <th>177</th>\n",
" <td>Turkey</td>\n",
" <td>481</td>\n",
" <td>874</td>\n",
" <td>706</td>\n",
" <td>280</td>\n",
" <td>338</td>\n",
" <td>202</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178</th>\n",
" <td>Turkmenistan</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>179</th>\n",
" <td>Tuvalu</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>180</th>\n",
" <td>Uganda</td>\n",
" <td>13</td>\n",
" <td>16</td>\n",
" <td>17</td>\n",
" <td>38</td>\n",
" <td>32</td>\n",
" <td>29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>181</th>\n",
" <td>Ukraine</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>182</th>\n",
" <td>United Arab Emirates</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>183</th>\n",
" <td>United Kingdom of Great Britain and Northern I...</td>\n",
" <td>22045</td>\n",
" <td>24796</td>\n",
" <td>20620</td>\n",
" <td>10015</td>\n",
" <td>10170</td>\n",
" <td>9564</td>\n",
" </tr>\n",
" <tr>\n",
" <th>184</th>\n",
" <td>United Republic of Tanzania</td>\n",
" <td>635</td>\n",
" <td>832</td>\n",
" <td>621</td>\n",
" <td>474</td>\n",
" <td>473</td>\n",
" <td>460</td>\n",
" </tr>\n",
" <tr>\n",
" <th>185</th>\n",
" <td>United States of America</td>\n",
" <td>9378</td>\n",
" <td>10030</td>\n",
" <td>9074</td>\n",
" <td>7100</td>\n",
" <td>6661</td>\n",
" <td>6543</td>\n",
" </tr>\n",
" <tr>\n",
" <th>186</th>\n",
" <td>Uruguay</td>\n",
" <td>128</td>\n",
" <td>132</td>\n",
" <td>146</td>\n",
" <td>105</td>\n",
" <td>90</td>\n",
" <td>92</td>\n",
" </tr>\n",
" <tr>\n",
" <th>187</th>\n",
" <td>Uzbekistan</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>188</th>\n",
" <td>Vanuatu</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>189</th>\n",
" <td>Venezuela (Bolivarian Republic of)</td>\n",
" <td>103</td>\n",
" <td>117</td>\n",
" <td>174</td>\n",
" <td>124</td>\n",
" <td>142</td>\n",
" <td>165</td>\n",
" </tr>\n",
" <tr>\n",
" <th>190</th>\n",
" <td>Viet Nam</td>\n",
" <td>1191</td>\n",
" <td>1829</td>\n",
" <td>2162</td>\n",
" <td>3404</td>\n",
" <td>7583</td>\n",
" <td>5907</td>\n",
" </tr>\n",
" <tr>\n",
" <th>191</th>\n",
" <td>Western Sahara</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>192</th>\n",
" <td>Yemen</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>0</td>\n",
" <td>18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>193</th>\n",
" <td>Zambia</td>\n",
" <td>11</td>\n",
" <td>17</td>\n",
" <td>11</td>\n",
" <td>7</td>\n",
" <td>16</td>\n",
" <td>9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>194</th>\n",
" <td>Zimbabwe</td>\n",
" <td>72</td>\n",
" <td>114</td>\n",
" <td>102</td>\n",
" <td>44</td>\n",
" <td>32</td>\n",
" <td>29</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>195 rows × 7 columns</p>\n",
"</div>"
],
"text/plain": [
" Country 1980 1981 1982 \\\n",
"0 Afghanistan 16 39 39 \n",
"1 Albania 1 0 0 \n",
"2 Algeria 80 67 71 \n",
"3 American Samoa 0 1 0 \n",
"4 Andorra 0 0 0 \n",
"5 Angola 1 3 6 \n",
"6 Antigua and Barbuda 0 0 0 \n",
"7 Argentina 368 426 626 \n",
"8 Armenia 0 0 0 \n",
"9 Australia 702 639 484 \n",
"10 Austria 234 238 201 \n",
"11 Azerbaijan 0 0 0 \n",
"12 Bahamas 26 23 38 \n",
"13 Bahrain 0 2 1 \n",
"14 Bangladesh 83 84 86 \n",
"15 Barbados 372 376 299 \n",
"16 Belarus 0 0 0 \n",
"17 Belgium 511 540 519 \n",
"18 Belize 16 27 13 \n",
"19 Benin 2 5 4 \n",
"20 Bhutan 0 0 0 \n",
"21 Bolivia (Plurinational State of) 44 52 42 \n",
"22 Bosnia and Herzegovina 0 0 0 \n",
"23 Botswana 10 1 3 \n",
"24 Brazil 211 220 192 \n",
"25 Brunei Darussalam 79 6 8 \n",
"26 Bulgaria 24 20 12 \n",
"27 Burkina Faso 2 1 3 \n",
"28 Burundi 0 0 0 \n",
"29 Cabo Verde 1 1 2 \n",
".. ... ... ... ... \n",
"165 Suriname 15 10 21 \n",
"166 Swaziland 4 1 1 \n",
"167 Sweden 281 308 222 \n",
"168 Switzerland 806 811 634 \n",
"169 Syrian Arab Republic 315 419 409 \n",
"170 Tajikistan 0 0 0 \n",
"171 Thailand 56 53 113 \n",
"172 The former Yugoslav Republic of Macedonia 0 0 0 \n",
"173 Togo 5 5 2 \n",
"174 Tonga 2 4 7 \n",
"175 Trinidad and Tobago 958 947 972 \n",
"176 Tunisia 58 51 55 \n",
"177 Turkey 481 874 706 \n",
"178 Turkmenistan 0 0 0 \n",
"179 Tuvalu 0 1 0 \n",
"180 Uganda 13 16 17 \n",
"181 Ukraine 0 0 0 \n",
"182 United Arab Emirates 0 2 2 \n",
"183 United Kingdom of Great Britain and Northern I... 22045 24796 20620 \n",
"184 United Republic of Tanzania 635 832 621 \n",
"185 United States of America 9378 10030 9074 \n",
"186 Uruguay 128 132 146 \n",
"187 Uzbekistan 0 0 0 \n",
"188 Vanuatu 0 0 0 \n",
"189 Venezuela (Bolivarian Republic of) 103 117 174 \n",
"190 Viet Nam 1191 1829 2162 \n",
"191 Western Sahara 0 0 0 \n",
"192 Yemen 1 2 1 \n",
"193 Zambia 11 17 11 \n",
"194 Zimbabwe 72 114 102 \n",
"\n",
" 1983 1984 1985 \n",
"0 47 71 340 \n",
"1 0 0 0 \n",
"2 69 63 44 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
"5 6 4 3 \n",
"6 0 42 52 \n",
"7 241 237 196 \n",
"8 0 0 0 \n",
"9 317 317 319 \n",
"10 117 127 165 \n",
"11 0 0 0 \n",
"12 12 21 28 \n",
"13 1 1 3 \n",
"14 81 98 92 \n",
"15 244 265 285 \n",
"16 0 0 0 \n",
"17 297 183 181 \n",
"18 21 37 26 \n",
"19 3 4 3 \n",
"20 0 1 0 \n",
"21 49 38 44 \n",
"22 0 0 0 \n",
"23 3 7 4 \n",
"24 139 145 130 \n",
"25 2 2 4 \n",
"26 33 11 24 \n",
"27 2 3 2 \n",
"28 0 1 2 \n",
"29 0 11 1 \n",
".. ... ... ... \n",
"165 12 5 16 \n",
"166 0 10 7 \n",
"167 176 128 158 \n",
"168 370 326 314 \n",
"169 269 264 385 \n",
"170 0 0 0 \n",
"171 65 82 66 \n",
"172 0 0 0 \n",
"173 3 6 5 \n",
"174 1 2 5 \n",
"175 766 606 699 \n",
"176 46 51 57 \n",
"177 280 338 202 \n",
"178 0 0 0 \n",
"179 0 1 0 \n",
"180 38 32 29 \n",
"181 0 0 0 \n",
"182 1 2 0 \n",
"183 10015 10170 9564 \n",
"184 474 473 460 \n",
"185 7100 6661 6543 \n",
"186 105 90 92 \n",
"187 0 0 0 \n",
"188 0 0 0 \n",
"189 124 142 165 \n",
"190 3404 7583 5907 \n",
"191 0 0 0 \n",
"192 6 0 18 \n",
"193 7 16 9 \n",
"194 44 32 29 \n",
"\n",
"[195 rows x 7 columns]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can[['Country', 1980, 1981, 1982, 1983, 1984, 1985]] # returns a dataframe\n",
"# notice that 'Country' is string, and the years are integers. \n",
"# for the sake of consistency, we will convert all column names to string later on."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Select Row\n",
"\n",
"There are main 3 ways to select rows:\n",
"\n",
"```python\n",
" df.loc[label] \n",
" #filters by the labels of the index/column\n",
" df.iloc[index] \n",
" #filters by the positions of the index/column\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Before we proceed, notice that the defaul index of the dataset is a numeric range from 0 to 194. This makes it very difficult to do a query by a specific country. For example to search for data on Japan, we need to know the corressponding index value.\n",
"\n",
"This can be fixed very easily by setting the 'Country' column as the index using `set_index()` method."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [],
"source": [
"df_can.set_index('Country', inplace=True)\n",
"# tip: The opposite of set is reset. So to reset the index, we can use df_can.reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Continent</th>\n",
" <th>Region</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>1986</th>\n",
" <th>...</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>Total</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Country</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Afghanistan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>16</td>\n",
" <td>39</td>\n",
" <td>39</td>\n",
" <td>47</td>\n",
" <td>71</td>\n",
" <td>340</td>\n",
" <td>496</td>\n",
" <td>...</td>\n",
" <td>3436</td>\n",
" <td>3009</td>\n",
" <td>2652</td>\n",
" <td>2111</td>\n",
" <td>1746</td>\n",
" <td>1758</td>\n",
" <td>2203</td>\n",
" <td>2635</td>\n",
" <td>2004</td>\n",
" <td>58639</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Albania</th>\n",
" <td>Europe</td>\n",
" <td>Southern Europe</td>\n",
" <td>Developed regions</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>1223</td>\n",
" <td>856</td>\n",
" <td>702</td>\n",
" <td>560</td>\n",
" <td>716</td>\n",
" <td>561</td>\n",
" <td>539</td>\n",
" <td>620</td>\n",
" <td>603</td>\n",
" <td>15699</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Algeria</th>\n",
" <td>Africa</td>\n",
" <td>Northern Africa</td>\n",
" <td>Developing regions</td>\n",
" <td>80</td>\n",
" <td>67</td>\n",
" <td>71</td>\n",
" <td>69</td>\n",
" <td>63</td>\n",
" <td>44</td>\n",
" <td>69</td>\n",
" <td>...</td>\n",
" <td>3626</td>\n",
" <td>4807</td>\n",
" <td>3623</td>\n",
" <td>4005</td>\n",
" <td>5393</td>\n",
" <td>4752</td>\n",
" <td>4325</td>\n",
" <td>3774</td>\n",
" <td>4331</td>\n",
" <td>69439</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" Continent Region DevName 1980 1981 1982 \\\n",
"Country \n",
"Afghanistan Asia Southern Asia Developing regions 16 39 39 \n",
"Albania Europe Southern Europe Developed regions 1 0 0 \n",
"Algeria Africa Northern Africa Developing regions 80 67 71 \n",
"\n",
" 1983 1984 1985 1986 ... 2005 2006 2007 2008 2009 2010 \\\n",
"Country ... \n",
"Afghanistan 47 71 340 496 ... 3436 3009 2652 2111 1746 1758 \n",
"Albania 0 0 0 1 ... 1223 856 702 560 716 561 \n",
"Algeria 69 63 44 69 ... 3626 4807 3623 4005 5393 4752 \n",
"\n",
" 2011 2012 2013 Total \n",
"Country \n",
"Afghanistan 2203 2635 2004 58639 \n",
"Albania 539 620 603 15699 \n",
"Algeria 4325 3774 4331 69439 \n",
"\n",
"[3 rows x 38 columns]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_can.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [],
"source": [
"# optional: to remove the name of the index\n",
"df_can.index.name = None"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Example: Let's view the number of immigrants from Japan (row 87) for the following scenarios:\n",
" 1. The full row data (all columns)\n",
" 2. For year 2013\n",
" 3. For years 1980 to 1985"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Continent Asia\n",
"Region Eastern Asia\n",
"DevName Developed regions\n",
"1980 701\n",
"1981 756\n",
"1982 598\n",
"1983 309\n",
"1984 246\n",
"1985 198\n",
"1986 248\n",
"1987 422\n",
"1988 324\n",
"1989 494\n",
"1990 379\n",
"1991 506\n",
"1992 605\n",
"1993 907\n",
"1994 956\n",
"1995 826\n",
"1996 994\n",
"1997 924\n",
"1998 897\n",
"1999 1083\n",
"2000 1010\n",
"2001 1092\n",
"2002 806\n",
"2003 817\n",
"2004 973\n",
"2005 1067\n",
"2006 1212\n",
"2007 1250\n",
"2008 1284\n",
"2009 1194\n",
"2010 1168\n",
"2011 1265\n",
"2012 1214\n",
"2013 982\n",
"Total 27707\n",
"Name: Japan, dtype: object\n",
"Continent Asia\n",
"Region Eastern Asia\n",
"DevName Developed regions\n",
"1980 701\n",
"1981 756\n",
"1982 598\n",
"1983 309\n",
"1984 246\n",
"1985 198\n",
"1986 248\n",
"1987 422\n",
"1988 324\n",
"1989 494\n",
"1990 379\n",
"1991 506\n",
"1992 605\n",
"1993 907\n",
"1994 956\n",
"1995 826\n",
"1996 994\n",
"1997 924\n",
"1998 897\n",
"1999 1083\n",
"2000 1010\n",
"2001 1092\n",
"2002 806\n",
"2003 817\n",
"2004 973\n",
"2005 1067\n",
"2006 1212\n",
"2007 1250\n",
"2008 1284\n",
"2009 1194\n",
"2010 1168\n",
"2011 1265\n",
"2012 1214\n",
"2013 982\n",
"Total 27707\n",
"Name: Japan, dtype: object\n",
"Continent Asia\n",
"Region Eastern Asia\n",
"DevName Developed regions\n",
"1980 701\n",
"1981 756\n",
"1982 598\n",
"1983 309\n",
"1984 246\n",
"1985 198\n",
"1986 248\n",
"1987 422\n",
"1988 324\n",
"1989 494\n",
"1990 379\n",
"1991 506\n",
"1992 605\n",
"1993 907\n",
"1994 956\n",
"1995 826\n",
"1996 994\n",
"1997 924\n",
"1998 897\n",
"1999 1083\n",
"2000 1010\n",
"2001 1092\n",
"2002 806\n",
"2003 817\n",
"2004 973\n",
"2005 1067\n",
"2006 1212\n",
"2007 1250\n",
"2008 1284\n",
"2009 1194\n",
"2010 1168\n",
"2011 1265\n",
"2012 1214\n",
"2013 982\n",
"Total 27707\n",
"Name: Japan, dtype: object\n"
]
}
],
"source": [
"# 1. the full row data (all columns)\n",
"print(df_can.loc['Japan'])\n",
"\n",
"# alternate methods\n",
"print(df_can.iloc[87])\n",
"print(df_can[df_can.index == 'Japan'].T.squeeze())"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"982\n",
"982\n"
]
}
],
"source": [
"# 2. for year 2013\n",
"print(df_can.loc['Japan', 2013])\n",
"\n",
"# alternate method\n",
"print(df_can.iloc[87, 36]) # year 2013 is the last column, with a positional index of 36"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1980 701\n",
"1981 756\n",
"1982 598\n",
"1983 309\n",
"1984 246\n",
"1984 246\n",
"Name: Japan, dtype: object\n",
"1980 701\n",
"1981 756\n",
"1982 598\n",
"1983 309\n",
"1984 246\n",
"1985 198\n",
"Name: Japan, dtype: object\n"
]
}
],
"source": [
"# 3. for years 1980 to 1985\n",
"print(df_can.loc['Japan', [1980, 1981, 1982, 1983, 1984, 1984]])\n",
"print(df_can.iloc[87, [3, 4, 5, 6, 7, 8]])"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Column names that are integers (such as the years) might introduce some confusion. For example, when we are referencing the year 2013, one might confuse that when the 2013th positional index. \n",
"\n",
"To avoid this ambuigity, let's convert the column names into strings: '1980' to '2013'."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [],
"source": [
"df_can.columns = list(map(str, df_can.columns))\n",
"# [print (type(x)) for x in df_can.columns.values] #<-- uncomment to check type of column headers"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Since we converted the years to string, let's declare a variable that will allow us to easily call upon the full range of years:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"['1980',\n",
" '1981',\n",
" '1982',\n",
" '1983',\n",
" '1984',\n",
" '1985',\n",
" '1986',\n",
" '1987',\n",
" '1988',\n",
" '1989',\n",
" '1990',\n",
" '1991',\n",
" '1992',\n",
" '1993',\n",
" '1994',\n",
" '1995',\n",
" '1996',\n",
" '1997',\n",
" '1998',\n",
" '1999',\n",
" '2000',\n",
" '2001',\n",
" '2002',\n",
" '2003',\n",
" '2004',\n",
" '2005',\n",
" '2006',\n",
" '2007',\n",
" '2008',\n",
" '2009',\n",
" '2010',\n",
" '2011',\n",
" '2012',\n",
" '2013']"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# useful for plotting later on\n",
"years = list(map(str, range(1980, 2014)))\n",
"years"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Filtering based on a criteria\n",
"To filter the dataframe based on a condition, we simply pass the condition as a boolean vector. \n",
"\n",
"For example, Let's filter the dataframe to show the data on Asian countries (AreaName = Asia)."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Afghanistan True\n",
"Albania False\n",
"Algeria False\n",
"American Samoa False\n",
"Andorra False\n",
"Angola False\n",
"Antigua and Barbuda False\n",
"Argentina False\n",
"Armenia True\n",
"Australia False\n",
"Austria False\n",
"Azerbaijan True\n",
"Bahamas False\n",
"Bahrain True\n",
"Bangladesh True\n",
"Barbados False\n",
"Belarus False\n",
"Belgium False\n",
"Belize False\n",
"Benin False\n",
"Bhutan True\n",
"Bolivia (Plurinational State of) False\n",
"Bosnia and Herzegovina False\n",
"Botswana False\n",
"Brazil False\n",
"Brunei Darussalam True\n",
"Bulgaria False\n",
"Burkina Faso False\n",
"Burundi False\n",
"Cabo Verde False\n",
" ... \n",
"Suriname False\n",
"Swaziland False\n",
"Sweden False\n",
"Switzerland False\n",
"Syrian Arab Republic True\n",
"Tajikistan True\n",
"Thailand True\n",
"The former Yugoslav Republic of Macedonia False\n",
"Togo False\n",
"Tonga False\n",
"Trinidad and Tobago False\n",
"Tunisia False\n",
"Turkey True\n",
"Turkmenistan True\n",
"Tuvalu False\n",
"Uganda False\n",
"Ukraine False\n",
"United Arab Emirates True\n",
"United Kingdom of Great Britain and Northern Ireland False\n",
"United Republic of Tanzania False\n",
"United States of America False\n",
"Uruguay False\n",
"Uzbekistan True\n",
"Vanuatu False\n",
"Venezuela (Bolivarian Republic of) False\n",
"Viet Nam True\n",
"Western Sahara False\n",
"Yemen True\n",
"Zambia False\n",
"Zimbabwe False\n",
"Name: Continent, Length: 195, dtype: bool\n"
]
}
],
"source": [
"# 1. create the condition boolean series\n",
"condition = df_can['Continent'] == 'Asia'\n",
"print (condition)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Continent</th>\n",
" <th>Region</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>1986</th>\n",
" <th>...</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>Total</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Afghanistan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>16</td>\n",
" <td>39</td>\n",
" <td>39</td>\n",
" <td>47</td>\n",
" <td>71</td>\n",
" <td>340</td>\n",
" <td>496</td>\n",
" <td>...</td>\n",
" <td>3436</td>\n",
" <td>3009</td>\n",
" <td>2652</td>\n",
" <td>2111</td>\n",
" <td>1746</td>\n",
" <td>1758</td>\n",
" <td>2203</td>\n",
" <td>2635</td>\n",
" <td>2004</td>\n",
" <td>58639</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Armenia</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>224</td>\n",
" <td>218</td>\n",
" <td>198</td>\n",
" <td>205</td>\n",
" <td>267</td>\n",
" <td>252</td>\n",
" <td>236</td>\n",
" <td>258</td>\n",
" <td>207</td>\n",
" <td>3310</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Azerbaijan</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>359</td>\n",
" <td>236</td>\n",
" <td>203</td>\n",
" <td>125</td>\n",
" <td>165</td>\n",
" <td>209</td>\n",
" <td>138</td>\n",
" <td>161</td>\n",
" <td>57</td>\n",
" <td>2649</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bahrain</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>12</td>\n",
" <td>12</td>\n",
" <td>22</td>\n",
" <td>9</td>\n",
" <td>35</td>\n",
" <td>28</td>\n",
" <td>21</td>\n",
" <td>39</td>\n",
" <td>32</td>\n",
" <td>475</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bangladesh</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>83</td>\n",
" <td>84</td>\n",
" <td>86</td>\n",
" <td>81</td>\n",
" <td>98</td>\n",
" <td>92</td>\n",
" <td>486</td>\n",
" <td>...</td>\n",
" <td>4171</td>\n",
" <td>4014</td>\n",
" <td>2897</td>\n",
" <td>2939</td>\n",
" <td>2104</td>\n",
" <td>4721</td>\n",
" <td>2694</td>\n",
" <td>2640</td>\n",
" <td>3789</td>\n",
" <td>65568</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bhutan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>36</td>\n",
" <td>865</td>\n",
" <td>1464</td>\n",
" <td>1879</td>\n",
" <td>1075</td>\n",
" <td>487</td>\n",
" <td>5876</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Brunei Darussalam</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>79</td>\n",
" <td>6</td>\n",
" <td>8</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>12</td>\n",
" <td>...</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>11</td>\n",
" <td>10</td>\n",
" <td>5</td>\n",
" <td>12</td>\n",
" <td>6</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>600</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cambodia</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>12</td>\n",
" <td>19</td>\n",
" <td>26</td>\n",
" <td>33</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" <td>...</td>\n",
" <td>370</td>\n",
" <td>529</td>\n",
" <td>460</td>\n",
" <td>354</td>\n",
" <td>203</td>\n",
" <td>200</td>\n",
" <td>196</td>\n",
" <td>233</td>\n",
" <td>288</td>\n",
" <td>6538</td>\n",
" </tr>\n",
" <tr>\n",
" <th>China</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>5123</td>\n",
" <td>6682</td>\n",
" <td>3308</td>\n",
" <td>1863</td>\n",
" <td>1527</td>\n",
" <td>1816</td>\n",
" <td>1960</td>\n",
" <td>...</td>\n",
" <td>42584</td>\n",
" <td>33518</td>\n",
" <td>27642</td>\n",
" <td>30037</td>\n",
" <td>29622</td>\n",
" <td>30391</td>\n",
" <td>28502</td>\n",
" <td>33024</td>\n",
" <td>34129</td>\n",
" <td>659962</td>\n",
" </tr>\n",
" <tr>\n",
" <th>China, Hong Kong Special Administrative Region</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>729</td>\n",
" <td>712</td>\n",
" <td>674</td>\n",
" <td>897</td>\n",
" <td>657</td>\n",
" <td>623</td>\n",
" <td>591</td>\n",
" <td>728</td>\n",
" <td>774</td>\n",
" <td>9327</td>\n",
" </tr>\n",
" <tr>\n",
" <th>China, Macao Special Administrative Region</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>21</td>\n",
" <td>32</td>\n",
" <td>16</td>\n",
" <td>12</td>\n",
" <td>21</td>\n",
" <td>21</td>\n",
" <td>13</td>\n",
" <td>33</td>\n",
" <td>29</td>\n",
" <td>284</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cyprus</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>132</td>\n",
" <td>128</td>\n",
" <td>84</td>\n",
" <td>46</td>\n",
" <td>46</td>\n",
" <td>43</td>\n",
" <td>48</td>\n",
" <td>...</td>\n",
" <td>7</td>\n",
" <td>9</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>6</td>\n",
" <td>18</td>\n",
" <td>6</td>\n",
" <td>12</td>\n",
" <td>16</td>\n",
" <td>1126</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Democratic People's Republic of Korea</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>14</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>19</td>\n",
" <td>11</td>\n",
" <td>45</td>\n",
" <td>97</td>\n",
" <td>66</td>\n",
" <td>17</td>\n",
" <td>388</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Georgia</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>114</td>\n",
" <td>125</td>\n",
" <td>132</td>\n",
" <td>112</td>\n",
" <td>128</td>\n",
" <td>126</td>\n",
" <td>139</td>\n",
" <td>147</td>\n",
" <td>125</td>\n",
" <td>2068</td>\n",
" </tr>\n",
" <tr>\n",
" <th>India</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>8880</td>\n",
" <td>8670</td>\n",
" <td>8147</td>\n",
" <td>7338</td>\n",
" <td>5704</td>\n",
" <td>4211</td>\n",
" <td>7150</td>\n",
" <td>...</td>\n",
" <td>36210</td>\n",
" <td>33848</td>\n",
" <td>28742</td>\n",
" <td>28261</td>\n",
" <td>29456</td>\n",
" <td>34235</td>\n",
" <td>27509</td>\n",
" <td>30933</td>\n",
" <td>33087</td>\n",
" <td>691904</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Indonesia</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>186</td>\n",
" <td>178</td>\n",
" <td>252</td>\n",
" <td>115</td>\n",
" <td>123</td>\n",
" <td>100</td>\n",
" <td>127</td>\n",
" <td>...</td>\n",
" <td>632</td>\n",
" <td>613</td>\n",
" <td>657</td>\n",
" <td>661</td>\n",
" <td>504</td>\n",
" <td>712</td>\n",
" <td>390</td>\n",
" <td>395</td>\n",
" <td>387</td>\n",
" <td>13150</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Iran (Islamic Republic of)</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1172</td>\n",
" <td>1429</td>\n",
" <td>1822</td>\n",
" <td>1592</td>\n",
" <td>1977</td>\n",
" <td>1648</td>\n",
" <td>1794</td>\n",
" <td>...</td>\n",
" <td>5837</td>\n",
" <td>7480</td>\n",
" <td>6974</td>\n",
" <td>6475</td>\n",
" <td>6580</td>\n",
" <td>7477</td>\n",
" <td>7479</td>\n",
" <td>7534</td>\n",
" <td>11291</td>\n",
" <td>175923</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Iraq</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>262</td>\n",
" <td>245</td>\n",
" <td>260</td>\n",
" <td>380</td>\n",
" <td>428</td>\n",
" <td>231</td>\n",
" <td>265</td>\n",
" <td>...</td>\n",
" <td>2226</td>\n",
" <td>1788</td>\n",
" <td>2406</td>\n",
" <td>3543</td>\n",
" <td>5450</td>\n",
" <td>5941</td>\n",
" <td>6196</td>\n",
" <td>4041</td>\n",
" <td>4918</td>\n",
" <td>69789</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Israel</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1403</td>\n",
" <td>1711</td>\n",
" <td>1334</td>\n",
" <td>541</td>\n",
" <td>446</td>\n",
" <td>680</td>\n",
" <td>1212</td>\n",
" <td>...</td>\n",
" <td>2446</td>\n",
" <td>2625</td>\n",
" <td>2401</td>\n",
" <td>2562</td>\n",
" <td>2316</td>\n",
" <td>2755</td>\n",
" <td>1970</td>\n",
" <td>2134</td>\n",
" <td>1945</td>\n",
" <td>66508</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Japan</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developed regions</td>\n",
" <td>701</td>\n",
" <td>756</td>\n",
" <td>598</td>\n",
" <td>309</td>\n",
" <td>246</td>\n",
" <td>198</td>\n",
" <td>248</td>\n",
" <td>...</td>\n",
" <td>1067</td>\n",
" <td>1212</td>\n",
" <td>1250</td>\n",
" <td>1284</td>\n",
" <td>1194</td>\n",
" <td>1168</td>\n",
" <td>1265</td>\n",
" <td>1214</td>\n",
" <td>982</td>\n",
" <td>27707</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jordan</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>177</td>\n",
" <td>160</td>\n",
" <td>155</td>\n",
" <td>113</td>\n",
" <td>102</td>\n",
" <td>179</td>\n",
" <td>181</td>\n",
" <td>...</td>\n",
" <td>1940</td>\n",
" <td>1827</td>\n",
" <td>1421</td>\n",
" <td>1581</td>\n",
" <td>1235</td>\n",
" <td>1831</td>\n",
" <td>1635</td>\n",
" <td>1206</td>\n",
" <td>1255</td>\n",
" <td>35406</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Kazakhstan</th>\n",
" <td>Asia</td>\n",
" <td>Central Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>506</td>\n",
" <td>408</td>\n",
" <td>436</td>\n",
" <td>394</td>\n",
" <td>431</td>\n",
" <td>377</td>\n",
" <td>381</td>\n",
" <td>462</td>\n",
" <td>348</td>\n",
" <td>8490</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Kuwait</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>8</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>...</td>\n",
" <td>66</td>\n",
" <td>35</td>\n",
" <td>62</td>\n",
" <td>53</td>\n",
" <td>68</td>\n",
" <td>67</td>\n",
" <td>58</td>\n",
" <td>73</td>\n",
" <td>48</td>\n",
" <td>2025</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Kyrgyzstan</th>\n",
" <td>Asia</td>\n",
" <td>Central Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>173</td>\n",
" <td>161</td>\n",
" <td>135</td>\n",
" <td>168</td>\n",
" <td>173</td>\n",
" <td>157</td>\n",
" <td>159</td>\n",
" <td>278</td>\n",
" <td>123</td>\n",
" <td>2353</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lao People's Democratic Republic</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>11</td>\n",
" <td>6</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>7</td>\n",
" <td>17</td>\n",
" <td>21</td>\n",
" <td>...</td>\n",
" <td>42</td>\n",
" <td>74</td>\n",
" <td>53</td>\n",
" <td>32</td>\n",
" <td>39</td>\n",
" <td>54</td>\n",
" <td>22</td>\n",
" <td>25</td>\n",
" <td>15</td>\n",
" <td>1089</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lebanon</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1409</td>\n",
" <td>1119</td>\n",
" <td>1159</td>\n",
" <td>789</td>\n",
" <td>1253</td>\n",
" <td>1683</td>\n",
" <td>2576</td>\n",
" <td>...</td>\n",
" <td>3709</td>\n",
" <td>3802</td>\n",
" <td>3467</td>\n",
" <td>3566</td>\n",
" <td>3077</td>\n",
" <td>3432</td>\n",
" <td>3072</td>\n",
" <td>1614</td>\n",
" <td>2172</td>\n",
" <td>115359</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Malaysia</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>786</td>\n",
" <td>816</td>\n",
" <td>813</td>\n",
" <td>448</td>\n",
" <td>384</td>\n",
" <td>374</td>\n",
" <td>425</td>\n",
" <td>...</td>\n",
" <td>593</td>\n",
" <td>580</td>\n",
" <td>600</td>\n",
" <td>658</td>\n",
" <td>640</td>\n",
" <td>802</td>\n",
" <td>409</td>\n",
" <td>358</td>\n",
" <td>204</td>\n",
" <td>24417</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Maldives</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Mongolia</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>59</td>\n",
" <td>64</td>\n",
" <td>82</td>\n",
" <td>59</td>\n",
" <td>118</td>\n",
" <td>169</td>\n",
" <td>103</td>\n",
" <td>68</td>\n",
" <td>99</td>\n",
" <td>952</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Myanmar</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>80</td>\n",
" <td>62</td>\n",
" <td>46</td>\n",
" <td>31</td>\n",
" <td>41</td>\n",
" <td>23</td>\n",
" <td>18</td>\n",
" <td>...</td>\n",
" <td>210</td>\n",
" <td>953</td>\n",
" <td>1887</td>\n",
" <td>975</td>\n",
" <td>1153</td>\n",
" <td>556</td>\n",
" <td>368</td>\n",
" <td>193</td>\n",
" <td>262</td>\n",
" <td>9245</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Nepal</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>13</td>\n",
" <td>...</td>\n",
" <td>607</td>\n",
" <td>540</td>\n",
" <td>511</td>\n",
" <td>581</td>\n",
" <td>561</td>\n",
" <td>1392</td>\n",
" <td>1129</td>\n",
" <td>1185</td>\n",
" <td>1308</td>\n",
" <td>10222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Oman</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>8</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>14</td>\n",
" <td>18</td>\n",
" <td>16</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>14</td>\n",
" <td>10</td>\n",
" <td>13</td>\n",
" <td>11</td>\n",
" <td>224</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Pakistan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>978</td>\n",
" <td>972</td>\n",
" <td>1201</td>\n",
" <td>900</td>\n",
" <td>668</td>\n",
" <td>514</td>\n",
" <td>691</td>\n",
" <td>...</td>\n",
" <td>14314</td>\n",
" <td>13127</td>\n",
" <td>10124</td>\n",
" <td>8994</td>\n",
" <td>7217</td>\n",
" <td>6811</td>\n",
" <td>7468</td>\n",
" <td>11227</td>\n",
" <td>12603</td>\n",
" <td>241600</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Philippines</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>6051</td>\n",
" <td>5921</td>\n",
" <td>5249</td>\n",
" <td>4562</td>\n",
" <td>3801</td>\n",
" <td>3150</td>\n",
" <td>4166</td>\n",
" <td>...</td>\n",
" <td>18139</td>\n",
" <td>18400</td>\n",
" <td>19837</td>\n",
" <td>24887</td>\n",
" <td>28573</td>\n",
" <td>38617</td>\n",
" <td>36765</td>\n",
" <td>34315</td>\n",
" <td>29544</td>\n",
" <td>511391</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Qatar</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>11</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>9</td>\n",
" <td>6</td>\n",
" <td>18</td>\n",
" <td>3</td>\n",
" <td>14</td>\n",
" <td>6</td>\n",
" <td>157</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Republic of Korea</th>\n",
" <td>Asia</td>\n",
" <td>Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1011</td>\n",
" <td>1456</td>\n",
" <td>1572</td>\n",
" <td>1081</td>\n",
" <td>847</td>\n",
" <td>962</td>\n",
" <td>1208</td>\n",
" <td>...</td>\n",
" <td>5832</td>\n",
" <td>6215</td>\n",
" <td>5920</td>\n",
" <td>7294</td>\n",
" <td>5874</td>\n",
" <td>5537</td>\n",
" <td>4588</td>\n",
" <td>5316</td>\n",
" <td>4509</td>\n",
" <td>142581</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Saudi Arabia</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>198</td>\n",
" <td>252</td>\n",
" <td>188</td>\n",
" <td>249</td>\n",
" <td>246</td>\n",
" <td>330</td>\n",
" <td>278</td>\n",
" <td>286</td>\n",
" <td>267</td>\n",
" <td>3425</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Singapore</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>241</td>\n",
" <td>301</td>\n",
" <td>337</td>\n",
" <td>169</td>\n",
" <td>128</td>\n",
" <td>139</td>\n",
" <td>205</td>\n",
" <td>...</td>\n",
" <td>392</td>\n",
" <td>298</td>\n",
" <td>690</td>\n",
" <td>734</td>\n",
" <td>366</td>\n",
" <td>805</td>\n",
" <td>219</td>\n",
" <td>146</td>\n",
" <td>141</td>\n",
" <td>14579</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sri Lanka</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>185</td>\n",
" <td>371</td>\n",
" <td>290</td>\n",
" <td>197</td>\n",
" <td>1086</td>\n",
" <td>845</td>\n",
" <td>1838</td>\n",
" <td>...</td>\n",
" <td>4930</td>\n",
" <td>4714</td>\n",
" <td>4123</td>\n",
" <td>4756</td>\n",
" <td>4547</td>\n",
" <td>4422</td>\n",
" <td>3309</td>\n",
" <td>3338</td>\n",
" <td>2394</td>\n",
" <td>148358</td>\n",
" </tr>\n",
" <tr>\n",
" <th>State of Palestine</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>453</td>\n",
" <td>627</td>\n",
" <td>441</td>\n",
" <td>481</td>\n",
" <td>400</td>\n",
" <td>654</td>\n",
" <td>555</td>\n",
" <td>533</td>\n",
" <td>462</td>\n",
" <td>6512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Syrian Arab Republic</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>315</td>\n",
" <td>419</td>\n",
" <td>409</td>\n",
" <td>269</td>\n",
" <td>264</td>\n",
" <td>385</td>\n",
" <td>493</td>\n",
" <td>...</td>\n",
" <td>1458</td>\n",
" <td>1145</td>\n",
" <td>1056</td>\n",
" <td>919</td>\n",
" <td>917</td>\n",
" <td>1039</td>\n",
" <td>1005</td>\n",
" <td>650</td>\n",
" <td>1009</td>\n",
" <td>31485</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tajikistan</th>\n",
" <td>Asia</td>\n",
" <td>Central Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>85</td>\n",
" <td>46</td>\n",
" <td>44</td>\n",
" <td>15</td>\n",
" <td>50</td>\n",
" <td>52</td>\n",
" <td>47</td>\n",
" <td>34</td>\n",
" <td>39</td>\n",
" <td>503</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Thailand</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>56</td>\n",
" <td>53</td>\n",
" <td>113</td>\n",
" <td>65</td>\n",
" <td>82</td>\n",
" <td>66</td>\n",
" <td>78</td>\n",
" <td>...</td>\n",
" <td>575</td>\n",
" <td>500</td>\n",
" <td>487</td>\n",
" <td>519</td>\n",
" <td>512</td>\n",
" <td>499</td>\n",
" <td>396</td>\n",
" <td>296</td>\n",
" <td>400</td>\n",
" <td>9174</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Turkey</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>481</td>\n",
" <td>874</td>\n",
" <td>706</td>\n",
" <td>280</td>\n",
" <td>338</td>\n",
" <td>202</td>\n",
" <td>257</td>\n",
" <td>...</td>\n",
" <td>2065</td>\n",
" <td>1638</td>\n",
" <td>1463</td>\n",
" <td>1122</td>\n",
" <td>1238</td>\n",
" <td>1492</td>\n",
" <td>1257</td>\n",
" <td>1068</td>\n",
" <td>729</td>\n",
" <td>31781</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Turkmenistan</th>\n",
" <td>Asia</td>\n",
" <td>Central Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>40</td>\n",
" <td>26</td>\n",
" <td>37</td>\n",
" <td>13</td>\n",
" <td>20</td>\n",
" <td>30</td>\n",
" <td>20</td>\n",
" <td>20</td>\n",
" <td>14</td>\n",
" <td>310</td>\n",
" </tr>\n",
" <tr>\n",
" <th>United Arab Emirates</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>31</td>\n",
" <td>42</td>\n",
" <td>37</td>\n",
" <td>33</td>\n",
" <td>37</td>\n",
" <td>86</td>\n",
" <td>60</td>\n",
" <td>54</td>\n",
" <td>46</td>\n",
" <td>836</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Uzbekistan</th>\n",
" <td>Asia</td>\n",
" <td>Central Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>330</td>\n",
" <td>262</td>\n",
" <td>284</td>\n",
" <td>215</td>\n",
" <td>288</td>\n",
" <td>289</td>\n",
" <td>162</td>\n",
" <td>235</td>\n",
" <td>167</td>\n",
" <td>3368</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Viet Nam</th>\n",
" <td>Asia</td>\n",
" <td>South-Eastern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1191</td>\n",
" <td>1829</td>\n",
" <td>2162</td>\n",
" <td>3404</td>\n",
" <td>7583</td>\n",
" <td>5907</td>\n",
" <td>2741</td>\n",
" <td>...</td>\n",
" <td>1852</td>\n",
" <td>3153</td>\n",
" <td>2574</td>\n",
" <td>1784</td>\n",
" <td>2171</td>\n",
" <td>1942</td>\n",
" <td>1723</td>\n",
" <td>1731</td>\n",
" <td>2112</td>\n",
" <td>97146</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Yemen</th>\n",
" <td>Asia</td>\n",
" <td>Western Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>0</td>\n",
" <td>18</td>\n",
" <td>7</td>\n",
" <td>...</td>\n",
" <td>161</td>\n",
" <td>140</td>\n",
" <td>122</td>\n",
" <td>133</td>\n",
" <td>128</td>\n",
" <td>211</td>\n",
" <td>160</td>\n",
" <td>174</td>\n",
" <td>217</td>\n",
" <td>2985</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>49 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" Continent Region \\\n",
"Afghanistan Asia Southern Asia \n",
"Armenia Asia Western Asia \n",
"Azerbaijan Asia Western Asia \n",
"Bahrain Asia Western Asia \n",
"Bangladesh Asia Southern Asia \n",
"Bhutan Asia Southern Asia \n",
"Brunei Darussalam Asia South-Eastern Asia \n",
"Cambodia Asia South-Eastern Asia \n",
"China Asia Eastern Asia \n",
"China, Hong Kong Special Administrative Region Asia Eastern Asia \n",
"China, Macao Special Administrative Region Asia Eastern Asia \n",
"Cyprus Asia Western Asia \n",
"Democratic People's Republic of Korea Asia Eastern Asia \n",
"Georgia Asia Western Asia \n",
"India Asia Southern Asia \n",
"Indonesia Asia South-Eastern Asia \n",
"Iran (Islamic Republic of) Asia Southern Asia \n",
"Iraq Asia Western Asia \n",
"Israel Asia Western Asia \n",
"Japan Asia Eastern Asia \n",
"Jordan Asia Western Asia \n",
"Kazakhstan Asia Central Asia \n",
"Kuwait Asia Western Asia \n",
"Kyrgyzstan Asia Central Asia \n",
"Lao People's Democratic Republic Asia South-Eastern Asia \n",
"Lebanon Asia Western Asia \n",
"Malaysia Asia South-Eastern Asia \n",
"Maldives Asia Southern Asia \n",
"Mongolia Asia Eastern Asia \n",
"Myanmar Asia South-Eastern Asia \n",
"Nepal Asia Southern Asia \n",
"Oman Asia Western Asia \n",
"Pakistan Asia Southern Asia \n",
"Philippines Asia South-Eastern Asia \n",
"Qatar Asia Western Asia \n",
"Republic of Korea Asia Eastern Asia \n",
"Saudi Arabia Asia Western Asia \n",
"Singapore Asia South-Eastern Asia \n",
"Sri Lanka Asia Southern Asia \n",
"State of Palestine Asia Western Asia \n",
"Syrian Arab Republic Asia Western Asia \n",
"Tajikistan Asia Central Asia \n",
"Thailand Asia South-Eastern Asia \n",
"Turkey Asia Western Asia \n",
"Turkmenistan Asia Central Asia \n",
"United Arab Emirates Asia Western Asia \n",
"Uzbekistan Asia Central Asia \n",
"Viet Nam Asia South-Eastern Asia \n",
"Yemen Asia Western Asia \n",
"\n",
" DevName 1980 \\\n",
"Afghanistan Developing regions 16 \n",
"Armenia Developing regions 0 \n",
"Azerbaijan Developing regions 0 \n",
"Bahrain Developing regions 0 \n",
"Bangladesh Developing regions 83 \n",
"Bhutan Developing regions 0 \n",
"Brunei Darussalam Developing regions 79 \n",
"Cambodia Developing regions 12 \n",
"China Developing regions 5123 \n",
"China, Hong Kong Special Administrative Region Developing regions 0 \n",
"China, Macao Special Administrative Region Developing regions 0 \n",
"Cyprus Developing regions 132 \n",
"Democratic People's Republic of Korea Developing regions 1 \n",
"Georgia Developing regions 0 \n",
"India Developing regions 8880 \n",
"Indonesia Developing regions 186 \n",
"Iran (Islamic Republic of) Developing regions 1172 \n",
"Iraq Developing regions 262 \n",
"Israel Developing regions 1403 \n",
"Japan Developed regions 701 \n",
"Jordan Developing regions 177 \n",
"Kazakhstan Developing regions 0 \n",
"Kuwait Developing regions 1 \n",
"Kyrgyzstan Developing regions 0 \n",
"Lao People's Democratic Republic Developing regions 11 \n",
"Lebanon Developing regions 1409 \n",
"Malaysia Developing regions 786 \n",
"Maldives Developing regions 0 \n",
"Mongolia Developing regions 0 \n",
"Myanmar Developing regions 80 \n",
"Nepal Developing regions 1 \n",
"Oman Developing regions 0 \n",
"Pakistan Developing regions 978 \n",
"Philippines Developing regions 6051 \n",
"Qatar Developing regions 0 \n",
"Republic of Korea Developing regions 1011 \n",
"Saudi Arabia Developing regions 0 \n",
"Singapore Developing regions 241 \n",
"Sri Lanka Developing regions 185 \n",
"State of Palestine Developing regions 0 \n",
"Syrian Arab Republic Developing regions 315 \n",
"Tajikistan Developing regions 0 \n",
"Thailand Developing regions 56 \n",
"Turkey Developing regions 481 \n",
"Turkmenistan Developing regions 0 \n",
"United Arab Emirates Developing regions 0 \n",
"Uzbekistan Developing regions 0 \n",
"Viet Nam Developing regions 1191 \n",
"Yemen Developing regions 1 \n",
"\n",
" 1981 1982 1983 1984 1985 \\\n",
"Afghanistan 39 39 47 71 340 \n",
"Armenia 0 0 0 0 0 \n",
"Azerbaijan 0 0 0 0 0 \n",
"Bahrain 2 1 1 1 3 \n",
"Bangladesh 84 86 81 98 92 \n",
"Bhutan 0 0 0 1 0 \n",
"Brunei Darussalam 6 8 2 2 4 \n",
"Cambodia 19 26 33 10 7 \n",
"China 6682 3308 1863 1527 1816 \n",
"China, Hong Kong Special Administrative Region 0 0 0 0 0 \n",
"China, Macao Special Administrative Region 0 0 0 0 0 \n",
"Cyprus 128 84 46 46 43 \n",
"Democratic People's Republic of Korea 1 3 1 4 3 \n",
"Georgia 0 0 0 0 0 \n",
"India 8670 8147 7338 5704 4211 \n",
"Indonesia 178 252 115 123 100 \n",
"Iran (Islamic Republic of) 1429 1822 1592 1977 1648 \n",
"Iraq 245 260 380 428 231 \n",
"Israel 1711 1334 541 446 680 \n",
"Japan 756 598 309 246 198 \n",
"Jordan 160 155 113 102 179 \n",
"Kazakhstan 0 0 0 0 0 \n",
"Kuwait 0 8 2 1 4 \n",
"Kyrgyzstan 0 0 0 0 0 \n",
"Lao People's Democratic Republic 6 16 16 7 17 \n",
"Lebanon 1119 1159 789 1253 1683 \n",
"Malaysia 816 813 448 384 374 \n",
"Maldives 0 0 1 0 0 \n",
"Mongolia 0 0 0 0 0 \n",
"Myanmar 62 46 31 41 23 \n",
"Nepal 1 6 1 2 4 \n",
"Oman 0 0 8 0 0 \n",
"Pakistan 972 1201 900 668 514 \n",
"Philippines 5921 5249 4562 3801 3150 \n",
"Qatar 0 0 0 0 0 \n",
"Republic of Korea 1456 1572 1081 847 962 \n",
"Saudi Arabia 0 1 4 1 2 \n",
"Singapore 301 337 169 128 139 \n",
"Sri Lanka 371 290 197 1086 845 \n",
"State of Palestine 0 0 0 0 0 \n",
"Syrian Arab Republic 419 409 269 264 385 \n",
"Tajikistan 0 0 0 0 0 \n",
"Thailand 53 113 65 82 66 \n",
"Turkey 874 706 280 338 202 \n",
"Turkmenistan 0 0 0 0 0 \n",
"United Arab Emirates 2 2 1 2 0 \n",
"Uzbekistan 0 0 0 0 0 \n",
"Viet Nam 1829 2162 3404 7583 5907 \n",
"Yemen 2 1 6 0 18 \n",
"\n",
" 1986 ... 2005 2006 \\\n",
"Afghanistan 496 ... 3436 3009 \n",
"Armenia 0 ... 224 218 \n",
"Azerbaijan 0 ... 359 236 \n",
"Bahrain 0 ... 12 12 \n",
"Bangladesh 486 ... 4171 4014 \n",
"Bhutan 0 ... 5 10 \n",
"Brunei Darussalam 12 ... 4 5 \n",
"Cambodia 8 ... 370 529 \n",
"China 1960 ... 42584 33518 \n",
"China, Hong Kong Special Administrative Region 0 ... 729 712 \n",
"China, Macao Special Administrative Region 0 ... 21 32 \n",
"Cyprus 48 ... 7 9 \n",
"Democratic People's Republic of Korea 0 ... 14 10 \n",
"Georgia 0 ... 114 125 \n",
"India 7150 ... 36210 33848 \n",
"Indonesia 127 ... 632 613 \n",
"Iran (Islamic Republic of) 1794 ... 5837 7480 \n",
"Iraq 265 ... 2226 1788 \n",
"Israel 1212 ... 2446 2625 \n",
"Japan 248 ... 1067 1212 \n",
"Jordan 181 ... 1940 1827 \n",
"Kazakhstan 0 ... 506 408 \n",
"Kuwait 4 ... 66 35 \n",
"Kyrgyzstan 0 ... 173 161 \n",
"Lao People's Democratic Republic 21 ... 42 74 \n",
"Lebanon 2576 ... 3709 3802 \n",
"Malaysia 425 ... 593 580 \n",
"Maldives 0 ... 0 0 \n",
"Mongolia 0 ... 59 64 \n",
"Myanmar 18 ... 210 953 \n",
"Nepal 13 ... 607 540 \n",
"Oman 0 ... 14 18 \n",
"Pakistan 691 ... 14314 13127 \n",
"Philippines 4166 ... 18139 18400 \n",
"Qatar 1 ... 11 2 \n",
"Republic of Korea 1208 ... 5832 6215 \n",
"Saudi Arabia 5 ... 198 252 \n",
"Singapore 205 ... 392 298 \n",
"Sri Lanka 1838 ... 4930 4714 \n",
"State of Palestine 0 ... 453 627 \n",
"Syrian Arab Republic 493 ... 1458 1145 \n",
"Tajikistan 0 ... 85 46 \n",
"Thailand 78 ... 575 500 \n",
"Turkey 257 ... 2065 1638 \n",
"Turkmenistan 0 ... 40 26 \n",
"United Arab Emirates 5 ... 31 42 \n",
"Uzbekistan 0 ... 330 262 \n",
"Viet Nam 2741 ... 1852 3153 \n",
"Yemen 7 ... 161 140 \n",
"\n",
" 2007 2008 2009 2010 \\\n",
"Afghanistan 2652 2111 1746 1758 \n",
"Armenia 198 205 267 252 \n",
"Azerbaijan 203 125 165 209 \n",
"Bahrain 22 9 35 28 \n",
"Bangladesh 2897 2939 2104 4721 \n",
"Bhutan 7 36 865 1464 \n",
"Brunei Darussalam 11 10 5 12 \n",
"Cambodia 460 354 203 200 \n",
"China 27642 30037 29622 30391 \n",
"China, Hong Kong Special Administrative Region 674 897 657 623 \n",
"China, Macao Special Administrative Region 16 12 21 21 \n",
"Cyprus 4 7 6 18 \n",
"Democratic People's Republic of Korea 7 19 11 45 \n",
"Georgia 132 112 128 126 \n",
"India 28742 28261 29456 34235 \n",
"Indonesia 657 661 504 712 \n",
"Iran (Islamic Republic of) 6974 6475 6580 7477 \n",
"Iraq 2406 3543 5450 5941 \n",
"Israel 2401 2562 2316 2755 \n",
"Japan 1250 1284 1194 1168 \n",
"Jordan 1421 1581 1235 1831 \n",
"Kazakhstan 436 394 431 377 \n",
"Kuwait 62 53 68 67 \n",
"Kyrgyzstan 135 168 173 157 \n",
"Lao People's Democratic Republic 53 32 39 54 \n",
"Lebanon 3467 3566 3077 3432 \n",
"Malaysia 600 658 640 802 \n",
"Maldives 2 1 7 4 \n",
"Mongolia 82 59 118 169 \n",
"Myanmar 1887 975 1153 556 \n",
"Nepal 511 581 561 1392 \n",
"Oman 16 10 7 14 \n",
"Pakistan 10124 8994 7217 6811 \n",
"Philippines 19837 24887 28573 38617 \n",
"Qatar 5 9 6 18 \n",
"Republic of Korea 5920 7294 5874 5537 \n",
"Saudi Arabia 188 249 246 330 \n",
"Singapore 690 734 366 805 \n",
"Sri Lanka 4123 4756 4547 4422 \n",
"State of Palestine 441 481 400 654 \n",
"Syrian Arab Republic 1056 919 917 1039 \n",
"Tajikistan 44 15 50 52 \n",
"Thailand 487 519 512 499 \n",
"Turkey 1463 1122 1238 1492 \n",
"Turkmenistan 37 13 20 30 \n",
"United Arab Emirates 37 33 37 86 \n",
"Uzbekistan 284 215 288 289 \n",
"Viet Nam 2574 1784 2171 1942 \n",
"Yemen 122 133 128 211 \n",
"\n",
" 2011 2012 2013 Total \n",
"Afghanistan 2203 2635 2004 58639 \n",
"Armenia 236 258 207 3310 \n",
"Azerbaijan 138 161 57 2649 \n",
"Bahrain 21 39 32 475 \n",
"Bangladesh 2694 2640 3789 65568 \n",
"Bhutan 1879 1075 487 5876 \n",
"Brunei Darussalam 6 3 6 600 \n",
"Cambodia 196 233 288 6538 \n",
"China 28502 33024 34129 659962 \n",
"China, Hong Kong Special Administrative Region 591 728 774 9327 \n",
"China, Macao Special Administrative Region 13 33 29 284 \n",
"Cyprus 6 12 16 1126 \n",
"Democratic People's Republic of Korea 97 66 17 388 \n",
"Georgia 139 147 125 2068 \n",
"India 27509 30933 33087 691904 \n",
"Indonesia 390 395 387 13150 \n",
"Iran (Islamic Republic of) 7479 7534 11291 175923 \n",
"Iraq 6196 4041 4918 69789 \n",
"Israel 1970 2134 1945 66508 \n",
"Japan 1265 1214 982 27707 \n",
"Jordan 1635 1206 1255 35406 \n",
"Kazakhstan 381 462 348 8490 \n",
"Kuwait 58 73 48 2025 \n",
"Kyrgyzstan 159 278 123 2353 \n",
"Lao People's Democratic Republic 22 25 15 1089 \n",
"Lebanon 3072 1614 2172 115359 \n",
"Malaysia 409 358 204 24417 \n",
"Maldives 3 1 1 30 \n",
"Mongolia 103 68 99 952 \n",
"Myanmar 368 193 262 9245 \n",
"Nepal 1129 1185 1308 10222 \n",
"Oman 10 13 11 224 \n",
"Pakistan 7468 11227 12603 241600 \n",
"Philippines 36765 34315 29544 511391 \n",
"Qatar 3 14 6 157 \n",
"Republic of Korea 4588 5316 4509 142581 \n",
"Saudi Arabia 278 286 267 3425 \n",
"Singapore 219 146 141 14579 \n",
"Sri Lanka 3309 3338 2394 148358 \n",
"State of Palestine 555 533 462 6512 \n",
"Syrian Arab Republic 1005 650 1009 31485 \n",
"Tajikistan 47 34 39 503 \n",
"Thailand 396 296 400 9174 \n",
"Turkey 1257 1068 729 31781 \n",
"Turkmenistan 20 20 14 310 \n",
"United Arab Emirates 60 54 46 836 \n",
"Uzbekistan 162 235 167 3368 \n",
"Viet Nam 1723 1731 2112 97146 \n",
"Yemen 160 174 217 2985 \n",
"\n",
"[49 rows x 38 columns]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 2. pass this condition into the dataFrame\n",
"df_can[condition]"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Continent</th>\n",
" <th>Region</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>1986</th>\n",
" <th>...</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>Total</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Afghanistan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>16</td>\n",
" <td>39</td>\n",
" <td>39</td>\n",
" <td>47</td>\n",
" <td>71</td>\n",
" <td>340</td>\n",
" <td>496</td>\n",
" <td>...</td>\n",
" <td>3436</td>\n",
" <td>3009</td>\n",
" <td>2652</td>\n",
" <td>2111</td>\n",
" <td>1746</td>\n",
" <td>1758</td>\n",
" <td>2203</td>\n",
" <td>2635</td>\n",
" <td>2004</td>\n",
" <td>58639</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bangladesh</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>83</td>\n",
" <td>84</td>\n",
" <td>86</td>\n",
" <td>81</td>\n",
" <td>98</td>\n",
" <td>92</td>\n",
" <td>486</td>\n",
" <td>...</td>\n",
" <td>4171</td>\n",
" <td>4014</td>\n",
" <td>2897</td>\n",
" <td>2939</td>\n",
" <td>2104</td>\n",
" <td>4721</td>\n",
" <td>2694</td>\n",
" <td>2640</td>\n",
" <td>3789</td>\n",
" <td>65568</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bhutan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>5</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>36</td>\n",
" <td>865</td>\n",
" <td>1464</td>\n",
" <td>1879</td>\n",
" <td>1075</td>\n",
" <td>487</td>\n",
" <td>5876</td>\n",
" </tr>\n",
" <tr>\n",
" <th>India</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>8880</td>\n",
" <td>8670</td>\n",
" <td>8147</td>\n",
" <td>7338</td>\n",
" <td>5704</td>\n",
" <td>4211</td>\n",
" <td>7150</td>\n",
" <td>...</td>\n",
" <td>36210</td>\n",
" <td>33848</td>\n",
" <td>28742</td>\n",
" <td>28261</td>\n",
" <td>29456</td>\n",
" <td>34235</td>\n",
" <td>27509</td>\n",
" <td>30933</td>\n",
" <td>33087</td>\n",
" <td>691904</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Iran (Islamic Republic of)</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1172</td>\n",
" <td>1429</td>\n",
" <td>1822</td>\n",
" <td>1592</td>\n",
" <td>1977</td>\n",
" <td>1648</td>\n",
" <td>1794</td>\n",
" <td>...</td>\n",
" <td>5837</td>\n",
" <td>7480</td>\n",
" <td>6974</td>\n",
" <td>6475</td>\n",
" <td>6580</td>\n",
" <td>7477</td>\n",
" <td>7479</td>\n",
" <td>7534</td>\n",
" <td>11291</td>\n",
" <td>175923</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Maldives</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Nepal</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>13</td>\n",
" <td>...</td>\n",
" <td>607</td>\n",
" <td>540</td>\n",
" <td>511</td>\n",
" <td>581</td>\n",
" <td>561</td>\n",
" <td>1392</td>\n",
" <td>1129</td>\n",
" <td>1185</td>\n",
" <td>1308</td>\n",
" <td>10222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Pakistan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>978</td>\n",
" <td>972</td>\n",
" <td>1201</td>\n",
" <td>900</td>\n",
" <td>668</td>\n",
" <td>514</td>\n",
" <td>691</td>\n",
" <td>...</td>\n",
" <td>14314</td>\n",
" <td>13127</td>\n",
" <td>10124</td>\n",
" <td>8994</td>\n",
" <td>7217</td>\n",
" <td>6811</td>\n",
" <td>7468</td>\n",
" <td>11227</td>\n",
" <td>12603</td>\n",
" <td>241600</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sri Lanka</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>185</td>\n",
" <td>371</td>\n",
" <td>290</td>\n",
" <td>197</td>\n",
" <td>1086</td>\n",
" <td>845</td>\n",
" <td>1838</td>\n",
" <td>...</td>\n",
" <td>4930</td>\n",
" <td>4714</td>\n",
" <td>4123</td>\n",
" <td>4756</td>\n",
" <td>4547</td>\n",
" <td>4422</td>\n",
" <td>3309</td>\n",
" <td>3338</td>\n",
" <td>2394</td>\n",
" <td>148358</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>9 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" Continent Region DevName 1980 \\\n",
"Afghanistan Asia Southern Asia Developing regions 16 \n",
"Bangladesh Asia Southern Asia Developing regions 83 \n",
"Bhutan Asia Southern Asia Developing regions 0 \n",
"India Asia Southern Asia Developing regions 8880 \n",
"Iran (Islamic Republic of) Asia Southern Asia Developing regions 1172 \n",
"Maldives Asia Southern Asia Developing regions 0 \n",
"Nepal Asia Southern Asia Developing regions 1 \n",
"Pakistan Asia Southern Asia Developing regions 978 \n",
"Sri Lanka Asia Southern Asia Developing regions 185 \n",
"\n",
" 1981 1982 1983 1984 1985 1986 ... 2005 \\\n",
"Afghanistan 39 39 47 71 340 496 ... 3436 \n",
"Bangladesh 84 86 81 98 92 486 ... 4171 \n",
"Bhutan 0 0 0 1 0 0 ... 5 \n",
"India 8670 8147 7338 5704 4211 7150 ... 36210 \n",
"Iran (Islamic Republic of) 1429 1822 1592 1977 1648 1794 ... 5837 \n",
"Maldives 0 0 1 0 0 0 ... 0 \n",
"Nepal 1 6 1 2 4 13 ... 607 \n",
"Pakistan 972 1201 900 668 514 691 ... 14314 \n",
"Sri Lanka 371 290 197 1086 845 1838 ... 4930 \n",
"\n",
" 2006 2007 2008 2009 2010 2011 2012 \\\n",
"Afghanistan 3009 2652 2111 1746 1758 2203 2635 \n",
"Bangladesh 4014 2897 2939 2104 4721 2694 2640 \n",
"Bhutan 10 7 36 865 1464 1879 1075 \n",
"India 33848 28742 28261 29456 34235 27509 30933 \n",
"Iran (Islamic Republic of) 7480 6974 6475 6580 7477 7479 7534 \n",
"Maldives 0 2 1 7 4 3 1 \n",
"Nepal 540 511 581 561 1392 1129 1185 \n",
"Pakistan 13127 10124 8994 7217 6811 7468 11227 \n",
"Sri Lanka 4714 4123 4756 4547 4422 3309 3338 \n",
"\n",
" 2013 Total \n",
"Afghanistan 2004 58639 \n",
"Bangladesh 3789 65568 \n",
"Bhutan 487 5876 \n",
"India 33087 691904 \n",
"Iran (Islamic Republic of) 11291 175923 \n",
"Maldives 1 30 \n",
"Nepal 1308 10222 \n",
"Pakistan 12603 241600 \n",
"Sri Lanka 2394 148358 \n",
"\n",
"[9 rows x 38 columns]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# we can pass mutliple criteria in the same line. \n",
"# let's filter for AreaNAme = Asia and RegName = Southern Asia\n",
"\n",
"df_can[(df_can['Continent']=='Asia') & (df_can['Region']=='Southern Asia')]\n",
"\n",
"# note: When using 'and' and 'or' operators, pandas requires we use '&' and '|' instead of 'and' and 'or'\n",
"# don't forget to enclose the two conditions in parentheses"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Before we proceed: let's review the changes we have made to our dataframe."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"data dimensions: (195, 38)\n",
"Index(['Continent', 'Region', 'DevName', '1980', '1981', '1982', '1983',\n",
" '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992',\n",
" '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001',\n",
" '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010',\n",
" '2011', '2012', '2013', 'Total'],\n",
" dtype='object')\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Continent</th>\n",
" <th>Region</th>\n",
" <th>DevName</th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>1986</th>\n",
" <th>...</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" <th>Total</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Afghanistan</th>\n",
" <td>Asia</td>\n",
" <td>Southern Asia</td>\n",
" <td>Developing regions</td>\n",
" <td>16</td>\n",
" <td>39</td>\n",
" <td>39</td>\n",
" <td>47</td>\n",
" <td>71</td>\n",
" <td>340</td>\n",
" <td>496</td>\n",
" <td>...</td>\n",
" <td>3436</td>\n",
" <td>3009</td>\n",
" <td>2652</td>\n",
" <td>2111</td>\n",
" <td>1746</td>\n",
" <td>1758</td>\n",
" <td>2203</td>\n",
" <td>2635</td>\n",
" <td>2004</td>\n",
" <td>58639</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Albania</th>\n",
" <td>Europe</td>\n",
" <td>Southern Europe</td>\n",
" <td>Developed regions</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>1223</td>\n",
" <td>856</td>\n",
" <td>702</td>\n",
" <td>560</td>\n",
" <td>716</td>\n",
" <td>561</td>\n",
" <td>539</td>\n",
" <td>620</td>\n",
" <td>603</td>\n",
" <td>15699</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" Continent Region DevName 1980 1981 1982 \\\n",
"Afghanistan Asia Southern Asia Developing regions 16 39 39 \n",
"Albania Europe Southern Europe Developed regions 1 0 0 \n",
"\n",
" 1983 1984 1985 1986 ... 2005 2006 2007 2008 2009 2010 \\\n",
"Afghanistan 47 71 340 496 ... 3436 3009 2652 2111 1746 1758 \n",
"Albania 0 0 0 1 ... 1223 856 702 560 716 561 \n",
"\n",
" 2011 2012 2013 Total \n",
"Afghanistan 2203 2635 2004 58639 \n",
"Albania 539 620 603 15699 \n",
"\n",
"[2 rows x 38 columns]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print ('data dimensions:', df_can.shape)\n",
"print(df_can.columns)\n",
"df_can.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"---\n",
"# Visualizing Data using Matplotlib<a id=\"8\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"## Matplotlib: Standard Python Visualization Library<a id=\"10\"></a>\n",
"\n",
"The primary plotting library we will explore in the course is [Matplotlib](http://matplotlib.org/). As mentioned on their website: \n",
">Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shell, the jupyter notebook, web application servers, and four graphical user interface toolkits.\n",
"\n",
"If you are aspiring to create impactful visualization with python, Matplotlib is an essential tool to have at your disposal."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Matplotlib.Pyplot\n",
"\n",
"One of the core aspects of Matplotlib is `matplotlib.pyplot`. It is Matplotlib's scripting layer which we studied in details in the videos about Matplotlib. Recall that it is a collection of command style functions that make Matplotlib work like MATLAB. Each `pyplot` function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc. In this lab, we will work with the scripting layer to learn how to generate line plots. In future labs, we will get to work with the Artist layer as well to experiment first hand how it differs from the scripting layer. \n"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Let's start by importing `Matplotlib` and `Matplotlib.pyplot` as follows:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [],
"source": [
"# we are using the inline backend\n",
"%matplotlib inline \n",
"\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"*optional: check if Matplotlib is loaded."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matplotlib version: 3.0.2\n"
]
}
],
"source": [
"print ('Matplotlib version: ', mpl.__version__) # >= 2.0.0"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"*optional: apply a style to Matplotlib."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Solarize_Light2', '_classic_test', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'tableau-colorblind10']\n"
]
}
],
"source": [
"print(plt.style.available)\n",
"mpl.style.use(['ggplot']) # optional: for ggplot-like style"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Plotting in *pandas*\n",
"\n",
"Fortunately, pandas has a built-in implementation of Matplotlib that we can use. Plotting in *pandas* is as simple as appending a `.plot()` method to a series or dataframe.\n",
"\n",
"Documentation:\n",
"- [Plotting with Series](http://pandas.pydata.org/pandas-docs/stable/api.html#plotting)<br>\n",
"- [Plotting with Dataframes](http://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-plotting)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Line Pots (Series/Dataframe) <a id=\"12\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"**What is a line plot and why use it?**\n",
"\n",
"A line chart or line plot is a type of plot which displays information as a series of data points called 'markers' connected by straight line segments. It is a basic type of chart common in many fields.\n",
"Use line plot when you have a continuous data set. These are best suited for trend-based visualizations of data over a period of time."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"**Let's start with a case study:**\n",
"\n",
"In 2010, Haiti suffered a catastrophic magnitude 7.0 earthquake. The quake caused widespread devastation and loss of life and aout three million people were affected by this natural disaster. As part of Canada's humanitarian effort, the Government of Canada stepped up its effort in accepting refugees from Haiti. We can quickly visualize this effort using a `Line` plot:\n",
"\n",
"**Question:** Plot a line graph of immigration from Haiti using `df.plot()`.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"First, we will extract the data series for Haiti."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"1980 1666\n",
"1981 3692\n",
"1982 3498\n",
"1983 2860\n",
"1984 1418\n",
"Name: Haiti, dtype: object"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"haiti = df_can.loc['Haiti', years] # passing in years 1980 - 2013 to exclude the 'total' column\n",
"haiti.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Next, we will plot a line plot by appending `.plot()` to the `haiti` dataframe."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1f0bfb2438>"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VdW5+PHv2hmA5EDIyQkJSRjCJIJgkKBAlcm09oK3pei1rdUWh2trrBRpVbhatSqWW0W4CPzQarF1bC8FbKutbUTAyqUGmQSVMSgEMp7Mc85evz92coCQkJPkjMn7eR4fw87Ze69FyHnPXutd71Jaa40QQogexwh0A4QQQgSGBAAhhOihJAAIIUQPJQFACCF6KAkAQgjRQ0kAEEKIHkoCgBBC9FASAIQQooeSACCEED2UBAAhhOihwgPdgPacPn060E3wCofDQVFRUaCb4RXSl+DTXfoB0hdvSEpK8uh18gQghBA9lAQAIYTooSQACCFEDyUBQAgheigJAEII0UNJABBCiB5KAoAQQvRQEgCEECKA9P5sdN6pgNxbAoAQQgSINk3M53+F+cqagNxfAoAQQgRKSTHU18Hhg+hTJ/x+ewkAQggRKPlnh370++/4/fYSAIQQIkB0Xq71xbh09M730dWVfr2/BAAhhAiUvFzo3Qdj7vegvg694z2/3l4CgBBCBIjOz4WEZNTg4TB8NPr9d9Cm6bf7SwAQQohAyctFJSYDoGbOgYIz8Olev91eAoAQQgSArqsDZyE0B4CJU6Fff8z33/ZbGyQACCFEIBQ2bXaV0BQAwiNQ066DT3ahC/P80gQJAEIIEQhNGUCqKQAAqGlfB6XQW//qlyZIABBCiABwp4AmnN2+UcXGoSZMQf/zH9YQkY9JABBCiEDIzwW7A9Wr93mH1aw5UF2Jzt7u8yZIABBCiADQebnu8f/zjBwLyUPQW/6C1tqnbZAAIIQQfqa1hvyzKaDnUkpZKaEnc+DY5z5thwQAIYTwt/JSqKmGhJRWv62umg59otE+TgmVACCEEP7WnAHUyhMAgOrdB/WVa9Ef70CXlfisGeGevKiqqop169Zx8uRJlFLcfffdJCUlsWLFCgoLC4mPj+e+++7DZrOhtWb9+vXs2bOHXr16kZmZybBhwwDYunUrGzduBGDevHnMmDHDZx0TQohgpZurgLYRAADUjNnorD+hP3gXdf13fNIOj54A1q9fT1paGitXruTpp58mOTmZzZs3M27cOFatWsW4cePYvHkzAHv27CEvL49Vq1Zx11138eKLLwJQWVnJhg0beOqpp3jqqafYsGEDlZX+rXwnhBBBIS8XIiIh1tHmS1RCEoydgN72N3Rjo0+a0W4AqK6u5rPPPmPWrFkAhIeHEx0dTXZ2NtOnTwdg+vTpZGdnA7Br1y6mTZuGUopRo0ZRVVVFSUkJe/fuZfz48dhsNmw2G+PHj2fvXv/VvBBCiGCh80/DgIEo4+JvwcbM66HUCXt3+qQd7Q4BFRQU0K9fP9auXcsXX3zBsGHDmD9/PmVlZcTGxgIQGxtLeXk5AE6nE4fjbFSLi4vD6XTidDqJi4tzH7fb7Tidzgvul5WVRVZWFgDLli0771qhLDw8XPoShLpLX7pLP6Bn9KWoMI/woSPo304/9YyvUfy/L2F88HfsX5/r/fa19wKXy0VOTg633347I0eOZP369e7hnta0lreqlGr1ta0dz8jIICMjw/3noqKi9poYEhwOh/QlCHWXvnSXfkD374tubMDMz8WcMMWjfprXXIdrw3oK9+5CpQz16L5JSUntvwgPhoDi4uKIi4tj5MiRAEyePJmcnBxiYmIoKbFmp0tKSujXr5/79ed2qri4mNjYWOx2O8XFxe7jTqfT/QQhhBA9RmE+mOZFJ4DPpa7OgIhIn2wZ2W4A6N+/P3FxcZw+bVWu++STT0hJSSE9PZ1t27YBsG3bNiZNmgRAeno627dvR2vN4cOHiYqKIjY2lrS0NPbt20dlZSWVlZXs27ePtLQ0r3dICCGCWlMGUFspoC2p6L6oK6f5ZMtIj9JAb7/9dlatWkVjYyMDBgwgMzMTrTUrVqxgy5YtOBwOFi1aBMCECRPYvXs3CxYsIDIykszMTABsNhs33HADS5YsAeDGG2/EZrN5tTNCCBHszhaB8ywAgLVZjP4wC73jPVTGN73WFqV9XWyii5qfPEJddx/XDFXdpS/dpR/Q/ftivrwK/ckuwpb/rkPXcj25CCIjCXtgWbuv9docgBBCCO/R+bkej/+fSw0e5l5B7C0SAIQQwp/ycs/bBMZjiSlQUYauLPdaUyQACCGEn+iqCqgs79wTwMCmwnFefAqQACCEEP7SyjaQHku0AoDOO+W15kgAEEIIP9H5Hc8AcouLh/AIkAAghBAhKC8XwsLAkdDhU5URBglJZ9NIvUACgBBC+InOz4X4RFS4R0uwLqASU+CMPAEIIUToaWsfYE8lJkNRHrqxwSvNkQAghBB+oE0XFJzxuAREqxJTrDpChXleaZMEACGE8IfiQmhs6NITgDsV1EvDQBIAhBDCH9z7ALe+EbxHmoKHt1JBJQAIIYQfeLIPcHtU7z7WNpISAIQQIoTk5UKUDWz9unadxGSvpYJKABBCCD/QebmQkNTmDomeUokpkHeq1d0XO0oCgBBC+EP+6a5lADUbmAI11VBW0uVLSQAQQggf07U1UFrctTUATdx1hPK7PgwkAUAIIXwt39rYqksZQM2ai8J5IRVUAoAQQviYO23TG0NAsXHQq7dXMoEkAAghhK/l54JSMGBgly+llILEFK+sBZAAIIQQvpaXC3EDUBGRXrmcSkz2ysYwEgCEEMLHOrsPcJsSU6C4AF1X16XLSAAQQggf0lpbKaBeyABq5q4J1MVMIAkAQgjhSyXFUFfr/ScAul4TSAKAEEL4Un4X9gFuy4CB1qSyBAAhhAheXdoHuA0qItLaVrKLE8ESAIQQwpfycq28/dg4717XC6mgEgCEEMKHdL53isC1pBKTIT8XbZqdvoYEACGE8KW8XO+O/zdLTIH6eigp6vQlJAAIIYSP6Po6KC7wbgZQE3ddoS7UBAr35EX33HMPvXv3xjAMwsLCWLZsGZWVlaxYsYLCwkLi4+O57777sNlsaK1Zv349e/bsoVevXmRmZjJs2DAAtm7dysaNGwGYN28eM2bM6HTDhRAi2LnOnAKtvToB7DbwbCqouuyKTl3CowAA8Oijj9Kv39mdbDZv3sy4ceOYO3cumzdvZvPmzdxyyy3s2bOHvLw8Vq1axZEjR3jxxRd56qmnqKysZMOGDSxbtgyAxYsXk56ejs1m61TDhRAi2DWe/hLwUhXQlmz9ILpvl1JBOz0ElJ2dzfTp0wGYPn062dnZAOzatYtp06ahlGLUqFFUVVVRUlLC3r17GT9+PDabDZvNxvjx49m7d2+nGy6EEMHOlWsFABKSvH5tqyhc17aH9PgJYOnSpQB89atfJSMjg7KyMmJjYwGIjY2lvLwcAKfTicPhcJ8XFxeH0+nE6XQSF3c2Dcput+N0Oi+4T1ZWFllZWQAsW7bsvGuFsvDwcOlLEOoufeku/YDu1ZfyMycx4uKJTxnkk+uXDRlO/Z6dnf778igAPPHEE9jtdsrKynjyySdJSmo7mrW2T2Vb6U+tHc/IyCAjI8P956Kizs9wBxOHwyF9CULdpS/dpR/QvfpinPoC05Hos/6YsQ50STGFX36Biop2H7/Ye/R57fPkRXa7HYCYmBgmTZrE0aNHiYmJoaTE2pOypKTEPT8QFxd3XmeLi4uJjY3FbrdTXFzsPu50Ot1PEEII0d1orWnM/dI7+wC3wT230MmicO0GgNraWmpqatxf79+/n8GDB5Oens62bdsA2LZtG5MmTQIgPT2d7du3o7Xm8OHDREVFERsbS1paGvv27aOyspLKykr27dtHWlpapxothBBBr7IcXVXhkxRQty5uD9nuEFBZWRnPPPMMAC6Xi6uvvpq0tDSGDx/OihUr2LJlCw6Hg0WLFgEwYcIEdu/ezYIFC4iMjCQzMxMAm83GDTfcwJIlSwC48cYbJQNICNF95TUXgfNBBlAzRwKEhXc6E6jdAJCQkMDTTz99wfG+ffvyyCOPXHBcKcWdd97Z6rVmzZrFrFmzOtFMIYQILV7dB7gNKjwcBgzsdE0gWQkshBC+kJ8LEZEQF+/b+3Rhe0gJAEII4QM6L5ewxGSUEebT+6jEZCg4g25s7PC5EgCEEMIX8nMJTx7i+/skpoCrEYryO3yqBAAhhPAy7XJBYR5hyYN9fi93Kmgn5gEkAAghhLeVOsHlImzAQN/fq2mSWXdiLYAEACGE8LYyq8xNmN33JS1UlA1iYjtVFloCgBBCeFupFQAMPwQAoNPbQ0oAEEIIL9NlzQHAxymgTVRiMpw51WottouRACCEEN5WWgKGgdGvv3/ul5gC1ZVQWd6h0yQACCGEt5UVQ79YlOGft1h3wbkOzgNIABBCCC/TpU7ob/ffDRPPbg/ZERIAhBDC20qdVmaOv9jjrbITEgCEECLAykpQfnwCUIYBCR3fHlICgBBCeJFuaLAmY/05BASogSnyBCCEEAFVbu2USIx/AwCJyVBUgG6o9/gUCQBCCOFNTYvA/DkEBFgTwdqEgjMenyIBQAghvKlpEZi/nwA6UxROAoAQQniRbnoC8PccAAlJ1v07sBZAAoAQQnhTWQmEhYGtn19vq3r1ttJB5QlACCECpNTp11XA50lM6VAqqAQAIYTwIr+vAj5HR1NBJQAIIYQ3lfl5FfC5EpOhrtbjl0sAEEIIbypz+j8FtIk7E8hDEgCEEMJLrFXAFf5fBNZMAoAQQgSIew1AgIaAYmKhT5THL5cAIIQQ3lJmlYFQ/eMCcnulFCQke/x6CQBCCOEtgVoEdo6OzANIABBCCC9xrwIO1BAQoGb/h8evlQAghBDeUuYMyCrgc6mBnj8BhHv6QtM0Wbx4MXa7ncWLF1NQUMDKlSuprKwkNTWVe++9l/DwcBoaGli9ejXHjx+nb9++LFy4kAEDBgCwadMmtmzZgmEY3HbbbaSlpXW8d0IIEayadgILyCrgTvC4le+88w7JyWcnF1599VXmzJnDqlWriI6OZsuWLQBs2bKF6OhonnvuOebMmcNrr70GwKlTp9ixYwfPPvssDz30EC+99BKmaXq5O0IIETi6zBm4FNBO8CgAFBcXs3v3bq699loAtNYcPHiQyZMnAzBjxgyys7MB2LVrFzNmzABg8uTJHDhwAK012dnZTJ06lYiICAYMGEBiYiJHjx71QZeEECJAykpCKgB4NAT08ssvc8stt1BTUwNARUUFUVFRhIWFAWC323E6rckPp9NJXJyVAhUWFkZUVBQVFRU4nU5Gjhzpvua555wrKyuLrKwsAJYtW4bD4ehC94JHeHi49CUIdZe+dJd+QGj3paCshN7jJtKvqf3B3pd2A8DHH39MTEwMw4YN4+DBg+1eUGt9wTGlVKvHW5ORkUFGRob7z0VFRR6dF+wcDof0JQh1l750l35A6PZFN9SjK8up7R1FfVP7A9WXpKQkj17XbgA4dOgQu3btYs+ePdTX11NTU8PLL79MdXU1LpeLsLAwnE4ndrv12BMXF0dxcTFxcXG4XC6qq6ux2Wzu483OPUcIIUJeEKSAdlS7cwA333wz69atY82aNSxcuJDLLruMBQsWMHbsWHbu3AnA1q1bSU9PB2DixIls3boVgJ07dzJ27FiUUqSnp7Njxw4aGhooKCjgzJkzjBgxwnc9E0IIf3KvAg6dD7Yep4G29L3vfY+VK1fy5ptvkpqayqxZswCYNWsWq1ev5t5778Vms7Fw4UIABg0axJQpU1i0aBGGYXDHHXdghEiqlBBCtKss8KuAO0ppTwfnA+T06dOBboJXhOq4ZmukL8Gnu/QDQrcv5nt/Rr/5a4xnX0H1jQGCfw5APoILIYQ3lDkhLByi+wa6JR6TACCEEN4QYquAQQKAEEJ4hS4N4FaQnSQBQAghvKGsJKQmgEECgBBCeEdp4PYC7qyQDwC61Ilr9ZPoz/cHuilCiB5K19dBdWVI1QGC7hAAPtsH+z7CfPbnmJteQTc2BrpJwgd0RRn66GeBboYQrWtaBCZDQP5WmAdKoabMQr/zv5hPL0EX5gW6VcLL9J/fwFz+MLqxIdBNEeJCTYvAlDwB+FlRPsTYMW77Cequ++HMScwnFmJ+tD3QLRNepI8dgsYGyO8eCwNFNxMEewF3RsgHAF2UB/EJABiTrsH4+UoYOAj962cwX/4fdF1tgFsoukrX10HuCevr3C8C2xghWnF2L2AJAP5VmI9yJLr/qOITMe7/JWr2TegdWzCfuA/95bEANlB02ZfHweWyvs79MrBtEaI1ZSXWKmBb6KwChhAPALqhHkqLIT7xvOMqPBzjW7dgLHoC6mowf3k/ZtZbHu9JIIKLzjlsfdE3Bn1angBEECp1Qn87SqlAt6RDQjoAUFRg/b9pCKglNXo8xiOrYOwV6N+/hLnqcXR1lR8bKLwi5zDYHahLxoEMAYkgZO0FHFqrgCHkA0A+AMrRegAAUH37YdzzEOrmH8LB3ei/b/JX64SX6JzDMHQUJA+GonyZ1xHBp+kJINSEdADQRU3pno7Ei75OKYUxcw6MS0dvfxfdIKmEoUJXlEFRPmrYKFTSENAazpwMdLOEOF+ZM+RSQCHEAwCFeRAR6fGjlzFzNlSUoXfv8HHDhNc0jf+roaMgeQgAWiaCRRCxVgFXyRCQv+nCfHAkeD7xMmYCDBiIfv9t3zZMeI3OOQLKgCHDrbmeiEiQiWARTNyrgOMC245OCOkAQFH+BRlAF6MMAzVjNhz7HP3lcR82THiLzjkESYNQvfugjDBrjYdMBItg0rQGINQKwUEIBwCtNRTlXXQCuDVq6rUQGYne+o6PWia8RWsNOUdQwy5xH1PJg2UtgAgqZxeByRCQ/1RWQG1NmymgbVHRNtRVM9D/2oquqvRR44RXFJyxKiwOHXn2WPIQKC2Wn50IHiG4GXyz0A0ATRlAqp0MoNaoGbOhvh79YZa3WyW8qHkBmBo2yn1MJVkTwZyWpwARJEqdEB5aewE3C9kA4K742YE5gGZq8DAYcSl66zto0/Ryy4TX5ByGyF4wcPDZY8nW1zIPIIJGmRNiQm8VMIRwAGheBEbcgE6drmbMttJIP93jxUYJb7IWgI1AhYWdPRjrgD5RkgkkgoYO0UVgEOoBoG8MqnefTp2uJk6Ffv0xt0hKaDDSDQ1w8jhq6KjzjiulIGmwrAUQwaOsJOSqgDYL2QCgC/M6NfzTTIVHoKZdBwc+lg1kgtGpE9DYeN74fzOVPAROfyHF/URwCMG9gJuFbACgMK9TE8DnUtO+Dkqht/3VS40S3qJzDllfDL0wAJA0xMoCKy/1b6OEaEHX1UFNaK4ChhANALqxEUqKOpwC2pKKjYO0yeh/ZlnLuUXwyDli/VLZHRd8SzVNBEtlUBFwIZwCCiEaACgpAtOEDi4Ca40xaw5UVaCzP/BCw4S3WBPAI1vPrGiuCSQTwSLQQngVMIRqAGgas1ddmANwG3WZNan4/jsyphwkdFUl5OeiUlsZ/gFU3xjoGyMrgkXA6bLQ3AqyWXh7L6ivr+fRRx+lsbERl8vF5MmTuemmmygoKGDlypVUVlaSmprKvffeS3h4OA0NDaxevZrjx4/Tt29fFi5cyIABVqrmpk2b2LJlC4ZhcNttt5GWltapRntaBtoTSinUjNno19dZeefnlB0QAXLiCECbAQCA5CGyFkAEXncfAoqIiODRRx/l6aef5le/+hV79+7l8OHDvPrqq8yZM4dVq1YRHR3Nli1bANiyZQvR0dE899xzzJkzh9deew2AU6dOsWPHDp599lkeeughXnrpJczOLsIqzLf234z1zl+6mjIDevdBvy/1gYKBewvIoSPafI2VCXRSFvKJwCp1QngERNkC3ZJOaTcAKKXo3bs3AC6XC5fLhVKKgwcPMnnyZABmzJhBdnY2ALt27WLGjBkATJ48mQMHDqC1Jjs7m6lTpxIREcGAAQNITEzk6NGjnWt1UT7EDbCqQ3qB6h2FmjILvesDtGSWBJzOOQyJKaiL/VIlDYa6GnAW+q9hQrRUam0FGYqrgMGDISAA0zR58MEHycvL47rrriMhIYGoqCjCmlZo2u12nE7rUcjpdBIXZ9XFDgsLIyoqioqKCpxOJyNHni3qde4558rKyiIry6rRs2zZMhyOC7NAikuLMJJSiG3le53V+K3vUfz+20Tt2UH0Dd/32nWbhYeHt9qXUOTLvmitKfriKJETJhNzkXvUjxlPCdCvopReo8d2+n7d5efSXfoBodUXZ1UFxCdgb6O9wd4XjwKAYRg8/fTTVFVV8cwzz5Cbm9vma1ubSFVKeTzBmpGRQUZGhvvPRUVFF7zGdSYXlT601e91Wh8bjB5P5Tt/pPqa67z2dNHM4XB4t70B5Mu+6OICzLIS6pKGXPQeOjoGgLLPP8FI7fy8TXf5uXSXfkBo9cVVVADJg9tsb6D6kpSU5NHrOpQFFB0dzZgxYzhy5AjV1dW4XC7A+tRvt1vj8XFxcRQXFwPWkFF1dTU2m+284y3P6QhdXQVVFV1aBdwWY+Yca0hhf7bXry08o483VQBNHXnR16k+UWCPl7UAIrBCdC/gZu0GgPLycqqqqgArI+iTTz4hOTmZsWPHsnPnTgC2bt1Keno6ABMnTmTr1q0A7Ny5k7Fjx6KUIj09nR07dtDQ0EBBQQFnzpxhxIi2J/na1FQErqurgFt1+ZVgd0h9oEA6cdiaVEsZ2v5rk4dITSARMLquFmqqQzYDCDwYAiopKWHNmjWYponWmilTpjBx4kRSUlJYuXIlb775JqmpqcyaNQuAWbNmsXr1au69915sNhsLFy4EYNCgQUyZMoVFixZhGAZ33HEHhtGJZQjuFNCuLwJrSYWFoaZ9Hb35VXTeKVRiitfvIS5OHz8Mg4ehwiPafa1KGoz+bC/a5Tq/YqgQ/hDiawDAgwAwZMgQfvWrX11wPCEhgV/+8pcXHI+MjGTRokWtXmvevHnMmzevE808Sxc2lYHuYhmItqhrvob+0+vonVtRc2/xyT16Am2aoFSHsiO0ywVfHkVdc51nJyQPgcZGa+ewgRKshZ+F+CpgCMWVwEV5EGW7eIpgF6h+/a2Nx2XT+E7TLhfm00vQv1nRsRNzv4D6erjYArBzuGsCSUkIEQBn9wKWAOA3uijfJxPA51KDUuFkjk/v0Z3pre/A0c/QO7ei9+70/LwTzRPAngUAElNAGbIiWARGWYn1f3kC8KPCfJQPxv/PMyjV2ni8oty39+mGdHkJ+q3X4NLLIXkI5usvoGurPTv5+GGw9fU4wKvIXjBgoEwEi8AodUJEJERFB7olnRZSAUCbLijO98kE8LlUSqr1xSl5CugovfF3UF+PcfMPMW69xwqkb73h2bknjsDQUR1bVZk8WIaARGCE+CpgCLEAQKnTmvTz8RAQg6wAoE/KPEBH6GOfoz98D5XxDVRiCmr4aNQ116Hf+zP6y2MXP7e2Gk5/2W7+f0sqaQjkn0E31Hel6UJ0mC4L3b2Am4VWAGjKAFI+ygBqpvrGWD/Ykyd8ep/uRJsuzDdegP521PU3uY+red8HW1/MV9ZaT3Bt+eIYaI3q4KpelTwYtAlnTna26UJ0TogvAoMQCwC6aRGYN8pAtyslVZ4AOkD/8x/wxVHUjbeheke5j6toG+rbd8KJI+htf2v7/OPNFUA79gTg3hxG5gGEv5XKE4B/FeWBMqwSAD6mBqVC3il0Q4PP7xXqdGU5euMrMGos6sppF3xfXTkNLr0cvekVdGlxK1doygCKT0T17dexm8cPhPBwKQkh/ErX1kBtTUingEKoBYDCPLA7UOEe1bDrmkGp4HLBGflk2R791mtQU4Xx3btanRBTSmHccjc0NKB//1LrFzl+2PP0z3OvHR4OiSno0/JzEn7UDVJAIcQCgC7yfQZQM+WeCD7hl/uFKv3FMfS2v6FmzjmbPdUKNSAJNecm9K5/og98fP41SoqhtNjjBWAXXDtpiDwBCP9qXgUcExvghnRNSAUAivK9sw+wJwYMhMhISQW9CG2amG88D7Z+qG98t93Xq+vmQWIK5mvr0HV1Z7+R08EFYC0lDwZnIbrGw/UGQnSReyhTngD8Q9fVWY9d/noCMMIgeShaVgS3Se/cCsc+R93wA49Kc6iICIxbMqEoH/32789e58RhCAuDwcM61Q7VNBGMDAMJf5EhID9zZwD5JwDA2ZIQnm5m05Po6ir0H1+G1FGoKbM8Pk9dchlq6rXov29yl3DQxw9DSioqIrJzjUmyagJJSQjRWdo00YV5np9Q1rQKuE/orgKGkAoA1g/Hb0NAYE0EV1eCMzR2J/In/ec3oaIM4+YfojpY1lvdeBv0icJ8da1VAfSLox1eAHaeuAHQq7c8AYhO0x9tw/yvuy6Yn2pTUwpoKK8ChhAKAO7o7McAICUhWtf45XH0lj+jrvkaqqN5+4Dq288KAkc/Q2942Uqn6+z4P1gBKGmwPAF4QJ5mW6d3/x+AtWDRg9pVuqwk5FNAIYQCAEX50KsP2DqYJ94VKU2LjGRBmJvWmvJfPwt9olHfurXT11FTr4VRY9FZb1l/7kIAAGtzGMkEujj96R7M+29Df7on0E0JKrqhHj7dC8NHQ0mRVc+qPaXOkN4HoFnIBACrDHSCXx+5VO8oq9qkpIK66V0f0nBgN2ruLaguBGNrbUAmhIVDnyhISO5aw5KHQEUZury0a9fpxsxt70KZE/O5J9Gy7/VZhz6BulqMOTehZl2Pfv8d9OGDFz+nqRBcqPPDiiovKcyzUjP9LSUVuvkTgK4ox1z+EJSXgtZN/5nnfN30Z1ODq5HwYaMwp32ty/dVAwehbr4Lqqo6PI9wwbWSB6PBmgfo17/LbetudG0NfLILdeV0dH4u5tpfYtx1P+qKKYFuWsDp/dkQ2QtGj0eNHIve+y/M363GeGSlVXK85etrq6GuJuQzgCBEAoDW2loDMGaC3++tBqWid+9A11afV+OmO9FZb1mVOK/+qvWJXCkwDOv/KDCU9bUyICxzQvSOAAAb+klEQVSM/v9+EyWGd/bgNaZ93SvXIelsTSA1erx3rtmN6E92QUM9atp1qEGpmKt+gfn8f6PuWITRSvmOnkJrjd6XDZdebmWhRYDx/R9jrngE/Zc3UfN+cOFJpd0jBRRCJABQUQr1dT7bB/hi1KBU65PlqRMwYozf7+9ruqoSveUvqCumYnz/xx6dE+ZwQFGQZUbFxEJ0X9kboA1614fW39HIS1FGGMbCxzCfewL94rOYjQ0YU68NdBMDI/cEOAtR13/bfUiNSUN9JQP97ib0xKtRQ4aff05Z8yrg0A8AoTEH4C4D7ccU0GbdvCSEfu/PUFtzXgnnUKSUgmTJBGqNe/jniinWAkes+S1jwWMwehz65VWY29uu1Nqd6X3WXIgal37ecXXT7dC3P+bLq9CNjeef07wXcDd4AgiJAOBOAfVHGeiWYh0QZeuWqaC6phr93p8g7aqL1vEJFSppCJz+UlIdW3AP/0y8+rzjqlcvjHt/DpdNRL+yFvO9vwSohYGj92fDkBEXZPSoKBvG934Ep3LQ7248/6Sy0N8MvllIBIDmRWA4Bvj91kopGJTaLUtC6PffhuoqjHMef0Na8mCoqYaSIBueCrBzh39aUhGRGHcvgbTJ6DdfwHx3UwBaGBi6vBRyDqMuv7LV76sJk1HpV6P/8ib63A2HSp1WnbA+oT8nGBoBoDDfWnXX2VIBXaQGpULuiYvvaBVidF0t+h9vwWUTUUNGBLo5XqGaJoKRzWHcWhv+aUlFRGD88AHrzW7Desy//L7V13U3+pOPrV3oxk9q8zXqu/8Jvfpg/va5s7//pU6ICf1VwBAiAcAqAx2A4Z9mKalQXw/5ZwLXBi/T2/4KleXd59M/WE8AgJaJYLe2hn9aUuHhqDt/ipo8E/3Wa5ibXu32Q2l6/0fWOP5FihCqfrGo79wJxz5Hv/+OdV5ZSbcY/4cQCQAU5fl8H+CLce8N0E3mAXR9Hfrvm6285+GjA90cr1HRfa1fTJkIdrvY8E9LKiwMddtPUNd8Df3OH9BvvIA2TT+00v90QwMc3IsaP6ndT/LqqhnWPMnG31kfRktDfy/gZkEfAHRDA5QUB/YJYOAgq1xxkCwI04V5mO/8b6e3q9T//AeUlXSvT//NkobI/sBNPBn+aUkZBuqWTNRXv4l+/230i8vRjd1wW9TDB6CuBjW+9fH/cymlMG7NBGVg/m61NQksTwB+UlxgrUT1YxnollREBAwcFBSpoLqxAXPdMmt/3fUrO/wJTTc0oP+20VrTMOoyH7UycFTyYDhzEl1RHuimBJynwz8tKcPAuOkO1I3z0dkfWKUjamt81MrA0Ps+siZyL/Vs0aCyx6Nu/AF8tg/qartNAGh3IVhRURFr1qyhtLQUpRQZGRnMnj2byspKVqxYQWFhIfHx8dx3333YbDa01qxfv549e/bQq1cvMjMzGTbMGmPbunUrGzdaKVXz5s1jxowZ7bewKIBrAM6hUlLRn+0LaBsA9Fuvw5fH4Yqp6OwPwB6PunG+5+f/33tQUoTxg3u7xSRWS2r4aPQ/3sL82fdh1GWoK6aiJlyF6h8X6Kb5XUeGf1pjXDcP09YP/bvVmMsfxljwKKqvH4sx+ojW2kr/HH15q6Ue2qKmfd36nTt8sFvUAQIPngDCwsK49dZbWbFiBUuXLuXdd9/l1KlTbN68mXHjxrFq1SrGjRvH5s2bAdizZw95eXmsWrWKu+66ixdffBGAyspKNmzYwFNPPcVTTz3Fhg0bqKysbLeBujkFNIBzAIC1IKzMGdBiY/rQJ+h3N6Ku+RrGjx5EzZiNfncj5hbP8rd1YyP6nQ1W6eUxaT5ubWCoiV/B+PkK1L/dCGUl6NfXYd5/G65lD2D+fVPHNv0IYZ0Z/mmN8ZUMK0009wvMXz2ILi7wYisD5PSXUFyAurzt7J/WKMPA+MG9MGIMalj3mDtrNwDExsa6P8H36dOH5ORknE4n2dnZTJ8+HYDp06eTnW2tqNu1axfTpk1DKcWoUaOoqqqipKSEvXv3Mn78eGw2GzabjfHjx7N37972W1iYb+280y+wEbd5IjhQC8J0dSXmb1ZAfCLqpjtQSlkpamlXod/8tbue+UWv8a9tUFyAMefb3fLTfzM1eDjG3FsIe3wNxuNrUHNvgYYG9P+ux/yvu3A9/hPMv7yJzv2i22a6dHb4pzUq7SqMhb+AslLMZQ+G/BxLcyVUNa5jAQBADUgi7MFlqEAUpvSBDs0BFBQUkJOTw4gRIygrKyM21npTjo2NpbzcGnN1Op04HA73OXFxcTidTpxOJ3FxZx/D7XY7Tqez3XvqojyIG9DlapFdlhLYkhD6tXVQ6sS486eo3n0Aa99i486fwdCRmC8uRx/7vO3zTRf6nf+1nmTGp7f5uu5GDRyEMecmwn6+AuOpF1D/cTv06o3+0xuYj91L4Q9m41r1OOZffo/+bF+32Vi+q8M/LalRYzEeeAq0xvzVYvTRz7xy3UDQ+z6CwcNRsT1vWLAlj4vB1dbWsnz5cubPn09UVNsr4Fr7RNXWp83WjmdlZZGVlQXAsmXLCC8pwkgeROw5QSUgHA4K4+KJLDxNTCfaEh4efl5g7Iiabe9S/tF2om/+T2yTpl7wffPRFTiX/BBzzVJif/k84U358Odd44O/U15wmpgHltI7Pr5T7WjWlb4ElMMBl14GN9+Jy1lE3cc7cB05SN1nn+B6a5dV9E8pwgcPI2LUWCIuuYyIUZcRljw48B9A2nHuz8SsqabwwC76XPvv9BvgxaFThwPXf79AyS/uw7XiEfo/sJReEy/899hVvvz3ZZaVUHj8ENE33YbND/+Gg/13xaMA0NjYyPLly7nmmmu46qqrAIiJiaGkpITY2FhKSkro18+aHIqLi6PonEqRxcXFxMbGYrfb+fTTT93HnU4nY8ZcWF0zIyODjIyMs/fOy0UNHXXeNQPFTBpC7dHPaehEWxwOR6f6oIsLMJ9/GoaPpmbabGrbuIb+8cPoXz5A8S8WYiz+FeqcmvjaNDHf/A0kDaZi+Fgqu/h32dm+BJ0JU3F89RvUFRVhVFfC8cPo44dozDlE44fvUfOPP1mvi+6L8f17UFd4/83OW879mZjZH0B9PXVjJ3r/5xQWif7ZUvifX1D61AOo+T/BmDLTq7fw5b8vc8cW0JqaEWPb/F3ypkD9riQlJXn0unY/1mitWbduHcnJyVx//fXu4+np6Wzbtg2Abdu2MWnSJPfx7du3o7Xm8OHDREVFERsbS1paGvv27aOyspLKykr27dtHWpoHE5E11X7dB/hi1KBUyDtlbSHnB9p0Yb70LGiNccciVFjbk3lqQJJV2KvMaZX5ras9+809O616/7P/I+g/yQaKirKhLrsC4xvfJewnj2GseA3j8bWo+QvAkYD564sPsQUTbw//tKT69cf42VIYdRn6Nyswt77jk/v4gt7/kVXEbfDw9l/cA7T7bnDo0CG2b9/OgQMHuP/++7n//vvZvXs3c+fOZf/+/SxYsID9+/czd+5cACZMmMCAAQNYsGABzz//PHfeeScANpuNG264gSVLlrBkyRJuvPFGbDabR40M5Crg86SkgssFp0+2/1ov0O9ugiOfor57l0dpsGrYJRj/eT98cQzzhafRLhdaa8y3fw8JyahJXZ8Q7CmUYaAGplhZMD95DOwOzNVPoguCuxyIt7J/2qP6RGEseBQuvxL92jrMD7N8di9v0Y0NcHAPany6fBBq0u4Q0OjRo/nDH/7Q6vceeeSRC44ppdxv+i3NmjWLWbNmdbCJBHQR2LmaN4fRp3Iu3CTCy/QXR9FvvYaa+BXUFM//zlTaVaib70K/tg79+jqr0NXJHGuJvw/fELoz1bcfxoJHMX95P+Zzj1tDbNF9A92sVnkz+6c9zUXkzNVL0b99DjM8AuOq6T6/b6cdPmjtfXGR4m89TWiEwSAJAAxItPYO9XFpaF1Xh/nicujbH3VrZodTNo0Zs1H/dgN6+7uYL60ARwLqyiD+xQwBKiEJ456HoCgfc+1TnS7D4Wu+Hv5pSUVEYmT+F4wcg/7NCo/SkQNF78+2Usov7Z5rYDoj+ANA35ig2YtXGWGQMtTnewPoDb+BvFyM2xd2+pOmmnsr6qrpUFOF+rcbUeGhsftnMFMjx6Dm/wQOH0T/bnXQrSHw1/BPS+6NZYaMsIYeD3zst3t7ytr79yOrAGIvz1f/dnfBHwCC5dN/E5WSCidzfPbLr/dlo7f+FfW1uahLL+/0dZRhoOYvwLjvcWuzd+EVxlXTUd/8Hnrn++g/vxHo5pzHn8M/LaneURgLH4PkwZhrf4n+fL/f23BRZ05CUb4M/7QQ9AEg0DWALjAoFWqqwFno9Uvr8hLM366ClKGoubd2+XoqPMLa4FomvLxKzbkJNfVa9J/ftNIKg4S/h39aUlE2jIWPW1lTq59EH/20/ZP8xL33rwSA8wT/O0OwPQE0l4TwwTCQ+frzUFNtrfaNiPD69YV3KKVQt2bC6PHWUNChTwLdJMya6oAM/7Sk+vbDWPQExNgxVz2OPnEkYG05l96fDYNSUfbgXZQVCBIAOip5CCjl9XkA/cku+HgH6vpvo5KHePXawvtUeATG3YthwEBrUvjMqYC2p/7jHQEb/mlJ9bdj/PQJiLJhrng04Bsp6cpyOPZ5m3v/9mRBHwCCbQhI9e4D8QO9+o9a19VhvrYOBg5CXfctr11X+JaKsmEseATCwjFX/QJdURawttTu2BLQ4Z+WlD0e46dPQmQk5rOPtBkgdX0dOv80+rN9mDu2YL79B6rf+SP6ZI7X9uC29v41Pdr8pacJ/tSQIAsAAAwaatXk9xL99u+tKp0/ewoVLkM/oUQ5EjDu/TnmM/+FufpJjJ8+2aEa896ga2uo+3gH6isZQbXWQ8UnYix6EvPpJZjPPoyaMRtKneiSImsOraQYKi/cuKei+Ys+0TB8NGrEpaiRYyB1FCoisuMN2Z9tBUcfr90JRcEfAIJwIw81aBj64x3ommpUn66lqOrcL9F/34SaMgt1SffboasnUKmjMO74qbVT2+9Wwx2L/FpuWzfV/gmG4Z+W1MAUjEVPYD77c/TmVyEqGmId1kZGqaOavnagYh3W17EO7BEGxR/9E458ij7yKfrAx1ahvvBwGDICNWIMauRYKyGjb8xF58t0YwP64G5rQaUkQ1wg6APAxerfBIpKsVYEc+oEjLywoJ2ntGlivroWekeh/uM2bzVPBIC6YgrqG9+1dmwbORY1/es+v6dubET/+Q30XzcQPnQEZpAM/7SkUoZi/PdL4HK5S5lfTJjDgTF5Jky2iszpynI4+hn66Kfoo5+hs/6Efnfj2RN69QFbX+gbA7Z+KFs/sPWzjtXVQE21ZP+0IegDQFBqygTSp3KsR9NO0jveg6Ofor7/Y1TfGG+1TgSImn2T9Qb15gvooSNQQ0b47F664Iy1WjznMOorGcTesxhnVfDuZaAiIqGTo5vK1g/SrkKlWZWIdX0d5BxB552yhpCa/tOV5VBRhj5zEiorrDd/gD5R0IU1Nd2ZBIDOiI2D6L5dSgXVFeXoDS/DiEtRX8lo9/Ui+CnDsIaCnlyIue6/MR5egYr2rOChp7TW6J1brQ2CwgyMHz6ASr8ao08UBHEA8CYV2QsuuazdIVPdUA8V5RAR4dGTR08kg2KdoJSCQaldSgXVf1wPtdUYt2TK2GQ3ovr2w7jrASgpxly/0qsrxnV1FfrFZ9G/WQGDUzEeWYVKD75x/2ChIiJRdoc8XV+EvPN0kkpJhdwv0K6Op6rpwwfQH76H+upcyfnvhtTw0daczr6P0H/f5JVr6qOfYT7+E/SuD1Df/B7Gz5ai4rq2s5sQMgTUWYOGQkM9FJyGgYM8Pk03NmC++v+sfY6v/47v2icCSs263spi2fg7dOoo1KjOZXhpl7WXs/7Lm2CPx3hgGWr4aC+3VvRU8gTQSWrQMIAODwPpdzfBmZMYN/9QqhJ2Y0op1A/uBUci5gvPoMtLOnwNXZiH+cxD6D+9jpp0DcYj/yNv/sKrJAB01sAUCAuHA7utrAQP6MI89Nt/gCumSFpaD6D6RGHc/SBUV1pbSnq4slVXlmP+4SXMRzLhVA7qjvus+lBdXHMiREsyBNRJKjwCxqWj/28Leu9O1BVTUVNmWjngrUzqaq0xX18HRhjGt/8zAC0WgaBSUlHfuxv98v+g//QGau4tbb5W19Wh3/sT+m9/hNpa1NSZqG/cjLLLWL/wDQkAXWDc/SAcOoD+v/fRuz5Ef5hlrXC8ajpqykzUOXMDdTvehwO7Ud++QyoS9jDGV67FPHIQ/fYf0MMvRY2beN73tcuF/jDL2l+g1AmXX4nxrVslQUD4nASALlBGGFx6OerSy9Hfuxu9d6eVo/3uRvRfN1jL1ifPQI1Pp+KllVY52pnXB7rZIgDUzT9Ef3EU86VnMX6+EhUXb6WI7tmJuel3kJcLw0dj/Of9qFFjA91c0UMoHWz72rVw+vTpQDehw3R5Cfqj7ej/2wpfHrMOKoWx5Gmr/kmIczgcFBUVBboZXuHPvuj805hP3gcDB2F861bMza/C8UOQmIIx7/vWatdO1hCSn0lwClRfkpKSPHqdPAH4gOoXi8r4JmR8E336S/S/tmFLGUx1N3jzF52nEpIw5v8Ec90yzGd/Dv3tVhmQqdcGZc0r0f1JAPAxlTQY9a1biXI4qO4mn2pE56mJU1E3/wjq61AzZksqsAgoCQBC+Jkxc3agmyAEIOsAhBCix5IAIIQQPZQEACGE6KEkAAghRA8lAUAIIXooCQBCCNFDSQAQQogeSgKAEEL0UEFfC0gIIYRvBPUTwOLFiwPdBK+RvgSn7tKX7tIPkL74U1AHACGEEL4jAUAIIXqosMcee+yxQDfiYoYNGxboJniN9CU4dZe+dJd+gPTFX2QSWAgheigZAhJCiB7K7/sBrF27lt27dxMTE8Py5csBOHHiBL/+9a+pra0lPj6eBQsWEBUVRWNjI+vWrSMnJwfTNJk2bRrf+ta3ANi7dy/r16/HNE2uvfZa5s6dG5L9uOeee+jduzeGYRAWFsayZcv82o/O9OWFF17g2LFjGIbB/PnzGTvW2sP2+PHjrFmzhvr6eiZMmMBtt93W6S0OA92Xxx57jJKSEiIjIwF4+OGHiYmJ8Vs/ioqKWLNmDaWlpSilyMjIYPbs2VRWVrJixQoKCwuJj4/nvvvuw2azobVm/fr17Nmzh169epGZmekeeti6dSsbN24EYN68ecyYMcNv/fB2X7797W8zePBgwNpu8cEHHwzqvuTm5rJ27VpycnL4zne+wze+8Q33tQL9HgaA9rODBw/qY8eO6UWLFrmPLV68WB88eFBrrfV7772n33jjDa211h988IFesWKF1lrr2tpanZmZqfPz87XL5dI//vGPdV5enm5oaNA/+9nP9MmTJ0OuH1prnZmZqcvKyvza9pY60pe//vWves2aNVprrUtLS/UDDzygXS6X+5xDhw5p0zT10qVL9e7du/3cE+/15dFHH9VHjx71c+vPcjqd+tixY1prraurq/WCBQv0yZMn9SuvvKI3bdqktdZ606ZN+pVXXtFaa/3xxx/rpUuXatM09aFDh/SSJUu01lpXVFToe+65R1dUVJz3dSj2RWutb7nlFr+2vaWO9qW0tFQfOXJEv/766/qtt95yXycY3sO01trvQ0BjxozBZrOdd+z06dNceumlAIwfP55//etf7u/V1tbicrmor68nPDycqKgojh49SmJiIgkJCYSHhzN16lSys7NDrh/BoiN9OXXqFJdddhkAMTExREdHc/z4cUpKSqipqWHUqFEopZg2bZrffybgnb4Eg9jYWPen3j59+pCcnIzT6SQ7O5vp06cDMH36dPff8a5du5g2bRpKKUaNGkVVVRUlJSXs3buX8ePHY7PZsNlsjB8/nr1794ZkX4JBR/sSExPDiBEjCGux53MwvIdBkMwBDBo0iF27dgGwc+dOiouLAZg8eTK9e/fmrrvuIjMzk3//93/HZrPhdDqJi4tznx8XF4fT6QxI28/V0X40W7p0KQ8++CBZWVkBaXdr2urL0KFD2bVrFy6Xi4KCAo4fP05RUVHQ/kyg431ptnbtWu6//342bNiADmCuREFBATk5OYwYMYKysjJiY2MB682ovLwcAKfTicPhcJ/T/Pff8udit9sD+nPpSl8AGhoaWLx4MQ899BAfffSR/ztwDk/60pZg+X0Jij2B7777btavX8+GDRtIT08nPNxq1tGjRzEMg+eff56qqioeeeQRxo0b1+ovo7/HmlvT0X4kJCTwxBNPYLfbKSsr48knnyQpKYkxY8YEuCdt92XmzJmcOnWKxYsXEx8fzyWXXEJYWFhA3yDb09G+ACxYsAC73U5NTQ3Lly9n+/bt7k94/lRbW8vy5cuZP3/+RZ8aO/I7EajfFW/0Ze3atdjtdvLz83n88ccZPHgwiYmJPmtzWzztS1uC5T0sKAJAcnIyDz/8MGA9ru/evRuAf/7zn6SlpREeHk5MTAyXXHIJx44dw+FwuD/FARQXF7ujbyB1tB8JCQnY7XbAelScNGkSR48eDYoA0FZfwsLCmD9/vvt1Dz/8MAMHDiQ6OvqCn0lz3wKto30B3G3v06cPV199NUePHvV7AGhsbGT58uVcc801XHXVVYD176SkpITY2FhKSkro168fYH2CPPfppfl3wm638+mnn7qPO53OgPz78kZf4OzPJSEhgTFjxnDixAm/B4CO9KUtcXFxQfEeFhRDQGVlZQCYpsnGjRv56le/Cliz/AcOHEBrTW1tLUeOHCE5OZnhw4dz5swZCgoKaGxsZMeOHaSnpweyC0DH+1FbW0tNTQ1gfaLYv3+/O8Mh0NrqS11dHbW1tQDs37+fsLAwUlJSiI2NpU+fPhw+fBitNdu3bw+Knwl0vC8ul8v9CN/Y2MjHH3/MoEGD/NpmrTXr1q0jOTmZ66+/3n08PT2dbdu2AbBt2zYmTZrkPr59+3a01hw+fJioqChiY2NJS0tj3759VFZWUllZyb59+0hLSwvJvlRWVtLQ0ABAeXk5hw4dIiUlJaj70pZgeQ/z+0KwlStX8umnn1JRUUFMTAw33XQTtbW1vPvuuwBceeWV3HzzzSilqK2tZe3atZw6dQqtNTNnznSnUe3evZvf/va3mKbJzJkzmTdvnj+74ZV+5Ofn88wzzwDgcrm4+uqr/d6PjvaloKCApUuXYhgGdrudH/3oR8THxwNw7Ngx1q5dS319PWlpadx+++1+f6z1Rl9qa2t59NFHcblcmKbJuHHj+MEPfoBh+O/z0ueff84jjzzC4MGD3X+H3/3udxk5ciQrVqygqKgIh8PBokWL3KmTL730Evv27SMyMpLMzEyGDx8OwJYtW9i0aRNgpYHOnDnTb/3wZl8OHTrECy+8gGEYmKbJnDlzmDVrVlD3pbS0lMWLF1NTU4NSit69e/Pss88SFRUV8PcwkJXAQgjRYwXFEJAQQgj/kwAghBA9lAQAIYTooSQACCFEDyUBQAgheigJAEII0UNJABBCiB5KAoAQQvRQ/x8a89qFME3DHAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"haiti.plot()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"*pandas* automatically populated the x-axis with the index values (years), and the y-axis with the column values (population). However, notice how the years were not displayed because they are of type *string*. Therefore, let's change the type of the index values to *integer* for plotting.\n",
"\n",
"Also, let's label the x and y axis using `plt.title()`, `plt.ylabel()`, and `plt.xlabel()` as follows:"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VGX68PHvMylAEghpEFKAQECagBKkiBDKrrvAuoj+rKgollcURNx17YgFsQFSFF1YXMSOgA1XRQQURIM0wUJvgZAySSCFtHneP04ykH4ymZIJ9+e6uEjOnHKfCeSe85T7UVprjRBCCOEAi6cDEEII4b0kiQghhHCYJBEhhBAOkyQihBDCYZJEhBBCOEySiBBCCIdJEhFeKzExkdtvv92jMaxbtw6lFMeOHXPL9R555BFat26NUoo333zTLdd0t/bt2/PMM8/UuM+hQ4dQSvH999+7KSpRHSXzRISjxo8fz7Fjx1izZo1Hrm+1WvH19aVFixZuuZ6vry+LFi1i/Pjx9m2FhYVYrVZatWqFxeLaz2Q//vgj/fv3Z9WqVfTr14/g4GCaNWvm0mua8eabb3L77bdTXFxc6bXExETi4+NZtGiR6fOlpaUREBBAYGAgAPHx8YwbN44nn3zSvk9JSQlpaWmEhYXh5+dX73sQjvP1dABCOCo0NLTe5ygqKsLX1xellEPH+/v7ExkZWe84zNi7dy8Wi4W///3v1e5T3/tpCCIiImrdx8fHx23vu6iZNGcJpxk/fjwjRoxg3rx5xMTEEBQUxO23305RURELFy6kXbt2hISEcOedd1JYWGg/LjExkQkTJvDYY4/RqlUrWrZsyaOPPorNZuOpp56idevWRERE8Oijj5a7XsXmrPz8fO68806Cg4MJCQlh4sSJPPzww8THx1cZY/v27WnSpAm5ubl8/fXXJCYmEhoaSnBwMEOGDOGnn36yH9e+fXtKSkq49dZbUUrZf0lX1Zy1efNmBg8eTLNmzQgJCeGGG24gNTXV/vqTTz5JfHw8H3/8MV26dCEwMJChQ4eyf//+Gt/bm266CZvNVu761d1PUVERDz30ENHR0fj7+9OtWzfeeeedcudUSjFv3jyuvfZaAgMDadu2LcuXLyc7O5sbb7yR5s2b06FDBz766CNTP38zanufoXxzVmJiIvv372f69On2+z506JA0ZzUgkkSEUyUlJbFlyxa+/vpr3nnnHZYtW8bf//53Nm3axBdffMFbb73FW2+9xeLFi8sdt3z5coqKivj++++ZNWsWM2bMYPTo0eTk5PDdd9/x0ksvMWPGDL744otqr/2vf/2Ljz/+mLfeeovNmzcTHBzMq6++Wmm/n376ibVr17Jq1Sp27NhB06ZNycnJ4Z577mHz5s1s2rSJTp068Ze//IWMjAz7ffn4+DBnzhxOnDjBiRMnqowhJSWFP//5z8TExPDTTz/x6aefsmvXLq666qpy+504cYLXXnuNt99+m02bNpGVlcVtt91W7b298sorzJkzBx8fn0rXr+p+HnnkEf79738zZ84cdu3axbhx4xg3bhzffPNNufM+++yzjBw5kh07djB69GhuvvlmrrvuOv70pz+xbds2Ro0axc0332x/H+qrtve5ohUrVtC+fXseeOAB+33HxsY6JRbhJFoIB91yyy16+PDh5b6PiIjQBQUF9m0jR47UYWFh+syZM/ZtV1xxhb7qqqvs3w8ZMkT36tWr3Lm7deume/ToUW5bz5499QMPPFDuuAkTJmittc7JydH+/v560aJF5Y7p16+f7tixY7kYg4OD9enTp2u8t5KSEt2yZUu9bNky+zYfHx+9ZMmScvt9++23GtBHjx7VWmv92GOP6ejo6HLvwfbt2zWg169fr7XWetq0adrHx0enpqba93n33Xe1Ukrn5+dXG9OSJUu0j49PuW1V3U9ubq729/fXCxYsKLfvmDFj9NChQ+3fA/q+++6zf5+amqoBfe+999q3Wa1WDehPP/20xrgAHRgYWOmPxWKx/4yqUtX73K5dO/3000/bv+/YsaOeNm1aueMOHjyoAf3dd99Ve27hHvIkIpyqa9eu+Pv727+PjIzkggsuoEmTJuW2ndu8A9CrV69y30dGRtKzZ89K2yoeV2bfvn0UFhbSv3//ctsHDBhQZYxBQUHlth08eJCbbrqJ+Ph4WrRoQYsWLcjOzubw4cM13G1lu3fvpn///uXeg169ehEcHMzu3bvt26Kiosq1/UdHR6O1rvb+alLxfsrei8GDB5fbb8iQIeViKIutTEREBD4+PuXe95CQEPz9/WuNy8fHh+3bt1f6k5CQUG4/Z73PouGQjnXhVBVHyiilqtxms9mcclxFZjqUy0b9nGv06NGEh4ezYMECYmNj8ff3Z9CgQeX6bsyqLoZzt5+bZM59rbb7q0pV91NVHFrrStuqGtnkyPsOlOt7KlNx9Jgz32fRMEgSEY1CfHw8/v7+/PDDD3Tr1s2+ffPmzbUem5GRwa+//srq1au5/PLLATh27FilT9/+/v6UlJTUeK7u3buzZMkSCgsL7Ylix44dZGdn071797relkPi4+Np0qQJ69evL3fNDRs2uC2Gqph9nysy874Lz5EkIhqFwMBA7rrrLh577DFat25N586d+e9//8tvv/1W65DRkJAQIiIi+Pe//03Hjh3JyMjgwQcfrPQpOi4ujm+//Za//vWv+Pv7Ex4eXulc9957L6+88grjx4/nkUceISsri4kTJzJo0CAuu+wyp95zdQICApg8eTKPP/44ERER9O7dmw8//JCPP/6Yr7/+2i0xVMXs+1xRXFwcGzdu5MiRIwQEBDhlaLdwHukTEY3G888/z9/+9jduuOEGLrnkEjIzMxk/fjxNmzat8TiLxcKHH37I/v376dmzJ+PHj2fKlCm0adOm3H4vv/wyP//8M3FxcdUmptatW/PVV19x7Ngx+vbty+jRo+nRo4dTh8ma8eyzz3LHHXcwZcoUunfvzrJly1i2bBnDhw93axznMvs+VzR9+nSys7O54IILiIiI4MiRI26KWJghM9ZFozZs2DBCQkLc/ktciPOFNGeJRuOXX35h69atDBgwgMLCQt566y2+/fZbVq9e7enQhGi0JImIRkMpxWuvvcbkyZOx2Wx06dKFlStX8te//tXToQnRaElzlhBCCIdJx7oQQgiHSRIRQgjhsPOiT+T48eOeDsEpwsPDSU9P93QYTiH30vA0lvsAuRdniIqKMrWfPIkIIYRwmCQRIYQQDpMkIoQQwmGSRIQQQjhMkogQQgiHSRIRQgjhMEkiQgghHCZJRAghvJzemYROOeaRa0sSEUIIL6ZtNmyvv4DtrQUeub4kESGE8GaZGVBYAHt2o48dcvvlJYkIIYQ3O3m2GUt/6/61cySJCCGEF9MpycYXFyagN3+Lzstx6/UliQghhDdLSYamzbCMuREKC9CbvnHr5SWJCCGEF9Mnk6F1NKptR+jYBf3tarTN5rbrSxIRQghvlpKMiowGQA0dBakn4Nftbru8JBEhhPBSuqAArGlQlkT6DIQWLbF9+7nbYpAkIoQQ3iqtdMG91qVJxNcPNfhy+GULOi3FLSFIEhFCCG9VOjJLlSYRADX4L6AUet0XbglBkogQQngp+/De1meXslUhYaiLBqC//9po7nIxSSJCCOGtTiZDaDiqSdNym9WwUZCXg07a4PIQJIkIIYSX0inJ9v6Qcjp1h+h26LWfobV2aQySRIQQwgtpreHk2eG951JKGcN9jx6E/b+7NA5JIkII4Y1OZUF+HrSOqfJl1W8INAtEu3i4ryQRIYTwRmUjs6p4EgFQTZuhLh2O/nkTOjvTZWH4uuzMFeTm5rJw4UKOHj2KUoq7776bqKgoZs+eTVpaGhEREdx///0EBQWhtWbJkiVs27aNJk2aMHHiRDp06ADAunXrWLFiBQBjx44lMTHRXbcghBANhi6r3ltNEgFQiSPRaz5Bf/clavR1LonDbU8iS5YsoXfv3syZM4cXX3yR6OhoVq1axYUXXsjcuXO58MILWbVqFQDbtm0jJSWFuXPncuedd7Jo0SIAcnJyWL58OTNmzGDGjBksX76cnBz3VqwUQogGISUZ/PwhJLzaXVTrKOh+EXr9/9DFxS4Jwy1JJC8vj99++41hw4YB4OvrS2BgIElJSQwZMgSAIUOGkJSUBMCWLVsYPHgwSik6d+5Mbm4umZmZbN++nZ49exIUFERQUBA9e/Zk+3b31YgRQoiGQp88Dq3aoCw1/xq3DB0NWVbYvtklcbilOSs1NZUWLVrw6quvcvjwYTp06MD48ePJzs4mJCQEgJCQEE6dOgWA1WolPPxsdg0LC8NqtWK1WgkLC7NvDw0NxWq1VrremjVrWLNmDQAzZ84sdy5v5uvrK/fSADWWe2ks9wHnx72kp6Xg2z6elrXcp078MxkfLsby3VeE/mWM8+Nz+hmrUFJSwsGDB7ntttvo1KkTS5YssTddVaWqcc1KqSr3rWr7iBEjGDFihP379PR0B6JueMLDw+VeGqDGci+N5T6g8d+LLi7CdjIZ20UDTN2n7bLLKVm+hLTtW1Ax7U1dNyoqqvadcFNzVlhYGGFhYXTq1AmA/v37c/DgQYKDg8nMNEYNZGZm0qJFC/v+574xGRkZhISEEBoaSkZGhn271Wq1P8kIIcR5I+0k2Gw1dqqfSw0aAX7+Llk+1y1JpGXLloSFhXH8uFFx8pdffiEmJoaEhATWr18PwPr16+nbty8ACQkJbNiwAa01e/bsISAggJCQEHr37s2OHTvIyckhJyeHHTt20Lt3b3fcghBCNBylI7OqG95bkQpsjrpksEuWz3XbEN/bbruNuXPnUlxcTKtWrZg4cSJaa2bPns3atWsJDw9n6tSpAFx00UVs3bqVyZMn4+/vz8SJEwEICgriqquu4uGHHwbg6quvJigoyF23IIQQDcLZwovmkggYC1bpjWvQm75Bjfi702JR2tWFVRqAsicgb9fY23m9VWO5l8ZyH9D478X25lz0L1vweXlpnc5V8sxU8PfH58GZte7boPpEhBBCOI8+mWy6P+Rcqm0H+0x3Z5EkIoQQ3iYludxCVKZFxsDpbHTOKaeFIklECCG8iM49DTmnHHsSaVNarNGJTyOSRIQQwptUsSSuaZFGEtEpx5wWjiQRIYTwIvpk3Udm2YVFgK8fSBIRQojzVEoy+PhAeOs6H6osPtA66uwQYSeQJCKEEF5En0yGiEiUr2PT/FRkDJyQJxEhhDg/VbeuulmR0ZCegi4ucko4ppLIZ599xqFDhwDYs2cPd999N/feey979uxxShBCCCFqp20lkHrCdLmTKkXGGHW30lKcEpOpJPL555/TqlUrAN59911Gjx7N2LFjefPNN50ShBBCCBMy0qC4qF5PIvZhvk5q0jKVRPLy8ggICCA/P59Dhw7x17/+lWHDhjWaciJCCOEV7Ouqxzh+jtIE5KxhvqZ6ZsLCwvjjjz84evQoXbt2xWKxkJeXh6WWFbWEEEI4j5l11WujmjYzltR1ZxIZN24cs2bNwtfXlwceeACArVu3Eh8f75QghBBCmJCSDAFBENSifueJjHbaMF9TSeTiiy/m9ddfL7etf//+DBgwwClBCCGEqJ1OSYbWUdWu9GqWiowx1hbRut7nMtUedeutt1ba5uvry1133VWviwshhKiDk8frNzKrTJsYyM+D7Mx6n8pUEikpKam0rbi4GJvNVu8AhBBC1E6fyYesjPrNESllr7t1sv5NWjU2Zz3xxBMopSgqKmLatGnlXsvIyKBz5871DkAIIYQJJ43RsPUamVWmrBDjiWOoCy6s16lqTCLDhg0DYN++fQwdOtS+XSlFcHAwPXr0qNfFhRBCmGMfkuuM5qyQMGjS1CkjtGpMIomJiQB06tSJ6GgnBC6EEMIxJ5NBKWjVpt6nUkpBZIxT5oqYGp0VHR3Njh07OHToEGfOnCn32rXXXlvvIIQQQtQiJRnCWqH8/J1yOhUZjd73W73PYyqJLF68mB9++IHu3bvTpEmTel9UCCFE3Ti6rnq1ImPgx/XoggJUPX6vm0oiGzdu5IUXXiA8PNzhCwkhhHCM1toY3tupu9POqdrEoMFoJmvbweHzmBri27x5cwIDAx2+iBBCiHrIzICCM85/EqH+NbRMPYmMHj2auXPncuWVVxIcHFzutdat6766lhBCiDo4WY911avTqo3RUe+OJLJo0SLAqJdV0fvvv1+vAIQQQtSsXuuqV0P5+RtL7NazhpapJCKJQgghPCgl2ZjXERLm3PM6YZiv1HIXQogGTp90TuHFilRkNJxMRtejhJWpJ5GSkhK+/PJLfv31V06fPl3utenTpzt8cSGEECakJKPiXFBmKjIGCgshMx3CWjl0ClNPIv/9739Zs2YN3bp148CBA/Tr14/s7Gy6d3fecDMhhBCV6cICyEh17sisUvY6XPVYKtfUk8iPP/7Is88+S3h4OB988AEjR46kV69evPHGG6YvdM8999C0aVMsFgs+Pj7MnDmTnJwcZs+eTVpaGhEREdx///0EBQWhtWbJkiVs27aNJk2aMHHiRDp0MMYxr1u3jhUrVgAwduxYe2kWIYRojEpOHAOtndqpbtfm7DBf1eNih05hKokUFhYSFmZ06Pj7+1NQUEB0dDSHDh2q08WmTZtGixZnV+RatWoVF154IWPGjGHVqlWsWrWKcePGsW3bNlJSUpg7dy579+5l0aJFzJgxg5ycHJYvX87MmTMBeOihh0hISCAoKKhOcQghhLcoPn4EcFL13oqCWkBg83oN8zXVnBUdHc3+/fsB6NChAx9++CEfffQRoaGhDl8YICkpiSFDhgAwZMgQkpKSANiyZQuDBw9GKUXnzp3Jzc0lMzOT7du307NnT4KCgggKCqJnz55s3769XjEIIURDVpJsJBFaRzn93EYhxvotlWvqSWT8+PH4+PgAcMstt7Bo0SLy8/O5884763SxZ599FoA//elPjBgxguzsbEJCQgAICQnh1KlTAFit1nIlVsLCwrBarVitVvsTEUBoaChWq7XSddasWcOaNWsAmDlzZqMp1+Lr6yv30gA1lntpLPcBjeteTp04iiUsgoiYWJecP7tdRwq3bXb4/ao1idhsNo4cOcJll10GQJs2bXj88cfrfKGnn36a0NBQsrOzeeaZZ4iKqj6raq0rbatuaFtV20eMGMGIESPs36enp9c53oYoPDxc7qUBaiz30ljuAxrXvViOHcYWHumy+7GFhKMzM0g7chgVcLa8VU2/o8vFV+sOFgtLly7Fz8/P8SjB3vQVHBxM37592bdvH8HBwWRmGmv8ZmZm2vtLwsLCyr1hGRkZhISEEBoaSkZGhn271Wq1P8kIIURjo7WmOPmIc9ZVr4a9r8XBpXJN9Yn06dOHLVu2OHQBgDNnzpCfn2//eufOnbRt25aEhATWr18PwPr16+nbty8ACQkJbNiwAa01e/bsISAggJCQEHr37s2OHTvIyckhJyeHHTt20Lt3b4fjEkKIBi3nFDr3tEuG99qds1SuI0z1iRQVFTFr1iw6d+5MWFhYuSake++9t9bjs7OzeemllwBj4uKgQYPo3bs3HTt2ZPbs2axdu5bw8HCmTp0KwEUXXcTWrVuZPHky/v7+TJw4EYCgoCCuuuoqHn74YQCuvvpqGZklhGi8UsoKL7pgZFaZ8Nbg4+vwCC1TSSQ2NpbYWMc7dVq3bs2LL75YaXvz5s154oknKm1XSnH77bdXea5hw4bZ134XQojGzKnrqldD+fpCqzYO19AylUT+7//+z6GTCyGEqIeTyeDnD2ERrr1OZLTD1XxNJZFdu3ZVfbCvL2FhYUREuPgGhRDiPKRTkvGJjAaLj0uvoyKj0Tu3oIuLjSeTOjC192uvvWYfRdW8eXN7Ecbg4GCysrJo27YtU6ZMoU2bNnUMXQghRLVOJuPbvhPFrr5OZAyUFEP6yTo3nZlKIsOGDSMvL49rr70Wf39/CgsL+eCDDwgICGDkyJEsXbqURYsWOTR/RAghRGW6pATSUvC5dLjLk4iKLF1vPeVYnZOIqSG+q1ev5oYbbsDf3x8w6mddd911fP755zRt2pSbb76ZAwcO1DVuIYQQ1cmyQkkJPq3c0MJTmji0A3NFTCWRpk2b2mtnlTlw4ABNmjQxTmKRta2EEMKpso2STj6hri/fogKCIDjEoZLwppqzrrnmGp555hkSEhIICwsjIyODn3/+mdtuuw2AX375hX79+tX54kIIIaqRZSQRixuSCODwUrmmksiQIUPo2LEjmzdvJjMzk6ioKMaOHUtMjDEBpk+fPvTp06fOFxdCCFE1nV2WRCKg2PHla81SkdHopO/RWtdpGV7TY7liYmK4+uqrHQpOCCFEHWVlgsWCpUVLqKJaudNFxkBeDuScgubBpg+rNom8/vrr3HXXXQDMmzev2sxkpuyJEEKIOsrOgBYhKDf1OavIaGOE1oljzkkirVqdXbQ9MjKyPrEJIYSoI51lhZb1W/ivTiLPWSq3c3fTh1WbRK688kr711L2RAgh3CzLahRHdJfQCKPESh071033iaSmpnLkyBHOnDlTbvugQYPqdEEhhBAmZGei4ru67XLKYoHWdV8q11QSWblyJcuXLyc2NtY+4RCMaruSRIQQwrl0UZHRwe3O5ixAtYlBH9pbp2NMJZHPPvuM559/3j6kVwghhAudMmoVEuzeJEJkNGzZiC4qNH2IqW7/oKAgqdQrhBDuUjrRULn5SYTIGNA2SD1h+hBTTyLjx4/n9ddfZ9SoUQQHlx/6FR7uptmUQghxviidaOjuJ5FyhRhNMpVEiouL2blzJxs3bqz02vvvv2/6YkIIIWqnS59E3N0nQuso4/p1qKFlKoksWrSI66+/nksvvbRcx7oQQggXyM4EHx8IauHWy6omTY2hvs5+ErHZbAwdOlSq9QohhDtkWd06W72cyJg6DfM1FeHf/vY3Vq1ahdba4biEEEKY4/bZ6udQbWKc/yTyxRdfkJWVxcqVKwkKCir32muvvVa3CIUQQtQs2woRHio3FRkNBWdq36+UqSQyadIkh+MRQghRR9lWVKduHrm0fYSWSaaSSLdunrkZIYQ43xiz1U+7f6Jhmci6TSo3lURKSkrYuHEjBw8erFQ7q6xcvBBCCCewzxEJ8cz1g0OgWYDp3U0lkXnz5nHkyBF69+5dabKhEEIIJ8o2Sp6olmEeubxSClpHm97fVBLZvn07r732Gs2aNXM4MCGEECZ4aqLhOVQdmrRMDfGNiYkhJyfH4YCEEEKYY5+t7qnmLECNNL+GlOnRWQsXLqRXr16VmrOGDBlSt+iEEEJUL9vqkdnq51JtzD+JmEoi69at4/fffyc3N7fSeiJ1SSI2m42HHnqI0NBQHnroIVJTU5kzZw45OTnExcUxadIkfH19KSoqYv78+Rw4cIDmzZszZcoU+3K9K1euZO3atVgsFm699VZ69+5t+vpCCNHgZVkh2EOz1R1gKomsXr3aKeuJrF69mujoaPLz8wFYtmwZo0aN4tJLL+WNN95g7dq1/PnPf2bt2rUEBgYyb948Nm7cyNtvv83999/PsWPH2LRpE7NmzSIzM5Onn36aV155RcqxCCEaDZ1t9dzwXgeY+u3bsmXLepd8z8jIYOvWrQwfPhwArTW7d++mf//+ACQmJpKUlATAli1bSExMBKB///7s2rULrTVJSUkMHDgQPz8/WrVqRWRkJPv27atXXEII0aBkZ3pVEjH1JDJq1Cjmzp3LmDFjKvWJtG5tbiH5N998k3HjxtmfQk6fPk1AQAA+Pj4AhIaGYrUaHUpWq5WwMGN4m4+PDwEBAZw+fRqr1UqnTp3s5zz3mHOtWbOGNWvWADBz5sxGs+aJr6+v3EsD1FjupbHcB3j3vaRmZ9L0wj60KI2/od+LqSSyePFiAH7++edKr5lZT+Tnn38mODiYDh06sHv37lr3r6rQo1LKdAHIESNGMGLECPv36enppo5r6MLDw+VeGqDGci+N5T7Ae+9FFxWic05xpmkAhaXxe+peoqKiTO1nKonUd+GpP/74gy1btrBt2zYKCwvJz8/nzTffJC8vj5KSEnx8fLBarYSGGo9wYWFhZGRkEBYWRklJCXl5eQQFBdm3lzn3GCGE8HoNYHhvXbmlR/qGG25g4cKFLFiwgClTptCjRw8mT55M9+7d2bx5M2CMAEtISACgT58+rFu3DoDNmzfTvXt3lFIkJCSwadMmioqKSE1N5cSJE8THx7vjFoQQwvXss9W958NxtU8izz77LI8++igATzzxhDEVvgrTp093+OI33ngjc+bM4b333iMuLo5hw4YBMGzYMObPn8+kSZMICgpiypQpAMTGxjJgwACmTp2KxWJhwoQJMjJLCNF4ZHt+tnpdVZtEzp3/UfbL3Rm6d+9O9+7dAaNT/rnnnqu0j7+/P1OnTq3y+LFjxzJ27FinxSOEEA3F2dnqjSCJDBo0yP512XBbIYQQLpRtBR9fCGzu6UhMk7YgIYRoKLxstjpIEhFCiAZDlyYRbyJJRAghGorsTK/qVIcakkjZyCyADz/80C3BCCHEeS3L6lXDe6GGJHL8+HEKCwsB+Oyzz9wWkCfoLCsl859B/77T06EIIc5TurAA8nK8amQW1DA6q2/fvtx33320atWKwsJCpk2bVuV+9Zkn0lDo33bAjp+w7UxC/fVq1N+uR/mamswvvIg+nQ0nj6Piu3o6FCEqK51o6G3NWdX+ppw4cSK///47qamp7Nu3j6FDh7ozLvdKSwGlUAOGoVd/iP59J5bbH0BFRHo6MuFE+tN30d99jWXeeyhfP0+HI0R5pRMNVWN5EgHo0qULXbp0obi4uHHPFUk/CcGhWG69D1uPi9FvLcD29BTUuIlYLhns6eiEk+j9f0BxEZw8DtHtPB2OEOU1gLXVHWGqzWbYsGHs2rWLDRs2kJmZSUhICIMHD6ZHjx6ujs8tdHoKRBgl7S19L0O374Rt0cvof7+E7ddtqOvvQjVp6uEoRX3owgJIPmR8nXwYJUlENDDeOFsdTA7x/eabb5gzZw4tW7bkkksuISQkhFdeecW+ZofXSzuJCj/bdKUiIrFMkK2GAAAgAElEQVT88znUyGvQm9Zie/p+9JH9HgxQ1NuRA1BSYnydfMSzsQhRlexMY7Z6kPfMVgeTTyKffPIJjz32GO3bt7dvGzhwIC+//HK5dTu8kS4qhKwMqND/oXx9UVeOQ3ftiW3xLGzP/RN11S2o4VdUW4xSNFz64B7ji+bB6OOHPRuMEFXJskLLUK/7/WLqSeT06dOV1lePiooiJyfHJUG5VXqq8XdE1Ss0qi49sTwxF7pfjH5/Mba5T6Hzct0YoHCKg3sgNBx1wYWQLElENDzG2ureNVsdTCaRLl26sHTpUgoKCgA4c+YMb731Fp07d3ZpcG6RfhIAFV79Mr+qeQss9zyKuuEu2L0V/dVKd0UnnEQf3APtO0N0W0g/iS444+mQhCiv9EnE25hKInfccQeHDx9m/Pjx3HHHHdx6660cPnyYO++809XxuZxOTzG+CK95OK9SCsvQUXBhAnrDl+iiIjdEJ5xBn86G9JOoDp1RUe1Aazhx1NNhCVFettXrhveCyT6RkJAQpk+fTkZGhn10VlhYmKtjc4+0FPDzN/0YaRk6EtvOJPTWTah+Q2o/QHheaX+Iat/Z/klPJx9Bte/kuZiEOIcxWz3XK5uz6jQtOywsrPEkj1I67SSEtzbfmdXtImjVBv3t5yBJxCvog3tBWaBdR/D3Nz40SOe6aEjss9W97/erVPFNP1lpZFZNlMWCShwJ+39HHzngwsCEs+iDf0BULKppM5TFB9rEoqVzXTQkpXNEvK34IpznSURrDekpNXaqV0UNHA7+/uh1q10UmXAWrTUc3IvqcIF9m4puK3NFRINydqKh9zVn1ZpEbDYbu3btori42B3xuFfOaTiTX+3w3uqowCBUv0T0j+vQuY1gmHNjlnrCqIx6bv9HdDvIypCfnWg4sr2z5AmYSCIWi4UXXngB38ZY1bZ0ZJaqZWRWVVTiSCgsRG9sJLP2G6mySYaqw9nh6CqqtOTJcXkaEQ1ElhV8vWtt9TKmmrO6du3Knj17XB2L2+m00uG9DlTrVW07QHxX9LrVaJvNyZEJpzm4B/ybQJu2Z7dFG19Lv4hoMLKtEOx9s9XB5OisiIgInnvuORISEggLCyt3o9dee63LgnO50omGhLVy6HCVOBK96GX4dRv06OPEwISzGJMM41E+Pmc3hoRDswAZoSUaDO2lEw3B5JNIYWEhffv2RSmF1WolIyPD/serpZ+E5sGops0cOlz1GQgtWmJb+7mTAxPOoIuK4OgBVPvylRWUUhDVFi2d66KhyM70uuq9ZUw9iUycONHVcXiETktxqCmrjPL1Qw2+HP35B+i0FFnEqqE5dgiKi8v1h5RR0e3QWzehtfbKJgTRyGRZUV17eToKh5ge4nvs2DGWL1/O4sWLAWMN9sOHvbw5IC3FoU71c6nBfwGl0Ou/cFJQwln0wT+ML9pXUeMtqp0xOu9UlnuDEqICXVAA+d45Wx1MJpEffviBadOmYbVa2bBhAwD5+fksXbrUpcG5ki4uhsz0Og/vrUiFhEHv/ujv1xilC0TDcXCv8R8zNLzSS6q0c10q+gqP8+LhvWAyiXzwwQc8/vjj3HnnnVgsxiHt2rXj0KFDrozNtTLTwWaDOk40rIpl2CjIPY1O+s4JgQlnMTrVO1XdXFW6sqGsLSI8zotnq4PJJJKdnU27duWXE1VKeXdbcunwXqf0Y3TuYXTUfrvamCEtPE7n5sDJZFRc1csVqObB0DxYZq4Lj9PZ3rksbhlTHesdOnRgw4YNDBlytuDgxo0biY+PN3WRwsJCpk2bRnFxMSUlJfTv359rrrmG1NRU5syZQ05ODnFxcUyaNAlfX1+KioqYP38+Bw4coHnz5kyZMoVWrYxhuCtXrmTt2rVYLBZuvfVWevfu7cBtmy8Bb4ZSyhju+85CY17COSU2hIcc2gtQbRIBILqdzBURnnc+NGfdeuutvPfee0ybNo2CggKeffZZ3n//fW655RZTF/Hz82PatGm8+OKLvPDCC2zfvp09e/awbNkyRo0axdy5cwkMDGTt2rUArF27lsDAQObNm8eoUaN4++23AaNzf9OmTcyaNYtHH32UxYsXY3N0ol/aSWM94xDn/ODUgERo2gz9rdTTagjsy+G2r/6DjopuB8ePymRR4VlZVvD1g4AgT0fiEFNJJDo6mjlz5nD55Zdz3XXXkZiYyMsvv0ybNm1MXUQpRdOmTQEoKSmhpKQEpRS7d++mf//+ACQmJpKUlATAli1bSExMBKB///7s2rULrTVJSUkMHDgQPz8/WrVqRWRkJPv27avrPRvST0JYK6OqqxOopgGoAcPQW75Dy4gfj9MH90BkDKqm/5hRbaEgH6xp7gtMiIqyjGVxvbV7wHRBrCZNmtClSxesViuhoaH2pGCWzWbjX//6FykpKVx++eW0bt2agIAAfEpnEoeGhmK1Go91VqvVvm6Jj48PAQEBnD59GqvVSqdOZwvpnXvMudasWcOaNUZNq5kzZxIeXnl0TkZWOpaoGEKqeM1RxVfeSMa3nxOwbROBV93stPOW8fX1rfJevJEr70VrTfrhffhf1J/gGq5R2K0nmUCL01k06dLd4es1lp9LY7kP8K57seaehojWhFYTb0O/F1NJJD09nblz57J3714CAwPJzc0lPj6eyZMnExERYepCFouFF198kdzcXF566SWSk5Or3beqzmmllOlO6xEjRjBixIhy8VdUciIZldC+ytcc1iwIuvQkZ/VH5F12udOecsqEh4c7N14PcuW96IxUbNmZFES1q/EaOjAYgOzff8ES53g/VmP5uTSW+wDvupeS9FSIblttvJ66l6ioKFP7mWrOWrBgAR06dGDJkiUsWrSIJUuW0LFjRxYsWFDnwAIDA+nWrRt79+4lLy+PkpISAPsTDhgrKJaVVCkpKSEvL4+goKBy2yseUxc6LxdyT9drtnp1LENHGc0jO5Ocfm5hjj5QWrk3rublb1WzAAiNkLkiwrO8dG31MqaSyIEDBxg3bpy9Catp06aMGzeOAwfMrex36tQpcnNzAWOk1i+//EJ0dDTdu3dn8+bNAKxbt46EhAQA+vTpw7p16wDYvHkz3bt3RylFQkICmzZtoqioiNTUVE6cOGF6hFg5pYUX6ztbvUq9LoHQcKmn5UmH9hgdlTHta983up3U0BIeowvOQH6e147MApPNWZ06dWLfvn106dLFvm3//v107lzD8MlzZGZmsmDBAmw2G1prBgwYQJ8+fYiJiWHOnDm89957xMXFMWzYMACGDRvG/PnzmTRpEkFBQUyZMgWA2NhYBgwYwNSpU7FYLEyYMME++bFO7MN76z/RsCLl44Ma/Bf0qmXolGOoyBinX0PUTB/YA207oHz9at1XRbVF/7YdXVJSvtKvEO7g5XNEoIYk8v7779u/bt26Nc899xwXX3yxvUlp27ZtDBo0yNRF2rVrxwsvvFBpe9l5K/L392fq1KlVnmvs2LGMHTvW1HWro9NKS8DXs+RJddRlf0Z/8g568zrUmHEuucb5QNtsUMdJrbqkBI7sQ112ubkDottBcbGxAmIbSfjCzbx8tjrUkEQqlnnv168fYDRN+fn5cckll1BYWOja6FwlPQUCgmoe/lkPqkVLaBOLPmKuuU9UpktKsL30CCq8NWpC1R8oqpR8GAoLoaZJhudQ0W3RYKwtIklEuNnZtdUbYRJprOXfAXT6SZd0qp9Lxcahf//FpddozPS61bDvN/S+39B9BqJ69zd33KGyTnVzSYTIGFAWdPJhVJ9LHQ1XCMdkZxp/N8YnkYoKCgpISUnhzJkz5bZfcIEXlvhIO4ky0+laH7FxsHkd+vQpVPMWrr1WI6NPZaI/fhu69oJTWdjeeQNLl56opgG1H3xgDwQ1N/0hQfk3gVZtpHNdeEaWFfz8ISDQ05E4zFQSWb9+Pf/5z3/w9fXF39+/3GuvvfaaSwJzFW0rgYyT0LufS6+jYuKMZpJjB41fhsI0vWIpFBZiueEuyM3B9vy/0B+/i7p2Qu3HHtoL7TvXbfZvdFtZKld4hpfPVgeTSWTZsmU88MAD9OzZ09XxuF6W1ehIdfUqhLFxAOijB7x2xTJP0Pt/R2/8BnX5WPvINnXZ5ehvPkUPSES17Vj9sWfy4PgR1MUD6nRNFdUOve1HdFEhys+/9gOEcBKd7b1rq5cxNT7W19eXbt26uToW9ygdmaVcNDKrjGoebPzjOHrIpddpTLStBNu7b0DLUNToa+zb1dibIag5trdeNZ4kq3N4P2iNquPscxXdFrQNThx1NHQhHOPlEw3BZBK59tprWbp0KadOnXJ1PC6nSycaOqMEfK1i4tBHZYSWWfr7r+HwPtTVt5br/1CBQahrb4dDe9Hr/1f98QfKKvfWPFO9krIFqqRfRLhblvc/iZhqzoqKiuKDDz7gyy+/rPTaufNJvEJ6CiiLUe7CxVRsnDGRragI5Vf7xLfzmc45hV7xFnTujrpkcKXX1SWD0RvXoFe+hb6oP6plWOVzHNoDEZF1H8gQ0QZ8faX8iXArfSYfzuR79fBeMJlE5s2bx+DBgxk4cGCljnWvk5YCoeEoX9MD0xwXGwclJXDiCNTQli8wRmPl52K5/s4qOxmVUljG3Y1t2iT0+4tRdz1Y+SQH9qA6170ar/L1hcgY9HF5EhFu1AiG94LJJJKTk8O1117r1SMIyuj0ky4pd1IVFWuM0NJHD9XYIXy+04f3o9f/DzVsNComrtr9VKso1Khr0B+/jb50OKpHn7PnyMyArAzTkwwrnTuqHXrfrw4dK4RDymarB4d4OJD6MdUnkpiYyIYNG1wdi3ukn3TOuupmtGoD/v7GMF9RJW2zYXv3dQhqgbri+lr3V5ePhcgYbG8vRBcUnH3hYB0nGVYU3Rasaej8PMeOF6KOdFZpVZDz4Ulk3759/O9//2PFihW0bNmy3GvTp093SWCuoAsKjEdIdz2JWHwguj36qCSR6ujN62D/76jxk02VoVF+fljGTcT20iPoz983Rm5R2h/i4wNtOzgUh4puV1r+5Ah07FLb7kLU3/nUnDV8+HCGDx/u6lhczz4yyz1JBEqbtLZsRGvdKJoDnUnn5aI/ehPiOqMGDDN9nLqgB2rgcPRXK9H9hhgJ4MAeiIlzfJ5HVFsjpuTDKEkiwgHaZoOMVPMtHdmls9Wbee9sdTCZRMrWO/d6pSXg3dacBUbn+oYvwZoOYa4fEeZN9KfvwelsLJMeR9WxpL+6+lb0zp+wLXsVyz9mGEOD+yc6HkxYK2jS1HgSEcIB+qf16MWzsdw3rVx/XbVKh/d6+4dLU0lk7dq11b5WtgaIN9BppeuIuDGJlCt/IknErvjIAfTaT1GX/RlV13kdgGrewkgkb85FL3/TGCrpaH8IGEksqi1ahvnWSp6qq6a3/gCA7a1XsUyfV2utN52d6fXDe8FkEvnuu+/KfZ+VlUVKSgpdunTxqiRC+klo0gyC3FgQMaZ0ItvRA6hel7jvug2Y1ppT/54FzQJRV97k8HnUwOHoTd+g13xsfF+PJAKlC1TJssY10r9uw/afV7Dcdh+q20WeDqfB0EWF8Ot2oz/twB/oFUtRN/y/mg/KsqJiqx+N6C1MJZFp06ZV2rZ27VqSk5OdHpArGSXgW7v1U5RqGmBUiZXyJ3Z6y0aKdm1F3Xg3qh4J3Zg7MhHb9PuMUXCto+sXWHQ72LgGfSrLWBNGVGJb/yVkW7HNewbL3Q+hevb1dEgNwx+/QMEZLKOuQe/eZtR6S7is5nlLWVbocbH7YnQRh2fcJSYmMmHCBG66yfFPkm6XlmIMu3W3mDho5OVP9OlT2F5+FE5lgdalf2znfF36vU1DSTG+HTpjG/znel9XtYlF3XAn5ObWuV+l0rnsC1QdAUkilegz+fDLFtQlQ9Ank7G9+hyWO/9Z54KXjZHemQT+TaBLT1Sn7ujtP2JbOh/LE3OM5QYq7n8mDwryvX5kFphMIjabrdz3hYWFbNiwgcBA7xlVoLU25oh44BFcxcaht25Cn8kztyaGF9JrPjYq6A76E/j4glJgsRh/o8CijK+VBXx8aPm3a8i0OGdNc8vgvzjlPESdraGlujSCitVOpn/ZAkWFqMGXo2LjsM2dju3151ETpmKpolTN+UJrjd6RBF17GaMD/cBy873YZj+B/uw91NhbKh+U1TiG94LJJHL99ZUngYWGhnLXXXc5PSCXOZ0FhQUuW1e9JmUz1zl2COIbSTXkc+jcHPTaz1AXD8Ry872mjvEJD4f0dBdHVkfBIRDYXNYWqYbestF4jzp1RVl8sEx5Etu8p9GLZmErLsIysBFMA3BE8iGwpqFGX2vfpLr1Rl06Av3lSnSfQah2FSpWZJfNVj9Pksj8+fPLfd+kSRNatPCy1frsJeDdOLy3jH1tkUOoxphEvvkUzuSXK9/ujZRSEC0jtKpib8oaNMKYRIvR32eZ/CS2Bc+g35xrJBJnPRV6Eb3DGIyhLkwot11dcxt611Zsb87F8ujL5er12ddWbwRPIqYakSMiIsr98boEwjnDe91RAr6ikHAICGqU5U90fh76m0+gd78a6155CxXVDo4fMZo/hZ29KavPoHLbVZMmWCY9Dj36oN96Fds3n3koQs/RO5OgXTyqQkJQAUFYbvx/cOwg+ssV5Q8qfRJp9EN8aytpopTiiSeecGpALpNelkRauf3SSimIjWuU5U/0t59DXi6Wcx7lvVp0W8jPg8x0tywX4C3ObcqqSPn5Y7n7YWxvvIh+7w3jieTyKz0QpfvpU1lwcA/qb1XXfVMX9UclDEJ/9h764gGoNrHGC1lWY0RhM+/vI60xiVx22WVVbrdarXzxxRcUnFsAr6FLO2nMDvXQ8qcqNg694X9oW4m9OcDb6YIz6K8/hh59UO3iPR2OU6io0hpayUckiZSqqimrIuXnh+WuB9GLZ6GXL8FWVNh4PljUQP/ys7GaZg1DndX1d6B/24Htv/OwPPic8R5mWSHY+2erQy1JpOJEwtOnT7Ny5Uq++eYbBg4cyNVXX+3S4JzJKAHvgaasMjFxUFgIJ09AmxjPxeFEev0XkHOqcf2yiC6toXX8MOpCE6UrzgPVNWVVpHx94fYHwNcP/fHb2IqKUGNubBS/KKujd/5k9GvUUPhTtQhBXXc7evFs9LerUcP/ZsxWbwT9IWCyYz0vL49PPvmEL7/8kosvvpjnn3+eyEgP/kJ2RHoK6oILPXZ5+9oixw6iGkES0YUF6K9WGePiG1HBQhXY3PjPLZ3rdjU1ZVWkfHzg1vvAzw+9+gPIz4Xr7qj3HJ6GSBcVwe7tqH6Da02Uql8i+scN6BVL0b0uMWarO1hxuqGp8SdbWFjIypUrmTRpEsnJyTz11FNMmjTJ6xKILiqCzAzPPom0iTVKlTeQSYc6LQXb6g+N98aR47//GrIzG9dTSJmodrLeeil7U9bFA0w3wyqLBTVuIupPf0d/+zl60cvoYsf+nTVoe3ZBQT6qZ+3ljJRSWG6aCMqCbel8o2P9fHgSueeee7DZbFxxxRV07NiR7OxssrOzy+3To0cPlwboFBmpxoxpN5aAr0j5+UGb2AZR/kQXF2FbOBOOHDDmrtz+QJ0+KeqiIvT/VhhzXjp7wc+/jlR0W/S6L9CnT9V9vfZGxmxTVkXKYkFdMwFbcAh6+Zvo3ByjTErTZi6K1P30jp+MzvGu5iamqtAI1NW3oN9eaGw4H5JI2XrqX331VZWvK6UqzSFpkNI9OEfkHComDv3bDo/GAKA/fsdIIBcPRCd9B6ERqKvHmz/+h28gMx3LLZMaZXu36tgF/fXH2P5xM3Tugbp4IOqifqiWYZ4Oze3q0pRVFcvlY7EFtUAvnY/t5cewTJ7WKBKz1toY2tulV5VlTaqjBv/F+D+3Z7fxvjYCNSaRBQsWOOUi6enpLFiwgKysLJRSjBgxgpEjR5KTk8Ps2bNJS0sjIiKC+++/n6CgILTWLFmyhG3bttGkSRMmTpxIhw5G++G6detYscIYcz127FhTa53osuG9HpitXk5sHGz+1qMF/vQfv6C/XGGUYL/pHvQ7r6O/XIEtNBzLsNG1H19cjF693Ci73q23GyJ2P9XnUiyPz0Zv/cH4885C9DsLoWMXo1nnogEe/0DiDmZGZZlhuXQEOrA5tjdexPbCv7BMmY4Kc/9Qe6c6fsRYgGpk3QYXKYsFyy2TsC2Zi+rQOPoSHS7AWBc+Pj7cdNNNdOjQgfz8fB566CF69uzJunXruPDCCxkzZgyrVq1i1apVjBs3jm3btpGSksLcuXPZu3cvixYtYsaMGeTk5LB8+XJmzpwJwEMPPURCQgJBQbUsq5p20lhBrIVnM//Z8icHwQM1vHReDrb/zIaISNQ1E4yniOvvQGdloN/7N7plWK3F9PSP6yEjFcv1dzXKp5Ayqm1HVNuOMGYc+sTRswnlwyXoD5dAbJw9oeiwxvmE4mhTVlVU735YpkzHNv8ZbDNLE0npSDhvVLZkgLqw7lWMVasofP4109kheYxbhkyEhITYnySaNWtGdHQ0VquVpKQkhgwZAsCQIUNISjJ+MFu2bGHwYGPEQ+fOncnNzSUzM5Pt27fTs2dPgoKCCAoKomfPnmzfvr3W6+v0FAhr5fkRIjFny594gn57IWRZsdz+gL1tWll8sNz+D2jfCduil9H7f6/+eFsJevWHxhNVz4Rq92tsVJtYLKOuwefx2VhmvIH6v9ugSVP0J+9ie3ISabeMpGTuU9g+ex/92w50fp6nQ3aK+jZlVaQ6d8fy4AzQGtsLD6H3/eaU83qC3vETtO2ICmmcHyDqwi1PIudKTU3l4MGDxMfHk52dTUiI8XQQEhLCqVOnAGMyY3h4uP2YsLAwrFYrVquVsHM+9YWGhmK1WitdY82aNaxZswaAmTNn4puZjiU6lpBzzukR4eGkhUXgn3acYAdi8fX1Lfe+1EX++i859dMGAm+4g6C+Ayu9bps2G+vDd2Fb8Cwhz72ObxWfEvO/+4pTqccJfvBZmkbUbyJefe7Fo8LDoWsPuOF2SqzpFPy8iZK9uyn47RdKPt5iPGkqhW/bDvh17o7fBT3w69wDn+i2nv8QU4tzfya2/DzSdm2h2fC/0aKVE5uBw8Mpef4NMqffT8nsJ2j54LM06VP532N9ufLfly07k7QDfxB4za0EueHfcEP/v+LWJHLmzBlefvllxo8fT0BA9dP9q6pbVF3TSVXbR4wYwYgRI+zfF6cko9p3Jr0BVI21RbXjzL7fKXIglvDwcIfuQWekYnv9RejYhfzBIzlTzTn0vY+hn3uQjOlTsDz0Qrl+G22zYXvvPxDVltMdu5NTz/fS0XtpcC4aSPifrqAgPR1LXg4c2IM+8AfFB/+geOM35H/9ibFfYHMsN9+Dutj5vzCd5dyfiS3pOygspKB7H+f/nHz80f94Fl6ZTtaMB1Hj78MyYKhTL+HKf1+2TWtBa/Lju1f7f8mZPPV/JSoqytR+bvtoVFxczMsvv8xll11Gv379AAgODiYz06irn5mZaS/sGBYWVu5Ny8jIICQkhNDQUDIyMuzbrVar/UmmRvl5bl1XvSYqNg5SjhnLabqBtpVgWzwLtMYyYaoxGay62FpFGcX0sq1Gie+CM2df3LbZWC9k5P81+E/UnqICglA9LsZyxfX43PckltlvY3nqVdT4yRDeGtu/a24ubEic3ZRVkWrREss/noXOPdD/mY1t3WqXXMcV9M6fjMKJbTvWvvN5wC2/DbTWLFy4kOjoaEaPPjsCKCEhgfXr1wOwfv16+vbta9++YcMGtNbs2bOHgIAAQkJC6N27Nzt27CAnJ4ecnBx27NhB797mRggpT4/MKhMTByUlcPyoWy6nv1wJe39FXX+nqRFFqsMFWO74JxzebxTUKylBa43t8/ehdTSqb/07Wc8XymJBtYnBcukILPc9CaHh2OY/g0494enQauTIBENHqGYBWCZPg16XoN9eiG3jGpddy1l0cRHs3obqmSAfpkq55V34448/2LBhA7t27eKf//wn//znP9m6dStjxoxh586dTJ48mZ07dzJmzBgALrroIlq1asXkyZN5/fXXuf322wEICgriqquu4uGHH+bhhx/m6quvrn1kVhkPTjQ8lypbW8QNZeH14X3oj99G9bkUNWBY7QeUUr37GUvO7kwyhrbuTIKjB1Ejr240xSPdTTVvYfzC1BrbvKfQuac9HVK1nDkqqzZlhRvpdhH6v/Ow/bje5deslz27jbVzZG15O7f0iXTp0oUPPvigyteqKiWvlLInjoqGDRtWqTCkKQ0kidAq0liL2cVl4XVBAbZFL0PzlqibJtZ5OK4lcSQ2axr6i4/QSd9DeGvUJUNcE+x5QrWOwnLPo9hmPYbt1RlYpjxlVDJoYFzdlFWR8vPHMvERbHOfRP9nNtrPv8Gu2653JhnTBbo2zjlSjjg/nseaBzeYtc2VxQdi2rt8bRG9/D+QkozltilGUUEHqDE3ofoNgfxc1F+vLrcym3CM6tQNNf4+2LMbvXR+g1v8yl1NWRXZF7dqF280o+762W3XNstYS/0no+hoE/Oz1Bu78yOJNJSnkFIqJg6OHnTZLxC9Iwm97gvUn8eguvZy+DzKYkGNn4zl/qdQg/7kxAjPb5Z+Q1B/vxG9+Vv0p+96Opxy3NmUVZFqGoBlypMQ3Rbbq8+hf9/p9hhqdOIopJ+UpqwKzosk0uBKVMTGGSWyrWlOP7U+lYntv3Mhpj1qzE31Pp/y9UN16y2diE6mRl2DGjgc/el7xpDRBsLdTVkVqYAgLFOeMkazzX8Gve9Xj8RRFfta6pJEyjk/fjM0tCeR0s51V/SL2N55HfLzjFnpDbC9XRiUUqibJkKXnkaz1h+/eDokbPl5HmnKqkg1b4Fl6tMQHIpt7lPoQ3s9Fsu59M4ko9xNaMOd+OcJkkQ8IbodKOX0fhH9yxb4eRNq9LWo6HZOPbdwPuXrh8N+9UsAABGOSURBVOXuh6BVG2yvzkCfOObReAp/3uSxpqyKVMtQLA88DQFB2GZPc8toxpronFOw/3dUr9rXDjnfnBdJpKE1Z6mmzSCijVP/Y+iCAmxvL4Q2sajLr3TaeYVrqYAgLJOfAB9fbHOno09n136Qi5zZtNajTVkVqdAILA88A/7+2GY9UW2S1YUF6JPHjXXMN63F9vkH5K3+CH30INpW4pRYjLXUbaYWoDrfnB/DbRpYEgEgtr2xpoeT6M/fN6rr/mMGyleasbyJCm+NZdLj2F56BNv8Z7A88Eyd1qhwBn0mn4KfN6EurV/Zd2dTEZFYpj6D7cWHsc16DJU4ErKs6Mx0o08xMwNyTlU6zj4Lp1mgUcI/viuqUzeI64zy8697IDuTjATbTmapV3R+JJEGuJiQiu2A/nkTOj8P1ax+w4918hH0VytRA4ahLmh8Kw2eD1RcZywTHsC2cCZ66XyYMNWtpfZ1aa2shtCUVZFqE4Nl6tPYZj2OXrUMAgIhJNxYTC2uc+nX4aiQcOPrkHBC/Sxk/PQ97P0VvfdX9K6fjeKYvr7QLh4V3w3VqbsxyKV5cI39h7q4CL17qzFpVwaYVHJeJJGa6kV5ioopW1vkEHTq5vB5tM2Gbdmr0DQA9X+3Ois84QHq4gGoK643Vp7s1B015C8uv6YuLkZ/+i76i+X4to/H1kCasipSMe2xPL8YSkpMLbHrEx6Opf9Q6G8UdtQ5p2Dfb+h9v6L3/YZe8wn6yxVnD2jSDIKaQ/NgCGqBCmoBQS2MbQX5kJ8no7KqcV4kkQbpnPInqj5JZNM3sO9X1M33opoHOys64SFq5DXGL7n33kC3j0e1i3fZtXTqCaOqwcE9qEtHEHLPQ1hzG+5aKMrPHxxsqVVBLaB3P1Rvo/irLiyAg3vRKceM5rDSPzrnFJzORp84CjmnjQQC0CwA6jHnqjGTJOIpIWEQ2Lxew3z16VPo5W9CfFfUpSNq3V80fMpiMZq1npmCbeHzWB6bjQo0WR/OJK01evM6Y5EyHwuWux5EJQzC0iwAGnAScSbl3wQu6FFr868uKoTTp8DPz9QT0PlIGvg8RCkFsXH1GuarP1oCZ/KwjJsobbWNiGreAsudD0JmBrYlc5xa2UDn5aIXzUL/Zza0jcPyxFxUQsPrB2kolJ8/KjRcnvJrIL95PEjFxEHyYXRJ3Ych6j270Bu/Qf1pjMwJaYRUxy5GH9eOn9BfrXTKOfW+37A9dR96y3eov9+I5R/PosLqt0KlENKc5Umx7aGoEFKPQ5tY04fp4iJsy14z1o0ffZ3r4hMepYaNNkYXrViKjuuM6uzYyDtdUoJe/SH6s/cgNALLgzNRHbs4OVpxvpInEQ9SsR0A6tykpb9cCSeOYrnhLqkm2ogppVC3TILwSGxvvIQ+lVnnc+i0FGwvPYr+5B1U38uwPPGKJBDhVJJEPKlNDPj4wq6txmgRE3RaCvrzD+DiATLk8DygmgVguftfkJdjLK9rcga2zjmF7YPF2J6YCMcOoibcb9RTq+ecJCEqkuYsD1K+fnBhAvqHtejtm1EXD0QNGGrMEaiio1xrje2dhWDxwXLtHR6IWHiCiolD3Xg3+s1X0J+8ixozrtp9dUEB+ptP0P/7CM6cQQ0cirriBlSo9H0I15Ak4mGWu/8Ff+xC//AtestG9MY1xkzcfkNQA4aizukrKdj0Lezairp2glQSPc9YLh2Obe9u9OcfoDt2RV3Yp9zruqQEvXGNsT5JlhV6XYLlyptk0IVwOUkiHqYsPtC1F6prL/SNd6O3bzbG8H+5Av3FcqNEQ/9EVM8ETi+eY5SiHjra02ELD1A33IU+vA/b4llYHp+DCoswhv9u24xt5VJISYaOXbDc8U/+f3v3HxRVucdx/L0/IlgXNhYYDJSc5MdEydBcyMZMofQfs246WVndQmLKMLmTY4qTFx2LmepGOMywIzYM0+BofzhQ/VHTDGWQUxYKyigD8su5kgUhvxbZFXbPc/9g3Jtd8cYKuwv3+/qLObt75vnsYZ/vOc+efR5d4r3+bq74P6FTgbY+5wy4dOmSv5swZWp4APVTHeqHb+FfHRMbdTr0u/45MV/QLBcZGUlfX5+/mzEtfJlF9VxCe+cNuHMh+nV/Q/v0EHS2wvwF6Ne/OPGrbC/n3JJjEpj8lSUmJuZPPU+uRAKULiwc3aq/wqq/oi79C/VjLeYFcYzOgQIivKeLjkGf9Xe0A++iffgPuMM6MeXNskcDco44MfdJEZkFdDFx6Nb9DVNkJKNz5OxKeE/3l2XontsMY1fRZayR27yFX0kREWIW0meu8XcThADkdyJCCCFugRQRIYQQXpMiIoQQwmtSRIQQQnhNiogQQgivSRERQgjhNSkiQgghvCZFRAghhNf+L+bOEkIIMTPm/JVIfn6+v5swbSRLYJorWeZKDpAsvjTni4gQQoiZI0VECCGE1wx79+7d6+9GzLS7777b302YNpIlMM2VLHMlB0gWX5Ev1oUQQnhNhrOEEEJ4TYqIEEIIr83KRalsNhsNDQ1YLBaKiooAuHDhAh999BFOp5OoqCjy8vIwmUy4XC4OHDhAV1cXmqaxYsUK1q1bB8Dp06epqKhA0zQeffRRnnzyyVmZY8uWLQQHB6PX6zEYDLz77rs+zeFNloMHD9LR0YFerycrK4t7770XgM7OTkpLSxkbG+P+++9n06ZNXq8Z7u8se/fuZWBggKCgIAB2796NxWLxWY6+vj5KS0sZHBxEp9OxatUq1qxZw8jICMXFxfz2229ERUXxxhtvYDabUUpRUVFBY2Mjt99+O7m5uZ6x+G+//ZaqqioA1q9fT0ZGhs9yTHeWZ555hri4OGBi/fKdO3cGdJaff/4Zm81GV1cXzz77LE888YRnX/7uwwBQs9C5c+dUR0eH2rZtm2dbfn6+OnfunFJKqa+//lodOXJEKaXUd999p4qLi5VSSjmdTpWbm6t6enqU2+1Wr7/+uvr111/V+Pi42r59u7p48eKsy6GUUrm5uWpoaMinbf+jqWT58ssvVWlpqVJKqcHBQbVjxw7ldrs9r2ltbVWapqnCwkLV0NDg4yTTl2XPnj2qvb3dx63/j/7+ftXR0aGUUmp0dFTl5eWpixcvqsrKSlVdXa2UUqq6ulpVVlYqpZQ6deqUKiwsVJqmqdbWVrVr1y6llFJ2u11t2bJF2e326/6ejVmUUuqFF17wadv/aKpZBgcHVVtbmzp8+LD67LPPPPsJhD5MKaVm5XBWcnIyZrP5um2XLl3innvuASAlJYUff/zR85jT6cTtdjM2NobRaMRkMtHe3s78+fOJjo7GaDSybNky6uvrZ12OQDGVLN3d3dx3330AWCwW5s2bR2dnJwMDAzgcDhITE9HpdKxYscLnxwSmJ0sgCA8P95x9h4SEEBsbS39/P/X19axcuRKAlStXet7jkydPsmLFCnQ6HYmJiVy5coWBgQFOnz5NSkoKZrMZs9lMSkoKp0+fnpVZAsFUs1gsFuLj4zEYDNftJxD6MJhD34ksXLiQkydPAnDixAkuX74MwIMPPkhwcDCvvPIKubm5PP7445jNZvr7+4mIiPC8PiIigv7+fr+0/femmuOawsJCdu7cSU1NjV/afSOTZVm0aBEnT57E7XbT29tLZ2cnfX19AXtMYOpZrrHZbLz55pscPXoU5ccbIXt7e+nq6iI+Pp6hoSHCw8OBiQ5teHgYgP7+fiIjIz2vufb+//G4WK1Wvx6XW8kCMD4+Tn5+Pm+99RY//fST7wP8zp/JMplA+bzMyu9EbuS1116joqKCo0ePkpaWhtE4Ea29vR29Xk9ZWRlXrlyhoKCAJUuW3PAD7eux9xuZao7o6GjefvttrFYrQ0NDvPPOO8TExJCcnOznJJNnyczMpLu7m/z8fKKiokhKSsJgMPi1k/1fppoFIC8vD6vVisPhoKioiLq6Os+Zpi85nU6KiorIysq66dXrVD4T/vqsTEcWm82G1Wqlp6eHffv2ERcXx/z582eszZP5s1kmEyh92JwpIrGxsezevRuYGHpoaGgA4Pjx46SmpmI0GrFYLCQlJdHR0UFkZKTnbBLg8uXLnrMAf5pqjujoaKxWKzBx2Zuenk57e3tAFJHJshgMBrKysjzP2717N3feeSfz5s37r2NyLZu/TTUL4Gl7SEgIy5cvp7293edFxOVyUVRUxMMPP8zSpUuBif+TgYEBwsPDGRgYICwsDJg4k/39VdS1z4TVaqW5udmzvb+/3y//X9ORBf5zXKKjo0lOTubChQs+LyJTyTKZiIiIgOjD5sxw1tDQEACaplFVVcXq1auBibsvzp49i1IKp9NJW1sbsbGxLF68mF9++YXe3l5cLhfff/89aWlp/owATD2H0+nE4XAAE2c2TU1NnjtP/G2yLFevXsXpdALQ1NSEwWBgwYIFhIeHExISwvnz51FKUVdXFxDHBKaexe12e4YjXC4Xp06dYuHChT5ts1KKAwcOEBsby9q1az3b09LSqK2tBaC2tpb09HTP9rq6OpRSnD9/HpPJRHh4OKmpqZw5c4aRkRFGRkY4c+YMqampszLLyMgI4+PjAAwPD9Pa2sqCBQsCOstkAqUPm5W/WN+/fz/Nzc3Y7XYsFgtPP/00TqeTr776CoAHHniA5557Dp1Oh9PpxGaz0d3djVKKzMxMzy1yDQ0NfPzxx2iaRmZmJuvXr591OXp6evjggw8AcLvdLF++3Oc5ppqlt7eXwsJC9Ho9VquVzZs3ExUVBUBHRwc2m42xsTFSU1PJzs72+SX6dGRxOp3s2bMHt9uNpmksWbKEl156Cb3ed+dtLS0tFBQUEBcX53kPN27cSEJCAsXFxfT19REZGcm2bds8t8WWl5dz5swZgoKCyM3NZfHixQB88803VFdXAxO3+GZmZvosx3RmaW1t5eDBg+j1ejRN47HHHuORRx4J6CyDg4Pk5+fjcDjQ6XQEBwfz4YcfYjKZ/N6HwSwtIkIIIQLDnBnOEkII4XtSRIQQQnhNiogQQgivSRERQgjhNSkiQgghvCZFRAghhNekiAjhpZKSEmw223Xbmpubyc7ODpjJ/oSYaVJEhPDSpk2baGxspKmpCYCxsTHKysp48cUXp3X6CU3Tpm1fQky3OTN3lhC+FhoaSnZ2NmVlZRQVFVFVVUV0dDQZGRlomsann37KsWPHGB0dZcmSJeTk5GA2m9E0jeLiYlpaWhgfH2fRokXk5OR4pt8oKSnBZDLR09NDS0sL+fn5OJ1ODh06xOXLlzGZTKxdu/a6KTOE8Bf5xboQt6ioqAiXy0Vrayvvv/8+kZGRfP7559TX13tWpysvL8flcrF161Y0TaOuro6lS5diMBiorKykra3NsyJlSUkJjY2N7Nq1i/j4eNxuN5s3b2bHjh0kJSUxMjJCb2+vZ00KIfxJhrOEuEUvv/wyZ8+e5amnnvKsYVFTU8PGjRuxWq0EBQWxYcMGfvjhBzRNQ6/Xk5GRQUhIiOexzs5Oz0SOAOnp6SQmJqLX67ntttswGo10d3fjcDgwm81SQETAkOEsIW7RHXfcQVhY2HWzwfb19fHee+9dN3mkTqdjeHiYsLAwDh8+zIkTJ7Db7Z7n2O12goODAa5bUAlg+/btVFVVcejQIe666y6ef/55EhISfJBOiJuTIiLEDIiIiCAvL++GHf2xY8dobGykoKCAqKgo7HY7OTk5N12UKyEhgZ07d+Jyufjiiy/Yv38/paWlMxlBiD9FhrOEmAGrV6/myJEjnoWRhoaGPMvrOhwOjEYjoaGhXL16lU8++eSm+xobG+P48eOMjo5iNBoJCQnx6ZTyQtyMXIkIMQOu3Tm1b98+BgcHsVgsPPTQQ6SlpZGZmUlTUxOvvvoqoaGhbNiwgZqampvur7a2lvLycjRNIyYmhq1bt/oihhD/k9ydJYQQwmtyTSyEEMJrUkSEEEJ4TYqIEEIIr0kREUII4TUpIkIIIbwmRUQIIYTXpIgIIYTwmhQRIYQQXvs3pWCbiK7fdQEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"haiti.index = haiti.index.map(int) # let's change the index values of Haiti to type integer for plotting\n",
"haiti.plot(kind='line')\n",
"\n",
"plt.title('Immigration from Haiti')\n",
"plt.ylabel('Number of immigrants')\n",
"plt.xlabel('Years')\n",
"\n",
"plt.show() # need this line to show the updates made to the figure"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We can clearly notice how number of immigrants from Haiti spiked up from 2010 as Canada stepped up its efforts to accept refugees from Haiti. Let's annotate this spike in the plot by using the `plt.text()` method."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XlcVOX+wPHPM6yyiMAgCLigaKaGmrhvpKalZma2W2la3WtpVr+6de1mtqgtprmUlaZXbdWrtlzTq7mVZmFuaZb7hoLAALLJNs/vjwOjI9thGGYYfN6vly/hzDnn+Z5B+c6zCymlRFEURVFsYHB2AIqiKIrrUklEURRFsZlKIoqiKIrNVBJRFEVRbKaSiKIoimIzlUQURVEUm6kkorisuLg4xo0b59QYtmzZghCCs2fPOqS8f/7zn4SGhiKEYMmSJQ4p09GaNWvG66+/XuE5J0+eRAjBTz/95KColPIINU9EsdXo0aM5e/YsGzdudEr5JpMJd3d36tev75Dy3N3dWbhwIaNHj7Ycy8/Px2Qy0bBhQwyGmv1M9ssvv9CtWzfWrFlD165dCQgIoF69ejVaph5Llixh3LhxFBYWlnotLi6O6OhoFi5cqPt+ycnJ+Pj44OvrC0B0dDSjRo3ilVdesZxTVFREcnIywcHBeHh4VPsZFNu5OzsARbFVUFBQte9RUFCAu7s7Qgibrvf09CQsLKzacehx5MgRDAYDt99+e7nnVPd5aoOQkJBKz3Fzc3PY+65UTDVnKXYzevRoBgwYwNy5c4mMjMTPz49x48ZRUFDAggULaNq0KYGBgTz22GPk5+dbrouLi2Ps2LG89NJLNGzYkAYNGjB58mTMZjOvvvoqoaGhhISEMHnyZKvyrm7Oys3N5bHHHiMgIIDAwEDGjx/Piy++SHR0dJkxNmvWDC8vL7Kzs9mwYQNxcXEEBQUREBBA3759+fXXXy3XNWvWjKKiIsaMGYMQwvJLuqzmrJ07d9KnTx/q1atHYGAg999/PxcuXLC8/sorrxAdHc3XX39N69at8fX15aabbuLYsWMVvrcPPvggZrPZqvzynqegoIAXXniBiIgIPD09adOmDZ999pnVPYUQzJ07l3vuuQdfX1+aNGnCypUrycjI4IEHHsDf35/mzZvzn//8R9fPX4/K3mewbs6Ki4vj2LFjTJ061fLcJ0+eVM1ZtYhKIopdxcfHs2vXLjZs2MBnn33G8uXLuf3229mxYwfff/89y5YtY9myZSxatMjqupUrV1JQUMBPP/3Eu+++y7Rp0xg6dChZWVn8+OOPvPPOO0ybNo3vv/++3LL/8Y9/8PXXX7Ns2TJ27txJQEAA77//fqnzfv31VzZt2sSaNWvYt28f3t7eZGVl8cQTT7Bz50527NhBy5YtueWWW0hNTbU8l5ubG7Nnz+b8+fOcP3++zBgSExMZOHAgkZGR/Prrr3z77bccOHCAO++80+q88+fP88EHH/Dpp5+yY8cO0tPTeeSRR8p9tvfee4/Zs2fj5uZWqvyynuef//wnH3/8MbNnz+bAgQOMGjWKUaNG8cMPP1jd94033mDw4MHs27ePoUOH8tBDD3Hvvfdy8803s2fPHoYMGcJDDz1keR+qq7L3+WqrVq2iWbNmPPvss5bnbty4sV1iUexEKoqNHn74Ydm/f3+r70NCQmReXp7l2ODBg2VwcLC8dOmS5diwYcPknXfeafm+b9++sn379lb3btOmjWzXrp3VsZiYGPnss89aXTd27FgppZRZWVnS09NTLly40Oqarl27yhYtWljFGBAQIDMzMyt8tqKiItmgQQO5fPlyyzE3Nze5ePFiq/M2b94sAXnmzBkppZQvvfSSjIiIsHoP9u7dKwG5detWKaWUU6ZMkW5ubvLChQuWcz7//HMphJC5ubnlxrR48WLp5uZmdays58nOzpaenp5y/vz5VucOHz5c3nTTTZbvAfnUU09Zvr9w4YIE5JNPPmk5ZjKZJCC//fbbCuMCpK+vb6k/BoPB8jMqS1nvc9OmTeVrr71m+b5FixZyypQpVtedOHFCAvLHH38s996KY6iaiGJX119/PZ6enpbvw8LCuO666/Dy8rI6dmXzDkD79u2tvg8LCyMmJqbUsauvK3H06FHy8/Pp1q2b1fHu3buXGaOfn5/VsRMnTvDggw8SHR1N/fr1qV+/PhkZGZw6daqCpy3t4MGDdOvWzeo9aN++PQEBARw8eNByLDw83KrtPyIiAilluc9Xkaufp+S96NOnj9V5ffv2tYqhJLYSISEhuLm5Wb3vgYGBeHp6VhqXm5sbe/fuLfUnNjbW6jx7vc9K7aE61hW7unqkjBCizGNms9ku111NT4dyyaifKw0dOhSj0cj8+fNp3Lgxnp6e9OrVy6rvRq/yYrjy+JVJ5srXKnu+spT1PGXFIaUsdayskU22vO+AVd9TiatHj9nzfVZqB5VElDohOjoaT09Pfv75Z9q0aWM5vnPnzkqvTU1N5Y8//mDt2rUMGjQIgLNnz5b69O3p6UlRUVGF92rbti2LFy8mPz/fkij27dtHRkYGbdu2repj2SQ6OhovLy+2bt1qVea2bdscFkNZ9L7PV9PzvivOo5KIUif4+vry+OOP89JLLxEaGkqrVq3497//zaFDhyodMhoYGEhISAgff/wxLVq0IDU1leeff77Up+ioqCg2b97MrbfeiqenJ0ajsdS9nnzySd577z1Gjx7NP//5T9LT0xk/fjy9evWid+/edn3m8vj4+DBx4kT+9a9/ERISQocOHVixYgVff/01GzZscEgMZdH7Pl8tKiqK7du3c/r0aXx8fOwytFuxH9UnotQZb775Jrfddhv3338/Xbp0IS0tjdGjR+Pt7V3hdQaDgRUrVnDs2DFiYmIYPXo0kyZNolGjRlbnzZw5k99++42oqKhyE1NoaCj/+9//OHv2LJ07d2bo0KG0a9fOrsNk9XjjjTd49NFHmTRpEm3btmX58uUsX76c/v37OzSOK+l9n682depUMjIyuO666wgJCeH06dMOiljRQ81YV+q0fv36ERgY6PBf4opyrVDNWUqd8fvvv7N79266d+9Ofn4+y5YtY/Pmzaxdu9bZoSlKnaWSiFJnCCH44IMPmDhxImazmdatW7N69WpuvfVWZ4emKHWWas5SFEVRbKY61hVFURSbqSSiKIqi2Oya6BM5d+6cs0OwC6PRSEpKirPDsAv1LLVPXXkOUM9iD+Hh4brOUzURRVEUxWYqiSiKoig2U0lEURRFsZlKIoqiKIrNVBJRFEVRbKaSiKIoimIzlUQURVEUm6kkoiiK4uLk/nhk4lmnlK2SiKIoiguTZjPmD9/CvGy+U8pXSURRFMWVpaVCfh4cPog8e9LhxaskoiiK4sqSLjdjyc2O3ztHJRFFURQXJhMTtC9uiEXu3IzMyXJo+SqJKIqiuLLEBPCuh2H4A5Cfh9zxg0OLV0lEURTFhcmkBAiNQDRpAS1aIzevRZrNDitfJRFFURRXlpiACIsAQNw0BC6chz/2Oqx4lUQURVFclMzLA1MylCSRTj2gfgPMm//rsBhUElEURXFVycUb7oUWJxF3D0SfQfD7LmRyokNCUElEURTFVRWPzBLFSQRA9LkFhEBu+d4hIagkoiiK4qIsw3tDL29lKwKDER27I3/aoDV31TCVRBRFUVxVUgIEGRFe3laHRb8hkJOFjN9W4yGoJKIoCgBnzpxh5MiR9O3bl5tuuomFCxdaXktLS+Pee++lZ8+e3HvvvaSnpwNw9OhRbrvtNqKioliwYIHV/TZv3kzv3r3p2bMn8+bNK7PMSZMm0a1bN26++WZuvvlmhg0bVuWYV69ebfn+yy+/ZPLkyVW6R1WdOXOGfv361WgZesnEBEt/iJWWbSGiKXLTd0gpazQGlUQURQHA3d2dKVOmsHXrVr799luWLFnC4cOHAZg/fz69evVi+/bt9OrVi/nztcX+GjRowGuvvcbjjz9uda+ioiImT57M8uXL2bx5M2vWrLHc62ovvfQSGzZsYMOGDXzzzTe64y0sLCyVRK4lUkpIujy890pCCG2475kTcOzPGo1DJRFFUQBo1KgRN9xwAwB+fn60bNmSxERthM/69eu56667ALjrrrtYt24dAEajkQ4dOuDh4WF1rz179tCsWTOaNm2Kp6cnt99+O+vXr9cdy549exg2bBgDBw5k2LBhHD16FNBqGo899hgPP/ww9913H9OmTePXX3/l5ptv5qOPPgIgKSmJoUOH0rNnT15//XXLPb/88kt69erFnXfeyXPPPWepsUyaNInvvvvOcl7Lli0ByM7O5u6772bQoEH079+/zPhPnTrFwIED2bt3L0VFRbz22msMHjyYAQMGsGzZMt3Pa5OL6ZCbA6GRZb4suvaFer7IGh7u616jd1cUxSWdOXOGAwcO0LFjRwBSUlIIDQ0FIDQ0lNTU1AqvT0xMJDz8cmdvo0aN2LNnT5nnvv7667z33nsAXHfddcybN4/o6GhWrVqFu7s727Zt48033+Tjjz8G4LfffmPjxo0EBgayY8cOFixYwNKlSwEtURw8eJBdu3aRmZlJnz59GDNmDO7u7rzzzjusW7cOf39/7rrrLtq1a1fhM3h5ebFo0SL8/f0xmUzcdtttDBw40PL60aNHGT9+PO+++y7t2rVj+fLl+Pv7s3btWvLy8hg+fDh9+/alSZMmFZZjs5KRWWXURACEdz1Ez/7aDPa70xABgTUShsOSSHZ2NgsWLODMmTMIIfj73/9OeHg4s2bNIjk5mZCQEJ5++mn8/PyQUrJ48WL27NmDl5cX48ePp3nz5gBs2bKFVatWATBixAji4uIc9QiKck3Izs7m0UcfZerUqfj7+9t0j7La4YUQZZ770ksvMXToUKtjFy9eZNKkSZw4cQIhBAUFBZbX+vTpQ2Bg+b8Qe/XqRUBAAAUFBbRq1YqEhARMJhPdu3cnODgYgGHDhnH8+PFKn2HGjBn88ssvCCFITEwkOTkZgNTUVB555BE+/vhjrrvuOgC2bt3KoUOH+O9/tU/+mZmZnDhxosaSiCxZvbecJAIg4gYjN36D/HE9Yui9NRKHw5LI4sWL6dChA88++yyFhYXk5eWxevVqbrjhBoYPH86aNWtYs2YNo0aNYs+ePSQmJjJnzhyOHDnCwoULmTZtGllZWaxcuZIZM2YA8MILLxAbG4ufn5+jHkNR6rSCggIeffRR7rjjDgYPHmw5bjQaSUpKIjQ0lKSkJMsv4/I0atSIc+fOWb4/f/68pSajx9tvv02PHj1YtGiRpcO/hI+PT4XXenp6Wr42GAwUFhYC5Scxd3d3zMVrTUkpLQlr1apVpKam8v333+Ph4UHXrl3JKx4y6+/vT3h4OPHx8ZYkAlqtymEfbBMTwMMTAo3lniJCw6FtR+TWdchbRiLc7f8r3yF9Ijk5ORw6dMgyosHd3R1fX1/i4+Pp27cvAH379iU+Ph6AXbt20adPH4QQtGrViuzsbNLS0ti7dy8xMTH4+fnh5+dHTEwMe/c6bo0YRanLpJQ8++yzREdHl+ooHzhwICtWrABgxYoVDBo0qMJ7dejQgRMnTnD69Gny8/P5+uuvrZqCKpOZmUlYWBgAX331Vbnn+fn5kZ2dXen9OnbsyM8//4zJZKKgoMCqDyQyMpLff/8d0Pp+SpJIZmYmRqMRDw8Ptm/fztmzl/ft8PT05JNPPmHlypWWjv2+ffuydOlSy/XHjh0jJydH9zNXlUw6Bw0bIQwV/xo33DQU0k2wd2eNxOGQmsiFCxeoX78+77//PqdOnaJ58+aMHj2ajIwMS7U0MDCQixcvAmAymTAaL2fX4OBgTCYTJpPJ6hNQUFAQJpOpVHkbN25k48aNAMyYMcPqXq7M3d1dPUstVFeeZefOnfznP/+hXbt23HrrrQC8+uqr3Hrrrbz88svcf//9fPXVVzRu3JjPP/+coKAgEhMT6dGjBxcvXsRgMPDJJ5+wd+9ejEYjc+bM4cEHH6SoqIjRo0fTs2fPUmV6e3szbdo0y2gvgO3bt/Piiy8yduxYFi9eTFxcHG5ubhiNRvz9/fH29ra8371798bb25tbbrmFBx98kMDAQLy9vS0/E09PTwICAmjbti1TpkzhjjvuoFGjRnTu3JmioiKMRiMTJkxg5MiR3H777dx00034+vpiNBoZN24cI0aM4LbbbqN9+/Zcd911lt9Xbm5uNGnShO+++47BgwcTGhrKxIkTSU1NZciQIUgpCQkJYcWKFQQEBFTr51Lev6+U5ETcm0XToJJ/ezJuIKkrFmH48X8E3TK8WrGURciaHkSMlpEnT57Ma6+9RsuWLVm8eDH16tVj3bp1LFmyxHLemDFjWLx4MdOnT+eOO+6gdevWgPYPedSoURw4cICCggLuvPNOAFauXImXlxe33XZbheVfWa12ZUajkZSUFGeHYRfqWWqfuvIcUPmzfPnll+zfv5833njDgVHZpqxnkYUFmJ+4C3HLSAx3jKr0Hub1q5ErF2OYMgcR2UxXuVcOjKiIQ5qzgoODCQ4Otgyd69atGydOnCAgIIC0tDRAm8xUv359y/lXvmmpqakEBgYSFBRkNSrEZDJV2MGmKIpSJyUngdlcYaf6lUSvAeDhWSPb5zokiTRo0IDg4GBLjeD3338nMjKS2NhYtm7dCmgjGzp37gxAbGws27ZtQ0rJ4cOH8fHxITAwkA4dOrBv3z6ysrLIyspi3759dOjQwRGPoChKHXLPPfe4RC2kXMUjs8ob3ns14euP6NKnRrbPddjorEceeYQ5c+ZQWFhIw4YNGT9+PFJKZs2axaZNmzAajTzzzDOA1gm2e/duJk6ciKenJ+PHjwe0TrQ777yTF198EYCRI0eqkVmKolxzLi+8qC+JgLZhldy+EbnjB8SA2+0Wi0P6RJxN9YnUPupZap+68hxQ95/FvGQO8vdduM1cWqV7Fb3+DHh64vb8jErPrVV9IoqiKIr9yKQE3f0hVxJNmltmutuLSiKKoiiuJjHBaiMq3cIiITMDmXXRbqGoJKIoiuJCZHYmZF20rSbSqHixRjvWRlQSURRFcSVlbImrW5iWRGTi2UpO1E8lEUVRFBcik6o+MssiOATcPUAlEUVRlGtUYgK4uYFR/4KWJYTBDULDLw8RtgOVRBRFUVyITEqAkDCbV+QVYZFw3sk1kfz8fMvyyoqiKIoDlbevul5hEZCSiCwsqPxcHXQlkaVLl1q2p9y9ezdjxoxh9OjR7Nq1yy5BKIqiKJWT5iK4cF73cidlCovU1t1KTrRLTLqSyE8//UTjxo0BbeXcCRMm8Pzzz/P555/bJQhFURRFh9RkKCyoVk3EMszXTk1auhrV8vLy8PLyIjMzk6SkJLp16wZQZ5YVUBRFcQmWfdUjbb9HcQKSiWcpe6/HqtGVRMLDw/nxxx9JTEwkJiYG0PZAvnIbSkVRFKVm6dlXvTLCu562pa6dhvnqas4aO3Ys69ev5+DBg9xzzz0A7Nu3z5JQFEVRFAdITAAfP/CrX737hEXYbZivrpqI0Wjk9ddftzrWu3dvbrjhBrsEoSiKolROJiZAaDhCVK8hSoRFanuLSFnte+mqiTz11FNlHn/66aerVbiiKIpSBUnnqjcyq0SjSMjNgYy0at9KVxIpa8uRnJwcDAY1V1FRFMUR5KVcSE+t3hyRYpZ1t5Kq36RVYXPW3//+d0CbXFjydYmsrCx69uxZ7QAURVEUHZK0zfWqNTKrRMlCjOfPIq6rXrdEhUlkwoQJSCmZPn06EyZMsHqtQYMGune+UhRFUarHsvKuPZqzAoPBy9suI7QqTCJt2rQBYNGiRXh5eVW7MEVRFMVGSQkgBDRsVO1bCSEgLNIuS8LrGp3l5ubGxo0bOXnyJJcuXbJ67cknn6x2EIqiKEolEhMguCHCwz7z80RYBPLooWrfR1cSmTdvHqdOnaJTp04EBARUu1BFURSlamzdV71cYZHwy1ZkXh6iGi1NupLIvn37mDdvHr6+vjYXpCiKothGSqkN723Z1m73FI0ikaA1kzVpbvN9dI3RNRqNFBTYZ9lgRVEUpYrSUiHvkv1rIlR/q1xdNZE+ffrw9ttvc+utt9KgQQOr19q1a1etABRFUZRKJFVjX/XyNGykddQ7IomsW7cOoNTS70II5s2bV60AFEVRlIpVa1/1cggPT22L3WquoaUricyfP79ahSiKoijVkJigzesIDLbvfe0wzFetW6IoilLLyST7LLx4NREWAUkJSLPZ5nvoqonk5OSwYsUK/vjjDzIzM63W0vrggw9sLlxRFEXRITEBEdXK/vcNi4T8fEhLgeCGNt1CV01k4cKFnDhxgpEjR5KVlcUjjzyC0WhkyJAhNhWqKIqi6CPz8yD1gn1HZhWzrMNVja1yddVE9u/fz6xZs/D398dgMNC5c2datGjBm2++ydChQ3UV9MQTT+Dt7Y3BYMDNzY0ZM2aQlZXFrFmzSE5OJiQkhKeffho/Pz+klCxevJg9e/bg5eXF+PHjad5cG8e8ZcsWVq1aBcCIESOIi4uz7ckVRVFcQNH5syClXTvVLRpdHuYr2t1o0y10JREpJT4+PgB4e3uTnZ1NgwYNSExMrFJhU6ZMoX79yztyrVmzhhtuuIHhw4ezZs0a1qxZw6hRo9izZw+JiYnMmTOHI0eOsHDhQqZNm0ZWVhYrV65kxowZALzwwgvExsbi5+dXpTgURVFcReG504CdVu+9ml998PWv1jBfXc1ZTZs25Y8//gCgdevWLFq0iIULF9KoUfUWAouPj6dv374A9O3bl/j4eAB27dpFnz59EELQqlUrsrOzSUtLY+/evcTExODn54efnx8xMTHs3bu3WjEoiqLUZkUJWhIh1P6rpmsLMVZvq1xdNZHHH3/c0pn+yCOP8Nlnn5GdnV3lxRffeOMNAG6++WYGDBhARkYGgYGBAAQGBnLx4kUATCYTRqPRcl1wcDAmkwmTyURw8OUhbkFBQZhMplLlbNy4kY0bNwIwY8YMq3u5Mnd3d/UstVBdeZa68hxQt57l4vkzGIJDCIlsXCP3z2jagvw9O21+vypNImazmS1btjBixAgA6tevz9/+9rcqF/Taa68RFBRERkYGr7/+eoV7kZS1k2J5Q9vKOj5gwAAGDBhg+T4lJaXK8dZGRqNRPUstVFeepa48B9StZzGcPYXZGFZjz2MONCLTUkk+fQrhc3l9RL37RVXanGUwGFi/fj1ubm62R4lWawAICAigc+fOHD16lICAANLStD1+09LSLP0lwcHBVm9YamoqgYGBBAUFkZqaajluMpksNRlFUZS6RkpJYcJp++yrXg5LX4uNW+Xq6hPp27cvGzZssKkAgEuXLpGbm2v5ev/+/TRp0oTY2Fi2bt0KwNatW+ncuTMAsbGxbNu2DSklhw8fxsfHh8DAQDp06MC+ffvIysoiKyuLffv20aFDB5vjUhRFqdWyLiKzM2tkeK/FFVvl2kJXn8jRo0dZt24d33zzDcHBwVZNSFOnTq30+oyMDN555x0AioqK6NWrFx06dKBFixbMmjWLTZs2YTQaeeaZZwDo2LEju3fvZuLEiXh6ejJ+/HgA/Pz8uPPOO3nxxRcBGDlypBqZpShK3ZVYsvBiDYzMKmEMBTd3m0do6Uoi/fv3p3///jYVABAaGsrbb79d6ri/vz8vv/xyqeNCCMaNG1fmvfr160e/fv1sjkVRFMVV2HVf9XIId3do2MjmNbR0JRE1oU9RFMUJkhLAwxOCQ2q2nLAIm1fz1ZVENm3aVOZxDw8PgoODadmyJR4eHjYFoCiKopRNJibgFhYBhuoNbKqMCItA7t+FLCzUaiZVoOvsbdu2cfjwYQICAggODiY1NZWMjAxatGjBhQsXAHj++edp0aJF1aNXFEVRypaUgHuzlhTWdDlhkVBUCClJVW4605VEIiMj6dKlC4MHD7YcW7duHQkJCbz66qusWrWKTz75xDKZUFEURakeWVQEyYm49exf40lEhBXvt554tspJRNcQ3+3bt3PLLbdYHRs4cCA//fQTQgiGDRvG2bPV29hEURRFuUK6CYqKcGtYveWldClOHNKGuSK6kkhAQAC//fab1bHdu3dbJgcWFBTgXsV2NEVRFKUCGdqSTm5BNb98i/Dxg4BAm5aE1/Wbf8yYMbz77rs0adLE0idy+vRpy7yOI0eOlKqpKIqiKNWQriURgwOSCGDzVrm6kkj79u2ZO3cue/fuxWQy0bFjR2688Ub8/f0tr7dv377KhSuKoihlkxklSSQECm3fvlYvERaBjP8JKWWVtuHV3QZVv359+vTpY1NwiqIoShWlp4HBgKF+AyhjtXK7C4uEnCzIugj+AbovKzeJvPHGG0yePBmAl19+udzMpGfZE0VRFKWKMlKhfiDCoKvrutpEWIQ2Quv8WfskkZLNogC1zIiiKIqDyXQTNAhyXIFhV2yV26qt7svKTSK9evWyfK2WPVEURXGwdJO2OKKjBIVoS6xUsXNdd5/IoUOHOHHiBJcuXbI6XrJZlaIoimJHGWmI6OsdVpwwGCC06lvl6koin3zyCT///DOtW7fG09PzcqFV6MFXFEVR9JEFBVoHtyObswDRKBJ58kiVrtGVRH788Udmzpxp2Z1QURRFqUEXtR1fCXDw79ywCNi1HVmQr/sSXd3+RqNRrdKrKIriKMUTDYWDayKERYI0w4Xzui/RVRP529/+xocffkjPnj0JCLAe+tWmTZuqBakoiqJUrHiioaNrIlYLMeqkK4kcP36cPXv2cOjQIas+EYAPPvigKjEqiqIolZDFNRFH94kQGq6VX4U1tHQlkc8//5x//OMfxMTE2BaYoiiKol9GGri5gV99hxYrvLy1ob5VqIno6hPx8vJSzVaKoiiOkm5y6Gx1K2GRVRrmqyvCe+65hyVLlpCeno7ZbLb6oyiKotiXw2erX0E0irR/n0hJv8eGDRtKvfbll1/qLkxRFEXRIcMEIWHOKTssAvIuVX5eMV1JZN68eTbHoyiKolRRhgnR0jldCJYRWjrpSiIhISE2hqMoiqJUhTZbPdPxEw1LFC/EqJeuJJKTk8PatWs5efJkqbWzXnrppSoVqCiKolTAMkck0DlFig3pAAAgAElEQVTlBwRCPR/dp+tKIu+++y5ms5kuXbqUmieiKIqi2FGGtuSJaBDslOKFEBAaoft8XUnkyJEjLFq0CHd33Yv+KoqiKLZw1kTDK4gqNGnpGuLbunVrEhKqtjywoiiKUnWW2erOas4CxOC7dJ+rq2oxfvx4pk+fTnR0NA0aNLB6beTIkVWLTlEURSlfhskps9WvJBrpr4noXvYkNTWVkJAQcnNzLxdUxf1EzGYzL7zwAkFBQbzwwgtcuHCB2bNnk5WVRVRUFBMmTMDd3Z2CggLmzZvH8ePH8ff3Z9KkSTRs2BCA1atXs2nTJgwGA2PGjKFDhw5VikFRFKVWSzdBgJNmq9tAVxLZsWMH7733HoGB1aterV27loiICEsiWr58OUOGDKFnz5589NFHbNq0iYEDB7Jp0yZ8fX2ZO3cu27dv59NPP+Xpp5/m7Nmz7Nixg3fffZe0tDRee+013nvvPQwu8mYriqJURmaYnDe81wa6fvuGhobi5uZWrYJSU1PZvXs3/fv3B0BKycGDB+nWrRug7eMeHx8PwK5duyz7unfr1o0DBw4gpSQ+Pp4ePXrg4eFBw4YNCQsL4+jRo9WKS1EUpVbJSHOpJKKrJtK7d2/eeustbrnlllJ9Iu3atdNV0JIlSxg1apSlFpKZmYmPj48lOQUFBWEyaR1KJpOJ4GBteJubmxs+Pj5kZmZiMplo2bKl5Z5XXnOljRs3snHjRgBmzJiB0WjUFWNt5+7urp6lFqorz1JXngNc+1kuZKThfUMn6hfHX9ufRVcSWb9+PaD1jVxJCKFrSZTffvuNgIAAmjdvzsGDBys9X8rSk+6FEGUeL8uAAQMYMGCA5fuUlBRd19V2RqNRPUstVFeepa48B7jus8iCfGTWRS55+5BfHL+zniU8PFzXebqSyPz586sVzF9//cWuXbvYs2cP+fn55ObmsmTJEnJycigqKsLNzQ2TyWTZwz04OJjU1FSCg4MpKioiJycHPz8/y/ESV16jKIri8mrB8N6qckiP9P3338+CBQuYP38+kyZNol27dkycOJG2bduyc+dOALZs2UJsbCwAnTp1YsuWLQDs3LmTtm3bIoQgNjaWHTt2UFBQwIULFzh//jzR0dGOeARFUZSaZ5mt7jofjiusibz88suVDuOdOnWqzYU/8MADzJ49my+++IKoqCj69esHQL9+/Zg3bx4TJkzAz8+PSZMmAdC4cWO6d+/OM888g8FgYOzYsWpklqIodUeG82erV1WFSaTkl7o9tW3blrZt2wLaqK/p06eXOsfT05NnnnmmzOtHjBjBiBEj7B6XoiiKs12erV5HkkjJMFtFURTFATJM4OYOvv7OjkQ31RakKIpSW7jYbHVQSURRFKXWkMVJxJWoJKIoilJbZKS5VKc6VJBEJk+ebPl6xYoVDglGURTlmpZucqnhvVBBEjl37hz5+fkAfPfddw4LyBlkuomiea8j/9zv7FAURblGyfw8yMlyqZFZUMHorM6dO/PUU0/RsGFD8vPzmTJlSpnnVWeeSG0hD+2Dfb9i3h+PuHUk4rb7EGoXxzpHZmZA0jlE9PXODkVRSiueaOhqzVnl/qYcP348f/75JxcuXODo0aPcdNNNjozLsZITQQhE937ItSuQf+7HMO5ZREiYsyNT7Eh++znyxw0Y5n6BcPdwdjiKYq14oqGoKzUR0LbFbd26NYWFhXV7zkhKEgQEYRjzFOZ2NyKXzcf82iTEqPEYuvRxdnSKnchjf0FhASSdg4imzg5HUazVgr3VbaGrzaZfv34cOHCAbdu2kZaWRmBgIH369NG9DHxtJ1MSISQUAEPn3shmLTEvnIn8+B3Mf+xB3Pc4wsvbyVEq1SHz8yDhpPZ1wimESiJKLeOKs9VB5xDfH374gdmzZ9OgQQO6dOlCYGAg7733nmXPDpeXnIQwXm66EiFhGJ6bjhh8N3LHJsyvPY08fcyJASrVdvo4FBVpXyecdm4silKWjDRttrqf68xWB501kW+++YaXXnqJZs2aWY716NGDmTNnWu3b4YpkQT6kp8JV/R/C3R1xxyjk9TGYF72LefpziDsfRvQfVuW95RXnkycOa1/4ByDPnXJuMIpSlnQTNAhyud8vumoimZmZREZGWh0LDw8nKyurRoJyqJQL2t/FzVlXE61jMLw8B9reiPxyEeY5ryJzsh0YoGIXJw5DkBFx3Q2QoJKIUvtoe6u71mx10JlEWrduzdKlS8nLywPg0qVLLFu2jFatWtVocA6RkgSAMJadRACEf30MT0xG3P84HNyN/N9qR0Wn2Ik8cRiatYKIJpCShMy75OyQFMVacU3E1ehKIo8++iinTp1i9OjRPProo4wZM4ZTp07x2GOP1XR8NU6mJGpfGCseziuEwHDTELghFrltPbKgwAHRKfYgMzMgJQnRvBUivClICefPODssRbGWYXK54b2gs08kMDCQqVOnkpqaahmdFRwcXNOxOUZyInh46q5GGm4ajHl/PHL3DkTXvjUcnGIXxf0holkryyc9mXAa0ayl82JSlCtos9WzXbI5q0rTsoODg+tO8igmk5PAGKq/M6tNR2jYCLn5v6CSiEuQJ46AMEDTFuDpqX1oUJ3rSm1ima3uer9f1Sq+KUmlRmZVRBgMiLjBcOxP5OnjNRiYYi/yxF8Q3hjhXQ9hcINGjZGqc12pTYrniLja4otwjScRKSWkJFbYqV4W0aM/eHoit6ytocgUe5FSwokjiObXWY6JiCZqrohSq1yeaOh6zVmVJhGz2cyBAwcoLCx0RDyOlZUJl3LLHd5bHuHrh+gah/xlCzK7DgxzrssunNdWRr2y/yOiKaSnqp+dUntkuOaSJ6AjiRgMBt566y3c6+KqtsUjs0QlI7PKIuIGQ34+cnsdmbVfR5VMMhTNLw9HF+HFS56cU7URpZZIN4G7a+2tXkJXc9b111/P4cOHazoWh5PJxcN7bVitVzRpDtHXI7esRZrNdo5MsZsTh8HTCxo1uXwsQvta9YsotUaGCQJcb7Y66BydFRISwvTp04mNjSU4ONjqQe+5554aC67GFU80JLihTZeLuMHIhTPhjz3QrpMdA1PsRZtkGI1wc7t8MNAI9XzUCC2l1pAuOtEQdNZE8vPz6dy5M0IITCYTqamplj8uLSUJ/AMQ3vVsulx06gH1G2De9F87B6bYgywogDPHEc2sV1YQQkB4E6TqXFdqi4w0l1u9t4Sumsj48eNrOg6nkMmJNjVllRDuHog+g5D//QqZnKg2saptzp6EwkKr/pASIqIpcvcOpJQu2YSg1DHpJsT17Z0dhU10D/E9e/YsK1euZNGiRYC2B/upUy7eHJCcaFOn+pVEn1tACOTW7+0UlGIv8sRf2hfNyljjLbypNjrvYrpjg1KUq8i8PMh1zdnqoDOJ/Pzzz0yZMgWTycS2bdsAyM3NZenSpTUaXE2ShYWQllLl4b1XE4HB0KEb8qeN2tIFSu1x4oj2HzPIWOolUdy5rlb0VZzOhYf3gs4k8tVXX/Gvf/2Lxx57DINBu6Rp06acPHmyJmOrWWkpYDZDFScalsXQbwhkZyLjf7RDYIq9aJ3qLcturire2VDtLaI4nQvPVgedSSQjI4OmTa23ExVCuHZbcvHwXrv0Y7Rqp3XUbl6rzZBWnE5mZ0FSAiKq7O0KhH8A+AeomeuK08kM19wWt4SujvXmzZuzbds2+va9vODg9u3biY6O1lVIfn4+U6ZMobCwkKKiIrp168bdd9/NhQsXmD17NllZWURFRTFhwgTc3d0pKChg3rx5HD9+HH9/fyZNmkTDhtow3NWrV7Np0yYMBgNjxoyhQ4cONjy2/iXg9RBCaMN9P1ugzUu4YokNxUlOHgEoN4kAENFUzRVRnO9aaM4aM2YMX3zxBVOmTCEvL4833niDL7/8kocfflhXIR4eHkyZMoW3336bt956i71793L48GGWL1/OkCFDmDNnDr6+vmzatAmATZs24evry9y5cxkyZAiffvopoHXu79ixg3fffZfJkyezaNEizLZO9EtO0vYzDrTPD050jwPvesjNaj2t2sCyHW6z8j/oiIimcO6MmiyqOFe6Cdw9wMfP2ZHYRFcSiYiIYPbs2QwaNIh7772XuLg4Zs6cSaNGjXQVIoTA29sbgKKiIoqKihBCcPDgQbp16wZAXFwc8fHxAOzatYu4uDgAunXrxoEDB5BSEh8fT48ePfDw8KBhw4aEhYVx9OjRqj6zJiUJghtqq7ragfD2QXTvh9z1I1KN+HE6eeIwhEUiKvqPGd4E8nLBlOy4wBTlaunatriu2j2ge0EsLy8vWrdujclkIigoyJIU9DKbzfzjH/8gMTGRQYMGERoaio+PD27FM4mDgoIwmbRqnclksuxb4ubmho+PD5mZmZhMJlq2vLyQ3pXXXGnjxo1s3KitaTVjxgyMxtKjc1LTUzCERxJYxmu2KrzjAVI3/xefPTvwvfMhu923hLu7e5nP4opq8lmklKScOopnx24EVFBGfpsY0oD6mel4tW5rc3l15edSV54DXOtZTNmZEBJKUDnx1vZn0ZVEUlJSmDNnDkeOHMHX15fs7Gyio6OZOHEiISEhugoyGAy8/fbbZGdn884775CQkFDuuWV1TgshdHdaDxgwgAEDBljFf7Wi8wmI2GZlvmazen7QOoastf8hp/cgu9VyShiNRvvG60Q1+Swy9QLmjDTywptWWIb0DQAg48/fMUTZ3o9VV34udeU5wLWepSjlAkQ0KTdeZz1LeHi4rvN0NWfNnz+f5s2bs3jxYhYuXMjixYtp0aIF8+fPr3Jgvr6+tGnThiNHjpCTk0NRURGApYYD2g6KJUuqFBUVkZOTg5+fn9Xxq6+pCpmTDdmZ1ZqtXh7DTUO05pH98Xa/t6KPPF68cm9Uxdvfino+EBSi5ooozuWie6uX0JVEjh8/zqhRoyxNWN7e3owaNYrjx/Xt7Hfx4kWys7MBbaTW77//TkREBG3btmXnzp0AbNmyhdjYWAA6derEli1bANi5cydt27ZFCEFsbCw7duygoKCACxcucP78ed0jxKwUL7xY3dnqZWrfBYKMaj0tZzp5WOuojGxW+bkRTdUaWorTyLxLkJvjsiOzQGdzVsuWLTl69CitW7e2HDt27BitWlUwfPIKaWlpzJ8/H7PZjJSS7t2706lTJyIjI5k9ezZffPEFUVFR9OvXD4B+/foxb948JkyYgJ+fH5MmTQKgcePGdO/enWeeeQaDwcDYsWMtkx+rxDK8t/oTDa8m3NwQfW5BrlmOTDyLCIu0exlKxeTxw9CkOcLdo9JzRXgT5KG9yKIi65V+FcURXHyOCFSQRL788kvL16GhoUyfPp0bb7zR0qS0Z88eevXqpauQpk2b8tZbb5U6XnLfq3l6evLMM8+Uea8RI0YwYsQIXeWWRyYXLwFfzSVPyiN6D0R+8xly5xbE8FE1Usa1QJrNUMVJrbKoCE4fRfQepO+CiKZQWKjtgNhIJXzFwVx8tjpUkESuXua9a9eugNY05eHhQZcuXcjPz6/Z6GpKSiL4+FU8/LMaRP0G0Kgx8rS+5j6lNFlUhPmdfyKMoYixZX+gKFPCKcjPh4omGV5BRDRBgra3iEoiioNd3lu9DiaRurr8O4BMSaqRTvUricZRyD9/r9Ey6jK5ZS0cPYQ8egjZqQeiQzd9150s6VTXl0QIiwRhQCacQnTqaWu4imKbjDTt77pYE7laXl4eiYmJXLp0yer4dde54BIfyUkIPZ2u1dE4CnZuQWZeRPjXr9my6hh5MQ359adwfXu4mI75s48wtI5BePtUfvHxw+Dnr/tDgvD0goaNVOe64hzpJvDwBB9fZ0diM11JZOvWrXzyySe4u7vj6elp9doHH3xQI4HVFGkugtQk6NC1RssRkVFaM8nZE9ovQ0U3uWop5OdjuP9xyM7C/OY/kF9/jrhnbOXXnjwCzVpVbfZvRBO1Va7iHC4+Wx10JpHly5fz7LPPEhMTU9Px1Lx0k9aRWtO7EDaOAkCeOe6yO5Y5gzz2J3L7D4hBIywj20TvQcgfvkV2j0M0aVH+tZdy4NxpxI3dq1SmCG+K3PMLsiAf4eFZ+QWKYicyw3X3Vi+ha3ysu7s7bdq0qelYHKN4ZJaooZFZJYR/gPaP48zJGi2nLpHmIsyffwQNghBD77YcFyMeAj9/zMve12qS5Tl1DKREVHH2uYhoAtIM58/YGrqi2MbFJxqCziRyzz33sHTpUi5evFjT8dQ4WTzR0B5LwFcqMgp5Ro3Q0kv+tAFOHUWMHGPV/yF8/RD3jIOTR5Bb15V//fGSlXsrnqleSskGVapfRHG0dNeviehqzgoPD+err75i/fr1pV67cj6JS0hJBGHQlruoYaJxlDaRraAA4VH5xLdrmcy6iFy1DFq1RXTpU+p10aUPcvtG5OplyI7dEA2CS9/j5GEICav6QIaQRuDurpY/URxKXsqFS7kuPbwXdCaRuXPn0qdPH3r06FGqY93lJCdCkBHhrntgmu0aR0FREZw/DRW05Stoo7FyszHc91iZnYxCCAyj/o55ygTkl4sQjz9f+ibHDyNaVX01XuHuDmGRyHOqJqI4UB0Y3gs6k0hWVhb33HOPS48gKCFTkmpkuZOyiMbaCC155mSFHcLXOnnqGHLrOkS/oYjIqHLPEw3DEUPuRn79KbJnf0S7TpfvkZYK6am6JxmWund4U+TRP2y6VlFsUjJbPSDQyYFUj64+kbi4OLZt21bTsThGSpJ99lXXo2Ej8PTUhvkqZZJmM+bPPwS/+ohh91V6vhg0AsIiMX+6AJmXd/mFE1WcZHi1iCZgSkbm5th2vaJUkUwvXhXkWqiJHD16lHXr1rFq1SoaNGhg9drUqVNrJLCaIPPytCqko2oiBjeIaIY8o5JIeeTOLXDsT8ToibqWoREeHhhGjcf8zj+R//1SG7lFcX+Imxs0aW5THCKiafHyJ6ehRevKTleU6ruWmrP69+9P//79azqWmmcZmeWYJALFTVq7tiOlrBPNgfYkc7KR/1kCUa0Q3fvpvk5c1w7Roz/yf6uRXftqCeD4YYiMsn2eR3gTLaaEUwiVRBQbSLMZUi/ob+nIKJ6tXs91Z6uDziRSst+5yyteAt5hzVmgda5vWw+mFAiu+RFhrkR++wVkZmCY8C9EFZf0FyPHIPf/inn5+xj+b5o2NLhbnO3BBDcEL2+tJqIoNpC/bkUumoXhqSlW/XXlKh7e6+ofLnUlkU2bNpX7WskeIK5AJhfvI+LAJGK1/IlKIhaFp48jN32L6D0QUdV5HYDwr68lkiVzkCuXaEMlbe0PAS2JhTdBqmG+lVK16rLJ3T8DYF72Poapcytd601mpLn88F7QmUR+/PFHq+/T09NJTEykdevWLpVESEkCr3rg58AFESOLJ7KdOY5o38Vx5dZiUkoufvwu1PNF3PGgzfcRPfojd/yA3Pi19n01kggUb1CltjWukPxjD+ZP3sPwyFOINh2dHU6tIQvy4Y+9Wn/a8b+Qq5Yi7v9bxRelmxCNyx+N6Cp0JZEpU6aUOrZp0yYSEhLsHlBN0paAD3Xopyjh7aOtEquWP7GQu7ZTcGA34oG/I6qR0LW5I+MxT31KGwUXGlG9wCKawvaNyIvp2p4wSinmreshw4R57usY/v4CIqazs0OqHf76HfIuYRhyN/LgHm2tt9jeFc9bSjdBuxsdF2MNsXnGXVxcHGPHjuXBB23/JOlwyYnasFtHi4yCOr78icy8iHnmZLiYDlIW/zFf8XXx92YJRYW4N2+Fuc/AapcrGjVG3P8YZGdXuV+l1L0sG1SdBpVESpGXcuH3XYgufZFJCZjfn47hseeqvOBlXST3x4OnF7SOQbRsi9z7C+al8zC8PFvbbuDq8y/lQF6uy4/MAp1JxGw2W32fn5/Ptm3b8PV1nVEFUkptjogTquCicRRy9w7kpRx9e2K4ILnxa20F3V43g5s7CAEGg/Y3AgxC+1oYwM2NBrfdTZrBPnuaG/rcYpf7EH55DS3Rug6sWG1n8vddUJCP6DMI0TgK85ypmD98EzH2GQxlLFVzrZBSIvfFw/XttdGBHmB46EnMs15GfvcFYsTDpS9KrxvDe0FnErnvvtKTwIKCgnj88cftHlCNyUyH/Lwa21e9IiUz1zl7EqLryGrIV5DZWchN3yFu7IHhoSd1XeNmNEJKSg1HVkUBgeDrr/YWKYfctV17j1pejzC4YZj0Cua5ryEXvou5sABDjzowDcAWCSfBlIwYeo/lkGjTAdFzAHL9amSnXoimV61YkVEyW/0aSSLz5s2z+t7Ly4v69V1stz7LEvAOHN5bwrK3yElEXUwiP3wLl3Ktlm93RUIIiFAjtMpiacrqNUCbRIvW32eY+Arm+a8jl8zREom9aoUuRO7TBmOIG2Ktjou7H0Ee2I15yRwMk2darddn2Vu9DtREdDUih4SEWP1xuQTCFcN7HbEE/NUCjeDjVyeXP5G5OcgfvoEOXStc98pViPCmcO601vypWFiasjr1sjouvLwwTPgXtOuEXPY+5h++c1KEziP3x0PTaMRVCUH4+GF44G9w9gRy/Srri4prInV+iG9lS5oIIXj55ZftGlCNSSlJIg0dXrQQAhpH1cnlT+Tm/0JONoYrqvIuLaIJ5OZAWopDtgtwFVc2ZV1NeHhi+PuLmD96G/nFR1qNZNAdTojS8eTFdDhxGHFb2eu+iY7dELG9kN99gbyxO6JRY+2FdJM2orCe6/eRVphEevfuXeZxk8nE999/T96VC+DVdslJ2uxQJ21/KhpHIbetQ5qLLM0Brk7mXUJu+BradUI0jXZ2OHYhwovX0Eo4rZJIsbKasq4mPDwwPP48ctG7yJWLMRfk150PFhWQv/+m7aZZwVBncd+jyEP7MP97Lobnp2vvYboJAlx/tjpUkkSunkiYmZnJ6tWr+eGHH+jRowcjR46s0eDsSVsC3glNWSUioyA/H5LOQ6NI58VhR3Lr95B1sW79sogoXkPr3CnEDTqWrrgGlNeUdTXh7g7jngV3D+TXn2IuKEAMf6BO/KIsj9z/q9avUcHCn6J+IOLecchFs5Cb1yL636bNVq8D/SGgs2M9JyeHb775hvXr13PjjTfy5ptvEhbmxF/ItkhJRFx3g9OKt+wtcvYEog4kEZmfh/zfGm1cfB1asFD4+mv/uVXnukVFTVlXE25uMOYp8PBArv0KcrPh3kerPYenNpIFBXBwL6Jrn0oTpegah/xlG3LVUmT7LtpsdRtXnK5tKvzJ5ufns3r1aiZMmEBCQgKvvvoqEyZMcLkEIgsKIC3VuTWRRo21pcpryaRDmZyIee0K7b2x5fqfNkBGWt2qhZQIb6r2Wy9macq6sbvuZlhhMCBGjUfcfDty83+RC2ciC237d1arHT4AebmImMqXMxJCYHhwPAgD5qXztI71a6Em8sQTT2A2mxk2bBgtWrQgIyODjIwMq3PatWtXowHaReoFbca0A5eAv5rw8IBGjWvF8ieysADzghlw+rg2d2Xcs1X6pCgLCpDrVmlzXlq5wM+/ikREE+SW75GZF6u+X3sdo7cp62rCYEDcPRZzQCBy5RJkdpa2TIp3vRqK1PHkvl+1zvHr9U1MFUEhiJEPIz9doB24FpJIyX7q//vf/8p8XQhRag5JrZTixDkiVxCRUchD+5waA4D8+jMtgdzYAxn/IwSFIEaO1n/9zz9AWgqGhyfUyfZu0aI1csPXmP/vIWjVDnFjD0THrogGwc4OzeGq0pRVFsOgEZj96iOXzsM88yUME6fUicQspdSG9rZuX+ayJuURfW7R/s8dPqi9r3VAhUlk/vz5dikkJSWF+fPnk56ejhCCAQMGMHjwYLKyspg1axbJycmEhITw9NNP4+fnh5SSxYsXs2fPHry8vBg/fjzNm2vth1u2bGHVKm3M9YgRI3TtdSJLhvc6Yba6lcZRsHOzUxf4k3/9jly/SluC/cEnkJ99iFy/CnOQEUO/oZVfX1iIXLtSW3a9TQcHROx4olNPDP+ahdz9s/bnswXIzxZAi9Zas07H7k7/QOIIekZl6WHoOQDp64/5o7cxv/UPDJOmIoIdP9Ters6d1jagGly1wUXCYMDw8ATMi+cgmteNvkSbF2CsCjc3Nx588EGaN29Obm4uL7zwAjExMWzZsoUbbriB4cOHs2bNGtasWcOoUaPYs2cPiYmJzJkzhyNHjrBw4UKmTZtGVlYWK1euZMaMGQC88MILxMbG4udXybaqyUnaDmL1nZv5Ly9/cgKcsIaXzMnC/MksCAlD3D1Wq0Xc9ygyPRX5xcfIBsGVLqYnf9kKqRcw3Pd4nayFlBBNWiCatIDho5Dnz1xOKCsWI1cshsZRloQig+tmDcXWpqyyiA5dMUyainne65hnFCeS4pFwrqhkywBxQ9VXMRYNw3H7xwx7h+Q0DhkyERgYaKlJ1KtXj4iICEwmE/Hx8fTt2xeAvn37Eh+v/WB27dpFnz7aiIdWrVqRnZ1NWloae/fuJSYmBj8/P/z8/IiJiWHv3r2Vli9TEiG4ofNHiEReXv7EGeSnCyDdhGHcs5a2aWFwwzDu/6BZS8wLZyKP/Vn+9eYi5NoVWo0qJrbc8+oa0agxhiF34/avWRimfYS46xHw8kZ+8znmVyaQ/PBgiua8ivm7L5GH9iFzc5wdsl1UtynraqJVWwzPTwMpMb/1AvLoIbvc1xnkvl+hSQtEYN38AFEVDqmJXOnChQucOHGC6OhoMjIyCAzUageBgYFcvHgR0CYzGo1GyzXBwcGYTCZMJhPBV3zqCwoKwmQylSpj48aNbNy4EYAZM2bgnpaCIaIxgVfc0ymMRpKDQ/BMPkeADbG4u7tbvS9Vkbt1PRd/3Ybv/Y/i17lHqdfNU2ZhevFxzPPfIHD6h7iX8Skx98f/cfHCOQKefwPvkOpNxKvOsziV0QjXt4P7x1FkSqd9cA8AABdTSURBVCHvtx0UHTlI3qHfKfp6l1bTFAL3Js3xaNUWj+va4dGqHW4RTZz/IaYSV/5MzLk5JB/YRb3+t1G/oR2bgY1Git78iLSpT1M062UaPP8GXp1K/3usrpr892XOSCP5+F/43j0GPwf8G67t/1ccmkQuXbrEzJkzGT16ND4+5U/3L2vdovKaTso6PmDAAAYMGGD5vjAxAdGsFSm1YNVYc3hTLh39kwIbYjEajTY9g0y9gPnDt6FFa3L7DOZSOfeQT76EnP48qVMnYXjhLat+G2k2Y/7iEwhvQmaLtmRV87209VlqnY49MN48jLyUFAw5WXD8MPL4XxSe+IvC7T+Qu+Eb7TxffwwPPYG40f6/MO3lyp+JOf5HyM8nr20n+/+c3DyR//cGvDeV9GnPI0Y/haH7TXYtoib/fZl3bAIpyY1uW+7/JXty1v+V8PBwXec57KNRYWEhM2fOpHfv3nTt2hWAgIAA0tK0dfXT0tIsCzsGBwdbvWmpqakEBgYSFBREamqq5bjJZLLUZCqUm+PQfdUrIhpHQeJZbTtNB5DmIsyL3gUpMYx9RpsMVl5sDcO1xfQyTNoS33mXLr+4Z6e2X8jgu2r9J2pnET5+iHY3Yhh2H25PvYJh1qcYXn0fMXoiGEMxf1xxc2FtYu+mrKuJ+g0w/N8b0Kod8pNZmLesrZFyaoLc/6u2cGKTFpWffA1wyG8DKSULFiwgIiKCoUMvjwCKjY1l69atAGzdupXOnTtbjm/btg0pJYcPH8bHx4fAwEA6dOjAvn37yMrKIisri3379tGhg74RQsLZI7NKREZBURGcO+OQ4uT61XDkD8R9j+kaUSSaX4fh0efg1DFtQb2iIqSUmP/7JYRGIDpXv5P1WiEMBkSjSAw9B2B46hUIMmKe9zrywnlnh1YhWyYY2kLU88EwcQq074L8dAHm7RtrrCx7kYUFcHAPIiZWfZgq5pB34a+//mLbtm0cOHCA5557jueee47du3czfPhw9u/fz8SJE9m/fz/Dhw8HoGPHjjRs2JCJEyfy4YcfMm7cOAD8/Py48847efHFF3nxxRcZOXJk5SOzSjhxouGVRMneIg5YFl6eOor8+lNEp56I7v0qv6CY6NBV23J2f7w2tHV/PJw5gRg8ss4sHulowr++9gtTSsxzX0VmZzo7pHLZc1RWZUoWbqRNR+S/52L+ZWuNl1kthw9qe+eoveUtHNIn0rp1a7766qsyXytrKXkhhCVxXK1fv36lFobUpZYkERqGaXsx1/Cy8DIvD/PCmeDfAPHg+CoPxzXEDcZsSkZ+/x9k/E9gDEV06VszwV4jRGg4hicmY373JczvT8Mw6VVtJYNapqabsq4mPDwxjP8n5jmvID+ZhfTwrLX7tsv98dp0gevr5hwpW1wb9TH/gFqzt7kwuEFksxrfW0Su/AQSEzA8MklbVNAGYviDiK59ITcbcetIq53ZFNuIlm0Qo5+CwweRS+fVus2vHNWUdTXL5lZNo7Vm1AO/OaxsvbS91H/VFh310j9Lva67NpJIbamFFBORUXDmRI39ApH74pFbvkcMHI64vr3N9xEGA2L0RAxPv4rodbMdI7y2Gbr2Rdz+AHLnZuS3nzs7HCuObMq6mvD2wTDpFYhogvn96cg/9zs8hgqdPwMpSaop6yrXRBKpdUtUNI7Slsg2Jdv91vJiGuZ/z4HIZojhD1b7fsLdA9Gmg+pEtDMx5G5Ej/7Ib7/QhozWEo5uyrqa8PHDMOlVbTTbvNeRR/9wShxlseylrpKIlWvjN0Ntq4kUd67XRL+I+bMPITdHm5VeC9vbFY0QAvHgePj/9u4/KqrzzuP4+7mMBHCAMMCiAv6IiNFEQ1uMiRqVRM/useaHnppEkyb+aqIY7cYYxY1B12hP0gaxnsqqXde2uprNWkjdTbLpMTEaY0xUVKpWBMRWokKQ38LwY+6zf0ydRBuNDMPMAN/XOZzDGWYuz4dh7vfe5z73ee4c6uzWyv+Tr5uE2VDvk66s66nQMIyFr0G4DXPdSvS5Ap+15Zt03iHndDc2/73xzxekiPhCbB9QyuPXRfSfDsORA6iJT6Bi+3h028LzlKUbxtw0+IeemFk/Q18s8Wl7mo4c8FlX1vXU7TaMl16DECtm5nKvjGa8GV1XA0WnUfd899ohXU2XKCL+1p2lgoIhuqdHPxi6sRHzPzdAz3jUP07y2HZF+1IhVowF6RBgwVz3r+ja6u9+UTuxH/jIp11Z11O2aIyXVkFgIOaa9BsWWd3UiC694FzH/MBHmO++Tf17v0efL0abDo+0xbmWunlLC1B1NV1juI2fFREA4vs61/TwEP3ufzln1130M5RFurE6EhUVgzH/Vcw3/wXzV6swXlrVqjUqPEHbG2g8cgA1sm3Tvnuaiu6BsXAV5i+WYq5Zhho7Aaoq0JXlzmuKlZehrubvXue6Cye4u3MK/4RBqAGDoV8iqltg6xuSd8hZYPvIXerX6xpFxA8XE1Lxd6CPHEA31KOC2zb8WH/5V/Qfc1D3P4ga2PlWGuwKVL9EjFkvYW54Hf27X8GshV6dal//ba4sf+jKup7qGYex8DXMNa+i39kGId0hIsq5mFq/xL99H4WKiHJ+HxGFrZvB5S/2Q8EpdMEp9IkjzskxLRbok4BKGIwacJdzkEto+E2vH+qWZvTJXOdNuzLA5O90iSJys/mifEXFXV1b5BwMGOz2drRpYm7LgqAQ1JQZnmqe8AH1/ftRj0x1rjw54C7UmH9q99+pW1rQ/7MD/f5OLH0TMP2kK+t6Kq4vxhubweG4pSV2A6KiMO5LgfucEzvquhoo/DO68BS68M/o3bvQH2R//YLbgsEaCqHhYA1DWcPAGuZ8rLEBGuplVNYNdIki4pe+Mf2JaksROfAhFJ5CPfMCKjTcU60TPqImPO7cyb21Cd03AdUnod1+ly676JzVoPgMauQ4IualUXHFf9dCUd0Cwc2eWmUNg6ThqCTn5K+6qRGKC9CXSpzdYX/70nU1UFuNvnge6mqdBQQgOATacM9VZyZFxFciIqF7aJuG+eraGvTO30DCINTIcd/5fOH/lGE4u7VW/TPmhjcwlmWiut/i/HC3SGuNPvixc5GyAAPj+cWo5FEYwSHgx0XEk1TgbTDw7u/s/tXNTVBbA9263dIZUFckHXw+opSC+H5tGuarf78F7PUYT6dKX20nokLDMJ5bDJWXMbes9ejMBrr+Cvrf16D/IxN698NIX4dK9r/rIP5CdQtE2aLkLP8mZM/jQyquH3z5F7Sj9cMQ9ZkT6E8/RI1/TO4J6YRU/zud17iOf4H+Y45HtqkL/4y58qfow5+gHn0KY9FqVGTbVqgUQrqzfCm+LzQ3QdkF6Bl/yy/TLc2Y2/7NuW78xCfbr33Cp9SDE52ji7J/h+6XiEp0b+SddjjQ7/03+n/fAls0xuLXUf3v9HBrRVclZyI+pOLvAGh1l5b+IAcunseY9rzMJtqJKaVQz86HqB6Ym95E11S2ehv6q0uYb76C3rUdNewBjPRfSgERHiVFxJd6xkGABU7kOkeL3AL91SX0u2/D9++XIYddgAoOwZi7BOrrnMvr3uId2LquBvPtzZjpqVBSjJr1onM+tTbekyTE9aQ7y4eUpRsMSUZ/9hH62EHU90eg7k9x3iPwLRfKtdaY2zeAEYDxxE980GLhCyquH+qpuejf/BK9awfqsadv+Fzd2Ij+cBf6/34PdjtqRArqkWkom1z7EO1DioiPGXOXQP4J9Gd70Ic/RX+623kn7vAxqPtTUN+4VtJ4YA+cyEU9MUtmEu1ijJEPYRacRL/7Nrr/INSQH1zzc+1woD/d7VyfpKoC7rkXY9KPZdCFaHdSRHxMGQEw6B7UoHvQT81FHzvoHMP/QTb6/Z3OKRruG4samkzt5rXOqahTJvq62cIH1LTn0X8pxNy8BuPVtajIaOfw36MHMXN+B5e+hP53YvzkZVTiXb5urugilPa39TnbwYULF3zdhFbTNZXoL/ahP/sY/lrkfFApjKW/cM4X1MFFRUVRXl7u62Z4hDez6NILmKtehJ7xGJN+jPnONjibDz3iMCY/47wr2805t+Q98U++ytKrV69bep6cifgpFRaBGvcojHsUfeGv6M/3Yo3rTX0nKCDCfSqmF8b0n2JueB1zzatwu8055c2Ih/xyjjjR+UkR6QBUr96oST8mJCqK+k5ydCXcp34wAjVtDjQ1osZOkGHewqekiAjRARkpE3zdBCEAuU9ECCFEG0gREUII4TYpIkIIIdwmRUQIIYTbpIgIIYRwmxQRIYQQbpMiIoQQwm1SRIQQQritS8ydJYQQon10+jORtLQ0XzfBYySLf+osWTpLDpAs3tTpi4gQQoj2I0VECCGE2wJWrFixwteNaG933HGHr5vgMZLFP3WWLJ0lB0gWb5EL60IIIdwm3VlCCCHcJkVECCGE2zrkolRZWVnk5uYSHh5ORkYGAOfOnePXv/41drud6OhoFixYQEhICC0tLWzYsIHi4mJM02T06NFMmjQJgGPHjrFlyxZM0+Shhx7iscce65A55s2bR1BQEIZhEBAQwOuvv+7VHO5k2bRpE0VFRRiGwfTp07nrrrsAOHv2LOvXr6epqYnvfe97zJgxw+01w32dZcWKFVRWVhIYGAjAsmXLCA8P91qO8vJy1q9fT1VVFUopxo0bx4QJE6irqyMzM5OvvvqK6OhoXnzxRaxWK1prtmzZwtGjR7nttttITU119cV//PHHZGdnAzB58mTGjh3rtRyezvLEE0/Qu3dvwLl++ZIlS/w6y5dffklWVhbFxcU8+eSTPPLII65t+XofBoDugE6ePKmLior0woULXY+lpaXpkydPaq21/vDDD/WOHTu01lp/8sknOjMzU2uttd1u16mpqbq0tFQ7HA79wgsv6EuXLunm5ma9aNEiff78+Q6XQ2utU1NTdXV1tVfbfr3WZHn//ff1+vXrtdZaV1VV6cWLF2uHw+F6TX5+vjZNU69evVrn5uZ6OYnnsixfvlwXFhZ6ufVfq6io0EVFRVprrevr6/WCBQv0+fPn9datW3VOTo7WWuucnBy9detWrbXWR44c0atXr9amaer8/Hy9dOlSrbXWtbW1et68ebq2tvaa7ztiFq21fvrpp73a9uu1NktVVZUuKCjQ27dv13/4wx9c2/GHfZjWWnfI7qzBgwdjtVqveezChQsMGjQIgKFDh/L555+7fma323E4HDQ1NWGxWAgJCaGwsJAePXoQExODxWJhxIgRHDp0qMPl8BetyVJSUsLdd98NQHh4ON27d+fs2bNUVlbS0NBAYmIiSilGjx7t9fcEPJPFH0RERLiOvoODg4mNjaWiooJDhw4xZswYAMaMGeP6Gx8+fJjRo0ejlCIxMZErV65QWVnJsWPHGDp0KFarFavVytChQzl27FiHzOIPWpslPDychIQEAgICrtmOP+zDoBNdE4mPj+fw4cMAHDx4kMuXLwNw3333ERQUxHPPPUdqaioPP/wwVquViooKIiMjXa+PjIykoqLCJ23/ptbmuGr16tUsWbKE3bt3+6Td3+ZGWfr27cvhw4dxOByUlZVx9uxZysvL/fY9gdZnuSorK4uXX36ZnTt3on04ELKsrIzi4mISEhKorq4mIiICcO7QampqAKioqCAqKsr1mqt//+vfF5vN5tP3pS1ZAJqbm0lLS+OVV17hiy++8H6Ab7iVLDfiL5+XDnlN5NvMnTuXLVu2sHPnTpKTk7FYnNEKCwsxDIONGzdy5coV0tPTGTJkyLd+oL3d9/5tWpsjJiaG1157DZvNRnV1NatWraJXr14MHjzYx0lunCUlJYWSkhLS0tKIjo5m4MCBBAQE+HQn+11amwVgwYIF2Gw2GhoayMjIYN++fa4jTW+y2+1kZGQwffr0m569tuYz4avPiieyZGVlYbPZKC0tZeXKlfTu3ZsePXq0W5tv5Faz3Ii/7MM6TRGJjY1l2bJlgLPrITc3F4D9+/eTlJSExWIhPDycgQMHUlRURFRUlOtoEuDy5cuuowBfam2OmJgYbDYb4DztHTZsGIWFhX5RRG6UJSAggOnTp7uet2zZMnr27En37t3/7j25ms3XWpsFcLU9ODiYUaNGUVhY6PUi0tLSQkZGBg888ADDhw8HnP8nlZWVREREUFlZSVhYGOA8kv3mWdTVz4TNZuPUqVOuxysqKnzy/+WJLPD1+xITE8PgwYM5d+6c14tIa7LcSGRkpF/swzpNd1Z1dTUApmmSnZ3N+PHjAefoixMnTqC1xm63U1BQQGxsLP379+fixYuUlZXR0tLCgQMHSE5O9mUEoPU57HY7DQ0NgPPIJi8vzzXyxNdulKWxsRG73Q5AXl4eAQEBxMXFERERQXBwMGfOnEFrzb59+/ziPYHWZ3E4HK7uiJaWFo4cOUJ8fLxX26y1ZsOGDcTGxjJx4kTX48nJyezduxeAvXv3MmzYMNfj+/btQ2vNmTNnCAkJISIigqSkJI4fP05dXR11dXUcP36cpKSkDpmlrq6O5uZmAGpqasjPzycuLs6vs9yIv+zDOuQd62vXruXUqVPU1tYSHh7O448/jt1u54MPPgDg3nvvZdq0aSilsNvtZGVlUVJSgtaalJQU1xC53Nxcfvvb32KaJikpKUyePLnD5SgtLeXNN98EwOFwMGrUKK/naG2WsrIyVq9ejWEY2Gw25syZQ3R0NABFRUVkZWXR1NREUlISM2fO9Popuiey2O12li9fjsPhwDRNhgwZwrPPPotheO+47fTp06Snp9O7d2/X33Dq1KkMGDCAzMxMysvLiYqKYuHCha5hsZs3b+b48eMEBgaSmppK//79Afjoo4/IyckBnEN8U1JSvJbDk1ny8/PZtGkThmFgmiY//OEPefDBB/06S1VVFWlpaTQ0NKCUIigoiDVr1hASEuLzfRh00CIihBDCP3Sa7iwhhBDeJ0VECCGE26SICCGEcJsUESGEEG6TIiKEEMJtUkSEEEK4TYqIEG5at24dWVlZ1zx26tQpZs6c6TeT/QnR3qSICOGmGTNmcPToUfLy8gBoampi48aNPPPMMx6dfsI0TY9tSwhP6zRzZwnhbaGhocycOZONGzeSkZFBdnY2MTExjB07FtM0eeedd9izZw/19fUMGTKE2bNnY7VaMU2TzMxMTp8+TXNzM3379mX27Nmu6TfWrVtHSEgIpaWlnD59mrS0NOx2O9u2bePy5cuEhIQwceLEa6bMEMJX5I51IdooIyODlpYW8vPz+fnPf05UVBS7du3i0KFDrtXpNm/eTEtLC/Pnz8c0Tfbt28fw4cMJCAhg69atFBQUuFakXLduHUePHmXp0qUkJCTgcDiYM2cOixcvZuDAgdTV1VFWVuZak0IIX5LuLCHaaNasWZw4cYIf/ehHrjUsdu/ezdSpU7HZbAQGBjJlyhQ+++wzTNPEMAzGjh1LcHCw62dnz551TeQIMGzYMBITEzEMg27dumGxWCgpKaGhoQGr1SoFRPgN6c4Soo1uv/12wsLCrpkNtry8nDfeeOOaySOVUtTU1BAWFsb27ds5ePAgtbW1rufU1tYSFBQEcM2CSgCLFi0iOzubbdu20adPH5566ikGDBjghXRC3JwUESHaQWRkJAsWLPjWHf2ePXs4evQo6enpREdHU1tby+zZs2+6KNeAAQNYsmQJLS0tvPfee6xdu5b169e3ZwQhbol0ZwnRDsaPH8+OHTtcCyNVV1e7ltdtaGjAYrEQGhpKY2Mjb7311k231dTUxP79+6mvr8disRAcHOzVKeWFuBk5ExGiHVwdObVy5UqqqqoIDw9n5MiRJCcnk5KSQl5eHs8//zyhoaFMmTKF3bt333R7e/fuZfPmzZimSa9evZg/f743YgjxnWR0lhBCCLfJObEQQgi3SRERQgjhNikiQggh3CZFRAghhNukiAghhHCbFBEhhBBukyIihBDCbVJEhBBCuO3/AYse07mSc+KOAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"haiti.plot(kind='line')\n",
"\n",
"plt.title('Immigration from Haiti')\n",
"plt.ylabel('Number of Immigrants')\n",
"plt.xlabel('Years')\n",
"\n",
"# annotate the 2010 Earthquake. \n",
"# syntax: plt.text(x, y, label)\n",
"plt.text(2000, 6000, '2010 Earthquake') # see note below\n",
"\n",
"plt.show() "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"With just a few lines of code, you were able to quickly identify and visualize the spike in immigration!\n",
"\n",
"Quick note on x and y values in `plt.text(x, y, label)`:\n",
" \n",
" Since the x-axis (years) is type 'integer', we specified x as a year. The y axis (number of immigrants) is type 'integer', so we can just specify the value y = 6000.\n",
" \n",
"```python\n",
" plt.text(2000, 6000, '2010 Earthquake') # years stored as type int\n",
"```\n",
" If the years were stored as type 'string', we would need to specify x as the index position of the year. Eg 20th index is year 2000 since it is the 20th year with a base year of 1980.\n",
"```python\n",
" plt.text(20, 6000, '2010 Earthquake') # years stored as type int\n",
"```\n",
" We will cover advanced annotation methods in later modules."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We can easily add more countries to line plot to make meaningful comparisons immigration from different countries. \n",
"\n",
"**Question:** Let's compare the number of immigrants from India and China from 1980 to 2013.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Step 1: Get the data set for China and India, and display dataframe."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1980</th>\n",
" <th>1981</th>\n",
" <th>1982</th>\n",
" <th>1983</th>\n",
" <th>1984</th>\n",
" <th>1985</th>\n",
" <th>1986</th>\n",
" <th>1987</th>\n",
" <th>1988</th>\n",
" <th>1989</th>\n",
" <th>...</th>\n",
" <th>2004</th>\n",
" <th>2005</th>\n",
" <th>2006</th>\n",
" <th>2007</th>\n",
" <th>2008</th>\n",
" <th>2009</th>\n",
" <th>2010</th>\n",
" <th>2011</th>\n",
" <th>2012</th>\n",
" <th>2013</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>China</th>\n",
" <td>5123</td>\n",
" <td>6682</td>\n",
" <td>3308</td>\n",
" <td>1863</td>\n",
" <td>1527</td>\n",
" <td>1816</td>\n",
" <td>1960</td>\n",
" <td>2643</td>\n",
" <td>2758</td>\n",
" <td>4323</td>\n",
" <td>...</td>\n",
" <td>36619</td>\n",
" <td>42584</td>\n",
" <td>33518</td>\n",
" <td>27642</td>\n",
" <td>30037</td>\n",
" <td>29622</td>\n",
" <td>30391</td>\n",
" <td>28502</td>\n",
" <td>33024</td>\n",
" <td>34129</td>\n",
" </tr>\n",
" <tr>\n",
" <th>India</th>\n",
" <td>8880</td>\n",
" <td>8670</td>\n",
" <td>8147</td>\n",
" <td>7338</td>\n",
" <td>5704</td>\n",
" <td>4211</td>\n",
" <td>7150</td>\n",
" <td>10189</td>\n",
" <td>11522</td>\n",
" <td>10343</td>\n",
" <td>...</td>\n",
" <td>28235</td>\n",
" <td>36210</td>\n",
" <td>33848</td>\n",
" <td>28742</td>\n",
" <td>28261</td>\n",
" <td>29456</td>\n",
" <td>34235</td>\n",
" <td>27509</td>\n",
" <td>30933</td>\n",
" <td>33087</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 34 columns</p>\n",
"</div>"
],
"text/plain": [
" 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ... \\\n",
"China 5123 6682 3308 1863 1527 1816 1960 2643 2758 4323 ... \n",
"India 8880 8670 8147 7338 5704 4211 7150 10189 11522 10343 ... \n",
"\n",
" 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 \n",
"China 36619 42584 33518 27642 30037 29622 30391 28502 33024 34129 \n",
"India 28235 36210 33848 28742 28261 29456 34235 27509 30933 33087 \n",
"\n",
"[2 rows x 34 columns]"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### type your answer here\n",
"df_CI = df_can.loc[['China','India'], years]\n",
"\n",
"df_CI.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Double-click __here__ for the solution.\n",
"<!-- The correct answer is:\n",
"df_CI = df_can.loc[['India', 'China'], years]\n",
"df_CI.head()\n",
"-->"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Step 2: Plot graph. We will explicitly specify line plot by passing in `kind` parameter to `plot()`."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1f0bc1a6a0>"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAIXCAYAAABkR9JUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXm8JUV9//2u6u6zn3PXmTurgBmGBKLBAX+yvFA2BwSUAQUiaAKiSTRBGASEiLgnvhJ/CDLKE39RyfOER54Yg3lJFhEmaGRRkCUsLuyz3dnudvZzurvq+aP7nNN9zrnbzJ2Ze2f683r17eqq6url9qlPfau+9SmhtdZEiBAhQoQIs4A80DcQIUKECBEWHiLyiBAhQoQIs0ZEHhEiRIgQYdaIyCNChAgRIswaEXlEiBAhQoRZIyKPCBEiRIgwa0TkESFChAgRZo2IPCJEiBAhwqwRkUeECBEiRJg1IvKIECFChAizhnmgb2BvsG3btgN9C/MCg4OD7N69+0DfxgFH9B5aiN5FC9G7aGHZsmVzVlZkeUSIECFChFkjIo8IESJEiDBrROQRIUKECBFmjQU95hEhQoQIM4HWmmq1ilIKIcSBvp19Cq01UkoSicQ+fdaIPCJEiHDQo1qtYlkWpnloVHmO41CtVkkmk/vsGlG3VYQIEQ56KKUOGeIAME0TpdQ+vUZEHhEiRDjocbB3VXXDvn7mBU3FA6/+FcrMoowMyvD3ZqZ1bHp7LZNwCH48ESJEiLCvsKDJo546CukWkG4Rs74D6RQRuB35NEaAVILE0hnWMhERTYQIEeYc1157LQ888ACDg4Ns3LgRgOeff54bb7yRcrnMihUr2LBhA9lsFtu2ue6663juuedwHIf3ve99XHXVVQD813/9F7fccgtKKd7//vfzF3/xFwfkeRY0eRSG3huO0BqhKh6hOMUmsXjhxnEBszaMdIsIOvsEtTAnIZlMwMrxwlrEI6KJECHCjHDxxRdzxRVXcPXVVzfjrr/+ej796U9z4okncs8993DnnXdyww03cN9991Gv13nwwQepVCqceuqprFu3jmXLlvGpT32K7373uyxdupRzzjmHtWvXsnr16v3+PAuaPDogBNpI4Rop3NjQ1Hm18ojGKbSIJUgyThHpjGPWNiPdEgLdWYQwA91lQWLJdMRrGd9HDx0hQoTZQN3zf9CbX53TMsXKI5B/+JEp85xwwgls3rw5FPfyyy9zwgknAHDKKadw2WWXccMNNyCEoFwu4zgOlUoFy7LIZDI89dRTHH744Rx22GEAnH/++fzoRz+KyGO/Qki0kcY10l06utqgFcItNy0Zwykg3CJGgGgMexSr+jrCLXclGiViaCODOxnJBIgGGdsnjxwhQoT5haOOOor777+fs846i/vuu6+p13fuuefyox/9iLe85S1UKhU++9nP0tfXx/bt20P6VEuXLuWpp546IPd+6JLHbCAk2szgmhlcwJ4qr3aRbsnvLmtYNeGwae9GVl5FqnLXIpSIt1kvk4zVGBmQ1r544ggRDlpMZyHsT9x66618+tOf5qtf/Spr167Fsrzf89NPP41hGDz55JNMTExwwQUXcMopp6B1Z8P0QHmSReQx1xAGysyhzBxM11Ol3cCYTKEz7BYx6zuRlZeRqtK1CCUTiC099JKakmSUmQER/bsjRJhPWLVqFd/97ncBrwvrwQcfBODee+/l1FNPxbIsBgcHeetb38ozzzzDsmXLQmriw8PDDA1N00W/jxDVJgcSwkCZPSizZ/q82mkb+G8RTdKoQ3m06QggVbVrEUomO8dnJvE8Qxhz/LARIkRox+7duxkcHEQpxe23384HP/hBAJYvX87DDz/Me9/7XiqVCk8++SQf/vCHWb16Na+++iqbNm1iyZIl/Ou//itf//rXD8i9R+SxUCBMlNWLsno7khKDg4wH1ytQdqu7bBLPM7O21QvrWtfLKZlqI5lObzMvnI6IJkKEGeBjH/sYjz76KKOjoxx33HFcd911lEol7rrrLgDOOeccLrnkEgAuv/xy1q9fz+mnn47WmksuuYSjjz4agC9+8YtceumlKKW45JJLOOqoow7I8wjdrRNtgSBaDMrDXi12o+qd4zMhzzPPQUC6BYTuHO3ReB5u4fGZLK6RQfvHrp+mjTSIfSdqEC3600L0LloYHBxk06ZNpFKpA30r+xXlcrnjmedyMagZWx5KKW688Ub6+/u58cYb2blzJ7fddhvFYpEjjjiCq666CtM0sW2bDRs28Morr5DNZrnmmmtYvHgx4PXjbdy4ESklV1xxBcceeyzgDQ595zvfQSnFGWecwbp16+bsASNMAxlDyX6U1T9tVqFqbUQTJhnpFLAqIz7ROB3nawTKSHcQTTf3Zk8VIFLPiRBhvmLG5PHv//7vLF++nErFG7j9x3/8R84991xOPvlkvvnNb7Jx40bWrl3Lxo0bSafT3HHHHTz88MPcfffdrF+/ni1btvDII49w6623MjY2xhe+8AVuv/12AL71rW9x8803MzAwwE033cTxxx/PihUr9s0TR9hjaBnHlXFca2CajBqha23dZUHPMy/erOzyJmt2JRrZ6WkWyc9EiDBvMCPyGBkZ4cknn+TCCy/kvvvuQ2vN888/35wpeeqpp/K9732PtWvX8sQTT3DRRRcB3qSYb3/722itefzxxznppJOwLIvFixezZMkSXnrpJQCWLFnS9Bg46aSTePzxxyPyWMgQAi0SuLEELoNT59UaoapTjM/MXH5GDPfSoxOR/EyECPsBMyKPu+66iw984ANNq6NQKJBKpTAMb6C0v7+f0dFRAEZHRxkY8FqmhmGQSqUoFAqMjo5y5JFHNssMntPI3wi/+OKLXe/jgQce4IEHHgDgy1/+MoOD01RMhwhM0zwk3oXWGu2Wwc5DfcLb23mEnUfaEwinQKw2AdUdXvwk8jNYOW+L9TTD2sqB1QNW1t/nwFi4RHOofBMzgWmaxOPxQ0qSHSAej+/Tb2Dat/nLX/6Snp4e3vjGN/L8889PW+Bkk1gmG5efzaSXM888kzPPPLN5HA0Iejj0BkctYNDbLP+QtvcwnfyMW0SWdiLdV7zwQSY/c+h9E5NjcHCQWq3WbOweKqjVah3fwH4dMP/Nb37DE088wVNPPUW9XqdSqXDXXXdRLpdxXRfDMBgdHaW/3xtwHRgYYGRkhIGBAVzXpVwuk8lkmvENBM8Jxo+MjNDX1zdnDxjhEMU+kZ/ZhJhE5yySn4lwqGFa8rj00ku59NJLAU8++Ic//CEf//jHufXWW3nsscc4+eSTeeihhzj++OMBOO6443jooYdYvXo1jz32GMcccwxCCI4//ni+9rWvcd555zE2Nsbw8DCrVq1Ca83w8DA7d+6kv7+fRx55hI9//OP79qkjRAhi1vIz5S7jM3MpP9MinEh+5uDBXEmydyvnQGCPOwEvu+wybrvtNu655x6OOOIITj/9dABOP/10NmzYwFVXXUUmk+Gaa64BYOXKlZx44olce+21SCm58sorkdJzxfzQhz7El770JZRSnHbaaaxcuXIOHi1ChH0AYXgWhJmdofxMKdx11k40M5CfmW4Nmkh+ZmFgLiTZV65c2bWcA4FZfW3HHHMMxxxzDABDQ0P89V//dUeeWCzGtdde2/X8Cy+8kAsvvLAjfs2aNaxZs2Y2txIhwvxHUOdsOoTkZ7p7npm17d7xDORnxNgAGceK5Ge64O+f2MGrY93f4Z7iiL4EHz5+ao2puZBkn6ycA4GoqRIhwnzAFPIzHZiB/Ayl10nUJiL5mXmO2UqyzydE5BEhwkKDtFCyD2VNXpk0va0a8jNTKAOYtc2+zlm9o5zp5GdaDgJZtJFaEKoA01kI+xOzlWRvLAI1HxCRR4QIBzP2QH5GOEWMrsoADfmZ4qQ6Z5H8zOwwW0n2iDwiRIgw79CQn8EaoFMwJpgxKD8zuTJAJD8zPWYryT6fEJFHhAgRZoe9lp/p9DybifzMdGvQzHf5mbmSZO9Wzvvf//79/jyRJPtBgGg2sYfoPbSwIN+F1p4qwKTjM2GngMnkZ9pJJpFdzJbaChLZxSAMNNJ3AhDzlmjmAvNGkj1ChAgR9imENzjvGinc2OKp8zblZ7rNn2kcj2PWtkD+CczMORiJ9upOoIXhj70YaCHD5CIkGj89Gp/pQEQeESJEWHgIyc9M7T01ONBP7fVXMWIphHYBBdpFaAW4Xpx2kNqLn+SCTaJpEUqLaLRPQIcS0UTkESFChIMbQnoyL9JC05J76dpfrzWd5NIgFYXQLkI7PuF0dpt5kFNaMVoYgFzwRLOgySOfz5PJZJoyJxEiRIiwVxACz4IwmuQy6aDwlETjhT2iqU1ONEJ2tV4aBNMiGmPejc8saPK46667EEA6mSSbzZLr6SHb00MulyObzTa3xsSbCBEiRJgzzJpoPGtFBKwYAqQjlI1gOqJpkEuDaBqkI0PjN/uDaBY0eQxmT8RRRRwnT373BCM7X8PWNrrtvSUEZC2TbCJONpUil8uS7e0jOzBIdvEQiWwusl4iRIiw7yAEYIJgBkSjfAJpEYzwiQftIpgZ0cSKw/SOPRWSnGHZ3Ln0LmjyOGPNEOV8P6WSolyVlG2LkhOnrh0ct4jjlnBUCV0fpWaPU6yVeW2ihNq+K1SOqVyybp0siqwUZGMm2USCXDpNNpsl1duHkc1BOguZHGSykEwjIsKJECHCDDErSXbH5brrru+QZN+6dStXX301u3btQkrJZZdeyoevvIJgl5nwu9KUjIN22uRnIvIAYOgP3tARp7WmXtOUS4pyUVEqKsolRangUC66VCoapesesbhFXLcAahzl5Bl1SgyrKraroaSgVICdBaTeQsaukq1XydpVMvUqWafmEU3cJJNIYGZyiCC5pLOITBbSuUBcBmFGXWgRIhyKmAtJ9lgsxmc+8xne9KY3USwWOfvss3n7O97B6tWrOywaJxVnfPD3m9cSqsbSOXyeBU0e3SCEIJ4QxBOSvoHOdNfVVMqKUnGActEjGI9oXEolheuAUjaOKuG4JZBFhC7gugVKTpHReomqU+8wOVOOQ3Z3mczW3WRrJbIBssnWK8SV7wKYSIYsGJFukQ0ZL75FOn58PDHp0rwRIkSYHZ57skx+fNr1JWeFXK/B769JTZlnLiTZ+/r6GBryXJMzmQxHHnkk27dvZ/Xq1dPe41wvlbygyWPouRdQpoVrmbiWhWrsTW/vWibKskKDR4YhyGQNMtlOmemm1VJUlEo9TWIpFV3KRUW1ov18CkeVULqENMsgSri6jO0U2VEr8mq5iFLhjzMmJVlTkEWTVY5nyVRLZMc2kc2PkSqO07jLjr5Q0/TIpkE6DavGD1eWLENr0SSfqFstQoSFgb2RZN+8eTPPPfccb3nLWw7ErS9s8qj29GDYNtJ2sKpVpO3QrX3umsaMSCZktXSR7HFdTaWkvDGWYtonGbdJMi6QNUGnNK6qYlglhFkGUcZVJep2kfFakW3lAnUhIZmC5CIYAMMwyKRSZJMJcpZJ1pBkUGSVTa5eJV0tIksFKBZgeDO6mPe61ZQi3+3lCAnpdMuCaXartawckcmFLZxMNupWi3DQYzoLYX9iTyXZS6USH/nIR/jc5z5HNps9IPe+oMljYuXycITWSMfBsB2kbWM4/t525oRkpGViZC0yucmtllKzKyxJudjTJJdqTZMEknHoiwOijhkvI40yOkAu1WqR18YmKJc7179Op5eQW7w65IacjVus6O1F5ceIVSvoUt4jmAa5FAvoUgFGd6E3vQKlPNS9dRu6envEky0Lpjlu0z6WEyScXNStFiHCHmJPJNlt2+YjH/kIF1xwAeecc84Bu/cFTR4dEAJlWV5XFcnJ8+0jkkmaJpmkhZszUVY81F3muq1BfG8fp1RMNeOU6/0zMoZXL8cGlU8uFbTwxl8a5LJ9+3ZeeukllAq76SUSiSap5PrfQPawbIhokskkQgh0veYRTMkjGV0seKTSjCs0LRu9a9iLK5dar6/9hZhmmwWTC5CON34T7GYjk4VUGiGjFeoiHNqYrSS71ppPfOITrFq1ij/90z89oPd+cJHHTHGASKbXMnFjFipl4i6zcK0YyrLQ0Ga1+OMsJYtyMdscawGIA6ksHDYEVryGMCrE4g6lygj1epFypcj4+DibN2/GtsML9pim2SKX4ETKZYPkcjnS6fSk812060K56Fk0PtnoBtkUfKJpkFCjW61cBNcb++kgHCEglQlbNMFutWyu05kgnUNEEz4jLFDMhST7L37xC77//e/ze7/3e7zzne8E4MYbb+SMM87Y788TSbLPBWZAMoZtI51OktGAmqa7rC4NinWDcqkxmO95hzWsFrfNcSSRFCTTgnjCQRhlFCUcp0jNLlIuFykUChQKBSqVSug8IQSZTKaTXALHpjnz9obWGirlpjXjEU7YwvFIJx/qZqPefd1toNWt1hijCXSpZYaWUkR6cdmAlRNPHnLdagtSkn0fYXBwkE2bNnXIkx/siCTZp8DmiZ8jhIEQEom3F0iEMJBCIjAC4fZ4iRSGH+/FSeHl8eJmUdnsqSVjO0inzZKpVKcgGdMjlJyJO+CRjGNayHQvwyMVCjVJqSp8clGMjxhUKxkgA77yqGHC0l7J76wwiCcUGCWfXErU6kWKRY9Ytm7dSrFYpL1tkUwmO4glSC7xeLz57oQQkEp726IlXtwMXqe2661xm2LQqik0LR/d6HLbvcPLWy5SCLyrEAwzPEaTCVo5ua7dbKSjbrUI8w9aa9Ce2klzQzfDwbTR3Ta/2lLCtjWOrXEczaUfisgDgEe2bNhnZQtEk0ikMAKkEiSdMBm18gbIrAsxhUhLGEhDIkwDkTKQCC+/BkMJDKUxlEAqheGCqUDWNWZFY7jgXxWJpA9JPwLSFuRMMCwcGaOqY5SdGOW6SaVuUqkZTFQElRGBciVoE6H7gAHiCYMl/SZvfINFMmkgjSoazw25Um1ZLSMjI7z66qu4bWaPZVmTWi3ZbJZ0Oj0tMQsrBn0DBCfqTEc62nUZSMQY2fR6c/xGB62ZUuB4eItHPqXC9N1qga608LhNroszQdStFqE7tNYdlbvWGo2vOkIwTYfJQQOBuJlACKhWNBPjLpYlMC3Pk3QusaC7rX71yi9QuGit0NpF4e21VmgUqhl2UX6c1n5Yux3xWqtQeV4ZU5QdLK95XqOMYLz2r9V2P4HzguU1yp830NLb8IkyQJJCCAQCtEArjVKgXIXralxHoVztpWkvDwhMw8I0LSwjhmXFsKw4MX+LxxJIaQasxZbV2AwjAvGtfS6TpVgq+3n8e/NXjJNC0KRaIWnSke0gKxVEuQK1MpQriEoZKhVkuew5CpRLiHIJymWoltG2363W0CkSoBFekbEYOpmCVAqdTCMa4UQKkkl0MoVIptDJJCQSXnws5p2rNTowT1j7tUk4DtDKj/FqI90lTyaTplAotPJMcl7rjNYcps64RhmN/K3arhXXavp6Mf61AnHNMnXwrKnigmdOFhd8b93jrFiMxfJtDPas6PZxdwm1HTW+X2TzGybwPWvdFt+RL/C9TQsNQk261ygQvppvc++la6EC8ZrtYy/x7Nj/E3qW9e98cIb3MT0WtOWxo/Q80PpwQx9880NreCTN4sfYHickUuNr9E/2Y5zsPlTgg5/qPjp/QNoXSNN+Od6zaLTSzbBCYZomjl33z2mkNSoC70xP96ZVZkNOulExhH+A/j1oUMJv8UDzilorHO0PxovWewPAAAyNFCCD79j/f7TeC9T8DQ3U/a0UKHZ/D1MIIO1vkyLmb1PBAfL+Ngmq/nZQQfj/Muk7GopAnPAtThHIOVVcI2aquPBxMA4twY2DG8cQBv05A+WYdFTwflh3q/x1696mh/bqBqERzbD3ixF+fCOPCIXbz229y6nfs/SzGKH4IHriyzl68D0gWv+DucSCJo+ntv/jHJQSfLGNj0+GXrbwF2xpfaTtcX5INH4s4Tzdf0Bz86OSwsAQpte4acS3/ai6x+G7EofjhNYIpREapNLNY9nYK//HoQWuFjiuxFaSupLYyqCuDGwlcd3Wc3r3CaYlMS2BZRlYlsCKSUwTtHawbZt6ve5ttTq1mheu1erN1jBagNAYhkk8HiMWixFLxIjHYsRiFtlcDq01pmH41kCwhQwtsmzSM53EqQPX02ihfQuxlc8L+3F+mR5FN1rzwbhA2HVAOWjlopWDVg1rtmW1NvML/0p+Pdis2+R8GfgXhLppJx0/bIQ7xxo7um/xrFu0AVqilWfxaj/c2rzuVu1KlPL3rvfNKVeinNa5aM/ydH8nh8r68hwB2e2G5SwFzUpWNCp1of10P5/w6ofOMPPTISOZYHnq6H1W/ILutnp102/oVml3J4FgPgLHCx/73bOmy8C/501mN+N0zaFYgYJtUrBN8nWTvO1tBdvEDenma1IJSKcEqbQklTVI5kxSGYNkWuA4leZYS6FQIJ/Ph8LtLsmGYXQdb2mEF8oCYlprqFWartAUCyjfY02XJtDlPKpUQFUK6HIRXS6gqkW0U28Sjmo0oqXwwjELnUqj00lUMgnJFDqZQCUS6GQCHY+jEzF0PI6Kx9CxGNo0mhZnuPu11aWrlIvrurjKxVUK5bq4WuEqF9XYtJev2U0b7CYOdNkiFAjXb7mrQHeMH98Mz7zqelPfH7Gk73f20X8q2KhrHQcbe8HUbulhyyBgQU2Z3ojrnj6e30WRTaHx1pOOvmhvHjSEBU0e9k+vQAsTb0EUC4SJFiZamq2wmC5seYuoyEZ4BudKExrn7aeFV6bCvHXLnIRkhG1TL3tClKWKoFAVTYIp2CZlN+zlZElNJqHIpCCVEqQzBsmsQSJnkchZ2K5NPp9HCMHWrVtD5FIoFDpm6wshSKfTXYnlYFhATNs2/XGT0U2vhyeCBlUH/LBbKuNUHRxb4RgJbzNTOGbS24wkTiyFk8jhxLPYsYyfnsCRcRwRw9EmiunJWAgwLYFp+ntLNAdzTTMQ9vNYMS8+lNcUGKb3P2yNP7aIp338UGlFb1+OkR1FMumc/4ICXan+PtT9rFvxwdQZpesu+f39TTd8hoc2/jcDA/388D//CYBf/eo3fPbmv6ZcKrN8xVL+5tbPk8lmsG2bW276Ei88/xtc1+E9F7yLj3z0j6lWq/zx+z9GvW7jOg7vPPs0/vyaD3V939vHXubZsf87FDeXYx4Lmjwmnr0LoR3Qtr+2sA3KaYW146c7/nKQ4bDQzl7fgzdQaqLbCaydeOQMCKwRnjH5eecNLlrC7pGROXijBwhtJKOrNpWCS7nkUipBsaIpViWFutFhtQg0acslG1fkUoJkXPnWiySVNTFSJnUhmahWKBSLHcRSKBQoFotdZ+tPRS6JxIGTZNHac0xwfBfMlismzXA8lmRiooRd91w0W3kJHbc9dlcIFKa2MVUN061iOmXMegmzVsC0y1hOBdOtYDptmwVmzMBMWFjJGEY6GfJQC3mrNebtxOZW+RXmzzyPxx57jHQ6zdVXX91cz+Occ84JSbJv2rSJG264gXvvvZf777+fO++8synJ/s///M+sWLGCcrlMOp3Gtm0uuOACPve5z7FmzRr/Ki0iLJUKmHFC1uJRR6yZ5O5mjwU95lEaWLt3BfhLQwoVJBV7UrJphlW3eNtf9cv24/2wcpCqCu4UZbKX/P0KLPIJDN96Coe7EJCcnIwmJcGupNYiPsQedgW1z5PpAWMIsnhb8P8lbBu7YFPOO1R8teNSRVMsSzaNSipO0GLQxGSNrOV4W1yyNNnD76R6SfcLEhkT4iaOYTBh1xmvVJmolEPEMjo6yuuvv47jhBsalmWFiCWTyXS4JLd3jWmtUa5XeTcr/Gbl36rUg2mtvLTSHD3pAnItVJot/VaLHpIpgWnKri1/0yLU+m+09KXRvU+/2a3WLmvTJnejiwWY2AXb/HCt4v93uiAWD8vctOmqhZYxaJBOMjUrIv/pT3/Krl27ps84CyxatIi3v/3tU+aZC0n2htUM4DjeWGFjDMZDq3PMkDGS1r4jzAVNHnsNf2lIbXiv4YCYYP4Aa5icGgTmTk9myiGdjFEu5f28boAEXZ/UHISuI1S5g/ya5TGDJuh0j4LRIi05AwKbojuwRWCdZGakTeIZk762rsaBRUvYvmPUW/RrwqZacHxZLovRssmmUYFqt1pMl1ysSs5yyFmKN1gmmWQf6aE+zMNMbyKmYTLhuIxU6oyX64yX6pSqNuVyjUrZZuuYi3KLCFFDinGkiCGlhWUmMIw4howBpjeIOwOPFykJdN8IrEalb8m2yj5YyYeJYmjJIGNjI/vUOhJCQCLlbYND/judHtq2WxM+m+KdAeWBQr45D0eP7vaIqFQEHe5sasIw2qRuwpM+K0uWoQeXoeVikAZ6JubWfsKeSLK7rsvZZ5/Na6+9xuWXXx6wOvYvDm3ymA8QAhqVLvE9IrDU4CClvR3z0G6AbNywNaXsycmrwyqzaVhz7QSG9qywjnNVg8D2cm7LK7AU6Y+Bmei0hc4YaEwUJq42cZWB7ZrYjoHtSBzHwHa8Y0eZjCqDXWUTVTSa+V1t4CoLV5m42kAok6ROEiNLNmngxr2ytZZoIX1/LBdX2zhuhUptlLpdQWkbpWxvr+tYliSZskil4mSySbLZJLmeNL29rdn6ewrTnKVKwn6EsCzo7fe2Rtw052jlenNuglZOKR/QWguoEOwaRr/6W490HIc8oP/wT8HxFkx6++HL4fDlIA2PqQ2jM2z4x7Jx7IXneo2cPZFkNwyDH//4x0xMTHDllVfy61//mt/93d+d0/uaCRY0eXzgn19shts/vo6PUUx+2Jk3HDNl2VOU2/V4ipPbf+tTenoHEg35WsfiU1OVPd0Ptft9CMBCtM9xmO75p7hYe5IUGlO4WLgkhEscRVIo4igSwiUhFDEUceESFw4xoYgJF0u4/l5hCRdLOF45wsWULlI4GNLFlA6GcJCyhikc4tLFiDsYSRcjkGdvoTQ42sDRBrYysLWBoyWOkjhK4ChwXHBc7U2mdBWu7eKMgTMi2OEKtiqwtYEt4tgiTl3GqYskdZnENpLUjDR1mcDB9K9l+tfxNhnbTr1uT/vI1UCeAAAgAElEQVQ/aP8/dOadm2+0e96gy+zMy4UsQmSBZZAC0dYz0+i40WhQLnEpOWGJwcq+XjqmbrfretiNY6f7fTS8oMQMtmA+H7tLNo7S7Cx6yyLklryB2//PPwDw+quv8J/3/5idxTr/7z99nzUnnMJYDUj08KZjj+O/f/4kyYFlrZsyU/zB8W/jvvsfpH9lpyfZtpEKj23Ph97t586P5EkAOOUwr0d8uiH/9uSp8uu23O15p7rU9HlbMdPmnSK9PW88FqdWqwXS255hinuc5rJt+ScvF0ArkBqkFp60ih+WGqQSGH7Yk1tppRtaIBUYupVHTFF92P7molFS4wqNK0AbAke7OIJmvOOnKdHI176F3P7RDTtFOFi4LRLCJYlLSmuSWpFEkdKKBB7JxYVqEpAhHIS0QXp7b3MQwsHwCSwWc0kLF1MoLKkxhfauI1ws6TIX0zlsJbF9UmkQSz0QtrU3L6cRtv30VpqJo70yGuc1yLB9qzfilYmtJXXt7XXDC6vjew78FtruezbfaGfezm/UkAbHLDKpNSbL+LtJz5zsAlOFmz1hgQmzDQjfsQao1GyU0pRqHjmNjYzQ50uy3/n1O3j3RZdSqiv6h5by6KMPc+o576FaqfDM009xwWWXs2XHTkzTm9NUq1Z55OGfcdmH/pRSrVNmZ1fJ5mebCq2IOfaNWtDeVvNGVfcAY29ddbVqDMzSHKTt9OQJpAfyhAd3Z3Y9w6Q5GGsGB2j9QdvwIG8rX3Dg1zQFsq2GPZAuy46tA1L6QWl9RaWkQl5NQkAyKUinIJPQZOOKbMwlZ9r0mDZJXUPaNtKpeV15QgEuNbdOwa5QcOsU3Bplp0bFrVGzq9SdOq5bw5QaU4JpaEypScRNUnGLRNwgHjOIW5KYKbAMMCVI4YbGz+Z+HEy2nDH2eBysEW+1uiSb4bB7fTevxsFFQ/vc20prja/N4+mldQn/+fWf5NEnfsno+DiD/f184sNXUCqX+Yd/+QEA73rHKdz0Z3+CEIJSucy1f/U3vPjaa2jg4ve8h49e8ce88NLLrL/5FlzlTSY975x3sf7qa7p2q+1rVd2IPBYwlF/p5zJ97Nw56lXmgYq/3Y1zMk8ed4aVftA/v7NC9wZ2OwZyQ3m9dLGPZknP1/kuWmmq1cZ6LS1yKfkEU6+Ff4KWJUhlJKm0IJ0UZJOKTEyRizlkpYPphmX/GyrMjlKM16qMV6uM1WqM1uuM1WuM12pMVCpMVCoo3emSPJk7cjaTJpmwkLhdxqkC7vHTjYOFyKl9HCw8Jjbn42B4rf7tmfOI9x3uWwABCyR4jPCt0HBco99Hh46D5osXp7vEhfK19c3pRpdZV8JxwfWP28NTDfgL2Ry7KW3dTOqXP2spRWezrPijj+7NqwxhQXdbLVQoFWy90+m22dHy7+LG6QQr/Sk0lKDZUm9U6FZMkExLv6XfpbXfTgy+RTBfB2DnO4QUJFOCZErC4s6fXDerpVRU5CcU27epgFuup+6cTCV9cpGkM5JUTpKJK7Jxb6xo0LY5wopRnZgIkQy2TbFe98ml2tyP1euM79zJltdfp96mkmyaJtlMhmwu10UtuX/KBcTmBFoFPAjbCamNwNosp8Y+nbRwKoNYMkWrW8mT3ml19Hh6b8E40RgHmTM/zCDJ+MfBcRFDgAE61iAcE7AIEl3zXI03uKYVKO15kKmG9eNtUmrEyOvoVwvofNEbaIvI48CgWem3Veodrfl6ixjaCcG2PV//mSBUqZtepZ9Ky47WfG9fjmqtGOj6aVX+jdm4EeYvTEuQ6zXI9XauH9KyWtzAEsYeuWzfandaLTFBKh2jrz+JaZkeyfR4JJNICkzXJeXYZGyHw207tICZqNepV6rkS8UAwdQYr1UZGx3j1eFhSm1SMEIIsqkUuWyWbC5HpqdnrxYQ64CQICQaa4+r8NTgIO6mTag9nfMQmlHeTii6jWSCs811K71ZTnjzFFYaxw0Ca8XNiMB8SbB2xJfD0CU9QM+ePPW0OCTIQ7ntFTgdXTehrp5AxR+s/GdU6QtCfvcNHf20KTu6edp987tJMMwEg4M5du+u791LijAvEbZaOtNtW/uk4obGWUZ31ygU7NBkQiEgmZK+1WKSzsS8cMYjFyvmi31qzYDtsNhprYLZIBm3VqWQL1AoFpkolxmvVj1yKVcYHhsjX6s3xNibSMfj5NIZslnPgsnkcmR6e7suIDYv0aZR1T7YPh2pzYnd0k5gvhTK5CSjsROKQvJ8gpOb55JGpiWPer3OZz7zGRzHwXVdTjjhBC6++GJ27tzJbbfdRrFY5IgjjuCqq67CNE1s22bDhg288sorZLNZrrnmGhYv9r76e++9l40bNyKl5IorruDYY48FPJ/m73znOyilOOOMM1i3bt2Mbv7FF6pdB273SIJBBPR2/Eo9nhCks50TsywrmDc86GtMMhs3QoR9AcsS9PQZ9PSFrZbBwUF27dxFpaKbxFIKWC6TWy1+V1hGkkobpDIW6XSaRL9sOigIIAfktOYw28EICGKKWp1ioUCxUCBfLDBRKnkkU6sytnMXr27ejN32g4yZJj2pFD3ptNdFls2R7cmR7u0l09tL2p9ZfUijncDagt0ISsUGqaTeEIrbr+RhWRaf+cxnSCQSOI7DLbfcwrHHHst9993Hueeey8knn8w3v/lNNm7cyNq1a9m4cSPpdJo77riDhx9+mLvvvpv169ezZcsWHnnkEW699VbGxsb4whe+wO233w7At771LW6++WYGBga46aabOP7441mxotvCLWH8+tlqmwSDF26XYAhX8nT15Ikq/QgHG4QUpNIeIUxutXQO4E+MuQxv7WK1pAPjLOmWxZJKJ7FSgTkbLG1KyywH0NqzYBwbWbepFosUJ/IU8nnypSL5hhWTL7Bt1y7KbW57hhD0JJLkUil60ilyGa9bLNPTQ7a3h1RvLyIen35CS4Q5xbTkIYQgkUgA3rR413URQvD8889z9dVXA3Dqqafyve99j7Vr1/LEE09w0UWe7O8JJ5zAt7/9bbTWPP7445x00klYlsXixYtZsmQJL730EgBLlixhaMiTNzjppJN4/PHHZ0Qebxv9IrF4mlgsRyzeg3QSYFsNt6DQXnjM0jUN0wLDRFsWGBZY3hKumGZEKBEOWnhWi0lPX2eaVtqzWnxyCVot2zbb2PXprJZWOJGUELNQMcub1NfbQ3bFcvxpfoGLeiTjlkuUxicoTEx4svuFAvlSiYlyiVd37KCwaVOopS2AbCxGTyLZtGBymbRnweRy5Gp1hO14A8ltk/Yi7DlmNOahlOKTn/wk27dv56yzzmJoaIhUKoVheKZyf38/o6OjAIyOjjIw4K09bRgGqVSqKTB35JFHNssMntPI3wi/+GJr5ngQDzzwAA888AAAX/7yl0n+9kWkC9L1xyPcyWem7nG/o2l5xGOF98Lru+rch+JiHgFZMYSnMR3aB9M7z23ft5VhWk2fbtM0GRwc3NMnPGgQvYcW9vW7qNdcCnmHQt6mMGF7+7xNIe8wvLUWtlokZDIW2R6TbM7yth5/nzOJxTsdBRZNcW2nXic/MsLE7hHGR0eZGB9jfGKCiUKB4UKeX+3cgdvWNfb2U07hDStWYkqBISWGYWBIA8MwME0DaRi+m2v7LPG5w9VXX82Pf/xjBgcH+elPfwrA888/z/XXX0+pVGLlypXceeedZLNZbNvm2muv5X/+539wXZeLLrqo2VgHryG/du1alixZwt133931evF4fJ9+AzMiDyklf/u3f0upVOIrX/kKW7dunTRvt2kjnvZ+9+p7svzdcOaZZ3LmmWc2j79x4ddxVRVbVXBUBcctY7sVXLeC1spbBU9rDExiIo4p4sSIYYo4prAwMRHac3MT/vKsQvnLtCqF8F3hQnH+cfMcpRAN32tHIeptccpF6KJfRutZRdPTgoCqbsCJry2vt6dZhgCQ/jrdhoEWwiMTIRGGt8fwV2mTsqnTI2Tj2NPraaSJhraP9M4XAa0f0Zh85P/AhK/7IwL6P6IxScnwdIEaK7C1/qeNZxEdv0lB+HfafAdCdImbPF8um/XX7fZ/+20ZBYGZ66G4Vr5Wz7KY4nrB5+qcCx+6diiuNWbQPvYajut+7c73JgLvNXyt3t5eJsbHQ/c5q2t3uX7nPXmupeYA9A1AHxIhYihlUa9qKmVvgqS3d9mVt3l9uycTH/zPelaLIJWSra6xtCSZNkgmW5NBw9c2MAcXs2jRYhbR/r41lXKFfCFPaWwCt14jlckgDQNbuVRtG10PO5gIITCEwBQSo0Ewjc0wPHdkIT1XW59YdOMlzZBkLrroIi6//HKuvvrqpkrz+vXrQ5Lsd9xxBzfccAM/+MEPqFarPPjgg01J9ve85z2sXLkSgL/7u79j1apVFAqFDsXnBmq1Wse8p7mcJDgrb6t0Os3RRx/Niy++SLlcxnVdDMNgdHSU/n5P5GxgYICRkREGBgZwXZdyuUwmk2nGNxA8Jxg/MjLSVI+cDq+P1/HWH04DKWCg6YCgtIurXZR2UIF9Y81ujQ04/jKaBpIYjWUzhZBo3+e6tXBMwLkB2uJ0l7hWWDfDrcim6n6H4kFAuEG3ldkW1h1V1CyhAd9i208nRojQiYq/7RMIIMGf/EGao3QCBBxe+xFpd/ucXqVsLOG11FmtS7b9NgWwePWxDG/dQt1VvDLqLWD/4ksvs3j1sbwyWuWwN/8vvvb1O3nfhz/OrpLN7okiL+4qUioWwDAZdS2csSo7tw/zbz/6MX/8Jx/jnn/4Nq+NVbve08s78tzz6+FQA+OHH92P5JHP5zEMg3Q6Tb1e59lnn+X888/nmGOO4bHHHuPkk0/moYce4vjjjwfguOOO46GHHmL16tU89thjHHPMMQghOP744/na177Geeedx9jYGMPDw6xatQqtNcPDw+zcuZP+/n4eeeQRPv7xj8/o5r/x7jfO+oFrToF8bRv52lZvX99GvjZM2W4xtECSiS0mF19GLr6MbHwZuZgXtozkrK+5rzE4ONhcnyBIVo1jQnG6SxyesKLjoL2p6KGwdhy0Y/tqfja4XppyvYlnuF68dl0vn+2v1e04Xjmut8d1UE4rL44DykXbDrhd4pR/rut1QejQTF+a4ZY2VSO9lSeY1nzuhmqq6ctfmL4sv2GCYaBNy9sbjfEwo5VmtOVtnuNJY2AaXpnNc0y04a1U6eVvndNQb9WG2bqnwIQ73dZQCceFGxmt5/aQzWYp5Asd+dr/9+GydZe4zi5frdvV0zrztTeYpv4mW/mUAtv2Zt3Xapp6XWPXNLWa8uZPtbVXpAGxmGe9WHF/bwmsuMQ0PaMglUpzRLxCf9Kr7hJ1gaWD39AkCDbmuoRD96FdYrqOt7K7t76GhOZaGxJACIqmNyUjZ3rHRx65ml/+94OcduZafvDgf7JrxzCZuMG5553Hoz95kHWnnUi1WuG6mz7N0kGvsf31v/0i62+4iXKphJSCpNV9kmZvwuToxcnms8zVVMcGpiWPsbExvv71r6N8LZUTTzyR4447jhUrVnDbbbdxzz33cMQRR3D66acDcPrpp7NhwwauuuoqMpkM11xzDQArV67kxBNP5Nprr0VKyZVXXtmcmfqhD32IL33pSyilOO2005qm2b5A3MyyyDyKRemjQvGOqpKvbSdf20qhts0nlmGGi8+gdOuLTZp9YVLxiSVh9hzQwfVu3RKT5Jwk3hvUnI/QSkGDgHxi8yfihOJy6RT5kZEm4YXyuD6pBc9pkp+Xpt1GWsXb1+wu1+xSxlxCyCmdOrACez9OWG1ppkUym6ViO13KCjqQzO46je7IAwm7Hh68Dw7mV0ZUiJCEhFRK0ttv0LPcICUMpAHVRe+hLunQRpsNvNUcFa7rNvc9gbDruE2S9af/ee+uXkJoRcKtYArB//7iF/jcX32Jb3/ja5x9xhnELYtl0uEXzz1JxpQ8+/PHGM/nWXfxxZx72in89sWXWL54Eae9bQ2PPPoocUMwlIl1vcesTHHc4ftuzCPStpoGSjsU67taloq/FerDOKplLloy1SSV4JayFiH3dIW9GWK+ajrtbxyI96C17kJObYTl2j5JBa26yUlwsr0OEl5XEgye44fnEkJ0kNSkBDQVSbWTU6Msq40Mpyw/fB0ME62hWlaUAsRSLipqVcmiZTUWLc50PI40hD/UJ2gN+3lxe0OUWmu01k0P1QapbNq0iY9+9KN8//vfDy19LIDXN23i5k99in+65x6++KUv8ZZjj+Wi88/HEILr/vJTnPH2t/Pcr17gez/4AaZpUq3VKBaLnHPWWXz91q+CaFjn3qBbpVCgV7fKR2t63/ymPX6mdizoGeZbt271TEIpkf7g8VT7ydKm+kikMMnFl5KLLw3Fa62pOGMdpDJcfIZXx3/azGcIi0xsSQepZGNL/BXmIixkCCG8Ss+yIDGL8/bdLQGBrsyQxTYzS0rbbSQVJKcOkpqEDKuVNguwjeimILY9bs0aJnHTJG6YDDS6G00Lw4pRPPt9pHJvpFGxBkUMW4KH+HvRshT8+kF4fVCt+qI5kOC7YYS8DlrlxRrlCgGmScGKYUrJ0nQGAewa2c2igQGUUvzVXXfx4csuYzCR4I0rVvDLX/yCP7rwQsqVCk898zR/dsXlrDv3HG6+7joAHv75z/nG3/89d37lK3STv4iVK/TtHg1HRuTh4fvf//6clNPsl2wjmJkQUitvD0L0IuXvE0ehqOHoGrausEtX2KbyOHoHQjzpf58ay0wSN9PEzQxxM0fCypKM5TBlfFb3snv3borF4h4/w56QaoR9AF9lVQTDfv+6aAwq6JYUhWgOcLXSReM8pUnm87TE/kBoAXitdGFoiE1TBoFrNsvQzQGO1n20pDJCZdC9vIaHY1NBtkFarotWrjf25Tp+2AHX27fS/GM/bqpzG8ey4RWnVeh5Gs+uA++h25hGN8eVWUEI/vyWz/PoU08xOj7BH5x0Ip/4kyspVSr8w/f+BQScc9qpvG/t6dj5Mf5o3btZ/9nPc8rZZ6O15qLz383vLF9KuTDhjWNpKBUL2I7NxMQ4Wvj3JgRCeL/pifFRtrzyAql4kkwsTi6WYGC6+5zNIy3kbquf//znzbGYqfaThWeSf67StNa4ykW5jucFplyU0mjtq6bqVktoviBIqnNNTJOlycY1hSeH4YXDmxBePim9wclGfDqdolapNisKw88jEBgCJBIpaJWFaB038gg/P95/w2hcA8/5TgiQiI6KvllpNjSGpqz4g5VwoIwD829uolH5NGTJGy6pzZZ60001mB7uKmm6sQZa3K04ZlBGywW2owwC5XeUEZBTbyujr7+fTTu2k0qnm/fZgbaGkg78f/C7oJSr0K72freuRis/rFSHmKFA+1NGNFL4to0IEDLh8lvE1R6HT3iE88wApZd/S/KevwvFrfy3J2Z07kywoC2PfTmwvj+htKJU38VEbQsTlW3kq9soVndQqu3EdW2ElghtYIkEaXMxaXOQlBwkZfaRMHoZ6FlGYaKAbhBYYK+VQmnlf+iuF9cgNKVQSvvpjTyB/H4LUetGPt0szws38vtpjXyuX4bWzfNcrZvnBTfddtxtm2+tG4FPOFJ6xCJFgPREBwFKPyymDE8WFyTZNhL2t1Y+0cyfTqepVGtIo5HfQDTSDc8dXUhvjlCzTH9AfE8bBvPWUk0lOzzZpkOoawr/fz6JP4n3neN/+zTDjovfQGwrW3YbaxEYzakkU7/HELFNSjgaEUvi/tmNVIoFqoUi1WKBuawxF7TlsfOVVyY15ac2udtbjAEZ5I4ywmZ408zvUkbwGp0t0cnKaDftDzzaW4iNVmdnqzSQj0BrL9Af3N7qnLSM9hZjoDWr/HtytUb5JruLp3ygAIVHMul0holCwSMp8MmHAGk14jzdV9e3/DqIbA+sysny7I2lOp31PN9+unNhqU5ple6hhZvJZEin0815ZaHJp3sRnmk+rRvzhQMk01jbSXX+D1vE0gobjUH8WXiI7euVBBe05bH4191lTOYCeg8qvGAFqqScptJs7w7oLKO9Ug6a8o6uU3bGKTujOLLIaGkbRWc3FXsUFxflVbPErRyp2CDJ2GLSsUWkY4vJxIeImZnWfQSvQWA/jyHwupGCwhb9g4OoQ8jrrEEg3cimt7eXkZGROe3Onctu4KnyO46zR2VPRaonn3wylnXgXNFnREaNHi1XNI/9XMGCaFVBflj6+7Zyd+/eHXIqEkJw4YUXztkzLWjyGD1sZaBSZdq+0M6Kn0BFHq7oFwIshugh7KLqqjqF+o7WXJXaNrbXt1DIP46rWx4ucSPre34t9+esLCUXW0bKGpgX1k+E6RFs6bcjl8tRrx+aa7y0k2pfXx/Dw8OhVng7wQSPZxve2/OnC3udEo3uL9Xqoeqcqhk6Gh8f55ln/getW6QakYePal/vgb6FeQdDxuhNrKQ3Ee7dVFpRtneH3IrztW1szv+cultq5jNlnGysfb7KUjKxIaRY0J9LhEME7aSaSCQ8IUSjU4BxIWOysZZGd1gqbvGGwSOa+a05nhkQ1QaHCKTwJFcyscUsyx7bjNdaU3PzHaSys/QrXp94uJlPYJCJDXWQSja2DMuYxQSHCBEizAmE8NYhMgzhLXUegNYaaZoMDSVakyaLM1gVbxaIyOMQhxCChNlDwuxhcfr3Qmm2W6FQH24jlq1sKzyJpvUhpqwBcrGAXItPLHEjN389cCJE2M+49tpreeCBBxgcHGTjxo2AJ8l+4403Ui6XWbFiBRs2bGhKsl933XU899xzOI7D+973Pq666ioA3va2t5HJZJBSYpom//Ef/9FxLY9YJNkBk965nNwRQEQeESaFZSTpT76R/mRYgNJVDiV7R4e1smvsv3B1q589ZmSa2l8tPbClpK1BxD6WbIkQYb7h4osv5oorrgity3H99deHJNnvvPNObrjhBu677z7q9XpIkn3dunXN6Qnf+973mt5jBwoReUSYNQxp+gPty0PxWivK9qivVOxrgNW2sbXwS14Zf6h1voh5A/QBYsnGl/qSLfNTnDHCwYMnh/+R8errc1pmb+Iw1iz9wJR5TjjhBDZv3hyKe/nllznhhBMAOOWUU7jsssu44YYbEEJQLpdxHIdKpYJlWWQymW7FHjBE5BFhziCEJB0bJB0bZGnmzaG0lhT+tia57C6/yKaJR1vnI0kHpPCD5DIfpfAjRNhbHHXUUdx///2cddZZ3HfffU2x13PPPZcf/ehHvOUtb6FSqfDZz362uc6REIL3v//9CCH4wAc+wAc+MDVp7StE5BFhv2A6KfxCG7Fsn0QKP9tGLAdaCj/CwsN0FsL+xK233sqnP/1pvvrVr7J27drmXJSnn34awzB48sknmZiY4IILLuCUU07hsMMO4wc/+AFLlixh9+7d/OEf/iGrVq1qWi/7ExF5RDigMGWC/uTh9CcPD8U3pPCD81Xy9W28Nv7fk0rhL6kcien07Dcp/AgR9harVq3iu9/9LuB1YT344IMA3HvvvZx66qlYlsXg4CBvfetbeeaZZzjssMNYsmQJ4M3vete73sXTTz8dkUeECA0EpfCXc1wzPiyFP9wcV2mXwpfCIhtJ4UeY59i9ezeDg4Mopbj99tv54Ac/CMDy5ct5+OGHee9730ulUuHJJ5/kwx/+MOVyGaUUmUyGcrnMT37yE9avX39A7j0ijwgLCkIIUlY/KaufJZnw2gSZnjivDT/bJJV8bRujlVfZnP8Frdm3grS1qOvCXTEjvd+fJ8Khg4997GM8+uijjI6Octxxx3HddddRKpW46667ADjnnHO45JJLALj88stZv349p59+OlprLrnkEo4++mhef/11rrzySgBc12XdunWcdtppB+R5FrQw4v5YSXAhIFpJ0MNk78FRdQr1YQq18JyVQn07KiDZkjB7usxXWUbS7Ftw4yrRN9HC4OAgmzZt6hAJPNgRCSNGiLCXMGWMvsRh9CUOC8U3pPDz9a0hYtk08Si2KgfOT3TMV8nFl5GOLUaKg0vyIkKEmSIijwiHLKSQZONDZONDkG3Fa62pOhPeuEq9Na6yo/Q8r038LHC+0VpiuG0ipCnjB+CJIkTYf4jII0KENgghSFq9JK1ehjgmlFZ3ywG3Yo9Yxqub2Zp/IqRymrIGO+aq5OLLiJvZ9stFiLAgEZFHhAizQMxIMZBaxUBqVSjeVTaFemO+ynBzvsqu0q9Dki0NKfz2+Sopa2DBjatEOLQRkUeECHMAQ1pdpfC1VpQCUvgFn1i25B+n7hab+Twp/KUdHmCRFH6E+Yroq4wQYR9CzFgKf5hCbRu7yr/h9YlHWudjkGmXbIkvi6TwD3E0FofSGrRqO/a30d02L2wuYdsau66xbc0HPxJ5W0WIsKAxtRR+lUK9RSoNgtlWeBpNS7IlZQ10tVbiRm5/P06EGSAoyf7ggw+iNTz//AvcdNONlMslli9fyVdv/RqZTJZ63eYv//J6nn/hORzH5fzzL+RPPvIXaK2ZGJ/gls9+kpde/C1CwBc+/7cce+xxHderVjSFvItlCeIJQSY7t4oLEXlEiDDPYBmJrlL4nmTLjpC1kq9t49Xxn+CoWjNfzMjQv+UNJGV4MmQkhT930N46sG2t/bbWvwofn3fu+7jofR/kxpuuZWLMawR84hPXcf0nPsVb33oC/3Lv/8c3vnEnH7/qOu77tx9Srdb513t/TLVa4bx3n8G7zzuflStX8jdf+TynnXoaf/d/fRPbrlOtVchkDYRsraIthCCWiLHqqH03tyUijwgRFgg8yZbppfALtWEqaifbCk/y6vhPmvmaUvgBayXblGw5dKTwc1u2YVWqNFQHdPOPh/Zp06Fj3b5SuIdqLM6OviWhuGBFLgS87X+9ja1bNyMEJJISIeD111/hHaeeiJSSd77zVD74wcv49Kc/STpjYDsVUhmNo+rE4haLh0HVkygAACAASURBVHpwVZknnvg5d9xxG0II4okEmeyB6b6MyCNChAWOblL4jRnmYSn8YQq1rYxUXmJT/rHW+QjSsSFPSyw0X2UZMWP+zsrWyuvHD/bp23WN03YsxXYyfTb9Ay5aQ6KmEM7MhTVCTnACpOhMtyxBJmcECIOu3nPJtIGUgkTSswCPOuoo/uuhBzjrrLP49/+4j23D2xBScN5553H//fd3SLI/99xzDAwMsH79el544QXe/OY38/nPf/6AzJ6PyCNChIMYk0vh18JyLU0p/P+ZRAo/SCzL50QKX2uN69BR+TfCjq2p1zVOM02F8jr2NBfwK/VEQpHKeRW6lDC6ZGnTGmiv7Nu7fmaDPalMZyvJ7rouzz77LF/4whdYs2YNt9xyCxs2bOCGG27Yg6vvHSLyiBDhEIQp4/QlD6evQwrfpVTf2UEqr43/rKsUfja2lLSxlKRcSoKlmO4gjiNCJDCVVTCdsp5hghUTWJbAigmSKUmut3Xs7SVWTGBagpi/t2IC0/QIoKVtNf+kZGYryX7CCSewdOlS1qxZA3iLRm3YsOGA3HtEHhEiHMLQ2m/Fhyr6Adx6P7H6MfTYmlRd028rqs44FTVMTQxjG9sZN7czEnsGrP9uFahMRH0xsjaEqA1h1JcQU0uIM0TcimPFBKmMbKv828KNyt8SyPY+ooMMs5VkX7x4McuWLeOll15i1apV/OxnP2P16tU09G2D+3q9TrVaRSmF67q4rhsJI0aIEMGD1hrXpaO7Z3wkz9hIrbNLqNk1pGbW9UOw5d9D2uqlN3Y0likw/UpfmGVsYzt1uZ0qw1TUMCVnKyXnaRw0NaAQkMJPxJeSibe6wBaKFH63Crqxn0na1VdfzS9+8QvGxsZYs2YNV111FeVymbvvvhuAd77znZx99tlMTEywbt06br75Zt7xjnegtWbdunUMDQ2xe/duPvGJT/DRj34U27ZZvnw5n/vc59i5c2fH/W7ZsoWHH344FHf88cfP2fuIJNkPAkTy2x4W6ntQbtvAb1tl73St/FvnaDV1+YZJZws/cNze3WNZspnPtGbf99+Aq+oU6ttDMvhTS+F7XmBZaykpc4iYyKGUCrWcu23d0oNxsViMvr4+BgYGgJlX/pMRwlyi8W69MRjRETdV2nT5x8fHyefzGIbR3OZyxcHI8ogQYS+htd+XP0nlP/UgsGc5TAUh6ejS6dr1E9gvGuqnWBrHmqTrZ6pKuWa7VGpTV8izr8QFrrsE112E6x6DaxQhXoB4kXq8SDG5BZn8LdJqvQzlSNxSEqecwCklmmG3kgA9c0IzDIOTTjqJTCbjvc89rIznOi243xfQWrN06dJ9Vn5EHhEOeTS6fpwZVP6TWQWTlatRoF0MU2NaCmloDFNhmIp4XJGUCsPQCKmQUiGkQggXITQIF4RCqXDFXFOKcsXFLU5eiQshqNVqk1bsc92KllKGWrjtx424eDyOYaQwjL5WmjAwbAPhCoRZxzUncM1xbDmGnRuj1jOKw0jzWgKDhBwgZSwmbQ6RtZaSjS0lG19KzEx2XHPRokWH5GJQDQjHwarWMKtViMY8IkTw4FX8Lo7jMjpSYOeOPLWqQ63mUK+51Ov/P3tvHi9JVd/9v8+prbfbfbe5M8MMizCAQtgHBVEYlMhinoiooCwKRkRJFEFETIIP5veomARRIpj8xBjzPBFijIxEE5DlB0SDv4DAqKARRs0gDMzM3Xur7Zznj6qurl7uNnNnuUN/eBV1zqnq6qqavt/P+a4nwPNC/GQf4gcBga/ifVO4aq2i8h86jNsKrcOIAAgRQoFQQLTXOoTGOVqhdCTotQ4Jw+h6iwkp5YxCOd23bZtMJkMul+s4dzbB3u3c+X5mZ1cE9sNaS/RXY42VsdrT6FrzPSel8JNEyFUU/JfJmvVaI5RCqKjglT01zfJf/TdGEDTPOfKImT+/QCxp8rAr/4WSGbR00MneifT8HhYNWutk5jqbaSIIgjntz7ONBX6IH4SEQXStIIiEcHR+83NKhaiGgF9kAQ2iRTiahoFpGBhmu8C0dopQnun8BnHMF0vV/zMTLCPLUO4ghnIHtYyHym8t2dKtFP5v4KjB97KPcSiGsDCEjZQWhrCQwlx6pfAbJKE1xGQhdNxvnIJAaI3bV8DPZggyDkEmw/JFvI0lTR79m/+u67gSdgehqFS7MT7XGLu4FHa7QJ3Nxpw+9txzzzExMbHDjsXZji02hDAQQiIw4npLzbbAACHjtp2MWYbEsCNh2hDopmlgmQamZZIvZNEqxLINLMvEdgws28BxTCxrZgGeFtoLEdA97H4Y0qKUWU0ps7plPCrZMsqU+wKhOYkql4BoMS/NdOpMGRFKTCaGtJEiau92UolJIq1RdCMJpEBLAyUFWki0jLIcXTQTO9FUt6TJY2zVB5DKRWgXoeoIFe2lcpO2iNumv611rGuFmlYoDEIsAm0RYBFok0CZ+MrEVwaeMvCViRdK3FDiBtHmhZK6L6j7UPfBDXQyg55NiO9sO/RMM1zLspIxIQwETWGukaCjTcebUhKtJCqM2iqUqFCgtdEkgDQJxGOmIbEdE9OS2M78Yv2TmH9TIOaI+d/bZts9bD+iki3LyNvLmkmCTiRIlQ4JlUeofULlo7RPoOp4upy+QqyZdBKLXGzLxjxIAgR6BpJgN5HcnOSxbds2brnlFiYmJhBCcNppp3HWWWdRLpe56aab2Lp1K8uWLePKK6+kUCigteZrX/saTzzxBI7jcPnll3PggVF10AcffJBvf/vbAJxzzjmsW7cOgF/96lfccssteJ7HMcccwyWXXDIv1v/OAz+b58xaEIY2YWigdRbQWIbGMTUZU+OYCsds9Bvt9JiPY3rJeMbUlEyNk1GY8/gdKQ1eGBGNrw18FRORtggwCbEJsVDYhMJBCTvWnjIo6YCRQQkHYWQwTLODCIaHh5mcnERKidYGKpSEgSAIGk5gNaPDN3EGu1GpiNkgRBTzn7FmCPHsJvyTkE+BYSwx80APeyWkMJBGFotsy7jSChUTSqi9hFj8oEq6HKIUZkwsdopYrHiSNPNvPCnJPjTEg/fcg9Cap596io9ddx3VapV9V63iyzd+nkKxiBeGXPWJT/DTp54iCEPe/va386EPfYhnn32WD37wg8k1N23axNVXX82ll1666O9pLsxJHoZhcNFFF3HggQdSq9W49tprOfLII3nwwQc54ogjOPvss1m/fj3r16/nwgsv5IknnuDFF1/k5ptv5plnnuG2227jM5/5DOVymW9961vccMMNAFx77bWsXbuWQqHAV77yFS677DIOPvhgPvvZz/Lkk09yzDHHzHnz4+PjLULUsiwymcx2O/3mOqYNA09KQsOg3nAUEs6g7XSOmaqO3XFeBanqCD13tpYOIAwcAuXgaxs/dPBCm+pvHELfpurbeGE07isbL3Tww8Y+GlPSAelg2gaWLcmnQz5bYv07ScAwdm5oYQ897E5IIZHCwZROy7jWOiKVNmIJ1DQ6bPrcBEaTTLAwMDAxMZVEaM35v//7XPqud/FHH/sYRhCiheDKP/5jPvknf8KJJ57I7d/8Jjd//e+45ppr+M6dd+IGAfc/8AC1Wo1169Zx9tlns2bNGu69914AwjDkuOOO48wzz9yl76mBOcljYGCAgYEBALLZLKtWrWJsbIxHH32U66+/HoBTTjmF66+/ngsvvJDHHnuMk08+GSEEhxxyCJVKhfHxcZ566imOPPLIJNb6yCOP5Mknn+Twww+nVqtxyCGHAHDyySfz6KOPzos8Lrzwwu197kWEiTYKhEb0XEqlYv7DmWf67XkBgR9A6GIKD8twsWW8N1wsozlmW26sBXnYpodjuvQ5ZQxRxxTR5+cDLawZfD5pX1EGLRxU6KDd5tju9Av10MOOQt3xFfRzv17w54x4a4FWaDR61Wr8c84lVAE+VVzSfkKBicmrTnglm5/fihJQy0S+lo2//jWved3r0ELw+lNO4YILLuCaa65BCEG1WiUIAmq1GpZlJbKzgR/84Afsv//+rF7d6u/ZVVjQX/6WLVv49a9/zZo1a5icnExIZWBggKmpKQDGxsYYHh5OPjM0NMTY2BhjY2NJhifA4OBg1/HG+d1w3333cd999wFwww03tHzPYqGR8OW6IZ6r8DyFWw/xPBX1W8YVnhf342Mzxfw3IATYjsR2DBzHIJuTlPqNeEzixMdsR2LbjfNk8pluph/TNAnicDylFYQuhDUI66l9vWVMhHVkxzmT4Db7grkjmbQwwciCkWnuzda+Th+baS/tHbbdmqa5U34TSxG9d9GEaZo4joNpRuIukBK10N9aw/+gNc1FPaIxAUhtkhMltDRASpSEUAQEOiBQHqHyCJRHTU2jdMCU+zwgWHPIK/jOv36TM844nbu++21eeOEFpCF4y1vewve//32OPfZYqtUqf/Znf8ayZctabumuu+7inHPOSZ6rHY7j7NTfwLzJo16vc+ONN3LxxRfPmmzTzek7k6lDCLEgJ/Fpp53GaaedlvRnco6GYWsSl9dI5kqVdJit6udct2RatJR4sDOCfJ/Asu05ncCGOZfpJ84jSMEPwa9Cpdr9EzM7iu14iyJNYj84zGfdH61B+7HprRl40DTHdRtzEX4d4ZVbxqSew5kCaGSLFqTaNKLuY05LqPbg8D5sG5/uhWrTCx5IY3h4GNd1MYxYbzj3D+j6C4mX/GtxWsf7ltNiZ3Wyl1Edd7/t71pgYAkHSzZrd5UchRQWeWuEUPt85s+v539d/zm+9MW/5tQ3vg7TMthW3siTP36KULs8/Mg9lKfrvOsdF3HiiSdwwAGvQAiB53ncc889XHvttcnEsR2u63b8BnZ5YcQgCLjxxht5/etfz2te8xoASqUS4+PjDAwMMD4+TrEYrZs8NDTUcsOjo6MMDAwwODjI008/nYyPjY1x2GGHMTQ0xOjoaMv5g4OD87r5xx+pdHUCqzkiS6XRWu6hsb7vfJzAL4dKn0AcxWGjpA307di1dBCRSMofNHNkXIp0wgrCH2t+di6/0G9gBFBiNpJpN711JyItbRB7XgnvHhYBaZJoI4uW02JyUMJqIYkd0ZCjSESBY0YmqKNedQL/9I93orXm2Y2/5AcPPUrWHOTf/uUBXnfKCWjpkitpjjz2VTzy4wfoX/G7GNLigXt/wGG/8ypKgzlC5e+WfJU5yUNrzV//9V+zatUqfu/3fi8ZX7t2LQ899BBnn302Dz30EMcff3wyfvfdd3PSSSfxzDPPkMvlGBgY4Oijj+b222+nXI7C4TZs2MD5559PoVAgm83yy1/+koMPPpiHH36YM844Y143Pz4WJoI9k5VdC7+ZXZy/vaifXQxhog2TcEerp+oQobyEaGSb9lPImtSmR1vGGueZ4VRqzJtXqPa8/UJzjPX8QrsJWmO4HmLLVsxaLQpwUToOgU3lSrSThJDRcoG7QBg3SrJrrfmrm2/hPe++mKzVzwH7reHx//9pLjj3D6hWy/zsyf/i0ve9H9vIE2qf7971PU5/88mUvZfiK4lUvkoUUuwGVWxlYsqdk2E/Z1XdX/ziF3zyk59kv/32S5jtXe96FwcffDA33XRT8vBXXXVVEqr71a9+lQ0bNmDbNpdffjkHHRRlhT7wwAPceeedQBSqe+qppwLRIii33nornudx9NFH8973vndeLNqrqhuhZ6KIMO/3oBVC+y3aTkQy7hxjXcx28/ELYcxAMu3azuwJrQhr3gLtZfWb0BrD87Bqdcy4hpNVdzFdN8mVeH54EGtoEC0lWjS0iFSuxC7A5ZdfziOPPJL4ha+++moqlQp/93d/B8BZZ53FJz7xCYQQVCoVrrzySp555hm01px33nlJiG6tVmPt2rX88D9+QL6QjSPBvDgSzEfpANC8OL6Rn47/b/KNki3OPpx17NWL9jy9kux7AV5WgmIW7PL3oHVskqt3aEGz+oVUPUlsTcYW2S+ULw4zXfW7E5Swl6ZfKCYJs+5i1est+3RCXWBZSTkOP5OhsGI5/z0+Rq4tWmlvhdaKUAeMTW1mi/fjllL4V5x296J9T0+f7qGH7YUQICy0tAgXyS/U3Tc085gMqwh/vKkpNeo5bUvCJLpifn6h1uPdxnaKX0hrDM9vahD1ery5yBRJhJaFn3Fwhwv4MVkEGQdttN5TvlSEyYnFv889DDqudYUKMcKQ/DQc9psClFdAOUcwPQKnzX2d+aJHHj30sCcg9gtpIz8PQ9gsiP1CQ/05xrdt7uobki3aT3PM9KdbtaV5+4UWEhmXziGyEaGB4WlMN2yanVwXqZpvIbRM/EyG6nA+1iYiomgnib0JOnbqE4agQgijIqGNdVhUqFBao5RGaVBolBYoIQiFRCH51TafO37uUDX3pWpmqDsOjy7iPfbIo4ce9iYIA21kwRkidHbAIp34hbpFws3uF5L+GOYC/ULoKIZcGzZBPiYgM0toZlFGtoWIjNBB1HbcL7SroBtCPlUySYU6JgIdkYCOSCCEiAQAJaJ8FIWMnPjpAGMRb21DksjXLwUY+Tz7HrgvuaxNPmORtxaXbHvk0UMPPXRCSHRs2oLi/D6jNdIPEj9EZHaqIetVpHYBH0RAaCpCWxNaoE2FMhTaCAC/TUuqYHpjKU1pPn4h0UEoYmsfpjwKaa0CRPRs8b4hcrVoiN7UeJyHpjRN4a51ZBlSKS1A6RQJNAgAFAKFiK/d8nJpl/xCQKQvgJQaCZgCpBBICVKCEZfllzJKF5BCxETR3Kcx5Ghee0hvJcEeeuhhT4HWyCBIOaybvgmZqvUUGgZBJkN9cBg/01xTQs2QET3396b9QnNrQIR1dFgHdxqsqKpCJNLnp5EpBEqLeMnbaC8QiLYxiIS3AAytY6EqYoqI/jMawt6Qydos0pBIw0iIYKmhRx499NBDd3SQRDMMVqbWeFGGgZ9xqPX3pxzXGZS1/eIlVJqqr6j6IRVPUfUVlaQNVc+i4htU/QwVry91bkjVDan6inrKWvb+o0ocavYnfSk0Eo2BwkRhCoVBvIloXAodz+g1ptCRdiBASB0pJvMkIYhzR7ppO0rGBDSTNpQe233l17uhRx499NBDRBK1egdRGC0kIfEzGWr9JYKMk2gTyjRbhFoi+Mtei+CvNtpeSKWNGNrb9WBuwWzrkJz2yIUuOb9Ozq8w4FXIB3VyjS2skw9qHLz/GxkZOCA2AzU2iZAGGEZUdsKw4n3cl7Ij36zFe5MkG0bLvkIjS11HZ2od+Xt01L/yY3/KvQ88xPDQIA/d/U9RSfaf/4KP/elnqVRq7Lt6JV/+/Kfo6yvg+wFXfeLT/OSp/yIMQ97x1jO54oOXgBD89Vdv5x++uR4hBK869GBu+ov/RSaTAaIMeB3vpT+BVX2hxTcEvTXMe+ihh+2ACILExNRCEkFEEoGGaS3ZajlMGHmmLJspw2AKk0oIFVdRmVZUfZ+K526/4BeanFTkiAggH7oMBHXyXoWcWyFXnyZXnSQfVMkF9SYhhPFeKKxCHgpFKBQRhSIMlqDQB4XhqF8oQl+Jwf0O4LeT04uf59HQDCAJWW5/8nT/He+8iIv/4ANcccUVhE60IOyVf/xervvT/8mJJ57AHXfcwV/97Xqu+dhVrP/eeuqB4IH77qZarbDutLM4++xzME2D277+jzx8751kMzaX/uHH+M5d/8I73/4/UsQVwar9hoGt32u9of2+vmiP3yOPHnrYS5A29Yz5E2x5fpR61aVe86jXfKpuQNVXTCtBOYSyEkxrQVkZlJVBJYB62BA+QbzVOr7HNgQ5S5IzIB8TwKD2yQmXnKyTF9WIAGpT5GqT5CsT5KbHyLnTiUZg6VQBOiFjoV+EviIUSogVRSishL6+mBxK8bF4s51513IyBoYQ05Wkf9tjL/Hr8fr2v+gueMVAhvetnX2F8BNOOIHnnnuuZWzjxo2ccOKJIASvPzkuyf7xaxGGTbXm4mubml/Hshxy/Sup1+sEoaIS5pCyj6qrGFl9KKETO8Z1U+tx8xnGS6tbfEPzqxo4P/TIo4ce9gDMZOOvdmmXvTA5t+opqrEZqCn4Z4LAlgZ5S5KzDHK2Qc6W7GNJckKR1z455ZILXfJelZwXaQD56iTZygS58hi56W1Y05NQq8z8Ndl8igxKiMEBKOyfkEOiFTTIIptHvEzXjj/00EP5/ve/z+mnn853v/vdpGrGm9/8Zu655x6OOeYYarUa119/fbIExgc+8AFe/epXk8lkOOWUUzjllFOaFxQCMGLvfQ4/uweUZO+hhx66YyGCv+n03Q5TjxTkTUHBgILUFIVildQUMlDIa/IGZG2TrCUoZgyEWyGjXTJBjVx9ilx5AqsyiZ6YgvIUTMf78nRss+8C04K+5qxfDK1pEfytRFCCfAFhzqfm/+7DXBrCrsTnP/95rrvuOm666Sbe9KY3YVnRu3vyyScxDIPHH3+cyclJ3vrWt/L617+eUqnEPffcw49+9COKxSKXXXYZ//zP/8zb3va2XX7vPfLo4WWNhQr+qpcmgAUI/oapxzLI25KcJRnMWkk7b0VaQN6AIoo+HVBSAUWvRl95gr7qBEa9iqpXCKtVfN8l9OuEbo2wXkVXy+jKdEQE/gyrSQqJTpuHVq6OhX8pZR6KSWA7zEM9LBxr1qzh9ttvByIT1v333w/AnXfeybp167Asi+HhYY4//ng2bNiAEIL99tsvWUDvzDPP5LHHHuuRRw89LATtgv+5+iQvbJueQ/BH0T47Q/DnLEnebpqFGsdzloFlCLRSkblnegoxNYkc34YcH0NOjsP0JExPoSvTqHoVVatEpODV8YGua2umzUMDw4j9DkqEft/KfSgjImLomYf2WDSqkiul+OIXv8hFF10EwKpVq/jhD3/I2972Nmq1Go8//jjve9/7qNfrPP7449RqNTKZDD/4wQ846qijdsu998ijh92C7ZvxN+38lR0S/E53wZ+c0yn426G1Bs+NzT4TMJ02B01DeRIdm4bE9CSqPIWulqPCdY13kL6gYSJzBcj3QbEEq/eDUn/kKC4UEWlncaEIhb5ZzUPZ4WEqvUrLexTSJdmPO+64riXZzzvvPAAuvvhirrzySt7whjckJdkPO+wwIPKHnH766ZimyeGHH84FF1ywW56nV5J9L8CuLkW+44JfUQ/mrnfUTfCn2+2Cf59lA/jV8pyCvxt0EEBlOtIAyhEJ6HKrb6C9P7N5SCCyeYxMDpnJYWTyyEwOmc1DXxFd7Ef1D6D6BwkHhwmHhsHJLKp5qFemv4nh4WE2bdo06/LZeyOq1WrHM+/yZWh72HuwOwX/Ysz4Z8PwcD/btgVN89BEU+DrFgdxmggmIz/BrNFDueaMvzSIXLEvRiaH4WQxrQyWaWGaDkY2IgnhZAiz2ZYKsEHGIXCcrhnCPY9CD0sRPfJYQgiVpua3OmwrfoixVfHS2ORuE/w5O00A2yf4Z4N264nQZ3oKXZ5MmYcaRDDJtlqVcGIs0iDUHNFDsa9ADI20OogbJqJ8AdPKYhoWdhAm60mYrpsIew0EjpNkW1cbROHYUSW7HnrYi9Ejj12EmQT/7p7x72zB347EPJSa+SdaQHm6rR9v3szRQ4nDuNCHuWp/1CsO6SSCtK+g3TykNabrRmU5as1Fh8zRCoJIG9FA6Nj4mQz1/mJclqNHEj28vNEjj3kgLfirvqLqKcp7kOBfvXwItzy50wV/OyLzUDVl/plqFfzTnf2FmIfEqgNasopbiKCv1BE91D+bnb9BEpNTrSvUuV6yhKkGQrtJEonZyXF6JNFDD23Y68mjm+Cfa/a/qwR/zpIUbGOHZ/zD/Vm2BbMI5XlCuy4kJqHZHMbxOQs1D7XlEIhCX1KOYq7oofk/hMZwvY4qsKbrdpBEkHGoF4stRf56JNFDD/PDkiaPb/5s25IX/DsLHeah8hQ6iSSaTpHD5ILNQ6xYheg7rNU8lNQlmsE8tOgPqDE8r3WN62d/zcpKJSEJgMC2ojUlioWkVHjgOGijRxI99LAjWNLk8Q8btmFLRd4MKZghOVNRMEOWO4p8XpE3U5ulyJs67msKliJnafKmxpIiVSFTNOvot9TQF1G9/VSfUIASaLdRb5+W67ReS3a5Dh3fo2mv3S9QSoProstlqFTQ5Uqy15Uyk76PGh2FSjk6p1yOzEkzIZNtagTFEqzat81PUEoll5Ugl49KV+8OaI3h+R1VYK2620oSlgXFPirZTKRFZJ2YJPbeda57WFq46qqruO+++xgeHuaBBx4A4KmnnuLaa6+lWq2yevVqvvSlL9HX14fv+1x99dX87Gc/IwgC3v72t/OhD30IgNtuu41vfOMbaK05//zzufTSS3fL8yxp8njgtXdjSUVUZV/HwqRRX7/ZFm190BBoRDDDuTsZ2leoWoCqhtFWC1C1EFVt7FNj8fiMt2UIvKyBkTORWQM5bCD3zSCzeWRjLGcgs822aJl1e8C2eGtDJdr0TETahWS7ndtBotBJpAiEyiDCAjLMI8I8IswhgyyCJgEo6aLMOkGmhjLrKNNFmS5aahzHAc/H8gWWT9s9yTnuv3G+7JwkzGdSMdu72JHrtJ+ffqct/eZ71QiouhjeRNt1OicmQJfrzHb/pMZ6WAjOPfdcLrnkEq644opk7GMf+xjXXXcdJ554InfccQdf/vKXueaaa/jud7+L53ncf//91Go11q1bx9lnn02lUuEb3/gG3/ve97AsiwsuuIA3vvGNHHjggbv8eZY0eUy/4iM758LtRKPTxNJKNjrwEZVyFCVUaZiDppvmoXKz5lCkFUyD73f/XiEgl0MUClDIIwbyiHweM59DFPKQzyHyeUQhF7dzCNuiWOxjemqKNIlqNGG8RcTTeAbV+nxdnw22i5B16jrt5+vUOcpE+g4ycDACBxlkkGEGodMk4aGNGkF2C8qooo0KyqgiZNDxvTLUiFCDkphBQLIYD7Tef/vz1yGvHAAAIABJREFUNspXJ8eY8d95V0wqFhXPwdBOvPyME4p2spnt2LyJcR6Tk1m+V4xlMPUrkdZKQPDTDYLJydmebuHEWOqHI45q/n5bfy3R9U5c+zs899xvQStEUAEBGzc+y4nHH4EIq5x80vGc/+Vb+fhH/wihPaqVaUJ3mnplGtsy6cuZbHj8aY495ihytgACTnzNWu7+1+/yh5df1va9AhFWMOvjbe+tlyS4U6C1hmql1U+QdhCXY2JI9anOM3qofwSx+qA2h3GqLHWhOKN5qCHCZsTQMK7ew7KJtUb6QbLGtek2V6iT6RIdpplyWGeStjYXbm4aHh5mbGdlVXclIegkUpUc70ZCQGrRnpkIbYGE3OU6fX19TE9Nthzf7olA27OJ1GSk8/47n61JvK3X6vjelolM4503r9dx/43V++Z4FyiJtA5AqHjSpk3QMvn3SGN79SmhQmQwg88wBRlOgQ4xgnEAXnnwgdz7b9/hzN89hX+96595YfNmDH+Mt/zua/j+3f/K0WtPoFar86k/+Qj9+YBDDhrmhj9/hK1bnsHJONz3wH0c8TuvpO6+GD1aattW3siT498gQBOg8dFc/Ip7tvMJO7FXk0cUPdTNYdw965jy1CzRQ2ZLkbkkeigl/FucxvkiwtqzS1MvCuJ1rq16HbPmtoTBdiOJ6uBAlG0dh8Fqc4n8BNOrxtHanInYd6eu0rcnTih2E4aHh/E2bcJ0olIdhx+/49fUsXaPVkQtRV1Hex0TV6OtYwLUWjEtbZQQTAgLjeJTf/5JPv2pv+TP/+qrnHra6zEtk6064PENG/ANwX0/vJOpqWkufucf8juvPYZ9D1rNxe8/n3e++0Nk8znWvPIglCGoxJXSBBIRa16uMKlYg5jCwpIWWbG4f2tL5C+3O9SD/zZzTkF5Kipc1w1CRAXoGsJ/+T6Ig17ZkkPQXKcgDid1si/v0tQxSbSvcW3V68gwRRKGQZDJUBvsT8Jfg0wmWue6hx52AbTWKO0TKJdQe4xXa7hBGSuUKUEeC/WYBJpCPyaDNgJIj+tEC1soJH5YR2tNqH1AcOBBB/C3f38rIPjNrzfx8P/3CI7Rxz3ffYhT172BUm45pdwK1q49no0/38xha47lPRe+n4svugyB4HM3/CUr91nJQOYAQLTIKLs4zMErTt7h9zkTlvRftP6HL0eNTLYZGVQaQKzabwYiiDWD3Rk9tAQg/SAJf7VS0U0ybNaBVYaBn3Go9fen6jdlUNaS/kn1sAugdBgJduURapdAuQTKI1QugXajvfIIlRcTQOqcuN08Fu9bjnu0631HDLybFdZBs9yViP6LgwrSbSkkQljRjD4eb29Hs33Z5RpREEKjXckYGNKilFkNtJZk/8qtn+bi97yXnD3E/vsexKM/eoJ3nXsRtVqNDU/+lMve/0EsI5d85vnnn+fuu+/mrrvuir9z12JJ/6XLv/jay8c8tBMQaRL1pjYRm52MFpKQ+JkMtf5SSzKdMs1exM1eCK0VYWPW3iK8G8I9LaxnIgCveTw5v3ktpcO5b6QNhrAxpYMhHUxpY4ho7xgFctZQ23EHU9gYMhrrLw0TTpXos4dpzM7T5h2B3CVWhcUqyX7ppZcyPj6OaZp8+tOfpr+/f6ffezf0SrLvBZir/LYIglQyXdPsZARBco6SsrUKbDYiiqVEEnt7GfLIHBN2mX239gPtkclaTE6PRmM6dW6LcO8+k18opDA7hHfUT40JJxbmdqrvtPWj85vkEI0Zwt4h4d4ryd5EryR7D10hgrDDH9GdJBzqxb6U4zo2Ny0RkthTobQiTM22E6EcC+/GbLxlZj6DcG8nh0ZbL9jWLmKBHAn0REALh4xZioW3nRLmTlvfTpFB+8w/OleKngn45YgeeSxBiDBsLe636bcsn57G8DtJwi32tawpEVrWy5Ik2p2onXb27jPzduHdEPbd7O5Kz5C/MwsMYbXN1iOBbMschjmQmpnbXYS73UIM6Zn/yPBKJsenkcJ6eQd69LDT0COPPRgRSbgdjmsjlWSopIB8AbdQaDE7hfbSIom5naids/GgzWxjbIZavZwS7rM7UeeCQM44285Z+VaBnRL86bGmwG+1wzds9jvL0Zmx+ijLGaINe1hy0Fq3bEqpOfubN29mw4YNeJ6H67p4nsenP/3pRbunHnnsARBhGJULr7nNpLq6i5kiCS0EfsbBLeRbkupC22J42TImdqKtfyFO1O4RMm1O1p3kRM3oPBqJPQ8n6kx2+Kad3cGQvT+PHnYc8xX2M/Ub7flAysj539A2c7kc/f392LYdle9ZRPT+OnYhhFKJJtFidvJaSSJwHLxCjmpMEH7GIbTtrpqE1ppQ+XhhZWYnapcImVa7+650ojpkZHGnOFH3dod5D7sWs8325yPs09tcaAh8IURCAFLKFjJIH5upn/6byGazHHjwoWyp+Gwp+2ypLNysOht65LEzoFRCDEa9jlmrRX0/SBKTlYC6pZmwQipZn2nLZdqoUpaVSNhrlzDwCKZcwok914mazOp7TtQe9hBorQnDMDHXuK5LpVJBSrlgMpgP2gW4YRjzFvbtmsJCobQmUBo/0ARK4StNEGp8pfnFC1N86fFNLef/wbrDt+t7uuFlTR6dTtS003RuJ6oOfXK+SSHI0BdmKIUFSmEfRd0XJxFBSMg4Y4yKUUblNkZFtE0wHv04PaIthYU6UYuFAdx6MIcTtRkb33Oi9rCnQimF7/uJjT5tr+/Wn6mt2soMnXTSSaxevbplrJsAb5/tz2emP9+/pYWUZPc8j49//ONs2LABISV/+snrOfbVJxAozU82/IT/+YmrqdfrvOb16/jwx69ruQfLEJhSMJQzueCoYZbnLUYKFiP5xc2HW9J5Hj/6+bfndKKGjUzVDidqRAZ6Hk5UQxsMMMiQHmZIDzPMCEN6iKIuIuNS2ArFtKwybdYomy5ly6dmhbgWSMNus7t3EkPDiRrN2hfmRO2ZayL03kMTu/pdaK0JgmDBQr69789UcToFIQSO42DbdsuWHku3ly1bhlKK/v7+RZntby9+9KMfkc/nueKKKxLyOOuss7j2T/6Eta8+gX+84w42bXqOy664itv/99d5+mc/5eN/9jnGR0e55vL38je334mUkg+cfw4f/eNPcsyxx/Lh91/Cey6+hDe84Q2YMiKNxnP18jxmwSO/vaVjbKbZdlcnapvwNoVDPnDI+xZ53yDrCRxPY/thYm7SQOA4BBmHSjqpzrFBRlRSjLceelgKUErt0Cx/ptl+N1iW1SHwC4VCh8CfjQxM01yQ4G8kCVpxJYqHH36YrVu3bvf76oZly5Zx8smddaR0w6ykNIcdvZbfbNpEoDS/nXQJlOaZZ59l5aHH8MKUx6HHnsBX/t+/4T2Xf4TfbHyWE197EoNZk5H9VzA0UGJy0y/Yd9UqvFqFM085EYDzzzuXh+6/lzef/ruL+jzzwZzkceutt/L4449TKpW48cYbASiXy9x0001s3bqVZcuWceWVV1IoFNBa87WvfY0nnngCx3G4/PLLk0VKHnzwQb797W8DcM4557Bu3ToAfvWrX3HLLbfgeR7HHHMMl1xyybx/GGeuuWH7MlG1jqKbGuGvlWb2dZMkQkLHxs9mKA80q8AGTm+d6x72DKRn++2CfdOmTYyOjs5L6M9nti+l7BDsfX19swr5bn25F/7taK0JQsWUGyT+hkBp/DDapzFZD1Fag4CsJTn4kEP52SMPcvoZp3PvP93Ltpde5ICBDMcffQQPP3Q/7z7vbbzwwgs89bOfseXFF7FNk5UrVybXW7lyJS+++OKufmRgHuSxbt06zjjjDG65pTnLX79+PUcccQRnn30269evZ/369Vx44YU88cQTvPjii9x8880888wz3HbbbXzmM5+hXC7zrW99ixtuuAGAa6+9lrVr11IoFPjKV77CZZddxsEHH8xnP/tZnnzySY455ph53XzRWTX7Ce0k0Yhucr1kCVMNhLaNn3GoF4st9Zt6JNHDzoJSat6z/Nn687E6N2b7DUHeEPwzCf1uBNBwAu8N6KYhzISG5tDQHlrIIe43sKUckXDDfJS1JKYUWFJgGtHeqjjYhmR1MQqbvfkLN3HdddfxN7fczJve9KZEO3rnO9/JM888w5lnnsnq1atZu3Ytpml2/fcWQsSO/mgZE6U0WkF5KmTTxhqeq3HrGrcecu67d6HZ6rDDDmPLli0tY48++ijXX389AKeccgrXX389F154IY899hgnn3wyQggOOeQQKpUK4+PjPPXUUxx55JEUCgUAjjzySJ588kkOP/xwarUahxxyCBD9oz766KPzJo8EWmO4Xsca16bbts61bRFkMglJNLKudY8kepgntNb4vr9gId/eD1IlY2ZCY7afFubFYnFes/wVK1ZQqVSwLGuvnO0vFqJQ905CSGsP7TBiQsiYEssWLQRhSoGchWTbj61Zs4bbb78dgI0bN3L//fcDYJom119/PSpe+POtb30Lq1btT7GvxAsvbKZSDtEafrXxeQYGRpgc78yTGh8LeeYpHzusYntTOPVx4JU78LZasV0+j8nJSQYGBgAYGBhgamoKgLGxMYaHh5PzhoaGGBsbY2xsjKGh5qKYg4ODXccb588X/f+9Cas2G0kUEoIInAza6P0RvZzRCN+cjylnNhKYz2y/3ZmbyWQSwT9fM4+5A2ug9Pf3z4ug9nZorRmteEzWA0IjTJGDiskB2isPGLHm4BiSvB0TgxRJFNNs5DDXvSgVaQi+r9AKtm7dxuDgMGEYcuONX+Adb7+AqYmQarWKUppcLsd//Me/IzBYvc8aAHLZPD9+9DGOPuIIvrP+m7z7vPNx3AmEDpFaIXSIUCFi27Mc9PP1iIFBxMAw7LO4CxMvqsN8JpWqGxqq1kJw3333cd999wFwww03kK3V0fk8avkydD4fbzkwTSTgxNveDtM0W0h7b4PWGs/zqNfruK6b7NPter2O7/vUarUZz5uPMDVNE8dxcByHTCaD4ziUSqWOsca+29ieYNvf238TDWitmaj5bJ5yeWGqzotTLpvjfaPvhYr3H1Xi0JWRSciQAsuQZCxJnyOxjKgfbQsjB600KjYVNcxFHW0dta+6+o949NFHmJgY5zWvPp4//MMrqVar3H7H3wPwptNO5+1veSsydJne+lsu+eD7kAJWLFvGzdd9gr7ycwit+NyVl3PVJz9K3fU49XUncdapJyIsE2FkwTQRpgmmhVi1muXnnLdT3jtsJ3mUSiXGx8cZGBhgfHycYjGKLRoaGmoJDxwdHWVgYIDBwUGefvrpZHxsbIzDDjuMoaEhRkdHW84fHByc8XtPO+00TjvttKS/+ZWHtJ7gezCx8GzopY49OUQ1DMMdmuU32vNBJpNJhH9j9t6I5Ok2y+82tiOzfd/35+V83hXYk38TC4HWmmk35KVKlCH9UrmZLf1SvPfaTEt9jsFI3mJVweLYFVkOXN7PK+way0vOHOSgCANNEC+P3hD6kR8hzjhXoOLjWs0c6C9EvKGRKASKv/rzv0CqEKF8ROgjAh+pAv7o999Aov1MPQ+GwZqRAv++/lvR8tdGvMXto/Z9BQ+c+T9a3xNt+lPsU2v/Dez2UN21a9fy0EMPcfbZZ/PQQw9x/PHHJ+N33303J510Es888wy5XI6BgQGOPvpobr/9dsrlMgAbNmzg/PPPp1AokM1m+eUvf8nBBx/Mww8/zBlnnLFoD9fD9qMx21+okG/vh+HcNasMw+gQ4o16PPMR+o7jYFkWy5Yt2ysE5ssJWmvKnkpKaLxU8RJy2FIOeKniUw9aQ4ALtmQkb7G6ZHPcPvkkAW4kTobLWUbL9UulIZ57bhOGFgS+joR+w7GcEAXJ+EyQspFYCNLQSBmbiHSIVEFECKGPCDxEGNBxMSGaJGCa4OSa5JCQxNIJTJgzSfALX/gCTz/9NNPT05RKJc4991yOP/54brrppmQ5xKuuuioJ1f3qV7/Khg0bsG2byy+/nIMOipZ+fOCBB7jzzjuBKFT31FNPBSIn0a233orneRx99NG8973vnffL6y0GFaF9ljnfZK25js0FIcSss/j5JnIZxuKUMtlbZtuLgT3pXZS9sENbSMii7FNrI4ecJVmeIoSkHe+zpowjiBRuHEnkxW2vrnFdFUUXuQqvrlEKDjkClq8otHyPECCkQEYryCbaQtNvELSQAkEIoQ/dJkRSdmgIaULANEHuWmLY2UmCSzrDfG8jj/bZ/nwTtMIwcrA1js0nWcs0zXmFac523LL2rDIne5LA3N3Yle+i6oex1uC37BskUfFaf48ZU7YQwvKcxXDWZNA06TMMZCiS8FIvRQRRX+N73UWWlGBnBI4jcTIC2xE4GcngYAHDmaC/lIscyTpAhkFEBEEQkUEYRG3VjRiMruYjTKM5JnfNUrYQ+5Yb6pJScVt1tCubnyf343+HWg1dr0K9yr43fX3R7mNJZ5jvKWgvxLa9Zp75lmZoF+J9fX0tIZzzIYXFmu33sPej5quWyqwvlb0W7WG6jRwcQ7Aib7FP1ubIYo5By6RomOSFgY0An6bGMBVpDGNKMdZe5A2wbIGTETiOoNhv4MSEEBFDRBSWrXGCMub0KGJiFD0+Ctu2wfgoemIUY2qC8rrfw3zFQW1XF5FWYEQOZpxMV5IQixT8oNMCPyXodWPTOm5rtG7009V5QdPYg0aghYj3cT81tqlqcN/EPnimTZCx8fMWf78oTxLhZU8ecxVimy8BzHe23y7E8/n8vEM3HcfpWpqhN+PuYUfgBqpVW2jTHqbcaDbuIMgi6TMMRhyLNXaW44p95KUkoyWmEhCA72mCKlBtfkcFTYUAaZAQQDYnKA1YTS0h0RiamoPQCibHYHwUJkbR4xEpMB6TxPg2mBiDMGh1GhsGlAZhYAjzgDWwfCUMDLeQgzaMSNjqyPGdCOVYSCsN2tdo7acEuUoJdGYW7LrpxE4EPWmB32hLoAs5iXhbAG8JGk76yC8zXRhk8wFHNRMUjcXVjJY0eaSTtRZi5lmMQmyFQoHBwcE5Z/np9u4O3+zh5Qk3UGyttPocXir7bCv7TFVCfFeTFQYZJFkkeSnpN01WS4eMlFgZgQhFazhPqhp0JPhjjaAUte2MTMYcR2A5AtMRKKJoJj9U+HUXNb41IoEtkdYQToziT47C1Dhqagy7MtGSwwUQGBbV/ADlfD/T/QcwtfIYJrMlJjL9jGVKjDklJqw8bqDxQ0Wo4R30cVCQQQeNxwjibXvQkOxRNJXQNOb8yREhmm2ZEugNh3uzIi8IERdqlKmxxvmQ2os5+2mMOEVOPXg5vh+Z+rwZzH3biyVNHl/+8pfnPGd3FGLroYddCT9UbK0EvFj22DIRMDrtU3VHGZ+oU3cVBJHGkEGSFRFBrBFZXkU+ukC7FJAaDNAmKEPjG5pQKnyh8aXCExoXRR1FXSs8HSfeuRqvGmVlG16VvsoEhdoEpeoE/fVJBusTDLmTDHpTDLmTLPMrHc9SMTKMOiXGnCKjhYMYHSox6pTisRLbnBKumcFCYxJiqxBLB5gqwPY8zFodK5iiEPr0qwBLB9gqYGjfo+jzzKaA17GwTwvgLqXWE4EuZdSWMhL2cR9pgBTzWk54e0qy/+QnP0EIwac+9SlOPPG1aAWf+9zn+Pa3v8Xk5CQ//el/xeHEzfIkjfDil170+MWGVlPg4Udsxw9sBixph/ldd931sizE1o6e2SrCnvIeQqXx4hIXfqjwk3br3gtVUgrDC5uF9LxQNc/zNYEXRRb5HihPI0KBEYKlJbYWZGJiyCC75jAoramjqMXCvjZLu44i6JK90DB7WAL6VY1l3iRDMQkM1ibor4/TX52gWJukrzaBE3Sun+5aGWp2DtfK4pk2vrQIhEGoNVqF6CDAUApLBdGmo72pIgKwVICpQ4RlQyYbbdkcZHKQzSEafSc9nqU4soKX8iVyg8NRWJWUjbjbXTopfOSRR8jn8lzxkY9w7733o7Xm93//zXzi2j/l1a8+kW9+8w6e++1zfOTDV/N//s/X+enPfsJnPv2XbNu6jcs++B7+8Y5/QUrJhg2Ps88+qzjzzet47D9/DqTILxU1NjFepjxpY9lRGRXbFhyzdv9Fe54lrXmsXbt2d99CD3sIQqWpeiFTbrhdAtsPNZ5q+9wcBOCF8eptocZLVVFVs0zHBCSCPitkYipqaATp8T4MrBlmtJ5WuELhSY0nNXUjQBhg2ALTgWwhQ6hdDEtg2oK8KeiXVkQAUmBKsJSP5XvYoYvp+VhulczUGNbENqypUazpMczpSWR1GmpVcOtRIu52zjcd08BxJGQMyNiJcBex8CeTiwkhC5kcIkUATULIIsyFLWqUGR5GbNqEcDIAFLb+C6a7ebueIQ2d/A88ayUT/W+OZ/6xvyS9Kc2rDj2e559/DqU05anIj7Rx46844ndeTb2mOP7413HbbRfx4T+6mmc3PsNrX3sSpiVYuWqEUn+JZzf+lKOPPobXvm5tYt4q9hsJcbRDSItV+2Z3+DlnwpImjx52L+Y7w24/5i2SwG4QwFwCeyEwpcA2moXu7JSz0ZJR+YqM2ShpIbCEwJESG4GtIk3AVAJDCYxQIMPIiaw8jQ6AkGSVyTSU1k0tAIVrBJTjSKN8VlLKmwwWDUYKkuWOjx16kUCvV5uhmLUquDWYrJKZ1NTHx5rjtSpUylCrROcsJBNeiMjRbDmQL0A2D7kC9BWhOAClAUSu0EkE2Vg7yOTAyeyxpt80F6YJAdqSBnV7FawmAjS1ahQ00+LbaCg5ZqTlOBmJlJArRFriKw89lB/95/2cccbp/OM//RsvvrSZvpLBUUcfzoMP3cu5572VF154nqee+ilbt72I7bROJqSc+Z1qranX60nJnlqttvszzHvYfWgX2IHSlGWVLWP1RRDY8efmIIDdLrAbxwwZtePPl4oFvFoVO65RlL5u87PRMdtoFrtrfL6xCptSulnGOk40a+7j5LRGDoKru6YGAARCUyekrEJqKbNQXYcYRkjOCOiTdQZFlWE1zf7hFCPuJMP1cYxaJSKGei3aGkQR1+eaK7avZlqRFIMod6FbYpthRmRQKEKxH/oHEYPDMLQcRlbCyD6I/sFFC1XdGdBaE/jgewrPazqG/VTbEC+RK/oMDkWVaKesM1HziFRvJBEmpUZE7PxuG2uYi4qp/kxwMjIOt4/e6edv+jzXXXcdX/ziF2YtyX7cccchpSQMQ5RSSXRnVEBRtWyNkN/Nzz/PL378Y3KWRc60yFkWvO51O/7SY/TIYx5olGz2wqbA9tqF7hwC21cqEfpBmCaAPUNgNwRoJHQl9jwFdvOzMwhsKZKCc61CvFVgLwZm8nk0BEySaFaL9tOuSmUpN8lhpiQ00AgZEhJQ1yEVHTKlNGM6CkWtoxKSyPlTDLkTjNTHWF7Zyr71cUbqY4zUxxmuT2DpLsK8YctPm3BKA9A/FNm7lCaWlFCvR2RSmY7IpQ3CyaD7o1BV0T8EA0MwMIwYGIquNzAMufweow0o1V3wR22VJAf6fjNR0Iv7s60kbRjgZEMOPCQ6SUpao5passtFQhDMQQI7iqjCrmL//ffn61//OkopNm7cyPe//32mp6dRSvGRj3yED3/4w6A1F110EcsGBylPTCBFXJ9LawzfxxICQwikaSEFyDhSa2h4Gacf9+qd9gxLmjye2FxpFbwds+ntEdidxxZTYHcK3e0X2NEMWjJYKlKrlrF3g8DeXVBhUwtoaAmbnxtnbLSKVwlwa0E07oIXSJTu/ryWqmOrKjKoosM6hB5eGDCNZlyabDEzbLbylKXAT0mpfneKkfo4I+44BwVlRlSFEeqMGD7DZoiTyUQk0J+FzABk90k5dnNoJxOFxbgxCZTLMDkO49vQE1EeAy+9EJmY2tFXioT/6gNayEAMxCTRP8Sy1fvu8uCBKFmWlPBX0d7tRgiNdnTOXAWPLVtgWSJy/DqCXEFi21G/4QxOO4Yb44YhkmVoc7mdkxjbyPVon/1360+MjxMGAZOjo0ghGB8bY9nwMGjNl7/0JS467zzyCFzPRwCFfI6HfvADsrbNiUe0hUoJQd6yk1hdLSLWU3H4mJfLMXZAAWUYKNNEmQYrFvG5lzR5XP/Ac3Oes90CW6aEdtsx25CJyWM+AntH1wGYC9GMe4mTgefhT1fxpuq4FRe3EuDVwkgz8MDzJW5o4CkbF5tAdCu2X0WGXrTwjTeJ7U3T509he1OosE5NK6aFZNww2WpnecnpY0umn61WEc80wWzWPirhM2L4jFghhzrTLM8ajORNRvoyLOvP4uRHInKwnQ4i1iqEyYk4gS2VzPbfG9Hj29ATcdJb0OZ3EBJibYFV+yEOPyYiiYGhaD2GgSEoDSKshTmMF4powatYyLt6BnOQ6hjzvaiO1EwQkhbBns0Jiv0mlt0kgk5CiEhDzGLbX+xnbwj62QhBqzjtT+s4l08kGoFsaAKNthGF+n/wyo/ww//8T8bGxzntTW/imiuuoFKp8Lf/8A8AnPWmN/Hu894JUrJ5y0u86z3vQUjJyhUruPmLXySwHRDw/3zmM9y5fj21Wo2jXv86zj//fD760Y92PEuYcai31bZaTCzpUN37n3w2tpF3F/I7U2DvSdhdIapaxTPnxHEbO2xjB25YrcUEoPE8gRsI3MDA0zaudvBEBs/I4ZoFPKsPLbvMZbTC9ssxIUxhqyq2quHgYksPR/rYpsZzTGqFIs8rk61mni3k2KJttoQWW3yBp1p/B8W4bHej2F578b2M2d3Or30fYs0g0RDGt7VmO0+O0SFFTbNJBP3DMDCY0haGI+2h2I9YxCKRL720dYYZv5pFE5jNbBfBMOk6008L/rQ2YDsNLWDnmoK6IQgCstksL730Evl8vishJMv1EeV/pEmg6xabhWaCplUTQETlQ4j7jXbjvMR+tsjY2YURl7Tm8aqRnceqezNmbY9nAAAgAElEQVS07zeFfRytQz0VsZOMVVvGdb2G7xFpANrG0w6uU8Kzirh2H55dxLOLuPYgnv0KAjMVJmjFG2AoD1tHBJARPiVjCtuawLE0tiPI5AzsrInTZ2MVsohMnmljiC2+ZGvF57dt6zpsqfjUAw0NC48ble1eXrDYN29xXKMAX95mpGCxLG+2lO1O3otbh/Gt8MIoKiGDhuYQ96cnO1+ok2kSw6uOis1IKW1hYAgKxe0SnFprwoAWE89MjuFIU4gcx4E/SRDMHjNsWa0CP1+QMwr+ZMwSyEUuczFfKKWSqKF0BFFj79VqaM9DBAEyCDGVwpGSnGmx7PBX0WeYMQFEy8FKw2Q2hSamk6bgT8xC7eTQ2t4ZRLAnYkmTx8sJXWf5cSROzZSorVs6hX4HEcSfSRmYQ2njJkI/vS/hZQ/AdfrxckXcYgHfyMW1eDruDscIsE2FY0O/I3CyBk5eYOdsnJyZFLezMxLT7PzjapTt/m26AN/zPlsqHlvKlY6y3XlLMlKwWNlnc9TKPMvzFmv2GSIb1liWt8jbrWs6UK1Ewv+5SGNQcY0k3dAWxrdF57Qj39d0Nh+wppMY+ociP8YcAkOraMbfIvhbnMCdZqBGe641JhLB7giyBUnJkhRLOQJV72oGsm2Bae1ev1ejgnSDCNrJIKjXwfUg8DFChaEUNiRRQznTZMCyyDciifJF7OLAjN/3XC6PbVmtM30hCNPCP34f6fbLhQi2B0vabLUUSrJ3n+VHs/iOWX6tinZrTWJIH+/mOO32fbaDV1iGl1+Gmx/Gy/ZHBGAX8cxCZCYSWVwyeNoi1N3NJKZJUp8oXebacWTcb1Y3te25bdJVP2xdBa6tEF/F7162e3nbQj/L430hJgetFJQnYXyUvsBjatNvIiJoJwavLeM5yrDqdDa3+BeGEE6rbyUMdasTeA7B3zATtbs3Ot63RYvtf2ZzUKt/wOhCxLDrTZm+77doBQ0SqNdqaNeNNAI/QAYBptZYGrKmGQt/MyKEmAiyloUxg9DWaAIEgZQo00CbJtg2WBbKNFCGGe+bTuLB5cvZ9Nvfdphw9jroVClGrahVxinJCYSqI1Qdqer0H/7ORfu6nubRBVqFcShkrW2WX41n87VOod8+1miH8yi+JmUzmSrOoiVfQAyNoDNZwkwfnlPCtUuRf8DI44kMrnDwlI0SGSp1hetF6yB0gxAkZaxtR5Lvsu5BuqDdTEJpJlT9kK2VoFmuu23xn3LHmg4i8TUctiyb8j3YjOQtCraMbNHpiqrPNyuqho3qqnFFVYDEoJSqqCr2fQUcubaFJHT/EGF+AD+U3QV+TeNNanwvWlQrfXymnI7GO04LficjKBQltm12FfyW04wgmi3Za1cjDMNO81C1hu/WUXUX4Ufhwg2NwNKQMQxylknOtBhKaQSZbAGyhe7fozW+EIQNIrAstG1RteyIAEyzhQSUYaAjx8nCHmgPzlNpgdaASvZCKyIyiMq3i5gUGucI4uM6Wua2SR4R7Mpv6C9/r+1LeuTRAa3jGPguM/rEfFOvtQn8LklYC5jlYztttXSyMDwSZ9lm2wghh4jLLignGxNAFhcn8iG4qcS0JPw0lYTmxlsKpgWOI8n32eRLIYMpckjvndhuvSNminqgWlZ/29JWpXXabZWqttEkh0OHsy1aw/K8RUGGiDjqSE+Mwn+ntIXxUdTEaBSxpNscz5admJFYcxiqOERQGMTPD2Iv25dR5eBaRSL5lvIPuBp/q8Z/vmEK6mKiiiENWoR8vmB0RgKlBH/kF5CY5q53CM8FrTWu67ZqBLUaYb2Odr3YR+BHPoJYI3CkJG+aFCyLkVSCmWlnwe5e7sLvQgSubeM5disJGAY6Jga9VIT6fKCbM/7IZa6Sdqtwj4S/mJEo5kKqjLuI4ry0NGnEfCFk7IiXeFmD8dJlKJlFGxm0zLByER95SZutnrvsHds5y0/N8OOkLNE+1kXotydwNSJj0kloXtuqZ26yPGZzycyZolmEjNY6SIR+i5mo01xkxI7LxTBRzFS2u0EYk23kYEnRGanUiFYyA0rV8XhhnrFWM1KsRVCe6rgHncmhioMEfUME+UG83CBedpCaM0jNHqBqD1LTuSSMdM7cAKtb9I9oOoGt6F13yw3YExGF0Laah9xqFeW6qLoLvo/wfWQYYiMwlMIRomkeamgDpjljFKLSGg/wBRERGCbYFtgW0nEi7SAhg6aZaE/2DTTzPGYwW7WZe7oK926CvnFu0p4LokW4R4XcZdKOjjVJAWTsiE+NLeA996KtZkPLLL9VuCcCv73Kpm3Pa3bYSEJrLoOp8coKd7ShGdQ61knuBssWid+gr2gwPNK62I2TaWoHO9OJ6cVlu5OV4Nq0h4l6KzmYUkR5DXmLE/btYyQfRSmNGD7L/SlK5VHEZByFtGkbeqzpYxD1auvCPECQ6cPPD+FmB3BXHBgRgdVPxYxIoe4MEJqds1ohwDabYdhZR1BsMwE1hP+ykQEq1ckkKmhX5QZsL4IgaDqJazX8Wo2wVkd7XhI1ZIQhptJYWmNLQdYwKVoWK2JtwDYMECZkTWh7fb7WUbl0GWsEhkHFsqg6NtJxELadMglFey0XJqD2COgwtuu7SFX/v+3de3wV9Z3/8dfMmZOTQGLIlYtgAS8oFqyKF2BJjEbxTq1VVLTefmqrFVqrrFVEqbUPdYvW7MNV9+Ei7q6V1t1WW1ewclFK1FhU8NI+8IIauQVCCJDkXGfm98dJTu4JR04mB/J+9sHD5GQyZ76n8P3M9/udeQ+GHUzM8RtOCEImVqgA01/UOgroYbqnWy2de0vnb/hwDX+iw3fpMCJoUxTA4Laf3b6PkezZnSLZf/GLXzBlyhSCwSA33ngjX331FT6fjzPPPJO77rqrrz7Znj+OA3nkkcyCecuNT23ziSLtcor2/TnJ7aeEOowI2n6d4c1ljYWFhWyt2UFtU9ejhprGKLuC7U/TLRMKB7W5z2GwRbEZpTC6l8LGOnLqa6EuPlIwdtdi7qnDt3cnpt1+5dfFIBwYQiiQRyiQTzAzXgjCmXkEA/mEAvmEA0MwAhntLwHt6mawdl+bzQvC+z4V1J+R7I7jJKaHQk1NxIIh7FB8sZhoLDEi8Lsulkt8RODztVkktvB1k6Drui5h1yVK26khC/wWZATwZQYwAoH4iKDNInFtXZ3Hn8I34LoYbqRTh5/42m75Otj+9bY/czs/vrajrdkXkpE3mvade+sZfscRQadCwf7fi/H2228zePBg5syZkyge5557Lvfccw+TJ09myZIlVFdXM3fuXBYvXsz69et59NFHqa2t5corr+SVV14hHA7z3nvvMXXqVCKRCDNnzuTWW2/l9NNP7/R+Gnn0wLa7mBpqGSW0mSZqCbDrbmSZEWgdBeQOMduNCDouJvfXvHbMcalt7LDW0FwgdgQ3UtsQaXfuZBpQmOWnIMtifG6AgkNM8iONFAR3U7C3lvw92/Dv3YnVUIe/qY6MYD1mh7wlx/DFi0JmPqHAaEK5xxMZVICdnY99SD7OIQUYuXn4M63WReIMk+w2C8L9fW/AN5G4jLSpiUgwRCzYhBMK44TDEIlg2nbzGoGDHwhgEvCZDLH8HOqPTwslWIH4n+ZRQcx1CDsuEVxihoFt+thj+diT4cfIiI8IfFlZuH6rdY2gl0XiLtfwvVpPcKLJdfp2qNP2Ri9n/S4+XF8mjhmft3fNTGx/Dm4gC9cM4PiyEq8ntvFlNX8doKDoUMKbtuALxDvS97b+N/Whr1L6MQzJ/BYnDL+yx21OPfVUvv66fSrG559/zqmnngrAtGnTmDVrFnPnzuWTTz7hn5pDDAsLCznkkENYv349xx9/PFOnTgUgIyODCRMmsHXr/sfLfxMHdPF45X+6uGGL+IJnS4ff9jnJHR+P2VI00uFKF9txqW3q8AzpvVG2NReIumD7R/QYQK7fxxDTZBQO3yZEQXAPBU11FDdsp7hhK9mhnQTCuwhE9nT6B2r7Mghn5RMdVEDjsPHsySnAyc3HzY1fkWQWFuLLPYSMTB+DMgxyW6aCDrQpDeLTQ8GmJiKNTdih+NQQkQhuNIoRjU8N+V0XP5BhGGSaJgUti8RtO2HTgszWfzJh2ybsthaCkM9Hk88HGX6MjABmZrwQGBkZ8UVin4Vrdn8G6xIvBD1c0JVaro3hhPf5LL+1ww9iNv+e4fa88ORi4JqBNh17Fo41BNsXiC/kmu2LQvsiES8AGNb+nfV3lVyQJsaNG8df/vIXpk+fzssvv5yYTRk/fjyvvvoqM2bMYMuWLXz44Yds2bKF448/PvG7u3fv5rXXXuP6668HmqNVmq/Ocl2XiN1EOLgD241gOxFsN8oINPIA4OgJmR1GBvFpJMufXh2cbcenxGr2RNm6u2XUEGFHMMbOUJS6SIzdUbvT+Vc2BrmOw7BYiGMjjRSHdzM0uIPhDVsZ1riF7FAtGV08ytMODMbOyccpKsDNPZxQXiFmfrwgWIWFmIUF+Adlk3EAFgLHcQg3F4JYsAk3FMaJRDCiUXYDdiiM5bpk0FIIfAyxrC4Wic348yn8AWzXJWTbhF2HKBAzDOp9PuosH/ibRwSZmfiysvBlBnAtf5eLxAbQ8a6ZPisELdM9XXT6phOCsI/Be3d2MyoI7vN0j2v4E518/Cx/EK4/v8NZfucOv+V118honvZJH72NEFKhY0cev0PFJWqHcV2HiN0ErsuDD9/Pgvt+ycJHfs0Z5WX4/RZN0Tou+N6Z/GPDB0w/+0xGHDqc7xw/gYi7hz3hLfELdGJRbv7hz7j8qos4pNilLvgFHddttu39nA93/We71yaNOzdlbTygi8eR4zM9e6/4/2F0Gw8dDjvsbIpRG4xR11wQdsVi7I7Z7HVtGuhcHAY7LnlOlG/FmiiO7mVYeCfDm2oYvncLQ3dXkxnpXBjcnObnLowdipF3LOQVkHPYaBp8GYmIDF/Au89lf7iOQywUShQCp3mxmGj80lGf3fbyUYOA6WOQZcUXiTvyxbNPIpkmIcduXiOAJsNgj2nEz/gz/BiBAGYggJWVhS8rCzL8nRaJDbr/h5GyYuDGms/mW87yw61fd3eWbwfbvB5uXvjt3iB88U7eF8BtLgAxfyFuoHmKx5fZZronq8uzf4y+SaL1ku3EsJ0Yjhtr15G3/RrXxcVp7vDdDts5rds1/6zzdu2LRHcL8I3RGhw3RkNkGwDDvpXDE888BMCXX1SzcuVKQrHdGIbJHXf/mPijwwyu+P7/41ujR8W/M0zum/dLxowZw/X/77r4w8UMo/khY/GfGxgUDjKZmj0bn5GBz8zAZ6Q2UPOALh7fRMtzAzreGNZVdlD7+wQcmlyHvbQWg72uzV5sGpq/7/hPOQebIjfMqFgDxZF6hjbtYNierQzdVU1x4472z3QwmxNVhxTAYQUYeUcm4i9aozDyu3wEZ1ZhIY39/exu18UOhYg2NmIHQzihEE44fg+BEY3hc+JXDcVHBCZZPh+ZltX1ncSmheP3ETJjhGyHsOsQBhoNlx2ug4MB/gyMQAa+5hGBf1AWRYce2mmR2KL7v+Tf+EoR12kz3dNmisfurcNvc/afxHRPy1m+Y+Vi+4Z2fZbfoRjkFx1Kbd2etLtyynFj2E60eSol2mZKpeX7aJvvI83fd7VdpMO2Xe0z/nMXhwl5P2CY7/BvcMQGBmbzdG3bDtpIdORG84J6y/+66shbfmewP4ZpWBySMQIMg521dRQWFuG6Louf/A3X/OB68rPGEAwGcR2XQYMGsXr1agIZgzjh2/E1kIceeohQY4zHHnkYs4e1rewMH4MGjf4Gbd43B3TxCDY5nTr+roLjIuGWiOnuYyLclseAWjZB06XBjBeFPa7N7liM3XaMjjlzhxBjqNvEmOgeioM7Kd5bQ/GuryluqqMwvIuA09xBWP7W6IvhhTB+SvPdzvmJ0QKHDMEw0+Asz3UxHAc3EiHWFCTWfEMZXY0IgIBhkukzyfR191fJJOqzCLoQMmzCjsMeHOpsFxsH17Jw/fF7CMzMTKysLPyDBsWvIGrzD6OnItD6VvswPdJ2uqfTWX6oy0s9O839u+He38bwd+jYs3D9eT12+C1rAvHv93O6xxfotXC078i764zbvt5bZ91VZx/t1JF/U6bhx2f48Zn+NmfTGfhMP5YZIGDmJL73GRnN22aQkz2EzPC3GOQvbNeRd+7wTdoWhtbtUuPmm2/mrbfeoq6ujlNOnsrtt99OY2MjixcvBuJXXl12WfwO8NraWq644gpM02TYsGFUVFQA8StMKyoqOOKII5g+fToA1157LVdccUXKjnNfHdCX6j716N+7fL0lJqJdJpAfoj6XvTjsceLTSbtiMerC8XWHHU0xoh2e+nQIEYpiDQwN7aK4YTtFe7YxtPlpcEWhXQScaPwekvzC+KggkaJa2O7pbWTn9OlCc7eXqLoupm1jRGNEg02JEYHbvEZgxGx8joPlOGRgEDDjawRWD51wMBYlGIsRchwizTeUxQwjcdMYGRkYgQC+zEysrEz8gweTkZmZukeZurEOZ/mtHXt2lklwz87OHX5i++A+Tfe4mD1P63Tb6bdc+ROIL/Lua5NcFxe7U0ccc6I4HTromBvF6dSRt7zeup3ph1CoMb5dN8UhNR15Rpv/tum4O/03o02H3ua1lt/vtG3Hffubz/CT1+tNggcpXarbg4mTstqkhELYgPpIjNpQ/AqlL1suaa0Ps70xRrjDv5VsJ0xxZDeHNdUyqXFH/MlwoV0UB+soCu8iKysAQ5qjtosLYNwYyDup/dPbsjz6C+k4mDEbIxbDDYeJBYM4oTBuJEwdn+AEg82FwCXDiE8NZZpmt0XLdhyaYjbBWJSQ7dBAfI3ANuOXj7r+DiOCQfERQWZWFr7mNYeM5j/7rN10T5spHruLaZ3EqCDYfoqol+mewYCTmO6Jn+U7vhxsf3H3HX7zpZ2umYltBHAME9uN4rTpbGPNHXPbDjrmhLBjezq/3vx7TofOOtb8c8ftPD3jfvNJtA4debwTDriDcDGwzEwC5iHdnrG3PUPv1Gl32nb/O3I5eBzQxePVul1s391Ezd4I20MuoQ4P/BlshygO7mJ4cCffaTNiKA7votjvMig3J76mUFAARxRC3rh2j/I0Mrp6Wt1+cl0M28G0488ccCMR7FDnEYHVphAEDBN/D2fuYTtGUzRGUyzKXsdJLBbHTCORKdQSL2EG4oUg0FwI/H7/vk0JuS64UUynESPSdi4/3DzH3/VZfvvLPvdlusdqvYTTCBA1A8T82URNP1HDIoZFzPARM0yihi+esGqYxIDA4MHsbtjbruNv6cjt2E7sSOuZfKzN2biTwo68pYM1O5xNW2YGfjOLTCu3lzP1rjrrns7QrS478v68YVIGhgO6eKz8+zaKQ3UMDe1iQnNxKI7sptjvUDzIIju3+VkMYwsx8sYnRgvk5mFYKWi662LGYombxohGmxeKw7jh1sA5n+3ELx9tHhF0FzftuC7BWIymaJSmaJSQYxNpDpyLGQZ2SwS1P37VkJUVXywefuihhEIhMjIyyDQMurzWqt10TxjD2Y4ZDmEEu5jW6WIhGDuIi0MMN/HHdt1238dc4h28YREzLaKYzR27GX/NZxEDYtD8uw4x18bGwXZjxNwYtt2E7dYmOvRUdOQtHW5Lh26ZGWSYg/BZufHX2nTQluHH7NCRW83fmx2mVax2RaL7jlzkYHRAF4/nstdjHFaIkXcoDJkYLww5ucnPrzcvErcUAdOOYURjOOEITjgEkebAuZgdv2rIbZ6y6eF9oo4dHw1Eo+yNRQnZdusagWni+Excf2vgnJmZiT8ri8ysLLKyssjMzCSnZf+ug+FEmjv3+Fm/6zTi2DtwYo34935MuGEnEbsR2wliOyEcO4TthLHdcPMceaxDR+9id/g+fhZvYEOb1xxs14kvbqewI2875+03Mshs81pLh261+R0zcQbfvmM3m8/QLTODooJh7K5vSEzjHIg3NIocKA7o4uG7+OrOL7pu4jGULVND8VFBpHmNIJLIGYo/i8CNJ5D20NEEY9FEIWiKRWmKxeKBc4ZB1ATHZ2L7DdwMEzJMyDQxM0z8AROf38Rv+TGw4x273YRjB3GcULyTd8LYbig+bRKMYDdFsd0YthuNn5W7dnMH3v4sf78+N8NqngJpO9cdaNOZ97Rw2dtUS+eFT9OjjnxwoICg74C9/kPkgHJAF4+sTz6LP53MjuFrTh710332lO06BO0ITXaEBjtM0A3T5IQJEyFiRpv/RIj4okR8YSJmmIgvBIEYGPE/Ds1z5G4sMdXS+Y2IP097Hx4LYmHgw8DCxDJMfIYPn2FhGX4yzKw2Uy4Z+HwBfGYmppmJz8zCNDMxzUHkDhlKsCm2T3PoXnXkInJwO6CLh9lYQ4ggISNEkCAhs4mQESJEkKARjL9GkFDz1xEiPV4eZGHiM0wsjMQichZguQY+18AyjOafGfjwYZkWFgamYWEZGfjMAKaZgc/MTHTyppmFzzcI05eF6RuMaQ7G9OVgWjkYvsHgy2qOcPjmHboWR0XS32233baPkew53UayA8yaNYuamhps2+bkk0/mV7/6VeIKSC8d0MXj1cyXyDB8ZJgGfiNeFywcBmFziGtjuTZ+wIeFZRyS6Pit5mmqeBGw8PmywMwE36DWyzh9HVI6217r3y7LJ/CNIxw0wSIycFx66aVce+21zJkzJ/HaHXfc0S6S/YknnmDu3Ln89re/BWDFihXtItlN0+TJJ58kJycH13W58cYbefnll5kxY4bn7Tmgi8dFfquLKOZ96fAziZiZhM1MMFOb9yIi6e2QTVvwB0Mp3Wc0K5M9I3u+AS9Vkew5OTlAPC06Euk93LKvHNDFY8fhD6Rddo+IyL76ppHsV1xxBevWraOsrIzzzz+/X479gC4eKhwikqzeRgheeuSRR7jnnnt49NFHOeuss/D74zMhl112GZ9++innnHMOI0eOZNKkSVht7k377W9/SygU4tZbb6WyspKSkhLPj/3ALh4iIgewI444gueffx6IT2GtWLECAMuyWLBgQWK7Cy+8kDFjxrT73czMTM4880xeffXVfikeuh1WRKSftFwl6TgOjz32GFdddRUAwWCQpqYmAFavXo1lWRx11FE0NjZSU1MDxNc8Vq5cyRFHHNEvx542I49169bxzDPP4DgOZ5xxBt/97nf7+5BERFKmbST7iSee2GUk+8yZM4HuI9mbmpq49tpriUQi2LbN1KlTEwXHa2kRye44DnPmzGHevHkUFBTw85//nDlz5jBy5Mgef69lcWmg030ecfocWumzaKVI9lapjGRPi2mrzz77jGHDhjF06FAsy2LKlCn87W9/6+/DEhGRbqTFtFVdXR0FBQWJ7wsKCvj00087bbd8+XKWL18OwIMPPkhhYaFnx5jOLMvSZ4E+h7b0WbSyLItAINDuaqWBIBAI9OnfgbT4NLuaOesqf6m8vJzy8vLE9xqWx2mKIk6fQyt9Fq0KCwsJh8P9EuHRn8LhcKe/AwfdkwQLCgrYuXNn4vudO3eSl5fX6++l8oM40OmziNPn0EqfRaus5gefDSRZWVl9+ncgLdY8Dj/8cLZu3cr27duJxWK8+eabTJo0qcffufPOOz06uvSnzyJOn0MrfRat9Fm0SuVnkRYjD5/Px3XXXccDDzyA4ziUlZUxatSo/j4sERHpRloUD4ATTjiBE044ob8PQ0SkT8yZM4fXXnuNwsJCVq9eDcBHH33EHXfcQVNTE6NGjeKJJ55IRLLffvvtrF+/HsMweOCBB5g6dWq7/V111VV89dVXiX15LS2mrb6JtgvnA50+izh9Dq30WbRKl8/isssuY8mSJe1eu+2227jnnnt44403OPfcc3n88ccB+K//+i8A3njjDV544QXuvfdeHMdJ/N7LL7/M4MGDkz6GVH4WaXGToIhIX9q8eTMZGfEnwUWfexKnemNK928eNhb/rB/2ul11dTVXXnllYrQwduxYPv/8cwzDYPPmzcycOZM1a9bwz//8z0yaNIlLLrkEgIsvvpi7776bE044gYaGBi677DIWLlzIDTfc0O3IIxKJcOihh6aukR0csCMPEZED3dFHH82yZcsA+NOf/sTmzZsBOPbYY1m2bBmxWIyvvvqK9evXJ3720EMP8aMf/YisrKx+O25IozUPEREv7MsIwSuPPfYYd911FwsXLmT69OmJ0dEVV1zBp59+yplnnsmoUaM46aSTsCyLDz/8kC+++IL777+f6urqfj32tCge9fX1LF68mM8//xzLsiguLuakk05i7dq1XV5a9uSTT3L++ef3mn0lIpLOjjzySF544QUgHsnekqBhWRb3339/Yrtzzz2XsWPH8uabb7J+/XpOPPFEYrEYtbW1nH322YnRy774+OOP+fOf/8ydd97J2rVr2bRp0zcKou334uG6Lv/yL/9CaWkpP/nJTwD48ssvWbt2bbe/88Mfps+Zg4jIN7Vjxw6KiopwHIdHHnmEq6++GoiHGrquy+DBg3n99dexLItx48Yxbtw4rr32WqB1/eSJJ574xu8/adKkXu+p606/F4+PP/4Yy7I466yzEq+NHj2axsZGPvroIxYuXMjXX3/N2LFjufXWWzEMg/vuu4+rrrqKww8/nKuuuopzzz2X9957j4yMDO644w6GDBnC2rVr+cMf/kAsFiMnJ4dbb72VIUOG9GNLRWQgu+mmm6isrKSuro7jjjuOuXPn0tjYyKJFiwA477zzuPzyy4F49NLMmTMTkewtV2H1JBgMsmvXLkzTJBqNsmvXLkaMGIFhGKxbt47FixeTk5PT7qFSr7/+Op9//jnXX3990n1mvxeP6urqTk/IavHFF1/wyCOPkJeXxz333MOGDRs4+uij220TDoc58sgjufzyy/nv//5vVqxYwcUXX8zRRx/NAw88gLE9h2AAABv1SURBVGEYrFixgj/96U/84Ac/8KJJIiKdPPXUU12+fuONN3Z67bDDDuOtt97qcX+HHXYYq1ev5osvvki8Fg6HGTVqFD6fjy1btrBhwwbGjh3LU089xfz58xk2bBiPPvpol/tLts/s9+LRkyOOOCKRtjt69Gi2b9/eqXhYlsWJJ54IxC97++CDD4B4Uu9vfvMbdu3aRSwWo7i42NuDFxHxWNv04OzsbLZv305mZibFxcUMHz4cgJKSksTaSlvJ9pn9XjxGjRpFVVVVlz9rG2Rmmma7m2Ra+Hy+RAKvaZrYtg3AokWLOP/885k0aRIff/xxYlFKRORg1TaN3DCMLvvM7iTbZ/b7fR7f/va3iUaj7SrhZ599xt///vf92m9TUxP5+flA/C5NEZGBaMSIEWzfvp1t27YBsGbNmi63S7bP7PeRh2EY3H777SxevJiXXnoJv99PUVERJ5100n7t95JLLuGRRx4hPz+fI488ku3bt6foiEVEDhwZGRncdNNNPPjgg+Tk5HD00Ufz9ddfd9ou2T5T8SQictBrG08yUCieRERE0o6Kh4iIB+bMmcP48eMpKSlJvPbRRx9xzjnnUFpaypVXXsnevXuB+Khh9uzZlJaWctppp1FZWZn4ne9+97tMnjyZsrIyysrK2LFjh+dtARUPERFPpDKS/YknnmDVqlWsWrWKoqIi7xrRRr8vmIuIeOmpqi1srAuldJ9j8zO56ZSenxc+efLkTmGGn332GZMnTwagtLSUmTNncuedd/LJJ58wbdo0AIqKisjNzWXdunVp9cA8jTxERPrJN4lkh/gUWFlZGQsXLqS/rnnSyENEBpTeRgheSjaSHeJTVsOHD6ehoYFrr72W3//+98ycOdPzY1fxEBHpJ8lGsgOJmJHs7Gwuvvhi3n///X4pHpq2EhHpJy1XSnUVyd7Y2AjQLpI9Fouxc+dOAKLRKH/5y1865f15RSMPEREPpCKSPRwOM3PmTKLRKI7jUFJSwlVXXdUv7dEd5iJy0NMd5qmnaSsREUmaioeIiCRNxUNERJKm4iEiIklT8RARkaSpeIiISNJUPEREPJCqSPZIJMLPfvYzTj31VKZMmcKf//xnz9sCKh4iIp5IVST7o48+SmFhIW+//TZr1qxhypQp3jakme4wF5EBZf3aBnbXxVK6z9x8i+MmZfe4Taoi2Z9//vnESMQ0TQoKClLaln2lkYeISD9JNpJ99+7dADz44IOcccYZXH/99Wzfvr1fjl0jDxEZUHobIXgp2Uj2WCzGli1bOPnkk7n//vt54oknuO+++/i3f/s3z49dxUNEpJ8kG8men5/PoEGDOO+88wC48MIL+e1vf+v9gaNpKxGRfpNsJLthGJx11lmJNY+//vWvHHXUUf1y7ErVFZGDXjqk6raNZC8qKuoykn3evHkYhkF1dXW7SPbf/OY3jBo1CoCvv/6aW265hd27d1NYWMhjjz3GyJEjO71fX6fqqniIyEEvHYqH1xTJLiIiaUfFQ0REkqbiISIiSVPxEBGRpKl4iIhI0lQ8REQkaSoeIiIeSEUke0NDA2VlZYk/Rx99NPPmzeuX9qh4iIh4IBWR7NnZ2axatSrxZ+TIkYmoEq8p20pEBpRVq1alPIm2uLiYsrKyHrdJVSR7i40bN1JbW8upp56a0rbsK408RET6SbKR7G394Q9/YMaMGRiG4flxg0YeIjLA9DZC8FKykextvfjii4lprv6g4iEi0k+SjWRv8dFHHxGLxTjuuOO8PeA2NG0lItJPko1kb/HHP/6Riy66yPsDbkMjDxERD7SNZD/uuOO6jGS//PLLAaitrW0Xyd5xeuqll17i+eef97wNbSmSXUQOeopkTz1NW4mISNJUPEREJGkqHiIikjQVDxERSZqKh4iIJE3FQ0REkqbiISLigVREskM806q0tDQRpLhz507P2wIqHiIinkhFJHssFmPevHn84Q9/4I033mD8+PH8x3/8h+dtAd1hLiIDTNa2l/CFN/e+YRLswKEEh83ocZtURLJPmDAB13VpamoiPz+fvXv3MmbMmJS2ZV9p5CEi0k+SjWT3+/08/PDDlJaWMmHCBD755BNmzZrVL8eukYeIDCi9jRC8lGwkezQaZfHixaxYsYLRo0fz85//nMcee4zbbrvN82NX8RAR6SfJRrJ/9NFHAImpqhkzZlBRUeHxUcdp2kpEpJ8kG8k+fPhwNmzYQG1tLRBfUD/yyCP75dg18hAR8UAqItmHDRvG7bffzowZM7Asi1GjRvXbyEOR7CJy0FMke+pp2kpERJKm4iEiIklT8RARkaSpeIiISNJUPEREJGkqHiIikjQVDxERD6Qqkv3FF1+ktLSUadOmsWDBAs/b0ULFQ0TEA6mIZK+rq2PBggX87//+L3/961/ZsWMHq1ev9rwtoDvMRWSAWbvpWeqCX6Z0n/lZo5k08uoet0lFJLthGIwdO5bCwkIASkpKePnll9uNZryikYeISD9JNpJ9zJgxfPbZZ1RXVxOLxVi6dClbtmzpl2PXyENEBpTeRgheSjaSfciQITz88MPceOONGIbBSSedxFdffdUvx67iISLST5KNZAeYPn0606dPB+A///M/8fl8Hh91nKatRET6SbKR7G1/p76+nmeeeYYrr7yyH45cIw8REU+kIpIdYN68eXz88ccA/OxnP+Pwww/3vjEokl1EBgBFsqeepq1ERCRpKh4iIpI0FQ8REUmaioeIiCRNxUNERJKm4iEiIklT8RAR8cDmzZu56KKLmDp1KtOmTePf//3fAdi1axff//73OeWUU/j+979PfX09AK7rctddd3HyySdTWlrKBx98kNjXkiVLOOWUUzjllFM6JfV6RcVDRMQDlmWxYMECKisrWbp0KYsWLWLDhg1UVFRQUlJCVVUVJSUlVFRUALBixQo2btxIVVUVCxcuZO7cuUC82Pz6179m2bJlvPrqq/z6179OFBxP2+P5O4qI9KPB1V9jNQVTus/YoCwaDxvV4zZDhw5l6NChAGRnZ3PUUUexdetWli1bxosvvgjAzJkz+e53v8v8+fNZunQpl156KYZhMGnSJHbv3k1NTQ2VlZWUlpaSl5cHxKPcV65cyfe+972Utqk3GnmIiHisurqaDz/8kBNPPJEdO3YkisrQoUOpra0FYNu2bYwYMSLxOyNGjGDr1q1s3bq13Z3jLa97TSMPERlQehsh9LWGhgauu+467r//fnJycrrdrqvkKMMwun3daxp5iIh4JBqNct1113HxxRdz/vnnA/EnBdbU1ABQU1OTeErg8OHD2z3oacuWLQwbNowRI0YkHhrV9nWvqXiIiHjAdV1+8pOfcNRRR/GjH/0o8fr06dP53e9+B8Dvfvc7zj77bADOPvtsfv/73+O6LmvXruWQQw5h6NChlJWV8cYbb1BfX099fT1vvPEGZWVlnrdH01YiIh6oqqrihRde4Jhjjkl09nfffTezZ8/mhhtu4LnnnmPkyJE8/fTTAJSXl7N8+XJOPvlkBg0axGOPPQZAXl4et912G2eddRYQj2VvWTz3kiLZReSgp0j21NO0lYiIJE3FQ0REkqbiISIiSVPxEBGRpKl4iIhI0lQ8REQkaSoeIiIeSGUk+8yZMzniiCOYNWtWv7QFVDxERDyRqkh2gFtuuYXHH3+8v5oC6A5zERlgos89iVO9MaX7NA8bi3/WD3vcJlWR7EOHDqWkpITKysqUtiFZGnmIiHhsfyLZ04VGHiIyoPQ2Quhr+xvJni408hAR8UgqItnThYqHiIgHUhXJni6UqisiB710SNV9++23ufDCCznmmGMwzfh5+913380JJ5zADTfcwKZNmxKR7Hl5ebiuy5133snKlSsTkezf+c53ALjgggv47LPPaGxsJC8vj0cffZTTTz+93fv1daquioeIHPTSoXh4TZHsIiKSdlQ8REQkaSoeIiKSNBUPERFJmoqHiIgkTcVDRESSpuIhIuKBVEWyf/jhh5xzzjlMmzaN0tLSRKii13Sfh4gc9NLhPo+amhpqamqYOHEiDQ0NlJeX8+yzz7JkyRLy8vKYPXs2FRUV1NfXM3/+fJYvX87TTz/N888/z7vvvsu8efNYtmwZn3/+OYZhMHbsWLZt20Z5eTmVlZXk5ua2e7++vs9DwYgiMqA8VbWFjXWhlO5zbH4mN50yosdtUhXJfvjhhyf2OWzYMAoLC9m5c2en4tHXNG0lIuKxVEWyv/fee0SjUUaPHu3ZsbfQyENEBpTeRgh9LVWR7DU1Ndxyyy3867/+ayIry0saeYiIeCRVkex79+7liiuu4Oc//zmTJk3yuBVxKh4iIh5IVSR7JBLhmmuu4dJLL+XCCy/sl7aArrYSkQEgHa62SlUk+wsvvMCcOXMYN25cYt8VFRVMmDCh3fspkl1EZD+lQ/HwmiLZRUQk7ah4iIhI0lQ8REQkaSoeIiKSNBUPERFJmoqHiIgkTcVDRMQDqYpk//rrrykvL6esrIxp06axePHifmmP7vMQkYNeOtznkapI9kgkguu6BAIBGhoaKC0t5f/+7/8S0SUtFMkuIpJC69c2sLsultJ95uZbHDcpu8dtUhXJ3rIPiBcIx3FS2pZ9pWkrERGP7W8k++bNmyktLeX444/nxz/+cadRhxc08hCRAaW3EUJfS0Uk+6GHHsobb7zBtm3buPrqq7ngggsoLi7us2PuikYeIiIeSVUke4thw4Yxbtw4qqqqPGpBKxUPEREPpCqSfcuWLQSDQQDq6+t555132j2a1iuathIR8UBVVRUvvPACxxxzDGVlZUA8kn327NnccMMNPPfcc4lIdoDy8nKWL1/OySefnIhkB/jkk0+49957MQwD13W5+eabGT9+vOft0aW6InLQS4dLdb2mSHYREUk7Kh4iIpI0FQ8REUmaioeIiCRNxUNERJKm4iEiIklT8RAR8UCqItlb7N27l4kTJ3LnnXd63hZQ8RAR8YRlWSxYsIDKykqWLl3KokWL2LBhAxUVFZSUlFBVVUVJSQkVFRUArFixgo0bN1JVVcXChQuZO3duu/09+OCDTJkypT+aAugOcxEZYFatWsX27dtTus/i4uLEXePdSWUk+/r169mxYwenn34669atS2lb9pVGHiIiHtufSHbHcbj33nu59957++XYW2jkISIDSm8jhL62v5HszzzzDGeccUafRo/sCxUPERGP9BTJPnTo0H2KZP/b3/5GVVUVixcvprGxkUgkwuDBg7nnnns8bYumrUREPJCqSPYnn3yS999/n3fffZf77ruPSy+91PPCARp5iIh4IlWR7OlCkewictBTJHvqadpKRESSpuIhIiJJU/EQEZGkqXiIiEjSVDxERCRpKh4iIpI0FQ8REQ+kMpJ92LBhlJWVUVZWxlVXXdUv7dF9HiJy0EuH+zxqamqoqalh4sSJNDQ0UF5ezrPPPsuSJUvIy8tj9uzZVFRUUF9fz/z581m+fDlPP/00zz//PO+++y7z5s1j2bJlAIwePZovv/yyx/fr6/s8dIe5iAwoWdtewhfenNJ92oFDCQ6b0eM2qYxkTweathIR8dj+RLIDhMNhzjzzTM455xxeeeUV7xuARh4iMsD0NkLoa/sbyQ7w/vvvM2zYML788ksuvvhijjnmGMaMGdNnx9wVjTxERDzSUyQ7sE+R7EDiv6NHj2bKlCl89NFHXjYDUPEQEfFEqiLZ6+vrCYfDAOzcuZN33nmHo446yvP26GorETnopcPVVm+//TYXXnghxxxzDKYZP2+/++67OeGEE7jhhhvYtGlTIpI9Ly8P13W58847WblyZSKS/Tvf+Q7vvPMOd9xxB4Zh4LouN954I7Nmzer0fn19tZWKh4gc9NKheHhNkewiIpJ2VDxERCRpKh4iIpI0FQ8REUmaioeIiCRNxUNERJKm4iEi4oFURrJv2rSJSy65hKlTp/JP//RPVFdXe94eFQ8REQ9YlsWCBQuorKxk6dKlLFq0iA0bNlBRUUFJSQlVVVWUlJRQUVEBwIoVK9i4cSNVVVUsXLiQuXPnJvb14x//mFtuuYXKykqWLVuWiDTxtD2ev6OISD9au+lZ6oJfpnSf+VmjmTTy6h63SVUke319PbFYjNNOOy2xr/6gkYeIiMf2J5L9888/Jzc3l2uuuYbTTz+d++67D9u2PW+DRh4iMqD0NkLoa/sbyW7bNm+//TYrVqxg5MiR3HDDDSxZsqTLfKu+pJGHiIhHUhHJPnz4cCZMmMDo0aOxLItzzjmn3WK6V1Q8REQ8kKpI9uOPP576+vrE9NaaNWsUyS4i0hfSIVU3VZHsAK+//jr33nsvABMnTmThwoWd2qdIdhGR/ZQOxcNrimQXEZG0o+IhIiJJU/EQEZGkqXiIiEjSVDxERCRpKh4iIpI0FQ8REQ+kKpJ9zZo1lJWVJf6MGjWKV155xfP26D4PETnopcN9HjU1NdTU1DBx4kQaGhooLy/n2WefZcmSJeTl5TF79mwqKiqor69n/vz5LF++nKeffprnn3+ed999l3nz5rFs2bJ2+9y1axennHIK69atY9CgQe1+1tf3eSgYUUQGlMHVX2M1BVO6z9igLBoPG9XjNqmKZG/ZB8Cf//xnTj/99E6FwwuathIR8dj+RLK39eKLL/K9733PuwNvQyMPERlQehsh9LX9jWRvUVNTwz/+8Q/Kysr65Dh7o5GHiIhHUhHJ3uKll17i3HPPxe/3e9iCVioeIiIeSFUke4s//vGPXHTRRd42og1dbSUiB710uNoqlZHs1dXVnH/++axbty6xr44UyS4isp/SoXh4TZHsIiKSdlQ8REQkaSoeIiKSNBUPERFJmoqHiIgkTcVDRESSpuIhIuKBVEWyAyxYsIBp06YxdepU7rrrri6jTPqaioeIiAcsy2LBggVUVlaydOlSFi1axIYNG6ioqKCkpISqqipKSkqoqKgAYMWKFWzcuJGqqioWLlzI3LlzAXjnnXd45513eP3111m9ejXvv/8+b775pvft8fwdRUT6UfS5J3GqN6Z0n+ZhY/HP+mGP26Qqkt0wDMLhMJFIBNd1icViFBUVpbQ9+0LFQ0TEY/sTyX7SSScxdepUJkyYgOu6XH/99Rx11FGet0HFQ0QGlN5GCH1tfyPZN27cyKeffsq6desAuOSSS3jrrbeYPHlynx1zV7TmISLikVREsr/yyiuceOKJZGdnk52dzRlnnMHatWs9b4uKh4iIB1IVyT5y5EjefPNNYrEY0WiUt956q1+mrZSqKyIHvXRI1U1VJLtt28ydO5e3334bwzAoKyvj/vvv7/R+imQXEdlP6VA8vKZIdhERSTsqHiIikjQVDxERSZqKh4iIJE3FQ0REkqbiISIiSVPxEBHxQCoj2X/xi19QUlJCSUlJIlTRayoeIiIeSFUk+2uvvcYHH3zAypUrWbp0KY8//jh79+71vj2ev6OISD96qmoLG+tCKd3n2PxMbjplRI/bpCqSfcOGDUyZMgXLsrAsi2OPPZaVK1cyY8aMlLapNxp5iIh4bH8i2Y899lhWrFhBU1MTO3fuZM2aNWzevNnzNmjkISIDSm8jhL62v5HsZWVlrFu3jvPOO4+CggImTZqEZXnflWvkISLikVREsgP89Kc/ZdWqVfzP//wPAGPHjvWyGYCKh4iIJ1IVyW7bNnV1dQB8/PHH/P3vf+e0007zvD1K1RWRg146pOqmKpI9FApRXl4OQE5ODg8//DATJkzo9H6KZBcR2U/pUDy8pkh2ERFJOyoeIiKSNBUPERFJmoqHiIgkTcVDRESSpuIhIiJJU/EQEfFAspHsn376Keeccw4jR47k8ccfb7evlStXMnnyZE4++eRECq/XdJ+HiBz00uE+j5qaGmpqapg4cSINDQ2Ul5fz7LPPsmTJEvLy8pg9ezYVFRXU19czf/58duzYwaZNm1i6dCm5ubnccsstANi2zamnnsoLL7zAiBEjOOuss3jqqacYN25cu/fr6/s8FIwoIgPK+rUN7K6LpXSfufkWx03K7nGbZCPZi4qKKCoq4rXXXmu3n/fee48xY8YwevRoAC666CKWLVvWqXj0NU1biYh4bF8i2buzbdu2diOK4cOHs3Xr1j493q5o5CEiA0pvI4S+tq+R7N3pLqrdaxp5iIh4JJlI9u4MHz683cOftm7dmohq95KKh4iIB5KNZO/O8ccfz8aNG/nqq6+IRCL88Y9/ZPr06X167F3R1VYictBLh6utko1kr6mp4ayzzmLv3r2YpsngwYNZs2YNOTk5LF++nHnz5mHbNldccQU//elPO72fItlFRPZTOhQPrymSXURE0o6Kh4iIJE3FQ0REkqbiISIiSVPxEBGRpKl4iIhI0lQ8REQ8kMpI9jlz5jB+/HhKSko8b0cLFQ8REQ9YlsWCBQuorKxk6dKlLFq0iA0bNlBRUUFJSQlVVVWUlJQkns8xZMgQfvWrX3HzzTd32tdll13GkiVLvG5COwpGFJEBZdWqVWzfvj2l+ywuLqasrKzHbVIVyQ4wefJkqqurU9qGZGnkISLisf2JZE8XGnmIyIDS2wihr+1vJHu60MhDRMQjqYhkTxcqHiIiHkhVJHu6UKquiBz00iFVN5WR7DfddBOVlZXU1dVRVFTE3LlzmTVrVrv3UyS7iMh+Sofi4TVFsouISNpR8RARkaSpeIiISNJUPEREJGkqHiIikjQVDxERSZqKh4iIB1IVyd7dfrym+zxE5KCXDvd51NTUUFNTw8SJE2loaKC8vJxnn32WJUuWkJeXx+zZs6moqKC+vp758+ezY8cONm3axNKlS8nNzeWWW27pcT/jxo1r9359fZ+HghFFZEDJ2vYSvvDmlO7TDhxKcNiMHrdJVSR7d/vpWDz6mqatREQ8lqpI9rb78ZpGHiIyoPQ2QuhrqYpk7+9od408REQ8kqpI9q724zUVDxERD6Qqkr27/XhNV1uJyEEvHa62SlUk+8cff9zlfsrLy9u9nyLZRUT2UzoUD68pkl1ERNKOioeIiCRNxUNERJKm4iEiIklT8RARkaSpeIiISNJUPEREPJCqSPZQKMT06dM57bTTmDZtGg899FC/tEf3eYjIQS8d7vNIVSS767o0NjaSnZ1NNBrlggsu4Je//CWTJk1q936KZBcRSaG1m56lLvhlSveZnzWaSSOv7nGbVEWyG4ZBdnY2EM+4ikajGIaR0vbsC01biYh4bH8j2W3bpqysjPHjx1NaWqpIdhGRvtbbCKGvpSJK3efzsWrVKnbv3s0111zDP/7xD4455pgUH2nPNPIQEfFIqiLZW+Tm5jJlyhRWrlzZJ8fbExUPEREPpCqSvba2lt27dwMQDAZZvXo1Rx55ZN8deDd0tZWIHPTS4WqrVEWyV1dXc+utt2LbNq7rcuGFF3L77bd3ej9FsouI7Kd0KB5eUyS7iIikHRUPERFJmoqHiIgkTcVDRA56fr+faDTa34fhmWg0it/v79P30IK5iBz0XNdlx44dA6aA+P1+ioqK+jS2RMVDRESSpmkrERFJmoqHiIgkTcVDRESSpuIhIiJJU/EQEZGk/X8kDEPqeaI13QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"### type your answer here\n",
"df_CI.plot(kind='line')"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Double-click __here__ for the solution.\n",
"<!-- The correct answer is:\n",
"df_CI.plot(kind='line')\n",
"-->"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"That doesn't look right...\n",
"\n",
"Recall that *pandas* plots the indices on the x-axis and the columns as individual lines on the y-axis. Since `df_CI` is a dataframe with the `country` as the index and `years` as the columns, we must first transpose the dataframe using `transpose()` method to swap the row and columns."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>China</th>\n",
" <th>India</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1980</th>\n",
" <td>5123</td>\n",
" <td>8880</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1981</th>\n",
" <td>6682</td>\n",
" <td>8670</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1982</th>\n",
" <td>3308</td>\n",
" <td>8147</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1983</th>\n",
" <td>1863</td>\n",
" <td>7338</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1984</th>\n",
" <td>1527</td>\n",
" <td>5704</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" China India\n",
"1980 5123 8880\n",
"1981 6682 8670\n",
"1982 3308 8147\n",
"1983 1863 7338\n",
"1984 1527 5704"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_CI = df_CI.transpose()\n",
"df_CI.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"*pandas* will auomatically graph the two countries on the same graph. Go ahead and plot the new transposed dataframe. Make sure to add a title to the plot and label the axes."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEaCAYAAAAsQ0GGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VMXewPHv2d303gOhBQIJBBIIvSVAAiJYENu9gpXrVREEOy8oiBcEQUAR9BYpF8GLlyuKBVAixEBoAaQlEBJ6IL33smfeP1ZCQtom2YQ2n+fJ82TPzjkz52yZnTMzv1GEEAJJkiRJMjHNzS6AJEmSdGeSFYwkSZLULGQFI0mSJDULWcFIkiRJzUJWMJIkSVKzkBWMJEmS1CxkBXMHWrt2LTqd7o7LqybvvfcePj4+Ny3/axRFYf369Te7GLeU3NxcHnroIezt7VEUhQsXLjT6WBERESiKQmJiYp3p7oTX4WZ+fk2d911bwWRkZPDWW2/h6+uLpaUl7u7uBAcHs27dOsrLy2928Zrk8ccf58qVK3dcXjV544032L9/f4vlFxYWxjPPPFNte1JSEo888kiLlaMxfHx8eO+991osv88//5x9+/YRFRVFUlISbdu2rTXt1q1bGT16NC4uLlhZWeHr68uLL77ImTNnGpTn7fA6mMKwYcP4y1/+YvLjmvrzfFdWMImJiQQFBfHNN98we/Zsjhw5QlRUFJMmTeKjjz7i5MmTN7uIjSKEoKysDCsrKzw8PFokz5bMqya2tra4uro26RjXrltTeHp6Ymlp2aRjNIaqquj1+hbP1xjx8fH4+/vTo0cPPD090Wq1NaZ7//33uf/+++nYsSObN2/m9OnTrF69GnNzc955550G5XmzXoc7hck/z+IudN999wkPDw+RnZ1d7bnS0lKRn59f8f/bb78tWrduLczMzETXrl3Fhg0bqqQHxPLly8Vjjz0mrK2tRdu2bcWmTZtEdna2eOKJJ4Stra3w9vYW//vf/yr2OX/+vADEunXrxIgRI4SlpaXo0KGDWL9+fZVjz5w5U/j5+QkrKyvRpk0b8cILL1Qp85o1a4RWqxU7d+4UPXv2FGZmZuKHH36o2H5juj179ohevXoJKysr0adPH3Ho0KEq+e3YsUN0795dWFhYiB49eoiIiAgBiC+//LLWa1lbXjt37hTdu3cXlpaWIjg4WFy5ckX89ttvomfPnsLa2lqEhoaKxMTEiv3mzJkjOnXqJL7++mvh4+MjrKysxIMPPihycnLEN998I7p06SJsbW3Fww8/XOUaXNuvsmXLlgkvLy9hZWUlRo0aJdatWycAcfny5Tqv27lz58RDDz0kWrVqJaysrET37t3FunXrKo779NNPC6DK365duyreB5Wv09WrV8Xjjz8uHBwchKWlpQgJCRHR0dEVz+/atUsA4pdffhFDhw4VVlZWomvXrmL79u21XuvK57tx40bh6+srtFqtOHHihDh8+LAYPXq0cHNzEzY2NqJPnz5i27ZtFfuFhIRUK/v58+eFEELEx8eL8ePHCwcHB+Ho6ChGjhwpjh8/Xmc56vtstG/fvkpeISEhNR7n0KFDAhALFiyo8fnMzMwGXa8bXwdArFy5UkycOFHY2tqKNm3aiA8//LDKPhs2bBD9+vUT9vb2wsXFRYwZM0bExcXVef71vVeEMFzzSZMmiffff194eHgIJycn8fTTT1d8vwghhKqq4p133ql43R5//HGxdOnSKp+pmlw7tqnzuvHznJmZKSZMmCDatm0rLC0tRZcuXcRHH30kVFWts3zX3HUVTEZGhtBoNOJvf/tbvWnfeOMN4ezsLP773/+KuLg4MX/+fKEoiggPD69IAwgPDw+xdu1aER8fL1566SVhZWUlRo8eLdasWSPi4+PFlClThLW1tUhPTxdCXK9gWrVqJdavXy9Onz4tZs2aJRRFqfIl9Le//U1ERkaK8+fPi/DwcOHr6yueeuqpiufXrFkjFEURffr0Eb/++qs4e/asSE1NrfFLX1EUMXToUBEZGSlOnTolRo4cKTp27CjKysqEEEIkJiYKKysrMWnSJBETEyPCw8NFUFBQoyoYRVFESEiI2L9/vzh8+LDw8fERQ4YMESEhIWLfvn3iyJEjwtfXVzz22GMV+82ZM0dYW1uLMWPGiGPHjomIiAjh6uoqRo4cKe69915x9OhRERkZKdzd3cVbb71VZb/KFcw333wjtFqt+Pjjj8WZM2fEmjVrRKtWrapVMDVdt+PHj4sVK1aIY8eOiYSEBLF8+fKKikgIIbKzs8XQoUPFY489JpKSkkRSUpIoKSmpeB9cu06qqop+/fqJwMBAsXv3bnH8+HHx2GOPCUdHR5GWliaEuP6FGRAQILZt2ybOnDkjnnzySeHg4CCysrJqvd5z5swRVlZWIjg4WOzbt0/ExcWJ3NxcsWvXLrF27VoRExMj4uLixKxZs4SZmVnFF2VGRobo0KGDeP311yvKXl5eLpKTk4WHh4d48cUXxfHjx8Xp06fFlClThLOzs0hNTa21HPV9NlJTU8Vjjz0mhg4dKpKSkkRGRkaNx5k2bZqwtrauuI61MfZ61VTBuLu7i3/+858iISFBfPLJJwKoeE2FEGL16tXihx9+EAkJCeLIkSPi/vvvFz4+PnWWqb73ihCGL30HBwcxffp0cerUKbFt2zbh4OAgZs+eXZHm448/FtbW1mLt2rUiLi5OfPjhh8LBwaFRFYwp8rrx85yUlCQWLlwoDh8+LM6dOye+/PJLYWNjI1avXl1n+a656yqYAwcOCEB88803daYrKCgQ5ubmYuXKlVW2jxs3TgwfPrziMSCmTZtW8Tg1NVUAYsqUKRXbMjMzBSB++OEHIcT1Cuadd96pcuyBAweKCRMm1FqmzZs3C3Nzc6HX64UQhjcDICIjI6ukq+lLHxCHDx+u2LZv3z4BiNOnTwshDK2l9u3bi/Ly8oo027Zta1QFA4jff/+9YtuiRYsEUKXFtHTpUuHi4lLxeM6cOUKr1VZ8AQshxOTJk4VGo6nyRffKK6+I3r17V9mvcgUzaNAgMXHixCplfPvtt6tVMDVdt5o88MAD4i9/+UvF49DQUPH0009XS1f5OoWHhwtAxMTEVDxfXFwsPD09xdy5c4UQ178wK78Pk5KSBFBnK2bOnDlCURRx8eLFesseEBAg5s2bV/G4U6dOYs6cOdWO179//yrbVFUVHTt2FMuWLavxuMZ+Np5++mkRGhpaZxnvvfde0aNHj3rPxdjrVVMFM3Xq1CrH8vX1FTNmzKg1r4yMDAGIPXv21Fuuym58r4SEhFQ7txdeeEEMGDCg4rGXl5eYOXNmlTQPP/xwoyoYU+R14+e5Jq+88ooICwurM801d10fjPgjtqeiKHWmS0hIoLS0lODg4CrbQ0JCiImJqbItMDCw4n83Nze0Wi0BAQEV25ycnDA3Nyc1NbXKfgMHDqzyePDgwcTGxlY83rx5M8HBwbRu3RpbW1smTJhAaWkpycnJVfbr27dvnecChvOtXE4vLy8AUlJSAIiNjaVv375V7pPfWD5jKYpCjx49Kh57enoCVLkmnp6eZGRkVOk/8PLyqtKf4unpiaenJ25ublW23XgdK4uNjWXAgAFVttV2Hjdet8LCQmbMmIG/vz/Ozs7Y2tqydetWLl68WNfpVhMTE4OLiwvdunWr2GZhYUH//v2rvXd69uxZ8f+1foprr0ltPDw8aNeuXZVtaWlpTJ48GT8/PxwdHbG1tSUmJqbeskdHR3P48GFsbW0r/uzs7Lhw4QLx8fE17tOQz0Z9hBD1fhYra8z1qrwPGN5nlfc5evQoDz30EN7e3tjZ2VVc27qunbHvlbryzs3N5cqVKwwaNKhKmiFDhtR5PrVpjrxUVWXhwoX07NkTV1dXbG1t+fvf/270Z+LmjS+9STp37oxGoyEmJoaHHnqo3vQ3vvlr+kCYmZlV2+/GbYqioKpqnXldq/wADhw4wKOPPsr//d//sXjxYpycnNi/fz9PP/00paWlFem0Wq1RnZoajaZK5XHtHCqX6cbzasgH35i8Kl+Ta9sqn3NN16wx19GYctd03d588022bNnCkiVL8PPzw8bGhtdff52cnJx6j2dMGWp675ibm1dLV9/52djYVNv2zDPPcOnSJRYtWoS3tzdWVlb86U9/qvJeqYmqqoSGhrJixYpqzzk4ONS5rzGfjfr4+voSGRlJaWlpjdfiRo25XjfuU/k9VFhYyKhRoxgyZAirV6+u+DHk7+9f57Uz9r1SV97G/tg1VnPktWTJEhYsWMDSpUsJCgrCzs6OZcuW8dNPPxm1/13XgnF2dubee+9lxYoVNX5xlJWVUVBQgI+PDxYWFvz2229Vno+MjMTf398kZblxeO2+ffvo2rUrAHv27MHV1ZV58+bRv39/unTpUu8cgKbo1q0b0dHRVVoU+/bta7b8mku3bt2qldvYYcyRkZFMmDCBxx9/nMDAQDp27FhtmKy5uXm9o7b8/f1JT0+v0hotKSnh4MGDJnvv1FT2yZMn88ADD9CjRw9atWrFuXPn6i17nz59iImJwcvLCx8fnyp/lVuOlZnyszFx4kQKCwtZunRpjc9nZWU16HgNderUKdLS0pg/fz7Dhw+na9euZGVlVfnhUxNj3iv1cXBwwMvLi6ioqCrbb3xsCo3NKzIyktGjRzNp0iR69eqFj49PrS3bmtx1FQzAZ599hpmZGb179+arr74iNjaWhIQE1q9fT58+fYiPj8fa2ppXXnmFd999l02bNhEfH88HH3zAli1bmDlzpknKsWrVKr766ivOnDnD7Nmz2bdvH9OnTwcMv+zS0tJYtWoV586dY926dXz22WcmybcmkydPJiUlhZdeeolTp06xa9cuZs2aBZjuF1ZLeP3119m4cSOffvopCQkJrFu3jnXr1gH1n4evry9btmzh4MGDxMbG8te//pWrV69WSePt7c3hw4c5e/Ys6enpNQ5vHjFiBP369eOJJ54gKiqKkydP8tRTT1FcXMxLL71kupO9oewbNmzgxIkTHD16lD//+c/VKhNvb2+ioqK4dOkS6enpqKrKlClT0Ov1jBs3jt27d3PhwgX27NnDrFmz2Lt3b415mfKz0adPH2bPns3MmTN5+eWXiYyM5OLFi+zbt49XX32VF154odHXxBjt27fHwsKCTz/9lLNnz/Lrr78ybdo0k7xXjPH666/zySef8OWXXxIfH8+SJUsIDw9v7OmYPC9fX18iIiLYtWsXZ86c4Z133uHAgQNG53lXVjDt2rXjyJEjPPjgg7z33nsEBQUxaNAg/vWvf/Hmm2/SvXt3AObPn8/zzz/P9OnT8ff3Z/369axfv57Q0FCTlGPhwoX885//JCAggHXr1vHvf/+7ol/gvvvuY9asWcycOZMePXqwceNGFi9ebJJ8a+Ll5cX333/P3r176dmzJ9OmTWPevHkAt9W8gvHjx7No0SIWLlxIjx492LBhA3PmzAHqP49ly5bRvn17hg8fTmhoKF5eXtUm7b3++uu4uroSGBiIm5tbjb8AFUXhu+++w8/Pj7Fjx9K3b1+Sk5PZsWNHk+fs1GbNmjWoqkq/fv0YN24co0ePrtbHNHfuXHJycvD19cXNzY1Lly7h4eHBvn37cHV1Zfz48fj6+jJhwgQuXrxIq1atas3PlJ+NuXPnsmXLFuLj43nwwQfx9fXlmWeeoaSkhA8++KDBx2sIV1dX1q9fz44dO/D39+eNN97go48+QqOp+6vRmPeKMaZNm8Yrr7zCq6++Ss+ePdm3bx+zZ89u7OmYPK93332XkJAQHnzwQQYOHEhWVhavvPKK0Xkqor62oGRyFy5cwNvbm927dze6Q68lREZGEhISwvHjx6t02t9u3n//fT755BMyMjJudlEk6a5y13XyS7X7/PPPCQwMpHXr1sTGxvLqq6/Sv3//26pyKSsrY8mSJYwZMwYbGxt27drF4sWLefnll2920STpriMrGKnCxYsXWbBgASkpKXh6ejJy5Eg+/PDDm12sBlEUhYiICJYsWUJeXh7e3t7MnDmTN99882YXTZLuOvIWmSRJktQs7spOfkmSJKn5yQpGkiRJahZ3fR9MY8au32pcXV1JT0+/2cUwCXkut5475TxAnosptG7d2ui0sgUjSZIkNQtZwUiSJEnNQlYwkiRJUrO46/tgJEmSaiOEoLi4GFVVb7mYfCkpKZSUlDTLsYUQaDQaLC0tm3TesoKRJEmqRXFxMWZmZuh0t95XpU6nq7IshqmVl5dTXFyMlZVVo48hb5FJkiTVQlXVW7JyaQk6na7etXbqIysYSZKkWtxqt8VaWlPPX1YwkiTdFURaMsX7f6s/oWQysoKRJOmuoG5aTc7iWYiiwptdlAZJTU3lpZdeYtCgQQwbNownn3yS9evXM2HChBrTv/HGGw1eXbO53J03FyVJuquIwnw4cQhUFc7FgX+vm10kowghmDRpEo8++iiff/45ACdPnmTHjh217vPRRx+1VPHqJVswkiTd8cSRfVBebvg/4dRNLo3xoqKiMDMz46mnnqrY1r17d/r3709hYSHPP/88wcHBTJkyhWuB8R955BGOHTsGQOfOnVm4cCFhYWHcd999pKWlAfDLL79w3333MWrUKB5//PGK7aYmWzCSJN3xxIHfwL0VOhtbyhNiG3UMdeO/EJfPm7RcSltvNH96vtbn4+Lial3w78SJE+zcuRNPT08efPBBoqOj6devX5U0hYWFBAUFMWPGDObNm8eGDRuYPn06/fr144cffkBRFL766is+++yziqXFTUlWMJIk3dFEdgbEnUAZ+zhmajnlv/6IKC9Huc2HH/fq1asi8KS/vz+XL1+uVsGYm5szcuRIAHr06MHu3bsBSEpK4qWXXiI1NZXS0lLatWvXLGW8va+wJElSPcTB3SAESv9gzLPTKdr6P0g8Dx06N+g4dbU0mkuXLl346aefanzO3Ny84n+tVkv5H7cAK9PpdBVDjSuneffdd/nrX//KqFGj2Lt3L0uXLm2G0ss+GEmS7nDiYCS090HxbIOZX4Bh223SDzNkyBBKS0vZsGFDxbajR4+yf//+Jh03NzcXT09PADZt2tSkY9VFVjCSJN2xRHIiXExA6R8CgNbVHVzcEY3sh2lpiqLwxRdfEBkZyaBBgxg+fDhLlizBw8OjScd9/fXXeeGFF3jooYdwdnY2UWmrU8S1oQd3Kbng2K1Fnsut53Y+D3XLV4ifvkazaDWKowuurq6kLvg/RNwJNIvX1DtTvbCwEGtr6xYqbcPodLoab4uZUk3nLxcckyTprieEQBz8DfwCUBxdrj/RuSvkZEJ6ys0r3F2iRTv5VVVlxowZODs7M2PGDFJTU/n444/Jz8/H29ubqVOnotPpKCsrY8WKFZw7dw47OzumT5+Ou7s7AN9++y07d+5Eo9Hw7LPP0rNnT8BwX3LNmjWoqkpoaCjjxo1ryVOTJOlWcyEeUpNQ7n2kymbFpysCQz+M4uZ5c8p2l2jRFszWrVvx8vKqeLx+/XrGjh3L8uXLsbGxYefOnQDs3LkTGxsbPv30U8aOHVvRwZWYmFgx4mHWrFmsWrUKVVVRVZVVq1Yxc+ZMli1bRlRUFImJiS15apIk3WLEgd9Ap0MJGlj1idbtwMoGbpN+mNtZi1UwGRkZHDlyhNDQUMDQfI2JiWHAgAEADBs2jOjoaAAOHTrEsGHDABgwYAAnT55ECEF0dDSDBg3CzMwMd3d3PD09SUhIICEhAU9PTzw8PNDpdAwaNKjiWJIk3X2EXo+I3g0BfVGsbas8p2i00Mn3thlJdjtrsVtka9euZeLEiRQVFQGQl5eHtbV1xYI5zs7OZGZmApCZmYmLi+GeqVarxdramry8PDIzM+nc+frY9cr7XEt/7f/4+PgayxEeHk54eDgACxcuxNXV1cRn2vJ0Ot0dcR4gz+VWdDueR8nRg2TnZuMQdh+Wlcp+7VzyA/pQ8NU/cbYwR2NnX+txUlJSbun1YJq7bBYWFk167Vvkyh0+fBgHBwc6duxITExMvelrGtimKEqN2+tKX5OwsDDCwsIqHt+uo2Mqu51H+dxInsut53Y8D/WX78HKmrwOvuRXKvu1cxGt2wOQER2FEtC31uOUlJQ066qRTdESo8hKSkqqvfa33CiyuLg4Dh06xMsvv8zHH3/MyZMnWbt2LYWFhej1esDQark2HtvFxYWMjAwA9Ho9hYWF2NraVtleeZ8bt2dkZODk5NQSpyZJ0i1GlJYgft+HEjQQxcy85kQduoBWe1vMh6l818YYe/furQiO+csvv7BixYrmKJZRWqSCeeKJJ/j73//OypUrmT59Ot27d+eVV17B39+/YkZqREQEffr0AaB3795EREQAsH//fvz9/VEUhT59+rB3717KyspITU0lKSkJHx8fOnXqRFJSEqmpqZSXl7N3796KY0mSdJc5cQiKi1D6D6s1iWJhAe063fH9MKNGjWLKlCk3Lf+benNxwoQJfPzxx2zcuBFvb29GjBgBwIgRI1ixYgVTp07F1taW6dOnA9C2bVsGDhzIa6+9hkajYdKkSWg0hjryueeeY/78+aiqyvDhw2nbtu1NOy9Jkm4edf9v4OAMvt3rTKf4dEXs2oooK0MxM2uh0jXetRG0Tk5OxMXFERgYyPLly1EUhV27djFnzhycnZ2rRF/++uuvOX78OPPnz+eXX35h+fLllJaW4uTkxIoVK3Bzc2vWMrd4BePv74+/vz8AHh4eLFiwoFoac3NzXnvttRr3Hz9+POPHj6+2PSgoiKCgINMWVpKk24ooyIeTh1CGjTWMFquD4tMVsWMLXDoLnfzqPfYXh1I4n1VsqqIC4O1kyV/6GB/25eTJkxUh+seNG0d0dDQBAQG8+eab/Pe//8Xb25sXX3yxxn1bKkR/Zbfu8AhJkqQGEkf2Qnk5Sv/g+hP7dDXskxCLYkQFcyvo2bNnRSd79+7duXz5MtbW1rRr146OHTsC8PDDD7N+/fpq+7ZUiP7KZAUjSdIdw7CwWGto71NvWsXeCdxbGfph7qn/2A1paTSX2kL01xdTDVouRH9lMhaZJEl3BJGVAWdOovQPMeoLF0Dx6QYJp2qdAnE78PHx4dKlS1y4cAGA7777rsZ0LRWivzJZwUiSdEcQ0ZF/LCwWYvxOPl0hPxdSrjRfwZqZpaUlixYt4qmnnmLcuHG0adOmxnQtFaK/MhmuX4brv6XIc7n13C7nof/bq6DRoJ21pNY0N56LSEpEnT0Z5akpaIaOqpZehuuX4folSbrLiaREuHTWuM79yjy9wNYOzt7Z82FuFlnBSJJ02xMHfwNFg9JnaIP2UxQFOnVFxMsKpjnICkaSpNuaEMIwesyvB4pjw/sWFJ+ukHoVkZtd47HvZk09f1nBSJJ0ezt/BtKS6wwNUxfFp5vhnxrCxmg0mmbv57hVlZeXV0RKaSw5D0aSpFuWEAKKCiAvF/KyITcHkZdj+D8vF/JyEJfPgc4MpdeAxmXS3gd0Zoizp6otTmZpaUlxcTElJSVGD31uKRYWFpSUlDTLsYUQaDQaLC0tm3QcWcFIktQkIi8HEfkz4lAUmj8/j9Kl7hhgxlJXf4w4GAn6WloQ1jZg5wh2DihDR6FY2zQqH8XMDDp0RsRXj6ysKApWVlaNOm5zux1G98kKRpKkRhEXzyJ2/mioBMrLwMwc9dv1aN9e2PRjJ5xC7NsJvQehdPQDeweUPyoTw589iq5hASp/Typg/5FMng1wxFJX9dbPtbhkoqTEEGlZMglZwUiSZDRRXo74fT9i5w+GPgsLS5QhI1FGjEXEHkNs/CciPhalc7cm5aNu/wZs7dA8Ox3Fomm3aa7ZciqT35MKSMspYFZIG7Sa67e8FJ9uiO3fwIX4eqMwS8ZrVAVTWlqKRqO5pZcSlSTJdCpug0Vsg+wMcPNEeWwSyuDQ62veO7sjftyIuu1/aDvPbnxeVy7CsYMoDzxhssqlTK8Sk1pIOycrDl8t4LODyUzp73m9X8XHEOxSJMSiyArGZIyqIdatW8egQYPw8fHhyJEjLFmyBEVRmD59ulzYS5LuYKKkhNyVC1Ajthtug3XriWbiZOgRVC0cvmJhgRJ6P2LLBkTieZQ23o3Lc/s3hpbRiLGmOAUA4tKLKdULJg/uwO8XU/n6RAYu1jqeCDCsh6LY2EGrtnf8AmQtzagKZs+ePTz++OMA/O9//2Pq1KlYW1vz73//W1YwknQHE7t/pij8B5Tg0Sih96G0rjvEuzJ8LGL7ZsS2zSjPv97w/NKSEQcjUULvN3zpm8ix5AI0CvRs44CfvUpGYTlfn8jA2UrH6M6G5dUVn66IQ1EIVUVp4vBcycCoq1hSUoKFhQV5eXmkpKQwYMAAAgICbvkRDJIkNZ4QArFnBzqfrmienFxv5QKg2NiiDBuNiN6NSEtueJ47vjPMyB85rjFFrtWx5EJ8nC2xs9ChKAqT+3nSu7UN/4hO4UBiniGRTzfDkOirl0ya993MqAqmdevW7N69m+3btxMQEAAYQj9XXptAkqQ7zIUEuHIRq7D7G7SbEvYAaDWInzc3aD+Rm4XYE44ycDiKk0uD9q1LQame+IwiAj2vD2PWahTeGupFJ2dLPtpzldNpRYYZ/SBvk5mQURXMpEmT+Pnnn4mJiam4VXbs2LGKykaSpDuPiNoB5uZYDglr0H6KowvKoFBE1K+InCzj8/v1RygvQ7mn+pLoTXEytRBVQIBn1ajAljoN7w5rg4u1jnkRl7li4QwOTpBQfT6M1DhGVTCurq7MmzeP9957r2LBmqFDh/Lkk082a+EkSbo5REmJoS8kaDAaG9sG76/c8xDo9Yjw743Lr6gQsWsrBA1E8fRqcH51OZ5ciLlWwc+t+oRJB0sdc4a3RaNRmLvrMpk+PWULxoSMqmCmTZtW4/ZXX33VpIWRJOnWII7shaJClCEjG7W/4t4apc9gxG/bEIUF9ef32zYoKkBz7yONyq8ux5IL6OZujbm25q+7VnbmvDusDbkleuY7DacwOweReWv3L6fml5FZUHqzi1EvoyqYmiJqFhYWNjkQmiRJtyaxZwe4t4Iu/o0+hjL6YSgqRERsrTuvslJDS6c7FkqfAAAgAElEQVRbT5T2Po3OryYZhWVczikl0KPuRcM6u1jx9lAvLuktWdT9KUpv4VZMuSqYseMic3+Oa9F8RVkp6o4tDdqnzmHKL730EmCYWHnt/2vy8/MZPHhwA4soSdKtTqReNaxt/9CTTQrwqLTrCN2DEOHfI8IeQDGvOQSL2LsTcrLQ/KXhw5rrcyKlEIDAVvXHKQtqbcvLfd1ZfhBWxKfwWl9xywW4BIi6mEtGYTnZRTnklrhjb6Gtf6cmEHo9Yu+viB82QlY6PP1S/Tv9oc4KZurUqQghWLBgAVOnTq3ynKOjY4OWzpQk6fYgon41DBUeOKLJx9Lc+wjq4pmIqF9Rho+pnpdebxht5t0FfHs0Ob8bHUsuwM5cg7eTcfHFQjs7k/LrDr62C2RUaiE9PBoXQLO5CCH4/nQWNuYaCkpVDl3JZ0RHh+bJS1URh/YgtnwFqVfBuwuaZ2vuLqlNnRVMt26GeEKrVq3CQgaAk6Q73rVfq3QPMs1Q4c7+0MkP8fNmRPA9KNqqv7bF4ShIS0bz6HMmby0IITiWVEgPTxs0DTj2Q556fsouZNup9FuugjmVVkRCZjEv9PVg86ks9l/OM3kFI4SAE4dQv10PiefBqz2al2dBYL8Gv0ZGzeTXarWEh4dz4cIFiouLqzw3ZcqUBmUoSdItLOYIZGei+fMLJjmcoiiGVsyKeYjo3SgDhlU8J4RAbPsGWrWFwH4mya+yK3mlZBSVE+hZd//LjSx7BDF8UyRbzYaSWVSOs9WtE3Px+9OZ2JprGNHRgbQSDT/GJFNSrmKhM01/uIg7ifrtOjh72hBv7i+vo/Qd2ujIBkbttWLFCn766ScsLS3x8PCo8idJ0p1D3bPDEA4/oK/pDtqjD3i1R2z/BqGq17efPAKJ51FGj2+W0CzHkv7of/FsYCukoy/3FCegRyE8ofoyyjdLSn4pBxLzucfHsNxAcCcXSvWCo0n1j9Krj0hPQb9sDupHMyEjDeXJyWje/wxN/5Aqr83x5IblZVTVfOzYMVasWIGNza3VXJQkyXREbhYcj0YJfQDFhJHSFY0GZfR4xKplcOIwBBoqL3XbJnB2RekXbLK8KjuWXIC7jQ5P24atG6MoCl69ehJ46Qzbz2h42N+lSmj/m+XHuCwUYIyvIXZaLy97bMw17E/Mo3/bpsVtU7/6B5w7jfLosyjDxtQ4ICMmpZB5EYmMDups9HGNnmhZVlZmfGklSbrtiH0RoNejNHDmvjGUvsHg4o66bZPh1lhCLMTHoowc1+CFw4yhVwUnUwoJ8LRpVN+O0j+E0Vf3kVGsEn0l3+Tla6jCMj07EnIY3M4eV2vD9dJpNfRtbUt0Yj56tfpUEmOJxPNw4hDK6IfRjHqoxsrlVGoh70dcxs2mYa+VURVMcHAwixcvZs+ePZw8ebLKnyRJtz8hBCIqHDr5obRqa/LjK1qtYXb/2dMQH4O6zbCgmDJ0lMnzAjibWUxBmdrw22N/UDy96GNbhkt5Ptvib/5tsvCzORSVqzzQ1anK9v5tbckrVYlNK2z0scX2zWBhhTKs+ig/gLj0IubuSsTZyoy/hdUf8LQyo9rB27dvB+A///lPle2KorBixYoGZShJ0i3oXBwkXUZ5qvkG7SiDwxA/bDTcjrly0aQLit3oeLLhCzegngmWddENCGHkvig26u7ham4pre1vTnBfvSr4MS6Lrm5WdHapGu6mVytbzDQKBy7nN2rEm0hPMQy+CL0fpYaQQAkZxczdeRkHSy3zwto2eMCDUalXrlzZoINKknR7EXt2GBb56juk2fJQzC1Qwh5AfPulyRcUu9Gx5AI6OFrg2IQRYErfIYR99182eY9ke3wWz/W+OYOaDibmk5JfxjO93Ko9Z2WmoWcraw4k5jGpt3uDbweKHVsMc57CHqz23PmsYubsvISNuZZ5Ye1wsW74rUwZ60WS7nKiuAgRvQelz2AUy8b/4q9LYZmePRdzWWrTj6eGzOXH4EkmXVCsspJylVNpRdWiJzeUYu+Es48P/bPj+fVcDiXlav07NYPvT2fibmNG/zY1X68Bbe1ILSjnfFZJg44r8nIQe35BGRCC4uxa5bmL2SXM/vUyljoN88LaNrjv5RqjqvfCwkI2bdpEbGwseXl5VWKTff75543KWJKkW4M4tAdKihod2LI22cXlHEzM58DlPI4lF1KmChwstFjb2/KN3pZ79WqtASib4lRaEWWqaHT/S2VK/xBGf/Mdex192XMxl9BOjiYoofHiM4qITSviuSD3Wkey9fWyRaPA/sQ8Ojobf8tR7PwJSkurLY9wOaeEd3+9hE6jMC+sHR62jb81aNSr+8UXX3D+/HkeeeQR8vPzee6553B1dWXs2OZr4kqS1DJEVDh4ekGnrk0+Vkp+KVtOZfJ/v1zk2c0JrDyQzKWcEkZ3ceSDsHasGe/DlIGtySnRE3kh1wSlr+5YcgFaBfzdm94aU3oNwL/oKm1EwU3p7P/+dBZWOg0jfWqfre9gqcPP1YoDl40f7SZKihG7foKe/asM6riSW8q74ZdQgL+FtaWVXdP6nYxqwRw/fpxly5ZhZ2eHRqOhb9++dOrUiQ8//JD77ruvSQWQJOnmEUmJkHAK5ZFnmhSqJbuonA8iE4lLN0T6aO9owSP+Lgxsa4e3k0WVYwd4WNPB0YLvT2UR2tHB5CFijiUX4utqhZVZ01tHioUlml4DuOdSJKuUe4nPKKrW0d5cMgrLiLqYyxhfJ6zN6g5oOaCtHauPpJKcV4qnEZWC2P0LFOShGf1wxbakPEPlogqYN7IdbeybHh7M6HD91taGXwOWlpYUFBTg6OhIcnLD19yWJOnWIaJ2gEaDMnB4o49Rrgo+3H2F81klPN3Ljb8/0JHlY72ZEOhGR2fLahWIoig82NWZizklHEtu/PDamuSV6DmXWWyS22PXKP2HMezSPiwUwfYWbMVsPZONKuC+Lk71pu3XxjAC7EBi/a0YUV6O2PEddPFH6eQHGNaXeTf8EqWq4P3QtrRzME3sSaMqmPbt2xMba1hG1M/Pj1WrVvHFF1/QqlUrkxRCkqSWJ8rLDaHyA/qi2Nf/JVab1UdSiU0rYkp/T8Z3czHqtsrQ9nY4WWrZciqz0fnW5ERKAQIaHH+sTl0DsbG2ILjkApEXcskv0Zvu2LUoKVf5OT6L/m1tjWqRtLIzp72jBfsv59WbVhyMhMz0itaLEIKP912loEzl/RFt6eBkuqHjRlUwL7zwAm5uhiFyzz33HObm5hQUFMhAl5J0OztxCPJy0DShc3/nuRx+isviAT8nQryNj+prptUwxteJI0kFXMpu2OinuhxLLsRSp6Gzq+luYylaLUq/YEbH/EipXrDzfI7Jjl2bnedyyCtVecDP2eh9BrS15XR6EdnF5bWmEapqWB7Bqz107w3ArvO5xKQW8WyQe4MGCRij3j4YVVWJiIhg/HjDSAN7e3tefPHFBmVSWlrKnDlzKC8vR6/XM2DAAB577DFSU1P5+OOPyc/Px9vbm6lTp6LT6SgrK2PFihWcO3cOOzs7pk+fjru7OwDffvstO3fuRKPR8Oyzz9KzZ08Ajh49ypo1a1BVldDQUMaNG9fQayFJdxU1KhwcnCu+aBrqbGYxnx9MpruHNc/0cm/w/qN9HNl0MoPvT2cyZYBp7oYcTy6gu7sVOhPHDlMGDMP71x/wNS9h25ls7vd1arbFyFQh+CEui07OlnRzq1pRirJSOHYQ9dAe8rv4I4aNrQhGOaCNHV+fyODQlXzCahvtduIQXL2EMulVFEUhr0TPmiOp+LpaEdbJ9OvK1NuC0Wg0/Pzzz2i1jV81zczMjDlz5rB48WIWLVrE0aNHOXPmDOvXr2fs2LEsX74cGxsbdu7cCcDOnTuxsbHh008/ZezYsWzYsAGAxMRE9u7dy9KlS5k1axarVq1CVVVUVWXVqlXMnDmTZcuWERUVRWJiYqPLK0l3OpGdaYg/NWh4tTVajJFbXM6C3xKxt9Dy1pDWjQoGaW+pY0RHByLO59b5q9tYaQVlXM0rM2r1ygZr7wOeXoxOOcjVvFKOpzSs70iUl1WNJF2HI1cLuJJbygN+hkpMCIGIj0VdtwL19adR/7EITh2n4D//QnyxBPFHnEhvJwvcrHXsr2M0mbr9G3BxR+kzFIB1R1PJL9XzUj+PBq2ZYyyjbpGFhISwY8eORmeiKAqWloaml16vR6/XoygKMTExDBgwAIBhw4YRHR0NwKFDhxg2bBgAAwYM4OTJkwghiI6OZtCgQZiZmeHu7o6npycJCQkkJCTg6emJh4cHOp2OQYMGVRxLkqTqxOEoUFWUQaEN3levChbvuUp2sZ4ZwV44WDZ+tvz9fk6UqYLtZ5reeX7sj1DyTQkPUxtFUVD6D2PgiW3YmSlsO5Nl9L4i7gTq9Imo059Av3gm6n9Xoe6PQCQlItTq/Tnfn87E2UrHIKt81C1foc56AXXRDMSB31AC+6J5dS6aZV9i+9RkRPRu1OVzEUWFKIpC/7Z2HE0qoKisemUm4mMNIwZHjkPR6TiVVsgvCTk84OeMtwn7XSoz6p2RkJDA9u3b+f7773FxcanSNJw7d65RGamqyttvv01ycjL33HMPHh4eWFtbV7SMnJ2dycw0dPhlZmbi4mJYTU+r1WJtbU1eXh6ZmZl07nw9VHTlfa6lv/Z/fHx8jeUIDw8nPDwcgIULF+Lq6lpjutuJTqe7I84D5Lm0lOyLCZS5eeLWvWe9aW88jxW7z3M8pZCZIzsz0Ldp4VNcXWGwdzbbEnJ4PrhLkxbOOn0oAycrM3r7eNV6+6opr0n56HFkbNnAvZZZfJMoEJZ2uNnWPdqq/NI5Mj9bgNbVHfMeQZSfO0PZb9ugtBQBKJZWaDt0RtfJF7OOvlxyas+x5EKeyj2C9t2NCEXBPKAPln9+HosBIWisrleeukefQePkQu6KD9AsfRfHd5cwyt+LH+OySMjXMLxz1fPM+scPlNk54Pbg4+jNLfni50u425rz8jBfrM0bf4eqLkZVMKGhoYSGNvyXTmUajYbFixdTUFDARx99xJUrV2pNWzlSwDXXmooNSV+TsLAwwsKuhyNPT0+vr+i3PFdX1zviPECeS0sQQqDGHkPx62FU+SqfR+SFXP5z5CpjujjS311rkvMb3dGWqPNZbD50jpE+jZspL4Qg+mImAR42ZGRk1JquSa+JzgI6+THs+Pds8n6KjQfP8eeA6vHBKsqUnYG64E0wM0NMfZdSF0M/lUavh6TLiEtn4eJZyi6dpWzH9xSVlrDe91HM3QMJTT2C8vDTKP1C0Du7UgAUFBRCwfVbc66urhR074tmyruU/30h6W/9Ba9X5mBnriE89io9Kg0MFFcuoh6KQrn/z2TkF7Dl1GUS0guZEexFYW4WDbnh17p1a+MvmTGJrt2uMgUbGxu6detGfHw8hYWF6PV6tFotmZmZODsbRky4uLiQkZGBi4sLer2ewsJCbG1tK7ZfU3mfytszMjJwcmr8sEtJuqOlp0BOJvh0a9BuF7KKWbE/ia5uVjwXZLrAjz08rPF2smDL6UzCOjVu4uWlnFKyi/UEtmqeWGrXKAOG4bnh7/QK0vBzQg6PdnetcUCBKC5EXf4+FBSgeesDFJfrgyAUrRbadEBp0wH+uEV5JaeItfsTOZiuZ0wrDQ5PLjb6Oijdg9C8MR91+fsoi2fQZ/S7HLyaT7kqKsomft4M5hYoI8aSVlDGV8fT6NPahgFtqkdQNiWj2qM7d+6s8W/37t3ExsbWuxhZbm4uBQWG+6OlpaWcOHECLy8v/P392b9/PwARERH06dMHgN69exMREQHA/v378ff3R1EU+vTpw969eykrKyM1NZWkpCR8fHzo1KkTSUlJpKamUl5ezt69eyuOJUlSVSLeMKdN6Wx8BZNXomdB5BVszLW8PdQLM63pOoQVReEBP2cu55TyeyOX/73W/2LKCZY1UfoMAa2W0XkxZBWVcyCx+rwTUV6O+vmHcOUimhffRmnXqdbj5ZfqWX04hVe2XuR4tmBioCvPhvg0uJJVOnRGM+NDsLKh354NFJSqxKQa2iUiIw1xMBJl6CgUW3tWHU5BFfDXvh7NNhLuGqNaMJGRkZw5cwYHB4eKVkROTg6dOnUiNTUVgLfeeotOnWq+kFlZWaxcuRJVVRFCMHDgQHr37k2bNm34+OOP2bhxI97e3owYMQKAESNGsGLFCqZOnYqtrS3Tp08HoG3btgwcOJDXXnsNjUbDpEmT0PwxRO+5555j/vz5qKrK8OHDadvW9IsmSdIdISEWrG3AyIXF9KpgadRV0gvLmB/WHqcmhMCvzdD29qw7msaW01kEtW74r+pjSQW0sjNrdNRfYym29tC9N70O/YDb4B5sP5PN4Hb2Fc8LIRBfroTY31GenorSPajG4+hVwc8J2Xx1PJ38Ej2hnRyYEOjW4PVWqpTNvTWaGYvo+el8zPWl7D8QS+CDfQ2z9gFl5DgOXcln3+V8nuzp1qQglkaXSdTWsVHJF198QevWrRkz5vqKZ9u3b+fKlSs899xzbN68mSNHjjB//vxmLWxzuHr16s0uQpPdqvf6G0OeS/PTz34ZXD3QvjLbqPTfnMlnXXQik/t5ck/n5osmvOlkOuuPpbN8rDftHY0PVVKuCiZsimeYtz0v9fOsM60pXhM1eg/in4vY/MQHrL+qY3A7O7q6WdHVzZp2ezaj/XEjyn1/QvPgEzXuf+RqPquPpHI5p5TuHtZMauQEx9rORRQX8cFXUZwVtvzL/jRE/IQSNIiyp6cx5cfzWOgUlt3r3ehWaEP6YIy6RRYVFcXo0aOrbBs1ahR79uwxNG8feEDOO5Gk24DIzzWsXOljXOTkhIxi1kUnMrKTQ7NWLgD3dHbCXKvw/emGhY+JTy+iuFw1bXiYOiiBfcHSinsvRjCiowNx6UV8cTiV17dfYGJOd2YHz+Cr9mEcupJfJazMpZwS5u68zNxdiZTpBf8X7MW80LYmnz2vWFoxYGgQGZaOJOw7CKUlKKPH89+TGaQWlPFSX0+T3uKsi1HtMQcHBw4fPkzfvn0rth05cgR7e0PTsKysDJ3O9M1mSZJM7OxpABQjO/iP/9G38WTP2kdLmYq9hZbQjg7sOJvDk4FuRq9GeehqAQo0asngxlDMLVB6D8Lq8G5eeeJ5FPNWpB45wqnN3xHXvjenvQL4JjYTVRgqyrYO5rSyM+fQlXysdBqeDXJjbBcnzJphLZxr+rZzQBOdysHBf6Kz7jKXbT359rfzjOhoj38zzBOqjVGv4LPPPsvSpUtp165dRR/MpUuXeO211wCIj4+v1sKRJOnWI+JjQacD7871JwZOpxfRxsGySZMpG+J+P2e2xWezNT6LJ+oYAgyGxbi+OpbOkaQCAjyssbNonrkcNVH6D0NE/QrHoxHurXBZ/SFD3DwJnjgSxcqa4nKVM+lFnE4v4nRaEWczi7nHx5E/B7i2yLW0t9DSzd2ag8VtmDh2KH8Pv4SVmaZRIX2awqgzDQwM5NNPP+Xo0aNkZmbSq1cvgoKCsLOzq3g+MDCwWQsqSVLTiYRYaO+DYmbEmiFCcCa9iH4djA+42FRe9ub09bJl25lsHu7mUuPEy/NZxXx1PJ2DifnYWWh5uqcbY3xbeFqCb3dwdEEN/94w7NvGBs202Sh/TIS01GkI8LQhoJlHtdVlQBtbvjicylfH04lJLeLl/p4t9kPhGqNzs7e3Jzg4uDnLIklSMxJlpXAxASX0fqPSpxWUk1Wsx9+z5rXgm8uDXZ14Jzyf3y7kMqrSxMtLOSVsPJ5O1KU8bMw0TAhw5T6/+hfjag6KxhBhWfzyLVjZoHn7QxRHl/p3bEH9/qhg/nsyo9mCWdan1gpm/vz5zJo1C4DZs2fXOl7a2FAxkiTdZBcSoLzc6P6XuPQiAPw97YHiZixYVd3drenoZMGWU4aJl8l5ZWw8kU7khVwsdBoe6+7Cg37O2LbgLbGaKMH3IOJOoHn0WRSvdje1LDXxsDWno5MFF7JLmNxMwSzrU2sFExISUvH/tfkpkiTdvkSCYYIlnYwbQRaXUYS5VsHH1ZrsrJarYK6teLlsbxJzdyVyPLkAnUbhoW7OPNTVGfsWvs1TG8WjNdp3lt7sYtTp+T4eZBWVm3QRsYao9ZUaMmRIxf+mDBUjSdLNIeJjoVVbFDv7+hMDcWlF+DhbomvG0U61GdzOMPEyJqWQsb5OPNLNxehRZdJ13dxbbsRYTYx+xU6dOsX58+cpLq76S+baQmSSJN26hKrC2VMovQcblb5Mr3Iuq4T7W7rz/A9mWoXF97RHoyjNEjlAahlGvXKrV69m3759+Pn5YW5+ffRJc8exkSTJRJIuQ2EBGDnB8lxWCeWqwNeESw83lIt184Z9kZqfURXM7t27WbJkSUXkYkmSbi8VAS4b2MHfxfXm3LuX7gxG3Vx1dXXFzEz+mpCk29bZU+DgBG51x+q6Ji69CDdrnWxFSE1iVAvmxRdf5B//+AeDBw/GwaHqWOpu3Rq2poQkSS1PxMeCT1ejb2vHpRXR5SbeHpPuDEZVMOfOneP333/n1KlTVfpgAD7//PNmKZgkSaYhMtMhIxUl7AGj0mcUlpFWWM79soKRmsioCuY///kPb7/9NgEBAc1dHkmSTEycPQUYv8DYmQzDSNGb2cEv3RmM6oOxsLCQt8Ik6XYVHwsWltDG26jkZ9KL0Gmgo7Pxa7JIUk2MqmAef/xx1q5dS3Z2NqqqVvmTJOnWJs6ego6+hrXgjRCXXkRHJ0vMb8IES+nOYtQtsmv9LDt27Kj23Ndff23aEkmSZDKiqBAuX0C57zGj0pergvgMQ2h5SWoqoyqYFStWNHc5JElqDufiQKhGz3+5mF1CqV7IEWSSSRhVwbi5Nf9qdpIkmZ5IiAWNBjp2MSr9tQmWvnKCpWQCRlUwhYWFbN26lQsXLlSLRfbOO+80S8EkSWo6ER8LbTuiWBoX9DAuvQhHSy3uNnKCpdR0RlUwS5cuRVVV+vXrV20ejCRJtyZRXg7nz6AMHWX0PmfSi/B1tZJxBiWTMKqCiY+PZ9WqVeh0MqqpJJnSldxSzLUKbs3RYrh8HkpLUIwMcJlbXM7VvDLCOskOfsk0jBqH6Ofnx5UrV5q7LJJ0VynTq8z45SJTfjzP7gu5Jj9+xQJjRlYwcoKlZGpGNUkmT57MggUL8PHxwdGx6q+bRx55pFkKJkl3uv2X88kt0dPKzoyPoq4Sk1rIc73dTTb/RCTEgpun0WvFx6UXoVHAx0V28EumYXSomIyMDNzc3CgqKqrYLu/TSlLj/XI2G3cbHZ+O9Wb9sXS+O5XJmYwi3hziRSu7pvV1CiEgPhale5DR+8SlF9HB0QJLnZxgKZmGURXM3r17+eSTT3Byujmr20nSnSY5r5TjyYU8EeCKmVbDs0HudHO34pN9Sby27QKvDGjFwHZ2jc8gLQnycoy+PaZXBWfSixnmbdxyypJkDKN+qnh4eKA1MsyEJEn123E2B40CoZ2uL3/Rv40dy+7tgJe9OQt3X+Ffh1Io04tGHV/E/xHg0sgJlom5pRSVq3KCpWRSRrVghg4dyqJFixg9enS1Ppju3bs3S8Ek6U6lVwW/nsshqJUNrjcs6OVha86Cke1Z+3sqP8ZlEZdexJtDWuNh28BbZgmxYGMHnm2MSn59gqWsYCTTMaqC+fnnnwFDX0xliqLIMDKS1ECHr+aTVVTOqL4eNT5vplV4vo8H/u5WfLo/mVe3XWDawFb0b2P8LTOR8McCYxrj+lPi0ouwM9fQ2k5OsJRMx6gKZuXKlc1dDkm6a/ySkIOTpZbeXrZ1phvUzh5vJ0sW7b7CB79d4clANx7pXv+IMJGXA8lXUAaHGV2mM+mGFSzlwB3JlORwEUlqQRmFZRy+mk9oJ0d0mvq/zFvZmfPhPe3p38aWjSfSyS0urz+Tsw3rfyko1XM5p1TeHpNMrs4WzOzZs+v9RTN37lyTFkiS7mS/nstBFRBWqXO/PuZaDRMD3TiQmM+Oszk87F93K0bEnwKdGbT3Mer48RnFCGT/i2R6dVYwI0aMaKlySNIdTxWC8LM59PCwbvA8l3aOFnT3sGZ7fBbjujqjraP1IxJioUNnFDPj+lPi0otQgM5ygqVkYnVWMMOGDWuhYkjSzXMhq5h5EYm8OdSrWX/FH08uJCW/jImBjVv+YkwXRxbtvsqhq/m1dviLkhK4eBZl1INGHzcuvYg2DubYmMupCJJpyT4Y6a4XdSmPtMJyPtpzlYJSfbPls+NsNnbmGga0rbtzvzb929jhYqVj65ns2hNdiAd9udH9L0KIigjKkmRqsoKR7npHkwpwtdaRXljGygPJhjArJpZbXM7+y/kM83ZodKwxnUbhns6OHE0q4EpuaZXnREYq6u5fUL/70rChk3Ez+K/mlZFXqsoKRmoWMv6+dFfLL9WTkFnMI/4uWOg0fHk0jZ5ncxhl4jXpd53PpVwVjGzicUf5OPLfk+lsjU3jL5aJiNijiNijkPJHtHNHF5RxE1FsjGslyQmWUnOqtYKZNWsW8+fPB2DTpk08+uijLVYoSWopJ1IKUQX0bGVDVzcrjicX8K9DKfi5WdHOwcIkeQgh2HE2G19XS9o7Nu6YQtXDhQQcYn9nYL49O+Na8cTeRYbAlL49UIbdi+LfCzzbNGguy5n0Iqx0GtrYy4UEJdOrtYK5evUqpaWlmJub8+OPPzapgklPT2flypVkZ2ejKAphYWGMGTOG/Px8li1bRlpaGm5ubrz66qvY2toihGDNmjX8/vvvWFhYMHnyZDp27AhAREQEmzdvBmD8+PEVAxHOnTvHypUrKS0tpVevXjz77LNy0phUr2NJBVjqNPi6WqFRFF4d1JppW8/z0e6rLB7dHgsTRBY+nV7E5ZxSpvT3bPC+Qq9H7I9A/PQ1pCWDojC68yB2t+7I7ifnck9/X6NHi9UkLhjgibEAACAASURBVL2Izq6WdY5Kk6TGqrWC6du3L9OmTcPd3Z3S0lLmzJlTYzpj5sFotVqefPJJOnbsSFFRETNmzCAgIICIiAh69OjBuHHj+O677/juu++YOHEiv//+O8nJySxfvpz4+Hi++OILPvjgA/Lz8/nf//7HwoULAZgxYwZ9+vTB1taWf/3rX7zwwgt07tyZBQsWcPToUXr16tXIyyLdLY4mF9DDw6pi0qOTlY7pA1sxd1ciq4+k8lK/hlcKN9qRkIOlTsOQ9sZHKhZ6PeJABOLHPyqWdp1QJr2G4t8Lf1t7vLddYGuOBfc0YZXZ4nKVC9klPFLPvBpJaqxa352TJ0/m9OnTpKamkpCQwPDhwxudiZOTU0WofysrK7y8vMjMzCQ6Opr33nsPgJCQEN577z0mTpzIoUOHCA4ORlEUunTpQkFBAVlZWcTExBAQEICtreH+ckBAAEePHsXf35+ioiK6dOkCQHBwMNHR0bKCkeqUkl9KUl4ZY7tUXYYiqLUt47s5szk2k0BPawa1a3wI+8IyPXsu5hLibY+VWf2tIaHXIw5GGiqW1KvQ1hvNyzMhsH+VFvmYLk6sPJBMbFoR/u7WjSpbQkYxqpD9L1LzqfPnj5+fH35+fpSXl5tsTkxqairnz5/Hx8eHnJyciorHycmJ3FzDsrGZmZm4urpW7OPi4kJmZiaZmZm4uFz/teXs7Fzj9mvpaxIeHk54eDgACxcurJLP7Uqn090R5wEtey57k5MBGNa1Da4uVb+kp41w5nTGcT47mEI/n9Z42jd8EqJOp+NIukqJXvBY7w64utYerFLo9RTv3kHBprWoVy+h69AZmxkLsOgXXOOt3occnFh3NI1fLxYS0q1dg8sGkHghEYABXbxwtKr9Npt8f92abodzMap9PWLECE6ePElkZCRZWVk4OTkRHBzc4FD9xcXFLFmyhGeeeQZr69p/ddU0TLS2/hRFURo0rDQsLIywsOtBANPT043e91bl6up6R5wHtOy57IlPwdlKh61aQHp6YbXnp/V359VtF5j5QwwfjGxnVOywylxdXdl89AodHC1w1RaTnl5SLY1Q9YjoPYgf/7+9Ow+PqjofOP49kz2ZLDOTEJKwLwHDFiCA7CBgXZCioghSBaQVo2KltYKloLRU6q8RpCWuSF2q1iJQqyKWRaIssmRBpCSEgBJICNkzSSaTmXt+f0SiKQlMYGYyJOfzPHkgN3fuPW8mM+/cc895z3uQfwZiOqN7aBFa/PWYdTrMRUVNHn981xA+ziwkq28+xoDmd5WlfltIVLAPtsoyCisvHYf6+/I8LRVLdHS0w/s6dAdz+/btrF69mrCwMIYOHYrBYOCFF16ovxJwhM1mIykpidGjRzNs2DAAQkNDKSkpAaCkpISQkLquCJPJ1OAXV1RUhMFgwGg0UvSjF1xxcTEGgwGTydRge1FREUaj0eG2KW2PXZMczq8kPiqwyQ8v7YN9SRzanszCat493PwXclaBmRPFFm7sEdbkObQ1y5GvJYGXN7r5i9AtfQExaIRDZfZv7mnALuGz45eYeNmE+gmWJtU9priOQwnmww8/ZMmSJcycOZNJkyYxY8YMlixZwocffujQSaSUvPTSS8TExDB58uT67QkJCezatQuAXbt2MWTIkPrtKSkpdS+CrCwCAwMxGAzEx8eTkZGB2WzGbDaTkZFBfHw8BoOBgIAAsrKykFKSkpJCQkJCc38XShuSU2KhwqoxoH3QJfcb3SWESd1D+eCbIjLyL/ExvxH//uYcvl6CsV0av4cjT2bBN2mIyffUJZbBjiWWC6JDfBkUFcSn2aXYtOZNDj1faaPEYqdXhEowius4dF1dUVFBhw4NV8aLjo7GbDY7dJLMzExSUlLo1KkTTzzxBAAzZsxg6tSprFq1ih07dhAeHs7ChQsBGDhwIKmpqSxYsABfX18SExMB0Ov13HnnnSxevBiAadOm1d/wnzdvHsnJyVitVuLj49UNfuWSMvLqusTiL5NgAH6eEMl/z1ezavdZVt/alTD/y79samwanx0rYETHYPR+jdf4kjs/Br8AxI1Tm5VYfuyWWAN/2JXLvtMVzRql9sW3dfc71Q1+xZUcSjC9e/fmzTff5N5778XPzw+LxcI777xTP2rLkce///77jf5s6dKlF20TQjBv3rxG97/hhhsarfLcvXt3kpKSHGqPoqTnV9IlzI8wB+5d+HnreGJUNE9s/ZYX9uTx+IgoAn29LnlPZs93FZit9iZn7suKMuSBLxCjb0QEXNkoMIBB0UG0C/Lhk6wShxKMXZO8kVbAv46VEN8+kC5XOPFTURzhUIL5+c9/zurVq5k9ezZ6vR6z2UxsbCyPPfaYq9unKE5XY9P47/lqJvcyXH7n73Ux+DN3UDteOnCOn32QDYC/tyDIx4sgXx1Bvl4E+dT9G+ij4+tzVXQM86dPu8avEOSX/wGbDTHulquKxUsnuDk2jDfSznOqxEIXQ9Oj3cxWO0lfniU1r5JbY8OYOzhSTbBUXMqhBGMwGHjmmWcoKiqqH0X242HBinIt+aagCpsmGdC+eVcON/UMo12QD/nmWiqtdiprNcxWO5VWjcpaOyUWO7nlViprNaprNX45tlujN/elZkd+vgV690dEX9kQ4x+b2D2Mdw8X8klWKYlNVAs4U25lxa5c8iusJA5tz096OrfWmqI0plljG00mk0osyjUvPa8Sb51o9gRFIQSDYxwvtd/kMNLDB6D4PLrpDzTr/E0J8fNiVOcQdp0q4/6BERet65KWV8n/fXEGL53g9xM60SfyyrvkFKU5VLl+pc1Jz68iLiLAKXXGroS242MwhMOAYU475i2xYVhskh05ZfXbpJR8eKyY5TtPEx7kw59v6qySi+JWKsEobUpJtY1vS2sYEHX50WOuIPNy4b8ZiLE3Ibyct4JkT1MAsSZ/PskqRZOSWrvGX7/KZ92hAobE6PnTjZ2J1KuKyYp7XTbBaJrGkSNHsNls7miPorjUhbksjgxPdgX5+Sfg7Y0YfaPTj31LrIGzFVZSTpXzu+2n2XaijLv7mlg0JsahOmiK4myX/avT6XQ899xzeF9F1VZF8RTpeZUE+3nRzej+4bnSUoXcsx0xeCQixPk32Ud2DibEz4tVe/I4UWzhiVHR3DsgAp1atkJpIQ59rLnuuuvIyspydVsUxaWklKTnV9E/MrBF3nTlvs/BUo0Yf6tLju/rpePOPkaig31ZeWPnZk28VBRXcOiyJCIigmeffZaEhARMJlODoZfTp093WeMUxZlOl1kpqbYR3wL3X6SUyB0fQ6fu0K2Xy84z9ToTU69TIz0Vz+BQgrFarfV1wpoqg68oni69Je+/ZB2BvNOI2QvUSqtKm+FQgrlQC0xRrmXpeZVEB/vQTn/lSwxfKW3HxxAUjBgy2u3nVpSW4vDQktzcXDZs2MC6desAOHv2LN9++63LGqYozlRrl3xTUHXZ6smuIIsLIX0fYtREhK+q/aW0HQ4lmL1797Js2TKKi4tJSUkBoLq6mjfffNOljVMUZ8ksrMZiky1z/yXlU5ASMfZmt59bUVqSQ11k77//Pr/73e/o0qULe/fuBaBz586cOnXKlW1TFKdJz6tEJ6Cfm2eyy9paZMpW6JeAiGi8TpiitFYOXcGUlZXRuXPnBtuEEOpmpXLNyMivpKcp4KI6Xa4mU/dARRk6Fw1NVhRP5lCC6datW33X2AW7d++mR48eLmmUojiTucZOdrGF+Cj31+GSOz+GdlEQF+/2cytKS3Ooi2zOnDn84Q9/YMeOHdTU1LBixQrOnj3LkiVLXN0+RblqX5+rQpPuH55cm5MJJ44hpj9wxStWKsq1zKEEExMTw+rVqzl06BCDBw/GZDIxePBg/P2bXtxIUTxFen4lAd46Yt28PHDVlo3g64cYMcGt51UUT+FwgTE/Pz969+5NcXExRqNRJRflmpGeV0nfyMBLLnHsbLKyAkvKVsT14xGBjq8hoyitiUMJprCwkDVr1nD8+HGCgoKorKykR48eLFiwgIiICFe3UVGu2DmzlXxzLbf1dnx5ZGeQu7eB1YoYf3VLIivKtcyhjuG1a9fSrVs31q9fz2uvvcb69evp3r07a9eudXX7FOUiUtOQtVaH9k3PqwLce/9FfpeD3PZvfOIGIDp0ddt5FcXTOJRgcnJymDVrVn23mL+/P7NmzSInJ8eljVOUxsiNb6L9dj6y0nzZfdPzKzEFehMT4vrFtmSVGe3dV9D+sBBstehnPeTycyqKJ3MowfTs2ZPs7OwG206cOEFsbKxLGqUoTZGaHbl3B5QUIjddupKEXZMczq8kvn2QS+dsSSnR9u5E+10icucniHE3ofv9i/he199l51SUa0GT92D+8Y9/1P8/MjKSZ599lkGDBmEymSgqKiItLY1Ro0a5pZGKUi/zCOleEewbOAXvM2X47jiGr8mEj07g4/X9l06Hj5egosaO2aq5tDyMzD2J9veXIfsodI1Ft2AZonN3l51PUa4lTSaYoqKiBt8PGzYMgPLycnx8fBg6dChWq2P94IriDFJK/nnwNO/0fwB/Hy90QdXUnqmlNq8I2cRjfHSCAe2dP8FSVlUi//0ucsdHEBiEuO8RxMiJar6LovxIkwlGlehXPEl1rcYLe86wV9eD0bYzPHrPeHwz9qG9tBLuegA5cQq1dkmtXaNWk1jtklpNEuijI9Tfect9SymRX+1CblgP5aWIMT9B3P4zRFCw086hKK2Fw6+8mpoa8vPzsVgsDbb36uW61fkUBSCvwsqzu85wuszC/dkfM3XKKHTeOuSg4dAvAT78O14JI/A2RhDg47orCGmpRlu7Ao4dhs490D28BNG1p8vOpyjXOocSzK5du3j99dfx9vbG17fhaJwXX3zRJQ1TFIDUs2aSdp9FAL+rPcSAokOIvo8BdQVXdTN+gfb0I2jvvYpX4lMubYv8198h82vEzPmIsT9B6NxbOFNRrjUOJZi3336bX/3qV/Tvr0bFKO4hpWTT0WLeyjhPx1A/Fo+IpN2yZYj4YQifH1akFBHtEZPvQW58E5mxHzFgqGvac/I4cvtHiLE3o1OTJxXFIQ71J3h7exMXF+fqtigKABabxp93n+WN9PMM7xjMcz/pTPvvjkB1ZaNLDotJUyG6E9o7LyNrLI0c8epImw3tzb9AaBji9p85/fiK0lo5lGCmT5/Om2++SXl5uavbo7RxZ8ssLPrsW3Z/W8F98RE8MSoaf28dcv8XEBQM1w246DHC2xvdvQ9B8Xnkv99zepvkfzZD7il0M+cjAt2/IqaiXKsc6iKLjo7m/fffZ+vWrRf97MfzZRTlamTkV5K0OxubprF0fAcGRdcViZTWmrrur6GjEd6N/8mK2D6IkROR2/6FvH4cokMXp7RJFpytS1qDhiMGXu+UYypKW+FQgvnLX/7CmDFjGDFixEU3+RXlakkp+XdmCetTC+hkCOTJke2J/nFpl68PQU11o91jPybunI3M+Art7y+ie+LZq56TIqVEeysZvH3QzfjFVR1LUdoihxKM2Wxm+vTpaolkxelqbBrJ+/P5/GQ513fUs3xyX6rLSxvsox1IgeBQiO17yWOJ4BDEtLnIv72A3L0NMfrGq2qb3LMdjh1GzEpEhJmu6liK0hY59BFv3LhxFy2ZrLRt+05X8MtPTrJq91nOV9Ze0THOV9by1H++4/OT5czsH86To2MI8m34mUdaquHrg4iEkQivyw8LFiNugNg+yA1/Q1aUXVG7AGR5CfL916Fn3FUnKkVpqxy6gsnOzubTTz9l48aNhIWFNfjZM88845KGKZ6pqKqWVw6eY99pM9HBPuz+roI9pyuY0tvInX2MBPo4Njfkm4Iq/vTFGaw2yVNjYxjWofGZ8DJjf926KgmX7h67QAiB7t6H0JY/hvznesTcXzocW4PzvvcaWC3ofvaIKv+iKFfIoQQzYcIEJkxQy762ZXZN8unxUt5KP49dSu6Pj2DKdUZKqm28lX6eDd8U8Z8TpczsH86k7mF4NbF6pJR1x3n14Dki9b78cWIMHUL9mjyvPPglhJmgx3UOt1VEd0LceDtyywbkyAmIXv2aFav8+iDywBeIKTMRUR2a9VhFUX7gUIIZN26ci5uheLJTJRaS9+eTWWhhQPtAHhranqjgupvwEUE+LBwZzW29Dbx+qIAX95/jo8wS5g5qVz8K7IJau8YrB8/xWXYZg6ODWDgyGr1v01c8ssoMRw4hxt3a7KsIcet05IEv0N78K7oHFiK6OVbSSFqq0d5+EaI6Im6+s1nnVBSlIYcSzI4dO5r82Q033OC0xiiepcam8f6RIjYdLSLI14tfDo9iXNeQRgd79DQF8MdJndh32swb6QU8szOX+Kgg5gyMoIvBn+JqGytTzpBZWM1dfUzM6B/e5FXOBTL9K7DZEEOavyyE8PNDN3sB2osr0Z59AuLi0d06HRHb59Ln3Pw2lBSi+81KhLfPJfdVFOXSHEowX3zxRYPvS0tLyc/Pp3fv3g4lmOTkZFJTUwkNDSUpKQmoG5m2atUqzp8/T0REBI8//jh6vR4pJevXryctLQ0/Pz8SExPp1q0bAJ9//jkbN24E4I477qi/ssrJyWHt2rVYrVYGDhzInDlz1Ii3q3Q4v5Lk/fnkVdRyQ7cQ5gxsR8hlqhILIRjeKZiEGD1bjpfwj68LeXzLKcZ2CSEjv4pKq53fjI5mZKcQh9ogD3wJpnbQ9coWthO9+qFb+Sry8y3Izzaj/d9i6NUP3a13Q+/+F/2NyJNZyB115WBEM7rkFEVpnEMJZtmyZRdt27FjB2fOnHHoJOPGjeOmm25i7dq19ds2b95Mv379mDp1Kps3b2bz5s3MmjWLtLQ08vPzWbNmDcePH+e1117jj3/8I2azmQ0bNrBy5UoAFi1aREJCAnq9nldffZUHH3yQnj178uyzz5Kens7AgQMdapvSUK1d8tKBfLadKKO93oflEzoyoJnr2ft4Cab0NjK+ayjvHynkk6wSTIE+PPeTznQx+Dt0DGkuh/+mIyZNvaoPC8I/EHHTncjxk5FffIr8dBPa87+D7r3RTZ4OfQYhhKgrB/PGXyDUiLjjvis+n6IoP7ji4THjxo27ZNfZj8XFxaHXN+yPP3DgAGPHjgVg7NixHDhwAICDBw8yZswYhBDExsZSWVlJSUkJ6enp9O/fH71ej16vp3///qSnp1NSUkJ1dTWxsbEIIRgzZkz9sZTme+/rQradKOOOOCNrbu3a7OTyY8F+XjwwOJJXftqdF27p6nByAZCpe8Fuv6LuscYIPz90E3+K7tlXEPfOh5JCtBeeQVvxK2T6V8itG+HMt+hmPogIcP4CZYrSFjl0BaNpWoPvrVYrKSkpBAVd+ZtPWVkZBoMBAIPBUF/nrLi4mPDw8Pr9TCYTxcXFFBcXYzL9MNnNaDQ2uv3C/k3Ztm0b27ZtA2DlypUNznWt8vb2dkoch8+Ws/FoEZP7RPKric5b56Q5LbsQS0nGV9ijOmIaONT53Z3T7kP+dAbVn2+h6oM3sa9dAYDf9eMImzTZaadx1vPS0lpLHKBicTeHEsyMGTMu2mY0GnnwwQed3iApL178tqk3GCFEo/tfysSJE5k4cWL994WFhc1roAcKDw+/6jiqau08s+UUEUE+3NsnpMV+L+Hh4ZzPOY72dSrilmkXLd3tVANHIPsPQ+xPgcMHqL1ztlPjdsbz4glaSxygYnGG6Ohoh/d1KMH89a9/bfC9n58fISGO3ahtSmhoKCUlJRgMBkpKSuqPZzKZGvzSioqKMBgMGI1Gjh49Wr+9uLiYuLg4TCZTgzehoqIijEbjVbWtLVqfWsA5cy0rJnVyeLKkq8hDe0BqiCFjXH4u4eWFGD4eho93+bkUpa1x6B5MREREg6+rTS4ACQkJ7Nq1C6hbMXPIkCH121NSUpBSkpWVRWBgIAaDgfj4eDIyMjCbzZjNZjIyMoiPj8dgMBAQEEBWVhZSSlJSUkhISLjq9rUl+3Mr+Cy7jNvjjPRp1/L3H+SBLyC6EyKmU0s3RVGUq3DJK5jLlYERQrB06dLLnmT16tUcPXqUiooK5s+fz913383UqVNZtWoVO3bsIDw8nIULFwIwcOBAUlNTWbBgAb6+viQmJgKg1+u58847Wbx4MQDTpk2rHzgwb948kpOTsVqtxMfHN2sEWXWt5tJ13D1dmcXGX7/Kp0uYHzP7t3x/rr2wALL/i5hycbesoijXFiEvcROjqVFixcXFbNmyhZqaGt5++22XNc4dhvzfDvy9dRgDvDEGeGEM8MEQ4IUx0BuDvzfGQG+6hvmj9/Pc9devtC9WSsmzKWc4dLaSpJscH0LsSgF7tmFevwbd719EtI9p6eZcldbS399a4gAVizM47R7M/06irKioYNOmTWzfvp0RI0Ywbdq0K2uhB7k/PoJii43iKhsl1TayiqopqbZRY/8h7wqgi8GPvpGB9G0XSJ92gQR7cMJx1I6cMr7KNTP7+9n2nqBm93bo1O2aTy6Kojh4k7+qqooPP/yQrVu3MmjQIP70pz/Rvn17V7fNLe7oc/E6H1JKqmo1SqptFFbZyCys5si5KrYeL+Xfx0oQQOew7xNOZF3CCbnGEs45s5VXDxbQt10AU3p7xqAIWXiO2qxvEHfc39JNURTFCS6ZYKxWKx9//DEfffQRcXFxLF++nI4dO7qrbS1GCEGQrxdBvl50CPUjPiqI6f3qijUeL7Jw5FwVRwqq+Cy7lI8yS4C6hDM0Rs+E7qH1hSA9lV2TrN6TB8Bjw6MvWxPMXeTBLwGcNrlSUZSWdckE8/DDD6NpGlOmTKF79+6UlZVRVtZwEae+fS+9ymBr4uOlI65dIHHtArmburIq2UXVHCmo4nB+FR8cLeKf3xTRt10AE7qHMbJTMH7enjeA4F/Hijl6vprHhkfRTu8ZBR1lrRX5+RZ8evVFC49s6eYoiuIEl0wwvr51n8Q/++yzRn8uhLhojkxb4uMluK5dINe1C+SuvnWLce3MKWdbTikv7M3jlQPnGNMlhAndQ4k1+XtEAc5TJRb+nlHI9R31jO969cPNnUXu+AiKCgh69LdUtHRjFEVxiksmmB8Xp1QuzxTow7S+Ju7sY+RoQTXbckr5/GQZW7NL6RTqy8TuYYztGkLYZaoSu0qtXeP5PXnofXUkDm3vEQkPQFaUIT9+H/ol4DdgCBWtZJSPorR1LfNO18oJIegTGUifyEB+nmDny28r2HaijNdTC3gjrYAbuoXy84RIt3efvXO4kG9La1gytgOhLZTkGiM/fBdqLOjumtPSTVEUxYk8512mlQr08eLGHmHc2COM78pq+PR4KZ9klpBVZGHR6BiiQ9wzIODIuSo2HS3mxh6hDOmgv/wD3ETmnUamfIoYexMiqvUPIFGUtsTz7kC3Yp1C/fhFQiRLx3eguKqWX316iq9Ou/6Og7nGzvN7ztI+2Ie5gzzrBrr2z/XgF4C4Tc3cV5TWRiWYS5BVZrQP3kDmnnTqcQdF63n+5q5EB/vyx5QzvJFWgF1rXlVoR0kpWbs/n9JqG78aGe1RZXHk0TT4+iDi1rsQwaEt3RxFUZzMc95tPIw8cQxt+S+Rn36A9sqfkbZapx6/nd6HlTd24ic9wth4tJhlO05TWm1z6jkAtueUsee7Cu4dEEFPU4DTj3+lpGZHe/91CI9E3OC8NVgURfEcKsH8D6lpaFs31q3fDojbfwZ5p5FbNzn9XD5eOhKHteex4VFkFlbz+JZT/Pd8ldOOf6bcyqsHz9EvMpDb4zxjtv4Fcvf2uhUk77wf4ePZE1MVRbky6ib/j8iKMrTXV8ORQzBoBLr7H0EE6tG+y0F+/D5yyChEO8cLvTnqhm6hdDX4sTLlDL/9z3fMGdSOyb0MVzWMuNYuSdp9Fh+d4JcjotB5yJBkAGmpQv7r79C9Nwwe2dLNURTFRdQVzPdk5tdoyx+DY4cRM+ejm/8kIrButJW4Zx54e6P9/aVmr6DpqK4Gf5Ju7sKgaD2vHSogafdZqmu1yz+wCe8cPs+JYgsPXx9FeKBnzNa/QH66EcpK0N39gMfMxVEUxfnafIKRmh3tw3fRkn4HfgHoFv8fuvG3NHjjE2EmxO33wdF05P4Ul7VF7+vFU2Nj+NmACHZ/V8GvPz1FTrGl2cfJyK9k09FiftIjjOEdg13Q0isni88jP9uMGDoG0a1XSzdHURQXavMJRnt+KfLf7yKGjUW35HlEp26N7ifG/gS6xiL/8Rqy0nVDi3VCMK2viWdu6EhlrcYTW0+x8WgRmoNXTuU1dlbvySMmxJe5g9u5rJ1XSm56G6RE3HFfSzdFURQXa/MJhpNZiDmPoXvgcYR/06OshM4L3c8ehsoK5AdvuLxZ/dsHsebWriTE6Hkj7TzLtp+msOrSI9mklPx1Xx7lNXVDkv09rNCmPHUcuW8nYtJPESbPS36KojiXZ70DtQDdkufRjZjg0L6iY1fExJ8iv/gMefyoi1sGIX5eLBodwyPD2pNZWM1jH59k97flTe6/NbuUr3LN3Bffjm5Gz1hA7AIpJdr76yA4FHHztb9QnaIol9fmE0xzy5OIKTPAGIH21lqnz41p9HxCMKlHGKtv6UpUsC/PfXmWF/aeparW3mC/02U1rDtUQHxUELf1Nri8Xc2WtheOH0X89F5EQGBLt0ZRFDdo8wmmuYSfP7qZ8+vmxny22W3njQ7xZeWNnbm7r4nPT5bz+CenOHa+GgCrTSNp91n8vXU8NtyzhiQDSFst2oa/QXQnxKhJLd0cRVHcRCWYKyAGDIHBI5Af/QNZkOe283rrBPcOiGDFxE5oUrL4P9/y7uHzJO8+xcmSGhZcH4UxwPOmNsmdn8D5fHR3zUV4XVtLSyuKcuVUgrlCunt+Dl5eLp0b05S4doGsvqUrYzqH8N7XRfwz/Sy3xoZ5VJVkuFAVYRPyg79B30GIvoNaukmK1UDzHAAAD3BJREFUoriR533cvUaIMBPijvuQ77yM3J+CGDbWrecP8vXi8ZHRDI7Rk1lq576+nlUsUlaUo61fDV8fhEHD0d3/aEs3SVEUN1MJ5iqIsTch9+6smxvTdzAiyP1XEGO6hHBHeDiFHrQKpMw6gvZqEpjLEDPnI8bdrGbsK0obpLrIroLQeaGblVg3N2aj6+fGeDqp2dE++gfan5eAr1+jVREURWk71BXMVRKduiEmTkF+thk5dCyiV9+WblKLkGUlaOueh/9mIIaORfzsIYS/Go6sKG2ZuoJxAnHbDAiPRFu9DO2zTUjNfvkHtSLyaHpdodAT/0Xc9whi3kKVXBRFUQnGGYR/ALrFz0HfQch/rkdLWoI8n9/SzXI5abejbX4bbfUyCApG91QSutE3qi4xRVEA1UXmNCLEgC7xKeSeHch/vIr2zGOI6Q8gRk26pt5wpabB2W+hohyqq5CWKrBUQ/X3/1qqvt9eDQV5kHcaMXIiYsYvEH6eVZ5GUZSWpRKMEwkhECMnIHv3R/vbC8g3/4pM24fuvkcQYZ61ouSPSc0Ox48iU/ciU/dCaVHjO3r7QEAg+AfU/RsShrj1bnRuHqKtKMq1QSUYFxCmCHSPL0fu/Bj5wRtoTz+KbtZDiIRRLd20etJmg8yvkal7kGn7oKIMfHyhzyDEwFmI8EjwD/w+odQlFeHjWQuXKYri2VSCcRGh0yEm3IaMG4j2+iq0l59DpO1DzHwQEdQyi4DJWmvdommH9iAz9kOVGfwCEP0TEIOGQ9/Bl1yyQFEUpTlUgnExEdUB3aLnkFv+WVe7LOsI4ta7ER26QlTHq5qcKTU7FBdiPXcaefYMssoMlRVQWQlVFVBpRlaa6xJJZQWUFYPVCgFBiAFDEYNHQFw8wtfPiREriqLUUQnGDYSXF2LyPch+Q9BeX4X8+0vUVy8LCatLNFEdoH2H7//tCAYTQgiktQYKz8H5fOT5PCjIqxuhVpAPRQVgt1HyvyfU6SBQX/cVpAd9MKJdNISEIvoMhN79Ed6qu0tRFNdSCcaNROfu6JatqUsY+bnIvNy6sv/5ucj9KVBV+UPi8Q+o+yotbniQgCCIaI/o2BUGD4eIKEK79qBck98nlOC6+yXX0Mg1RVFaJ5Vg3EzodNAuCtpFIfoPqd8upYSKUsjLReadhrzcumHBEZEQEYWIaA8RUXVXI/+TPPzCwxEeVItMURQFVILxGEIICDFAiAHRq19LN0dRFOWqqZn8iqIoikuoBKMoiqK4RKvqIktPT2f9+vVomsaECROYOnVqSzdJURSlzWo1VzCaprFu3TqeeuopVq1axe7du8nNzW3pZimKorRZrSbBZGdn0759eyIjI/H29mbEiBEcOHCgpZulKIrSZrWaLrLi4mJMJlP99yaTiePHj1+037Zt29i2bRsAK1euJDw83G1tdBVvb+9WEQeoWDxRa4kDVCzu1moSjJTyom2NTTacOHEiEydOrP/ek9ayv1Lh4eGtIg5QsXii1hIHqFicITo62uF9W00XmclkoqjohzLzRUVFGAyGFmyRoihK29ZqrmC6d+9OXl4eBQUFGI1G9uzZw4IFCy77uOZkY0/WWuIAFYsnai1xgIrFnVrNFYyXlxdz585lxYoVPP744wwfPpyOHTte8jGLFi1yU+tcq7XEASoWT9Ra4gAVi7u1misYgEGDBjFo0KCWboaiKIpCK7qCURRFUTyL19NPP/10SzeiJXXr1q2lm+AUrSUOULF4otYSB6hY3EnIxsb3KoqiKMpVUl1kiqIoikuoBKMoiqK4RKsaRZacnExqaiqhoaEkJSUBcOrUKV599VUsFgsREREsWLCAwMBAbDYbL730EidPnkTTNMaMGcPtt98OeEZVZmfF8vDDD+Pv749Op8PLy4uVK1d6dByvvPIKJ06cQKfTMXv2bPr06QNATk4Oa9euxWq1MnDgQObMmeP2ZaGdFcvTTz9NSUkJvr6+ACxZsoTQ0FC3xlJYWMjatWspLS1FCMHEiRO55ZZbMJvNrFq1ivPnzxMREcHjjz+OXq9HSsn69etJS0vDz8+PxMTE+v7/zz//nI0bNwJwxx13MG7cuGsyjunTp9OpUyegbpb8k08+6bY4riSWM2fOkJyczMmTJ7nnnnuYMmVK/bE84T0MANmKfPPNN/LEiRNy4cKF9dsWLVokv/nmGymllNu3b5fvvvuulFLKL774Qq5atUpKKaXFYpGJiYny3Llz0m63y0ceeUTm5+fL2tpa+etf/1qePn36moxFSikTExNlWVmZm1v/g+bEsWXLFrl27VoppZSlpaXyN7/5jbTb7fWPyczMlJqmyRUrVsjU1FQ3R+K8WJYtWyazs7Pd3PqGiouL5YkTJ6SUUlZVVckFCxbI06dPy7feektu2rRJSinlpk2b5FtvvSWllPLQoUNyxYoVUtM0mZmZKRcvXiyllLKiokI+/PDDsqKiosH/r7U4pJRy1qxZbmt3Y5obS2lpqTx+/Lh855135L/+9a/643jKe5iUUraqLrK4uDj0en2DbWfPnuW6664DoH///nz11Vf1P7NYLNjtdqxWK97e3gQGBnpMVWZnxOIJmhNHbm4uffv2BSA0NJSgoCBycnIoKSmhurqa2NhYhBCMGTPG45+TpmLxFAaDof6Te0BAADExMRQXF3PgwAHGjh0LwNixY+t/zwcPHmTMmDEIIYiNjaWyspKSkhLS09Pp378/er0evV5P//79SU9Pv+bi8ATNjSU0NJQePXrg5eXV4Die8h4GbeAeTMeOHTl48CAA+/btq69Xdv311+Pv788vfvELEhMTue2229Dr9Y1WZS4uLm6Rtv+v5sZywYoVK3jyySfrq0i3tKbi6NKlCwcPHsRut1NQUEBOTg6FhYXX5HPSVCwXJCcn88QTT7Bhw4ZGC7W6U0FBASdPnqRHjx6UlZXV1/AzGAyUl5cDddXKf1y598Jz8L/PjdFobLHn5mriAKitrWXRokX89re/Zf/+/e4P4EcciaUpnvR6aVX3YBrz0EMPsX79ejZs2EBCQgLe3nUhZ2dno9PpePnll6msrGTp0qX069fP4arMLaG5sURGRvL73/8eo9FIWVkZf/jDH4iOjiYuLs4j4xg/fjy5ubksWrSIiIgIevXqhZeXV4u/AV9Kc2MBWLBgAUajkerqapKSkkhJSan/hOpuFouFpKQkZs+efcmr3ua8Llri9eKMOJKTkzEajZw7d47ly5fTqVMn2rdv77I2N8XRWJriSe9hrT7BxMTEsGTJEqCuOyM1NRWAL7/8kvj4eLy9vQkNDaVXr16cOHGC8PBwj63K3NxYIiMjMRqNQN3l9JAhQ8jOzm7xBNNUHF5eXsyePbt+vyVLlhAVFUVQUNBFz8mFuFpac2MB6tseEBDAqFGjyM7ObpEEY7PZSEpKYvTo0QwbNgyo+zspKSnBYDBQUlJCSEgIUPcp+MdXYBdeF0ajkaNHj9ZvLy4udvvflzPigB+el8jISOLi4jh16pTbE0xzYmmKJ1WWb/VdZGVlZUDdksobN25k0qRJQN0okSNHjiClxGKxcPz4cWJiYhpUZbbZbOzZs4eEhISWDKFec2OxWCxUV1cDdZ+KDh8+XD9KpiU1FUdNTQ0WiwWAw4cP4+XlRYcOHTAYDAQEBJCVlYWUkpSUFI9/TpqKxW6313dx2Gw2Dh06dNmirK4gpeSll14iJiaGyZMn129PSEhg165dAOzatYshQ4bUb09JSUFKSVZWFoGBgRgMBuLj48nIyMBsNmM2m8nIyCA+Pv6ai8NsNlNbWwtAeXk5mZmZdOjQwW1xXEksTfGk97BWNZN/9erVHD16lIqKCkJDQ7n77ruxWCxs3boVgKFDhzJz5kyEEFgsFpKTk8nNzUVKyfjx4+uH+aWmpvLGG2+gaRrjx4/njjvuuCZjOXfuHH/+858BsNvtjBo1yu2xNCeOgoICVqxYgU6nw2g0Mn/+fCIiIgA4ceIEycnJWK1W4uPjmTt3rtsv+50Ri8ViYdmyZdjtdjRNo1+/ftx///3odO79rHfs2DGWLl1Kp06d6n+PM2bMoGfPnqxatYrCwkLCw8NZuHBh/fDedevWkZGRga+vL4mJiXTv3h2AHTt2sGnTJqBumPL48eOvuTgyMzN55ZVX0Ol0aJrGrbfeyg033OC2OK4kltLSUhYtWkR1dTVCCPz9/Xn++ecJDAz0iPcwaGUJRlEURfEcrb6LTFEURWkZKsEoiqIoLqESjKIoiuISKsEoiqIoLqESjKIoiuISKsEoiqIoLqESjKI42Zo1a0hOTm6w7ejRo8ydO9djCisqijuoBKMoTjZnzhzS0tI4fPgwAFarlZdffpn77rvPqSU7NE1z2rEUxRVafS0yRXG34OBg5s6dy8svv0xSUhIbN24kMjKScePGoWkamzdvZufOnVRVVdGvXz/mzZuHXq9H0zRWrVrFsWPHqK2tpUuXLsybN6++ZMmaNWsIDAzk3LlzHDt2jEWLFmGxWHj77bcpKioiMDCQyZMnNygzoigtSc3kVxQXSUpKwmazkZmZyXPPPUd4eDgffvghBw4cqF+VcN26ddhsNh599FE0TSMlJYVhw4bh5eXFW2+9xfHjx+tXIV2zZg1paWksXryYHj16YLfbmT9/Pr/5zW/o1asXZrOZgoKC+jVFFKWlqS4yRXGRBx54gCNHjjBt2rT6NUi2bdvGjBkzMBqN+Pr6ctddd7F37140TUOn0zFu3DgCAgLqf5aTk1NfNBNgyJAhxMbGotPp8PHxwdvbm9zcXKqrq9Hr9Sq5KB5FdZEpiouEhYUREhLSoCpvYWEhf/rTnxoU6hRCUF5eTkhICO+88w779u2joqKifp+Kigr8/f0BGiyWBfDrX/+ajRs38vbbb9O5c2fuvfdeevbs6YboFOXyVIJRFDcymUwsWLCg0SSwc+dO0tLSWLp0KREREVRUVDBv3rxLLrjWs2dPnnzySWw2G5988gmrV69m7dq1rgxBURymusgUxY0mTZrEu+++W7/oVVlZWf2Sy9XV1Xh7exMcHExNTQ3vvffeJY9ltVr58ssvqaqqwtvbm4CAALeX/VeUS1FXMIriRhdGeC1fvpzS0lJCQ0MZOXIkCQkJjB8/nsOHD/Pggw8SHBzMXXfdxbZt2y55vF27drFu3To0TSM6OppHH33UHWEoikPUKDJFURTFJdT1tKIoiuISKsEoiqIoLqESjKIoiuISKsEoiqIoLqESjKIoiuISKsEoiqIoLqESjKIoiuISKsEoiqIoLvH/FEoPqgoGJ2AAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"### type your answer here\n",
"df_CI.plot(kind='line')\n",
"\n",
"plt.title(\"Comparing immigration rate of China and India\")\n",
"plt.xlabel('Years')\n",
"plt.ylabel('Number of Immigrants')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Double-click __here__ for the solution.\n",
"<!-- The correct answer is:\n",
"df_CI.index = df_CI.index.map(int) # let's change the index values of df_CI to type integer for plotting\n",
"df_CI.plot(kind='line')\n",
"-->\n",
"\n",
"<!--\n",
"plt.title('Immigrants from China and India')\n",
"plt.ylabel('Number of Immigrants')\n",
"plt.xlabel('Years')\n",
"-->\n",
"\n",
"<!--\n",
"plt.show()\n",
"--> "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"From the above plot, we can observe that the China and India have very similar immigration trends through the years. "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"*Note*: How come we didn't need to transpose Haiti's dataframe before plotting (like we did for df_CI)?\n",
"\n",
"That's because `haiti` is a series as opposed to a dataframe, and has the years as its indices as shown below. \n",
"```python\n",
"print(type(haiti))\n",
"print(haiti.head(5))\n",
"```\n",
">class 'pandas.core.series.Series' <br>\n",
">1980 1666 <br>\n",
">1981 3692 <br>\n",
">1982 3498 <br>\n",
">1983 2860 <br>\n",
">1984 1418 <br>\n",
">Name: Haiti, dtype: int64 <br>"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Line plot is a handy tool to display several dependent variables against one independent variable. However, it is recommended that no more than 5-10 lines on a single graph; any more than that and it becomes difficult to interpret."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"**Question:** Compare the trend of top 5 countries that contributed the most to immigration to Canada."
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAEaCAYAAACmbNjHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd4FFX3x78zs303lZAEQoBA6F1a6C10fMUCSLGi8Cod9UekiKJYkF4UpQpYEKVIlSogRSEBNEEIhCAtEEjdZPvM+f2x7LzZZDfZ9ATm8zw8ZGfu3Dl3yj1z7j33HIaICBISEhISEpUItrwFkJCQkJCQKCyS8pKQkJCQqHRIyktCQkJCotIhKS8JCQkJiUqHpLwkJCQkJCodkvKSkJCQkKh0SMqrHFi/fj1kMll5i+ExW7ZsQd26dcFxHF5++eXyFuex5P3330d4eHipnuO3334DwzC4detWqZ7HHRXlvahduzY++uij8hbjkeT69etgGAa///578SujCsqDBw/onXfeofr165NSqaSqVatSly5d6JtvviGr1Vre4hULg8FAd+/eLW8xPMJms5FOp6OoqCi6desWpaenuyzXq1cveumll8pMrtmzZxOAPP+uXLlSZjIUh5s3bxIAOnLkiEfl9Xo93b9/v1RlMpvNlJSURDzPl+p53FHW78Xo0aOpW7duebYnJydTVlZWmcjAcRytW7euxOqLjY2lUaNGUUhICCkUCqpZsyYNHjyYDh8+XGLnKA6JiYkEgI4fP17susr/M8cFt27dQqdOnSCTyTBnzhy0atUKcrkcJ0+exPz589G8eXO0bNmyvMUsNEQEm80GtVoNtVpd3uJ4RFJSErKysjBgwACEhISUtzhO1K5dG6dOnXLaVrVq1XKSpnQQBAFEBJ1OB51OV6rnUigUCA4OLtVz5EdJvRcWiwUKhaLIx1fWZ+jXX3/F4MGD0bFjR6xatQr169dHdnY29u7di7FjxyI+Pr68RSxZiq3+SoFBgwZRUFCQy698i8UifhVZLBaaNm0aVa9eneRyOTVq1Ii+/fZbp/IAaOnSpTR06FDSaDQUGhpKW7ZsofT0dBoxYgTpdDoKCwujn376STzG8XWwYcMG6tmzJ6lUKqpduzZt2rTJqe7p06dTw4YNSa1WU40aNWjs2LFOMq9bt444jqPDhw9Ty5YtSS6X086dO8XtDjIyMujll1+moKAgUigUVKNGDZoyZYpTmz1p54oVK2jUqFGk0+moRo0a9NlnnxV4rU+dOkVdunQhlUpFvr6+NHz4cLp3754oP3JZNq4shZdeesltuUuXLtGAAQNIq9WSVqulQYMGOVlHjmtx4MABaty4MSmVSmrbti1FR0fnK/fs2bOpbt26BbYvN3q9niZNmkQ1atQghUJBtWrVorlz54r7PZU3J7mtqCNHjhAA2r9/P3Xp0oXUajU1atSI9u3bJx6T+3rVqlXLqV0//PADNWjQgDiOo7///ttle/fv308dO3YklUpF1atXp5dffpkePHgg7o+NjaU+ffqQj48PaTQaatiwIW3YsMHttXHIffPmTaffu3fvpoiICFKpVPTEE09QbGwsxcbGUqdOnUitVlPbtm0pLi4uzzU6fPgwNW3alFQqFXXt2pVu375NR48epZYtW5JGo6FevXrRrVu38r223333HdWpU4eUSiV16NCBdu7c6fTl7pBx165d1KlTJ1IqlbRs2TJKTU2lkSNHUmhoKKlUKqpfvz7Nnz+fBEEQr3Pue+CwgGrVqkUffvihKEOtWrVo1qxZNHHiRPLz86PAwEB66623yGaziWUMBgO9/vrr5O3tTb6+vvTGG29QVFRUvs9orVq18sjgYPfu3fTEE0+QQqGgqlWr0htvvJGvNZidnU2BgYHUr18/l/tTU1PFvxcvXkwtWrQgrVZLQUFBNGzYMLpz546435Pnl6jg/o+IaPPmzVS3bl3x/u3YscPp/gmCQK+99hrVqVOHVCoVhYWF0bvvvksmk8ltWx1UOOWVkpJCLMs6PTzuePvtt8nf359+/PFHunz5Ms2dO5cYhqGDBw+KZQBQUFAQrV+/nq5cuUJvvPEGqdVq6tevH61bt46uXLlC48ePJ41GI774DuVVrVo12rRpE126dIlmzJhBDMPQmTNnxLo//PBDOnbsGCUmJtLBgwepQYMG9OKLL4r7161bRwzDUJs2bejQoUOUkJBAycnJeV7SCRMmUPPmzen06dP077//0okTJ+jrr78udDsDAwPp66+/pqtXr9KSJUsIQL7DBUlJSeTl5UXDhw+nv/76i44fP07NmjWjzp07E5H9hfzzzz8JAO3YsYOSkpLIbDbnqSc9PZ26dOlCQ4cOpaSkJLGcwWCgmjVrUs+ePens2bN09uxZ6t69O9WtW1esx3GNWrVqRb/99htduHCBBg4cSMHBwZSdne1W9tmzZ5NSqaSQkBAKCQmhfv360YkTJ9yWJ7K/KN26daOwsDDatm0bJSQk0NGjR8Vr7am8niqv5s2b0969eyk+Pp5eeOEF8vHxobS0NCIiiomJIQD0888/U1JSEiUnJ4vtUqvV1LVrVzp16hRdvnyZMjMz8yivQ4cOkVqtpqVLl1J8fDz9+eef1L17d+rSpYvYQTdr1oyGDx9OcXFxlJCQQHv27KGdO3e6vT7ulFfLli3p0KFDFBcXRxEREdSsWTPq0qULHTx4kC5evEidOnWidu3aifU47mm3bt3o9OnTFB0dTeHh4dS5c2fq1q0bnTp1imJiYqhBgwY0dOhQp+NyXtuzZ88SwzA0Y8YMunTpEm3bto3q1q3rUnk1aNCAduzYQdeuXaObN29SUlISffrppxQdHU3Xrl2jjRs3klarpbVr1xKR/SNmxIgR1KFDB/GZNRgMRORaefn6+tInn3xC8fHx9MMPPxDHcWJdRPZ3ODAwkHbs2EGXLl2iqKgo8vb2zld5JScnE8dxtHjxYlEGIqILFy4Qx3E0efJkunjxIu3Zs4dCQ0Np1KhRbuvatm2bx8NxixcvpgMHDtC1a9fo5MmT1KFDB+ratau435Pnl6jg/i8mJoYYhqGoqCi6dOkS/fzzz1S7dm0nOXmepxkzZtDp06cpMTGRduzYQcHBwfTee+8V2I4Kp7z++OMP8aXOj+zsbFIoFLRixQqn7YMHD6YePXqIvwHQpEmTxN/JyckEgMaPHy9uS01NJQDii+1QXjNnznSqu0OHDjRy5Ei3Mm3dupUUCoU4Z+CwXI4dO+ZULvdL+p///MftfFFh2jlhwgSnMg0aNKCoqCi38s6cOZNCQkKcFNL58+cJAB09epSIPB+jdjXntXr1alKr1U5zNXfv3iWVSkXffPMNEf3vGuVUxKmpqaTVamnVqlVuz7dnzx7avHkzXbhwgY4dO0bDhw8nlmVp//79bo85ePAgAXD6ACmKvJ4qr5zPcFJSEgEQv17dzXnNnj2bGIahf//9N8/2nB1ht27daNq0aU5l/v33XwJA586dIyIib2/vQs2nuFNe27ZtE8v8+OOPBMBppGLr1q0EgPR6PRH975465CAimjdvHgGgs2fPitsWLlxIVapUEX/nvrYjRowQP6QcfPnlly6VV34WpYOJEydSZGSk+NvdnJcr5fXkk086lenbty89//zzRESUlZVFCoWCVq9e7VSmffv2BY4OuJrzGjVqFLVt29Zp2/bt24lhGLp+/brLej777DMCQCkpKfmezxWODymHFezJ8+uK3P3fyJEjqUOHDk5lli1bVmB/snDhQgoPDy9Q7grnbUgP4wQzDJNvuatXr8JisaBr165O27t164a4uDinbS1atBD/rlq1KjiOQ/PmzcVtfn5+UCgUSE5OdjquQ4cOTr87deqEixcvir+3bt2Krl27onr16tDpdBg5ciQsFgvu3r3rdFzbtm3zbcubb76Jn376CU2bNsWkSZOwd+9eCIJQ6HbmngcMCQnBvXv33J43Li4OERERTvMDLVq0gI+PT566i0JcXBwaN26MgIAAcVtQUBAaNGiQp/6c19rPzw+NGjVyuta56d+/P4YOHYrmzZujS5cu+O6779C5c2d8/vnnbo+Jjo6Gn58f2rRpU2x5PSHn/QgODgbHcfnej5znrFmzZr5lzpw5g8WLF4tzYTqdDo0bNwYAXLlyBQDw9ttv47XXXkP37t3x/vvvIyYmptBtAJzfH8ecWM73x7Et5/vDMAyaNWtW4HEpKSnged7leS9evIiIiAinbbnfSQft2rVz+i0IAj799FO0bNkSAQEB0Ol0WLlyJf7991/3Dc2H/N4txzvqqawFERcX5/J9JyK374Sj3/SE3377DX379kVoaCi8vLzQuXNnAMhzbQp6fgvq/y5evIhOnTo51ek4V05WrVqF9u3bIygoCDqdDu+++65H96nCKa969eqBZVmPO4vcSo6I8myTy+V5jsu9jWEYUWG4I+cD8scff2DIkCHo2rUrtm3bhpiYGKxcuRKAfcLYAcdxUKlU+dbbt29f3LhxAzNmzIDJZMKoUaPQs2dPp5fak3bmnqT2pE3uPhIK+njwFFf1uJLdVZnC0qFDB1y/fr3Q8hS0P6e8LJv3lbFarS7rcuU0UND9AACtVltgGUEQMG3aNJw/f97p35UrV9C/f38AwKxZsxAfH4+hQ4ciNjYWERERmDlzZoF15ybnu+K4Dq625Wwby7LgOM6j4/K7154+h7mv2YIFC/DJJ59gwoQJOHDgAM6fP4/XXnvN6d0sDJ68WyX1zuRXl7vtDRo0AIB8P/gA4MaNGxgwYABq166NH374AWfPnsUvv/wCAHmuTX7Pryf9nyfv+ZYtWzBu3DgMGzYMe/bswblz5/Dee++5fadyUuGUl7+/P/r374/ly5cjIyMjz36r1Yrs7GyEh4dDqVTi6NGjTvuPHTuGJk2alIgsp0+fdvp96tQpNGrUCADw+++/IyAgAB999BHat2+P+vXrF2t9jL+/P4YPH46vvvoKu3fvxtGjR3Hx4sVSbWeTJk1w6tQpp4f2woULyMjIKHTdCoUizxd0kyZNEBcXhwcPHojb7t27h/j4+Dz157zW6enpuHTpknitPeXcuXMIDQ11u79169ZITU3F2bNnXe73RN7AwEDwPO/0BVoUi8bRMbizOgqiTZs2iIuLQ3h4eJ5/Ob0S69SpI1r2c+bMwZdfflmk85UHjRs3zuNNmvuddMexY8fQr18/jB49Gq1atUJ4eLhokTpw9cwWhfDwcCgUiiLJ6u69yf2+Hz16FAzDiNZ1bvr06YPAwEDMnTvX5f60tDQAdovdaDRi8eLF6NSpExo0aODRaEBuPOn/mjRpghMnTjhty/372LFjaNWqFaZOnYrWrVujXr16BX6AOqhwygsAvvjiC8jlcrRu3RrfffcdLl68iKtXr2LTpk1o06YNrly5Ao1Gg4kTJ2LWrFnYsmULrly5go8//hg7duzA9OnTS0SONWvW4LvvvkN8fDzee+89nDp1CpMnTwZg/9K5f/8+1qxZg2vXrmHDhg344osvinSeGTNmYOvWrbh8+TKuXLmCb7/9FjqdDjVr1izVdo4fPx6ZmZl4+eWXERsbi99//x0vvPACOnfujC5duhSqrrCwMERHRyMhIQEPHjyA1WrFiBEjULVqVQwbNgwxMTGIjo7G888/j5CQEAwbNkw8lmEY/N///R+OHTuGv//+Gy+++CK0Wi1GjBjh9nxTp07F4cOHce3aNZw/fx7jxo3DgQMHxPvjip49e6JLly4YNmwYduzYgcTERJw4cQKrV68GAI/kbdeuHby8vBAVFYUrV65g3759mDNnTqGuFQBxKGv//v24e/eu2Ll4ypw5c7Bjxw5MmTIF58+fR0JCAvbt24fRo0fDaDQiKysL48aNw+HDh5GYmIhz585h3759bju/isjUqVNx4sQJvPfee4iPj8cvv/yCBQsWACjYymnQoAF+++03HDlyBPHx8Zg5cyb++OMPpzJhYWG4dOmS+MFiNpuLJKdWq8XYsWMxc+ZM7Nq1C/Hx8ZgxYwb++eefAuUMCwvDkSNHcOfOHfGj6Z133kFMTAymTp2KS5cuYd++fZgwYQJGjhzpdjhZo9Fg/fr1OHLkCCIjI7F3715cu3YNf//9N+bPny8OadarVw8Mw2DBggVITEzE9u3bi/T8etL/TZkyBadOncKMGTMQHx+Pbdu2ifcvZz1///03duzYgYSEBCxZsgRbt271TIgCZ8XKieTkZJo6dSrVq1dPXKTctWtX2rhxo7hI2VMX8o0bNzptczVJqlQqRQeBnK7y3bp1I6VSSbVq1cozKTxz5kwKDAwkjUZD/fv3p++++44AUGJiIhG5ntx3tX3OnDnUpEkT0mq15O3tTV27dnWa0CxqOz1ZOJzTVd7Hx8fJVT7ntSjIYSMhIYG6dOlCWq02j6t8//79RdfzgQMHunQ9//XXX6lhw4akUCioTZs2bp0qHDz//PPiQsyqVatSr1696NChQ/keQ0SUmZlJ48ePp+DgYJLL5VS7dm365JNPxP0FyUtEtGvXLmrYsCGpVCrq2LEj7du3z6XDhsPxwUHu5+6bb76h2rVrk0wmy+MqnxtX248dO0a9evUinU4nusJPmjSJrFYrGY1GGj58ONWuXVt8f4YOHUo3btxwe23cOWzkbMfx48ednnEi+zOEHAvEXT33GzdupNzdzffff08AxPc5P1d5hUJBERERtHnzZifHD3fXOj09nYYMGUJeXl7k7+9Pb775Js2cOVO8zkR2z+b+/fuTt7d3ga7yub2fczt7OFzlvby8yMfHh9544w2aNGkSNW3a1OW1drB3717xuc95fXK6ygcEBNB///tfjxZO//XXXzRixAiqVq0ayeVyCg0Npaefflp0wCIiWr58OdWoUYNUKhV16tSJ9u7dW6Tnt6D+j8h+jx33r127drR9+3an/sRisdCYMWPIz89P9Hx2OHUUBEMkZVLOzfXr1xEWFobjx4+7nGCUKDnWr1+P1157DTabrbxFkagEbNiwAa+88gpSUlLg6+tb3uLkS8+ePeHn54eff/65vEV5JKmQETYkJCQkAGD+/Pno0aMH/P39cebMGUybNg1DhgypcIrr77//RkxMDDp06ACLxYKNGzfiyJEj2LNnT3mL9sgiKS8JCYkKy19//YUFCxYgNTUVoaGhGDVqFD744IPyFisPDMPgyy+/xMSJEyEIAho2bIht27aJnp8SJY80bCghISEhUemokN6GEhISEhIS+SEpLwkJCQmJSsdjP+d1586d8hah2AQEBDgtrK3MSG2peDwq7QCktpQE1atXL/NzukKyvCQkJCQkKh2S8pKQkJCQqHRIyktCQkJCotLx2LvK557zIiKYTCYIglCiUaJLE6VSWeS4bBUNqS0Vj0elHcCj2xYiAsuyUKlUpd5vVZQ5r8feYSM3JpMJcrkcMlnluTQymcwp/URlRmpLxeNRaQfwaLfFZrPBZDJBrVaXo1RlhzRsmAtBECqV4pKQkJAA7MrMk3xxjwqS8spFZRkqlJCQkMjN49R/ScpLQkLiscDKC9CbpOwFjwqS8qqA1KtXr1DlT5w4gRdffBEAsH//fixfvrw0xJKQqNQ8MNhwO8MIXnisfdQeGaTJnUeMPn36oE+fPuUthoREhYIXCNkWHgBgsgnQKh4Np43HGcnyqsCcPHkSzz33HF5//XV07doV48ePh2Nlw5EjR9C1a1cMHjwYu3fvFo/ZvHkzZsyYAcBuhQ0aNAh9+vTBsGHDcP/+/XJph4REeZP1UHEBduUlUfmRLK98EH5YBbqZWKJ1MqFhYJ9/3ePysbGxOHz4MIKDg/HUU0/hzJkzaN68Od555x38+OOPCAsLw5tvvuny2Hbt2mHnzp1gGAbfffcdvvjiC8yePbukmiIhUWnQm3koOBYsy8BolZTXo4CkvCo4LVu2FBcFNmnSBDdv3oRGo0HNmjVRp04dAMCzzz6LDRs25Dk2KSkJb7zxBpKTk2GxWFCzZs0ylV1CoiJg5QWYbAKqaOQQwCDdYIVABPYx8sx7FJGUVz4UxkIqLRQKhfg3x3Gw2ezeUp64xM6aNQtjxoxBnz59cPLkSSxcuLDU5JSQqKjozfYhQ52ChY1YpMECs02AWi7Ne1VmpDmvSkh4eDhu3LiB69evAwC2bdvmslxmZiaCg4MBAFu2bCkr8SQkKgxEBL2Fh1rOQs6xUD901DDaJI/Dyo6kvCohKpUK8+bNw4svvojBgwejRo0aLsu99dZbGDt2LJ5++mn4+/uXsZQSEuWP2Uaw8gSvh0pLxjKQcyxM0rxXpUcKzJsrMK/BYIBGoyknaYqGTCYThxMrO1JbKh6VuR33s63INPOo7asExzKQyWS4k25EloVHmJ+yUkekcHVfyqL/eiwD8wqCgKioKPj7+yMqKgrJyclYvHgxsrKyEBYWhgkTJkAmk8FqtWL58uW4du0avLy8MHnyZAQGBgKwD5EdPnwYLMvilVdeQcuWLQEA58+fx7p16yAIAnr16oXBgweXZdMkJCQqGAIR9GYeWjkLjv2fklLLGWSaCRaeoJRVXuX1uFOmw4Z79uxBSEiI+HvTpk0YOHAgli5dCq1Wi8OHDwMADh8+DK1Wi2XLlmHgwIH49ttvAQC3bt0SHQ9mzJiBNWvWQBAECIKANWvWYPr06Vi0aBFOnDiBW7dulWXTJCQkKhhGqwCBCF5KZ8cMlcze7Rml9V6VmjJTXikpKYiJiUGvXr0A2CdS4+LiEBERAQDo3r07zpw5AwA4e/YsunfvDgCIiIhAbGwsiAhnzpxBx44dIZfLERgYiODgYFy9ehVXr15FcHAwgoKCIJPJ0LFjR7EuCQmJxxO9mQfHMNDInbs5OcdCxjLSvFclp8yGDdevX49Ro0bBaDQCAPR6PTQajZiPxt/fH6mpqQCA1NRUVKlSBYDdPVyj0UCv1yM1NdUp7l/OYxzlHX9fuXLFpRwHDx7EwYMHAQCffvopAgICnPbfu3evUqZEqYwyu0NqS8WjsrWDFwjZVgG+ahnkcrnTPplMBo1CBoPFBo7jKv28V06USmWePu1RpUyeyOjoaPj4+KBOnTqIi4srsLwrHxKGYVxuz6+8KyIjIxEZGSn+fvDggdN+s9lc6ZLVVeYJ9dxIbal4VMZ2ZJpsICJo5ayT7I62KDkgUyAYLVYouMrpdO3qvpjN5jx9WknzWDlsXL58GWfPnsW5c+dgsVhgNBqxfv16GAwG8DwPjuOQmpoqunNXqVIFKSkpqFKlCnieh8FggE6nE7c7yHlMzu0pKSnw8/Mri6ZJSEhUQPQWHnKOhZJz/RHrmPcyWYVKq7wed8rkro0YMQIrV67EihUrMHnyZDRt2hQTJ05EkyZNcPr0aQDAb7/9hjZt2gAAWrdujd9++w0AcPr0aTRp0gQMw6BNmzY4efIkrFYrkpOTkZSUhPDwcNStWxdJSUlITk6GzWbDyZMnxboqI8nJyXjjjTfQsWNHdO/eHS+88AI2bdokpj3JzZQpUxAfH1/GUj5+EBEMWTx4/rFeXVLhsfICjFYBXgrW7QiMgmPAMozktFGJKdeB7JEjR2Lx4sX44YcfEBYWhp49ewIAevbsieXLl2PChAnQ6XSYPHkyACA0NBQdOnTA1KlTwbIsRo8eDZa1699XX30Vc+fOhSAI6NGjB0JDQ8utXcWBiDB69GgMGTIEX375JQB7cN4DBw64PWbRokWVblinMmIxEywWAssROHXlnSd51NFb7Aopt5dhThiGgVrOShHmKzHSIuUKtkj5999/x8KFC7F161an7Y4lAn5+frh8+TKaN2+OZcuWgWEYDBkyBDNnzkSLFi1Qr149jB49GgcPHoRKpcK6detQtWpV7N+/H0uXLoXFYoGfnx+WL1+OqlWrllMr3VOR51f0mTx4G0EmY6DzLnhetCK3pTBUpnYQEW5kWMAxQA0fZZ79OduSZrQhxWBFbT8VZGzl+xiRFilLuGX12XtITDOVaJ1hfiq81ibI7f7Lly+jWbNmLve5So/Srl07pzIGgwFPPPEEoqKi8NFHH+Hbb7/F5MmTpfQoxYS3EXgbgWHsfxNRpfZSe1Qx8wQrL8BXKy+wrDrHvJcuHyutIpKVlQWGYaDRaB7b51BSXpUIV+lRcisvhUKB3r17AwCaNWuG48ePA5DSoxQXi9k+vKRSszAaBPA8UMm8xx8L7BHkGeg8yJSslDFgHs57VSblRUQwGAwgIlgsFvj4+IjTJ48T0uuXD/lZSKVF/fr1nTIj58RdepScyGQy8UssZxkpPUrRsXcSBLmCgVzBwGgAbFb78KFExYGIkGXhoVU4h4NyB8MwUMmYSjfvZbPZlwGo1WqYTCakpaXBx8en0q3FKy6Pn7qu4HTu3BkWi0UMiQXY4zY6vDKLipQepehYLQQiQKFkwLL2f7yUUqPCYbAK4IW84aDyQyVjYbbZj6ssOD5Ivb294evrC0EQkJaWBovFUs6SlS2S8qpgMAyD1atX49ixY+jYsSN69OiBBQsWICioeFaglB6l6FjMBJZlREtLJgdsD+e9JCoOejMP1kU4qPxQPyxbmawvq9UKlmXBcRwUCgX8/PzAMAzS09ORmZlZ3uKVGZK3YQXzNiwKlckbrCAqWlt4nqDP4KFSs1Cp7R2d2SzAmC3Ay5sDl8/QYUVrS1GpDO3gBcL1dDO8lBwC83HWyN0WgQjXUk3wU8tQRVOwk0dFICUlBRzHISAgQGyLIAhIT09HYmIiBEFAmzZtSs2Ro6J4G0qWl4REPljM9m87hfJ/HYHDArNJQ4cVhmwrDyKCl6JwXRrLMFDKWBgrSZBeQRBgs9nyzG+xLAs/Pz/4+Pjg1KlTOHjwIHieLycpywZJeUlIuMHuqCFALrfPczlgWYBhJeVVkdCbecg5Rgz7VBjUMhZmG0GoBINQDksrd7BhwD7lUK1aNbRr1w7//PMPduzYAZOpZJf6VCQk5SUh4QarlUCCs9UF2DsJmUxy2qgo2B6Gg9IpihYhXiVnQSCYK8G8l9VqBeBaeQH2ZzMiIgK9e/fGnTt3sGXLFmRkZJSliGWGpLwkJNxgMRMYFpDJ83aIMhkDQQAEKc5hmSIQwcYLMNsEGCw89GYbHhjt1khoFRIcAAAgAElEQVRhvAxzohaTU1b8e2m1WsFxXIHruho1aoTBgwfDYDDgp59+gl6vLyMJyw5JeUlIuEDgCTYrQeEmuCsnzXs5YbIJeGCwwsqXnPWiN9uQpLfgVoYZ/6abcC3V/u96uhk3M8y4o7fgXpYVWWYeajlX5OjwHMtAwbEVPjklEcFqtbq1unJTo0YNPPvss7BardixYwfMZnMpS1i2SMpLQsIFFkteR42ccBzAMI+38hKIkGm24WaGGbcyzEg32pBqLBmvRCsv4F6WFWabAIYBlBwLLyUHf7UMVbVyBOsUCPFWoKaPEmF+KlT3KrhDJ6sVQma6yyUOKpk9SG9Fdr4WBAGCIHisvAAgICAAAwcORHp6Onbt2lXhvUYLg6S8Khg3b94Uo+s7WLBgAVauXJnvcRcuXMCsWbMA2IP4njlzptDnbt++vZiZ2t32v/76CxEREYiNjcX+/fuxfPnyQp/HFSdPnnSb8qU0uHr1Knr37o0+ffrg+vXrTvuysrIwfca76DegC/r374t+/fo5LRoH7HMLnIwBX4S+YNWqVWJG8dw899xz6NKlC3r37o1u3bph06ZNbut5++23xVQ4S5cu9ejcL7zwQrHnQKy83cq6nmZGcpYVAgEBWjm8VTLozTwsOawvd8/uggULULduXafEiTmzpKeZ7J5yId4KhHgrEeylQFWtHP4aOXxUMuiUHNRyDiu/WA6OtYd5cvXuOJGeAj45CcjI+4yr5QwEIlg8HAZ2967kx3PPPYcLFy4U6pic5Jzvat++vVMOw/wIDQ1FZGQkbt++jYMHD1ZoBV0YJOX1iNCiRQt8+OGHAIBTp04hOjq6xM9x8eJFjBkzBl9++SWaNm2KPn36YPz48SV+nrJg37596Nu3L/bv34/atWs77Xvrrbfh7eWD344cx/79+/Htt98iPT09Tx0MI4DnCUIhozOsXr3arfICgOXLl+PAgQPYvn07Pv74Y5eRE3iex/z581G/fn0AwLJlyzw698aNG+Hj41MoeYGH8fQsPJL0Fvybbrey1HIW1b0VqOmjgK9KBn8VBwYM0j20vvz9/fHVV1/l2W4TCHoTD28lB7mboUAigiAIHrebiACTwe4qmp4KynS+nyqZPeNycfJ7OWQqLaxW60NnocKHgWrYsCE6duyI+Ph4nDx5shSkK3ser2BYjwDPPfccWrVqhZMnTyIjIwMLFixAp06dcPLkSaxcuRJz587Fxo0bwXEcfv75Z3z00UcIDw9HVFQUbt++DQD44IMP0LZtW6SmpmLcuHFISUlBy5Yt8/0iu3LlCiZPnoylS5eiVatWAIDNmzfjr7/+wty5czF58mR4eXnhwoULuH//PmbMmIFBgwZBEATMmDEDp0+fRmhoKIgIw4YNw6BBg3DkyBHMnj0b/v7+TpH009LS8NZbb+HGjRtQqVSYN28eGjdujAULFuDGjRtITk7GtWvXMHv2bMTExODIkSMIDg7G+vXr8wypxMbGIioqCiaTCbVq1cKCBQsQHR2N1atXg+M4nD59Gj/99JNY/vr16zh//jw+3bMUSpXdAaBKlSoYN24cgP+lpgkKCkJsbBx2bDuIn7b8jG82rIPFYkGrVq3wySefgOM4/N///R/OnTsHk8mEgQMH4u2338aaNWtw7949DBkyBH5+fk7nzo3BYIBarQbH2eWoV68exowZg6NHj+K9997DvHnzMGvWLOzevRsmkwm9e/dGgwYNsHz5crz66qu4c+cOzGYzRo8ejVGjRgGwWwx79+5FdnY2Ro0ahXbt2uHs2bMIDg7G2rVroVarnWTYv38/Fi1eAqPZAm8fX8z+dBFq1wjCmhVLcDfpDm7cuIHbt2/jtddew+jRo+Gl4rBi6VIc3rMd1atXR5UqVdC8eXOX7Xv++efx448/4s0333TKfJ5utOGHDatx8JefwTAMhg8fjtdffx03b97EqFGj0LFjR0RHR6NJkyZO7Z42bRp4nsc777yTp03Xr8RjRtQ0pGYZoFbIMe+dKQhv3R5TZs6Cr68vYmNjUat+Y3jrdMh4cDdPu9yRW6a1a9ciISEB8+fPh8ViQa1atbBo0SJotVqn46KionDhwgWnZ8Nxf4YMGYIDBw7AZrPhq6++Qnh4OFJTUzFmzBikpaWhdevWRbKeWrduDb1ej+joaOh0OrRo0aLQdVQkPFJeu3btQtOmTVG7dm3Ex8dj0aJF4DgOEydOFL/8HkViYwzITC/ZhX7evhyaPlG8CB42mw27d+/GoUOHsHDhQnTq1EncFxoaihdeeAFarRb//e9/AQDjxo3D66+/jnbt2uH27dsYMWIEjh49ikWLFqFdu3aYMmUKDh48mGdoLCevvvoqli5dmieKfU7u3buH7du34+rVq3jllVcwaNAg7NmzB7du3cKhQ4fw4MEDdO/eHcOGDYPJZMI777yDH3/8EWFhYaKsgH1IqWnTpli7di1+//13TJo0SUzG+e+//2LLli2Ij4/Hf/7zH6xatQozZ87E6NGjcejQIfTr189JpsmTJ+PDDz9Ehw4d8Pnnn2PhwoWYM2dOnmvk4NKly2hQvzFUaplbt+vz58/j8OHDCA0NRUz0Jfyycye2b98OuVyOd999F1u3bsWQIUPw7rvvwsvLCzzPY9iwYbh48SJGjx6Nr7/+Glu2bHEbpmv8+PFQKpVITEzE+++/Lyovg8GABg0a4J133nEqP336dKxbt84pYemCBQvg5+cHo9GIgQMHYsCAAXnOl5iYiBUrVuDzzz/H2LFjsWfPHjz77LNOZRq1bI2lG7ZAJedwYMeP2Pn9Grw/ezY4lsHVq1exZcsWZGdno0uXLnjxxRdxKz4Oh/btwnfbdsNPyaBfv35ulZdWq8Xzzz+PNWvWiJ03LxD+jDmP/b9sxd7du0FEGDRoEDp06AAfHx8kJCRg4cKF+OSTTwDY+yZHu2/evOm2TdOi3sUnUyahfpce+DM6GtPnfIAfly4EeBuuXbuGzZs3476Rx/LFi1y2K795ppwypaamYsmSJdi8eTM0Gg1WrFiBr7/+GlOmTHE6Ztq0afDz83N6Nho3bgzAbpH++uuvWL9+PVauXIn58+dj4cKFaNGiBSZPnow//vgj33fVHQzDoFu3bsjKysKxY8eg0+lQt27dQtdTUfBIee3evVscS/7+++8xaNAgqNVqrF+/Hh9//HGpCvi44ck6lQEDBgAAmjdvjlu3bhVY/vjx4+LcCGCf08nKysLp06exevVqAEBkZCR8fX3d1tG5c2d8//336N69u9iZ5qZfv35gWRb169fH/fv3AQB//vknBg0aBJZlERgYiI4dOwKwzznVrFkTderUAQA8++yz4vzOn3/+iVWrVonnTUtLE2O29ejRA3K5HI0aNRKzZgP2YZGbN286yZOZmYmMjAx06NABADBkyBCMHTs232vlcMBQKOz3YcmSJdi1axdSUlIQExMDwJ6axpFS5s8zJxEb+5d4T0wmEwICAgAAv/zyCzZs2ACe53Hv3j1cuXJF7KDyY/ny5WjRogVSUlLwn//8Bz169ECNGjXAcRwGDhxY4PEAsHbtWuzduxeAPQRaYmJiHuUVGhqKpk2bArA/S7mvHwAk/HsLS+Z9jIyU+7BarU6pdHr16gWlUgmlUomAgADcv38f0WfPILJPX1hZBdRapZiexx2vvvoq+vTpI96XdJMNf8WcRf9+/cQwbf3798cff/yBPn36oEaNGmjdurXb+ly1KTs7G2fPn8d/Z30ARvGJmEoEcgVgMmJQv77gOA5qmT1eZfeePfO0K7+QSDllio6ORnx8PJ566ikA9qE+V/Lu3LkT3377rctno3///qL8jnt4+vRpfPbZZ5DL5QW+q/nBsiz69euHrVu34tdff8XTTz+NatWqFamu8sYj5eWI92c0GnH9+nXMmjULLMtiw4YNpS1fuVJcC6ko+Pn55ZlQT09PR2hoqPjbkRrFXVqU3AiCgF9++SXPkBDgmbIEgLlz5yIqKgrvvvsu5s2b57JMzpQtngxruDu3q2MdZZVKe3ZclmWd0r+wLFvscDhEhFo16+Fy/EUwLAFgMGnSJEyaNMnJmSBn7EuWAZ76z3N4/4PpTu25ceMGvvjiC+zevRu+vr6YPHlyoaMdVKlSBc2aNUNMTAxq1KgBpVLp9sMhJydPnsTx48exc+dOqNVqPPfccy7dpB3XErA/S7nlM9sEfP7R+3htzFg8PbBfnlQ6uY93XH+1nAMRId1U8LPp4+ODwYMH45tvvgEAZJjskTIENylNCoo76qpNvM0GH50W+7dugTywmvjOkM0GMAzUVhPIYoHq4VwSy8md6ijoucopExGha9eu+OKLL9yWv3HjBr766iu3z4ajDTnP7Uh+WhJpT+RyOZ588kls2bIFO3fuxNChQ4usDMsTjxw2qlSpgsuXL+PEiRNo1KgRWJaFwWB4LBOglTZarRaBgYFiEsm0tDQcOXIk3+E6V3VkZWWJv7t164b169eLv2NjYwEAERER2Lp1KwDg8OHDLp0SHLAsixUrVuDatWv4/PPPPZalbdu22L17NwRBwP3793Hq1CkAQHh4OG7cuCF6+m3fvl08JqdcJ0+ehL+/P7y8vDw+pwNvb2/4+Pjgjz/+AAD8/PPPiIiIcFuetwGhNWqhefMW+Oyzz8SOw2QyuVXGXbp0wv4De3D3rt3STEtLw61bt6DX66HRaODt7Y379+/jyJEj4jE6nc7p/rjDaDQiNjY2j0OJK+RyueiNptfr4ePjA7VajatXr4oWY2HJNPPIytKjbs0QAJ6l0omIiMCB/b9CJliRlJLhNJTpjrFjx2LTpk2w2WwQiNCtUwf8+uuvMBqNMBgM2LdvH9q3b+/y2JztdoeXQobQatWw68hRAHZFEBcXB0YmA1QaAAyQfAcK8GAYBtZipEdp3bo1zpw5g8TERAD2e5iQkOBURq/XQ61Wu3w23NGmTRvs27cPHMcV+K56gkajEa3DHTt2wGAwFKu+8sAjNT5q1CgsXLgQMpkMb731FgAgJiYG4eHhpSrc48qSJUswffp0zJkzBwAwdepUjzowB71798bYsWPx66+/4qOPPsKHH36I6dOnIzIyEjabDe3bt8dnn32GKVOmYNy4cejbty8iIiIQEhKSb71KpRJr167Fs88+i6pVq7q05HIzcOBA/P777+jZsyfq1KmDVq1awdvbW3TEePHFF+Hv74927drh0qVLYnunTp2KyMhIqFQqLF682OO252bx4sWiw0bNmjXzTcJpMdvXFC2Y/zk+mvsROnXqBF9fX6hUKsyYMcPlMQ0bNcDECW/jhRdGAiDIZDLMnTsXrVu3RrNmzdCjRw/UrFkTbdu2FY8ZOXIkRo0ahcDAQJcOG+PHj4dKpYLFYsHQoUPdzhnlZOTIkYiMjESzZs2wYMECbNy4EZGRkahTpw6eeOKJgi9ULgQi6M08/jthMsaOGYPg4GA88cQTLocWc9KsWTM8+eSTGPXMQFQJqoaWrdvmWx6wz/H07dcPq1etgkbOIbxVCwwZMkQcIh0+fDiaNm3q8tw52z1t2jTXJzAasez9WXh32ZdYuvIrWK1WPPXUU2jSpInd+9DbDxB44N4dyFi7t2NRqVKlChYtWoRx48aJXqL/93//5zS31KRJEzRt2tTls+GOMWPGICoqCv369fPoXfUEX19fPPnkk9i6dSt27tyJZ555plBryMqbIqdEsdls9rUuHgxjVGSklCilT3Z2NrRaLVJTUzFo0CBs374dgYGBLsuWV1sEgZCZzkOhZKDRFu6Z1mfwYFhA5+V8XEW/L/mhN/O4l2VBdS8FvDXKIrUjSW+B0Sqglq+ywMzG6UYbHhisCPFWQC0v2T6F7twAWA5McIjbe0ImA3DvDtJVvkiRaVHbTwWZB9mYywLHqIVOpxO9Fslmg0wuB5+r+y5K/5WQkIA9e/YgLCwMAwcOLHAqoVKlRHnllVfybJPJZAVOfktIAMBLL72E3r1745lnnsGkSZPcKq6SxmYjZOt5GA0CLGYBfD4JJK1iRI3CD4VzMuRbd2Uk02yDjGPEZI1FwU8texiFI/85I4EIaSb7urESV1w2G2AxAwWMEjAqDRAQDJXFPnxmslacdCIOZeuY7yIi4O4t8Pfu5HeYx9StWxcdOnTAtWvXkJSU5LachRew63LhFmaXJh4NG7qasLTZbKW6IE/i0SG/tUylidVCsFoJsDorFY5jwMke/s8xYDl7EF7778KfRyZjYDETeB4ogfn0csfyMEq7v8b9cgFPUMnsyijdZIOPigPrpi69mQcvEPx0pTBkZXo4l6Mq2BphtDooBR6MmWDUZ0Or8C61hI6FIU8k+ewswGYF8TaA58GUwOhXixYtEBMTg5iYmDyWlZUnHExIx5a4FKQYbBjTo9inKxHyfdXee+89+wSm1YrZs2c77UtJSXmk13hJVH54G4GTMdB5sRB4e1Zk/uH/VgvBkstSUmtcB+EtCEfUeZuNxESVlRmHpeStKH6n6K/mcDuTR6aZh68qb3dDREgz2qCUsWJ09xLFZLQHolQoCy4LgPXygcqaDaONsR+rLv8pBKvVCplMBpZl7VZXZhrAcvZ5OmM2oPMu9jnkcjmaN2+OP//8E2lpafY1aALhSGIGNv+dguRsKxoGqDG5Q8Vxq89XeTnWdl29elVcTwPY3ZZ9fHzE9RQSEhUNIgLPE+QK5mEcwv9FgnfsJ7IrOJ4HSCBxbVdhYVl7skreSoCqpFpQPjgcNbQKDrIiRmnPiVrOQSVjkW60wVuZ1/rSW3jYBEJVrbzErRwiAowGQKUpVN0qlQJpRht4fQZk5ay8HJHkxWUoJqN9GLRKIJCRBhiySkR5AfZ1ZdHR0Yg5dw5cWGv88PcDJOmtCPdX4Y12QWhVTVshLFEH+Sqv7t27A7CHpSkJ7xYJibJCEAAiZ4WVE4ZhwDAAq2BQEoNVMtnD5JUP1+NUVgwWAbxA8C5ibixX+KllSNJboDfz8MlhfdmtLh4KGQtNMebW3GK12Nc/eDBkmBOtgkOa0YZsK8HbZgUjKz8PvDyR5DPT7Zak1gssb4OQkQYSeDBs8e+XSq2GX426+DvuIn6/HYAaVbwwvVsI2oXoKuQz7dEIfUhICC5cuIDr16/nWcg4bNiwUhFMQqI4OLIcy7iyeek4GQOLhSAIKNK8WUUh08xDxjIlqkw0chZKGYt0k936cnSE2RYBVl5AkE5ROp2j6WHwYw+WdOREyTGQswz0cg289RmAX0DJy+YhOee7yGK2DxP6VgHDsmC0XkB6qt261BZ+HWROrqeZsOhkEpIzqqIDxWNYUDqe7d0sj6UsnDkOPFUx+nyPntA1a9Zg2bJluHbtGlJSUpz+SZQ8oaGh6N27N3r27IkxY8bAaDTmm+7hs88+w7FjxwA4p10oTvqLDRs2eLQotaLi8DEqgQ9SjxDnvayV1+PQygswWHl45VAwJQHDMPBTy2DlCVmW/0WMSDXZIOdY6BSlFOzAaADkikJbTgzDwEslg4lTwJptAJWjY5pTJPnMdIBhAS97VgBGpbZ/KRmyi32er87cQ5rRhrFdwlG7dhjSrl+CkMtRT/jzGGjVgmKfq6TwyPI6ceIE5s2bJ8ZskyhdVCqVGJlg/Pjx2LBhgxg7zxXTpk1zuXZl48aNRZahLHNrlQYOZ42yGu5gWXtySr4SJ6cUHTVKcMjQgVbOQsGxSDXy0Ck4GKwCLDYBgbqSn+sCYFc4JmOR54O8FCxSDYCeVcK/BOeVCovDWQM8D2TrAZ236F3IMAyg0QHZepAggClixKO4ewZcvG/EmDZB6B7mg1vyVti6NRH//POPmO1B+PMYaPVCILxhibWtuHjUWi8vrzwh/SXKhnbt2okhlBzpHnr06IHhw4eLOaEmTpyIXbt25TnWkTDv5s2b6Nq1KyZNmoTIyEi8/vrr4rHt27fH3LlzMXDgQAwcOFAMa5MzieBzzz0nluncubMYbonneXz44YcYMGAAIiMjRWV57949PPPMM6L16ChfVjicNcpy+I5hGMjkDCrpmmTQw/VYGrn7HFrF4X/Wl4Bsi4BUow0yloFXCXg0usRsAkgosregnGOhlrPQK7RAZka5rOEjIthsNvt8lz4DIADeuWIQanT2CV6T+/xwBbElLgU+Kg6Rde0WXUhICAIDA3Hu3Dl7jrI/jtoVV71GYCfOLqC2ssMjy2vQoEFYunQpnn766TyJ7IKCgkpFsIrAsWPHxOjoJUXVqlXRtWtXj8rabDYcOXJEdJzxJIWFOxISErBgwQK0bdsWU6dOxTfffCOmA9HpdNi9eze2bNmC2bNnuwy4nDsNy+bNm/H999/Dy8sLe/bsgdlsxuDBg9GtWzfs2bMH3bp1w6RJk8DzfL6JF0sDh7NGWbuty2QMrBYBAk9gy2iuraQwWB86ahQyukhh0ClYpHIM7mdbwVPpeBiKmAx2U1hVdPdPLyWHZKsAE09QmU2AqnBzZ8XFZrOBiCCXyYC0+4BGC0aucC6kUtnHxg1ZgKbwBsbVFBPOJWXjxZZVoXy4VIFhGDzxxBPYt28fEvbtRNi2tXbFNeE9+1BlBcEj5eVIm+EqwOfmzZtLViIJMcEeYLeMhg8fjnv37nmUwsId1atXF2OoPfPMM1i7dq2ovAYPHiz+//7777s83lUalqNHj+Kff/7B7t27AdgDjiYmJqJly5Z46623YLPZ0Ldv3zJfUuEYuuPKWIE4PBttNoKikimvDDMPjmWgLQ2vv4cwDAM/lQzJ2VZwLAOvUhieFDEaAaWqWF54OjmH+4wNerkWKn1GmSsvh7OGzGKyr+nKbXUBYBgWpNYChuwiWYc/xaVAK2fRv75z3eHh4fBSyHHu/HmE1WsMduJ7YJQVax2IR8rrcVVQnlpIJU3OOa+cFJTCIj9yf+Hm/O3u75y4S8Py0UcfiZZhTn7++WccOnQIkyZNwn//+18MGTKkQBkFgSAUIyiqg7J21nDAcfaPfZuNPF0TWyGw8QIMFh5++STgLA7i/JMxGzqDAXqlL7xAYJnS6QyJ5+1roXxdJ/v0FJZloFOwyCINArLuALwNDFd2IVSsVitYlgWnzwCUKvs/V2i1QHZmoYcOb2aYcfqmHkOaVoEmd1iuM8fR4t84/F6tPpIHD0a1Cqa4AA/nvCQqP7dv38bZs2cB2FMg5Ixk/csvv4j/55foLzfdunXDhg0bxC/EhIQEGAwG3Lp1CwEBARg5ciSef/55/P333x7VZ8gWoM/IP72FJ5S1s4YD+2JoBnwlm/dyOGqUpCVEPA/K0oOSk4BbiUDyHSBbD0apRHXKhldWij28UWlgMgCgErGUvBQcBADZnArQZxa7vsJgs9kgZxnAZgW8/dw/zyqN3QvRUHCanZz8HJcCBcfgyQZ+TtuF07+B1ixCoyq+UCoUOPcwhVJFw+PYhr/++isuXrwIvV7vtO+DDz4oFcEkSpZ69ephy5YtiIqKQlhYGF566SVxn8ViwaBBgyAIAlasWOFxnSNGjMDNmzfRr18/EBH8/f2xdu1anDx5EitXroRMJoNWq8WSJUsKrIuIHrqZEwTBHrGiKDicNYoaLaO4yGQMTEahRCzIssDhqKF+6A1YrLpsVrvbtiEbMBsdq8Tta5DUWkClBsOyIKsFuH0DyMwA/KqUUEtyYDTYze4SsBbUchYyloFe5QWdPgXkk48SKUEEQYDNZoOSeEAmz3c+i2FZkFpjHzpUeuagci/LgqPXMzGogR+8cywcF04fAa1dAtRvAtWEmWh6NhoxMTHIyMjI4+9Q3niUEmXt2rWIjY1FZGQkvv/+ewwfPhz79+9Hx44dMXTo0LKQs9R4HFKi3Lx5Ey+99BIOHz6cZ1/79u2xd+/ePCniyxqrRUB2ln09jUbHQlHEtT88T9Bn8NBo2SJFiC8uVquAbL0ArY6FWqOo8ClRsi08kvQWBOkUbi0vT1K7kNFgt66IALnC3tlqdIBC6bKzp+Qk+zBXjdpFdvF2KQcRcPtf+3kD88bhK0qamgcGK9KNNtTOSgIXUNW+OLiUMZvNSE9Ph6/ZAIWvHxgX810520JZeuDBXRhUWmiDC05ZsvLPuziQkI6vn6qLKhr7OricioudMAuMUoWsrCysX78ezZo1Q7du3QBUspQof/zxB6ZPn44BAwaA4zgMGDAA77zzDuLi4kpbPonHBMfiXoYp3kLf8nLWcCATnTbK5fSFJtPMg2UYaIuxUJisVuD+XbuFEFILTEgtMH4BYJQq91aKt6/dCSGrhIfibFb7vxKMSehw59crdXaX9TJATIPCkGdrzDQagGFAqQV7R6cabTiYkIGedXxExUUxp/IoLsDuidygQQPExcUVao69LPDoibVYLKhSxW7eKxQKmM1mhISEiOuPJCo2oaGhLq0uwP5hUt5WFwBYbfYoFTI5W6yOn7cRGJS9s4YDx7yXrRIsVrYJhGwL7zJgrqeQIAD3H+aACqyW15XbDYxKDSjVQGZ6ya6hMjpSoJScZ6BSZg9vlaXQASajPUxTKWM1myEjAazOxyPLlGE5+9xX6oMCr+cv/6SCJ8Izje19OmVlQtj0BVCzjpPictCqVSvYbDaP567LCo9jGyYkJCA8PBx16tTBli1boFarPe70LBYLZs+eDZvNBp7nERERgaFDhyI5ORmLFy9GVlYWwsLCMGHCBMhkMlitVixfvhzXrl2Dl5cXJk+eLCYw3LZtGw4fPgyWZfHKK6+gZcuWAIDz589j3bp1EAQBvXr1Et2/JSo+PE8QeIJCyYJlWVizbBAEKtK8F88DbDk4a+REJmNgNgkVPjmlvpgRNYgIeHAPsFiAoOoeKy4RH18gOcnuaFBSQ3EmAyCTF16WAvBScniQLcDCKaDIzAACSi+hqhhJXuDFUFC5sQkENvfzpdHZF2ffvAbUrOvyOL2Zx94r6ehcyxvVvOzXiH5aB2TrwU6d49IdPiAgADVr1sSFCxfQqlb28B8AACAASURBVFWr4jWuBPHI8nr55ZfBPQxX8NJLLyExMRHR0dEYM2aMRyeRy+WYPXs2Pv/8c8ybNw/nz59HfHw8Nm3ahIEDB2Lp0qXQarWidXD48GFotVosW7YMAwcOxLfffgsAuHXrFk6ePImFCxdixowZWLNmjRh1ec2aNZg+fToWLVqEEydOiGuRJCo+DitFLmOgeLjOqChDh0QE3kaQlXNgXEdCyooc59DuqGGDSs5CUdQ8WhmpdsXjHwCmKMN0aq19fiyjZKwvIiq1HFw6x9ChxtcejslFgt6SgrdaIcDebzI5spvyAiHDZMOtTDOup5lwLcUAsy1H3EWN1j50GHPKbd27L6fBZBPwbGO74UGX/wadOASm92AwNcLcHvfEE0/AYDAgPj6+2O0rKQp8agVBwI0bN1CjRg0AQLVq1TBr1ix8/PHHaNSokUcnYRgGqocr3XmeB8/zYBgGcXFxiIiIAGBPv3LmzBkAwNmzZ8W1QxEREYiNjQUR4cyZM+jYsSPkcjkCAwMRHByMq1ev4urVqwgODkZQUBBkMhk6duwo1iVR8bFZCSxrH+qzu7ijSMNuAm+PoOMuDUpZ4Th/lt5aYT0PjTYBVp7gU1SrKzvLHtFc5+3WOigIhmHsc18Wk907sbiYTfbwKoVMgeIJMpaBVsFBzyjsSrIQc3VEhHSjDRkmG0xWAUIBitr6sG65zgsCEbLMdqeaxDSTPTqJYE8zAyLczrTAYLUrUobjAC8ft8rLYOWx83Iq2tXQobafCmS1QNj4BRAQBObJ4fnKFBoaioCAAJeBKsqLAocNWZbFhg0b3EY09xRBEDBt2jTcvXsXffv2RVBQEDQajWjR+fv7IzU1FQCQmpoqzrFxHAeNRgO9Xo/U1FTUq1dPrDPnMY7yjr+vXLniUo6DBw/i4MGDAIBPP/00T7Dhe/fu2QNhVjIqo8yAw0Weh0LJiTmL5AoWNiuB4woX3dxm5QHwUChlkJVGVt5C4OXDwmjgYTIKMBkBhZKFUsVBoShatuaSxmS0f0D6aJQezXflfL7IbIIt5R4YlRpcYLVieQuSjx9s6algMjMgK2bwW95igsAwkOm8xOC1rijqu+KjBrItRpg03tBkZYLzDyjwXhIRkjLNyDQ5r19UyFioZPZEnUq5/W+OZUCCAJvJDIaTIV2QQ59mhkAEGcvCT6OAj0oGpcz+DPkLhJtpBtzJtKKaNwsftRzyoGpA0k34GrMgC63tdM7vY24hyyJgdMc6CAjwRtZ3q5B97zZ8Zy+C0oN8jV27dsXWrVsLfd1KC4/uYuvWrXH27Fm0adOmyCdiWRaff/45srOzMX/+fNy+fdttWVdDCAzDuB1acFfeFZGRkYiMjBR/P3jwwGm/2WwWFWp5ERoaioYNG4LneYSHh2PJkiVQ55OTqF69enmU9d27dzFr1iysWrXK5TEZGRnYtm0bXn755ZIUvdDYbPYEjhxnD0Iqk8nAcYDFTLBYbIXyGrRaeDAMQMTDZiu/NBaAPdqGr58CZrP1YVsEWMwCGMauyBQKplwtxGyLDUqOgcDzKOhKOblk8zyQdAtgWFBAMHhBsFs7xcHLB5SeAqshG0wxQpNQdjagUIIncuvuWRRXeQcqjsAyDDIVOqgNGbDpM8EUEE/wQbYVmSYb/NUyeCk5mHmC2SbAbCNkW2zINP2v75KxDBTgwciUIABGMw+dgoWXgoNa7vjoIfAPhyzlMhlCvBS4m2VBUqYJZhsPhc4XMgD/z957h8dVnvn79znTu0a9WbItW5Z7x9gGN2wwEIoNwUlINrQ0UiG7+WaTbLLZhMCGHyUQhzQSQrK0EOxgegy44N57leSuPiNNr+f9/THWIKHikTSqnvu6dF32zJlz3jPlPOd538/zeRwfvIV848dlTKGowv/tOMukHCO5mhB1+3ejvPZXpFnzcReW4P7EdbA98vLyBpRBe0LBKxwO8/jjj1NaWkpGRkarwPCNb3yjSwc0mUyMGzeOEydO4PP5iEajqFQqHA5HXACSkZFBQ0MDGRkZRKNRfD4fZrM5/ngzLV/T8vGGhgbs9tZV44OJ9lqifOUrX+nSPnJzczsMXAAul4vnn3++/4PXxXWh5n5YLf8dy766kHlFYxL5gZDZNKNSSRiMEnqDRCQsCAUFwYBCMBCbXtRqJbS6vh2zImIXULuhaxmIECImiY9GILew1XpMj7DYYi3tXY2Q2T2jbxGNxqYNbb33u5clCbNOhTsIilqD7G7qtHi40R+hMRDBplfHrbc0qo/XzyAmvAhGFIJRQSgUJhhS0IsoGp2BXNuls2KVLJFn0VLrDePwhXF7BONHjEG1Zyu0CF7vlzfhDER5cG4GQlFQ/royVjR+x70Jn79KpYoL5AYCCeX7w4YNY9myZYwfPz6+ttT8lwgulwuvN9YwLRQKceDAAQoKChg/fjxbt24FYN26dfHMbvr06axbtw6ArVu3Mn78eCRJYsaMGWzevJlwOExtbS1VVVWMGjWKkpISqqqqqK2tJRKJsHnz5h5liQOJli1R7rnnHpYuXcrChQv529/+1mZbh8PBTTfdxNq1a1s1rzx27Bg33ngjS5YsYfHixVRUVPCLX/yC06dPs2TJEn72s5/h9Xq54447uO6667jmmmt49913gViB8/z589ttxZIMmgNUS2WhLMf+urLuJYRAifRtG5SuIEkSGq2MyaLCmqZCb5RBgN+n4PP2bZYYuJiV6rs6teqoj6n5MrKTatIqqVRgtsSEEN2tkwj4AdErYo2WWLQqhBB4TXbwe2NuIe3gDkao94UxaVVkGjv2jFTLEkYpit1dR47zHHnB2DKIUa9NuHxBliRyTBrsBjUX3CEeGXUH/nNnEA21QEzo8dphB6UZeibmGBEfvQcnjyB9+u52i587o69NtjsjoVunRExVO8PpdLJy5UoUJSYfnj17NtOnT6ewsJAnn3ySl156iREjRsQvtosWLeLXv/413/zmNzGbzXznO98BYkF09uzZPPjgg8iyzL333ot8cb79nnvu4aGHHkJRFBYuXMiwYcN6NGYAc90a1MGqHu+nJRFdHp6smxLb9hMtUR577DHsdjt+v58bb7yRG264IZ551tXVcffdd/O9732PefPmtXKc/+tf/8q9997L8uXLCYVCRKNRfvCDH3Ds2LF4hheJRHj22WexWCzxIHjttdcCPWvF0hmKIohEBDp964torHOsRDgcm1JMJCsZKGKNRJBlCb1eQqcT+H0KoaBAKAKpm5ZYXcUf7nrwEu4mcDeCNQ2pNxozWu0x70B3I9i70fQ24Ivd8fSygaxeLaFRSbglHRZJihUtp2e12sYXilLjCWPQyOR00mxTRKMxxaa7CZAgLZ2IRg8eT3z9N1EkSSLDqGFMpoE/Riz815Sv8sMd28lc+ik2nnZR6w1z34xsaHIiXv0LjJmINOeaLp9/S3Pw/iah4HWwA2NGtVpNRkYGWVlZ7T7fTHFxMb/85S/bPJ6Tk8PDDz/c5nGtVsuDDz7Y7r6WL1/O8uXL2zw+bdo0pk2b1uk4BgvttUSBmE3X22+/DcRsrSorK0lPTycSibBixQoeeughZs+e3WZ/06dP56mnnqKqqorrr7+ekSNHttlGCMEjjzzCtm3bkCSJ6urqeC+znrRi6YxmN4z2urSrNRKhkCAa/Vh63um+ohedNQZB8GpGkiS0WplQMEo4LNDq+mbsgYiCTi2jSjBYKn4fOOpiWU13AksCSBoNwmgCtyvmH9jVKnO/D3SGXp9+laRYA02HP0LEaEXtccVakuh0SLKKQEShyhNGq5LJNbefPQlFiQWsJmdsvdBshbR0JLWacFMTsizHb8q7Sr5Vyw/nF/LoB2G+XxPkx41BXj3UQLFNx8wCM+L3j0I4hPz5+wfU9Hp3SCh4PfPMMzidTiDWVbnZnNdms9HY2EhRURHf+c53yMtr6yU2mEk0Q0o27bVE2bx5Mxs3bmTNmjUYDAZuv/12gsFYpb9KpWLixImsW7eu3eC1bNkypk6dyvvvv8+dd97Jo48+SnFxcattXnvtNRoaGnj77bfRaDTMmjUrvv+etGLpjHBYIEntN41Ut+iNlUhTyWgktq8k2uT1CSp1bMzhUN+0UVGEIBARCRcmi2iEaPX52B1GZm7vXvBs9ljdmMfdbu+qDscYvmgJ1cUpsO5i0cWCl1tvxe5zQ815QCKkM1CltaOSJPINEp+8NxBCxM7P2XDRwsoE9oy4SKW5OFmj6VmTzhkFZn5uLufnznweeLuSiALfnZuPdHAXys6PkG75HFLupdWFA52EfuqLFi3i+uuv57nnnuN3v/sdzz33HDfccANLlizhz3/+MyUlJfGGlSl6B7fbjc1mw2AwcPLkyVb1FpIk8fjjj1NeXs6vf/3rNq89ffo0xcXF3HvvvSxZsoQjR45gMpnweDyt9p+ZmYlGo+mzIu9ImA5bl8gqCVklJVzoOxDFGonQvBYWDienl9mlCF1UdxoSnTL0+2ICjcycTuXnyUDS6WO2Tl21jAo0W0L1jaG2RiWj18i4oxIUDoecAqK2dC5o0hBCkOepQVV1Bs5WImouIBodCK8bqs/FBC+yDDkFSDn5rdSVwWCQaDSalKm5UTOn8MieleTKIYbZtMzJVqP8328hbxjS0p5P+Q8EEvoGv/XWW3zuc5+LNyTUarV85jOf4c0330Sv1/Nv//ZvVFRU9OpAL3cWLFhANBpl8eLF/PKXv2wzRapSqfjNb37D5s2bee6551o99/rrr7No0SKWLFlCeXk5t99+O+np6cycOZNFixbxs5/9jOXLl7Nv3z6uv/56Vq1axahRo3r1fKLR2MVao+k42KjVsYzqUheyZmeNwTRl2BKN9mN1ZW/jbxZrJNoxORCI6f77qrum1R67q/FeujeVEEpsLa7REcsMu7hO1BOsWhXhqEJQkVB0BqpkE1FZRb5NjzY3DzKyY0rESBgaG2JBKxK7CSBvWBtHEkVR8Hg8qNXquKFDjygoJttq4IkLr/H/LR2O/MaL0FCL/IWvI7U3Tz8ISWjaUK/XU15eTmlpafyxioqK+B1Cd+dnU7RPewXWOp2uXYUhxAQVkUgErVbLCy+8EH+82W7rm9/8Jt/85jfbvO6TvbvWrFnT7v5bmvp+9atfvfQJJEB7EvlPotZIhIKCaKT9dbFmlItOPQNVaXgpVKqYiCPUB1OH/oiCRhXrUZUQwQCSzhCz++8LDMaYZZTLiTCZ22+nIpTY1GKTMxYcdHqwX7pgOJmYtCokXwRXMEL4otw9z6JFr1EBF4P9RecREY1COBRr09LBtbK5bMhuT06/MEmSkKbNRvWv1WhOHEBZuwZp3lKk0eN6vO+BQkLB64477uDnP/85M2bMiNda7dq1i3vuuQeAAwcOMGvWrF4daIqhRdwSqpP7nlbrXp0EucEo1mhJbOowZubbXUPiRBBCEAgrmBNsfxK76AaRLFb6yuBKkiSE1Q4NNW18CuO2TC2DVnoWGIx9Pl2skiVMGjnehTrbrMGkbf/uSVKpQNWxyUBzLater4/PbiUDadpsxDv/QFn5EFhtSLf9W9L2PRBIKHjNnz+fkpIStm7ditPpJD8/n+XLl8f9DqdPn96l9vEpLm+EiEnkNdrO16hkWULVvO7VSYeLyCAVa7QkFrxiwg2dvncuxKGoQBEi8SnDUEyYI+kNfRa8ADCZY1NtLicYjAMqaLXEqlfhCUVJN2qw6rpfsN289mw2m5M1tBjFo2LqUGc98l3fQjImef/9TMLveGFhIbfffntvjmVAMNDbWAwUhBB4XApandSmTutSRCOxhrudZVPNqDUftxfp6EIVHaRijZY0Tx2Gw6LXSpWa17sSFmsEA4AU673VUwuoLiDJMsJqA2cDorEhNkU4gIJWM0aNihF2fcIlB+0RCoUIBAKYzeak2NK1vH5Jsox0w6eh6ixMn9vjfQ80Ogxev/vd7+KWRE8//XSHX5au2kMNdGRZjnvspeiYcFgQjQoC/pjoQu6KjVNzfVcC03xqNQQvvqY9cUezWKOrAXSg0RdTh4GwglqWEl/vCgRAq42t0/Rh8ALAfNEyqtEx4IJWS3oSuIQQuN3uuPl4T4lEIm30B/KC63u834FKh1fo5uaPEPPJu1zQ6/UEAgGCweCA+6F0hE6ni9dk9RX1NWGCQYEQ4GqSyMhOXMFUUxUGAVp929d88lyUqKC2OozFL2Ozt/26hkIKNdUR0jNVCAaWYqOrn0vzuYRCKszW5J6LEIKD59zY9GqydZcOREJREEcPQGYuhpyCPv9+AQiNHoQC1nQkJEiCLVl//FY6wuFwUFNTQ0FBQbcs11qeixACWZaTo1QcJHQYvJYtWxb/d0/toQYTkiR16uA+EMnMzGzjjt+bhEIKB3aGKB6lQ6uV2LstwJULNGTlXDqAhUIKB3eFGD1Wh9HY9n1u71xqq9zUnIerl7S9O62vDnL8QISFNxgxGgdW8Orq52IwCPZscdNQDXMWJbdmqcod4undjXx1Zk5Cd/niXCXK//0G6d4Hyc7J6dPvV5wkZCOfpK9/Kx3h8/l48803yc7OZtq0ad26UR4o59JfJDw3Vltby5kzZ9q4K1x11VVJH1SKgU3V2TCKAoXFGiw2FWdPhTiwy8/869SXdIGvr4mAgOzcxDO1rBw1xw8HCYcUNJ9QyjU5o6jVYDIP7mlDiN045Q/TcvxQgIBfQW9I3jkdro0V8o7LTiwgiJNHY2MqKUvaGFJ8zNatWwmHw8yfP3/QzPAMNBIKXqtWreLVV19l2LBhraSckiSlgtdlyLnTIUwWGZs91ixy4jQD2zZ4qTgWZPS4zqct6qojqDWQlpF4lpSZreH4oSANdVFyC1pf0Bsd0fg4hgL5RRqOHwpw4WyYkaXJK/o6XOfHopUZZktQil1xNGa31M0WJSk6pra2loMHDzJlypS4sXaKrpNQ8HrjjTf43//937g0PsXli8+r4KiLMmaCPh4wsvM05BZqOH44QEGxFqOp/YxBCEFddZjMbE2XBAlpGSpkVWydLbfg44xNUQSuxijDRw8cp+ueYrGqsNpkLpwJJTV4Har1MTbbmHCbDVF+FEaWDZmbgoGCEIL169djMBhStbE9JKF5CbPZfEnn+BSXB+dPx/oXFRS3nvabMNWABBza0/HCs9ej4PcJsnK7puRUqSQystSxKccWuJsUFAXS7ANrraun5BdpcTZE8fuSo/Bz+iNUucOMy0psLVe4m6C2CmlUasow2Rw7doyqqirmzJkzoNqLDEYSCl533XUXv/vd7ygvL6e+vr7VX4rLByEE506HsGeqMJlbBwyDUaZ0vJ7q82FqLoTbfX1ddSz4dDV4AWRmq3G7FAL+jy/oTc7Y/mzpQyx4DYvdGFw4036jw67SvN41PsH1LspT6129QSgUYtOmTWRnZzNu3NCxaeovErqKRCIR9u/fz6ZNm9o89/LLLyd9UCkGJq7GKB6XwsTp7d/BjyzVcfZUiIO7/WRmq9vYNdVVhzGa5TaBLxEyc2Jf1fraCIXFsXWbRkcUtWZoiDVaYrKosNlVXDgbpqSs59LnQ3V+dCqJkemJ7UuUH431ainuXXPmy40dO3bg9Xq54YYbUtOxSSCh4PXHP/6Rz372s8ydOzep3lspBhfnToeRpI8zg08iq2LijS3rvJw8GmDMhI+DnBIVrQJPV7GlqdBoJOprPt5HkzOKzd5xi/XBTP4wDUf2B/B6ot0K9i05XOtjTJYh4eJkUXEUikYiaVK/9WTR2NjInj17KCsrG3J9D/uLhG5ZFUVh4cKF6PX6eJfPnnT7TDH4EIrg/OkQ2XlqtLqOP/fMHA0FRRpOHgnidUfjjzsbokQj3ZsyBJBkiYxsNfW1sanCZrHGUFvvaia/6OLU4dn2p2ATxROKcsoZZHxWghL5SAQqT6SmDJPMhg0bUKlUzJ079Gya+ouEos9NN93E6tWrLzvfv4Bf4aO1bi6cTc7aw2Cmvi5CMCAoHH7pu/FxUwzIMhzY7Y9/Z2qrY1lbZhecOD5JZo4av1fB64niboqiKENvvasZo0lFWrqKC2d6FryO1vkRwLjsBAvvz1ZCOJQKXkmkurqaU6dOMXPmTEwmU38PZ8iQ0G3w22+/TWNjI6tWrWrjfPzMM8/0ysD6G0UR7NrixdkQ5dAePzn5mksW4A5lzp8Ko9ZATt6lg4/eIDNmooFDe/xUnw+TV6ilrjqCPUMVb7zYHeLrXi1Uh0M184JY9nV4bwCPO4rZ0r3zPFTrQy3DmMwElYYVMbEGI1PBK1ns27cPjUbDpEmT+nsoQ4qEgld7jQyHOkf2BXDURSku0XK6PMTp8uTW3QwmIhFB1bkQecO0CffMGj5Ky9nKIAf3+LHZ1TQ5Y7VhPcFskdHpJeprI2g0EmoNGIeYWKMl+cO0HN4b4MKZMKXjuxe8Dtf6KUnXo0vUSb78KKRnIqVndut4KVrj9Xo5ceIEkyZNSukFkkxCwetyk3WePxOi4niQEaO1TJhmxONWOHkkQNFIbUJO6EONmgthIpGYHVSiyLLExOlGNr3vYcfGWL+i7q53NSNJEpk5auqqIxiMMmlDVKzRjMEok56p4sKZEKXjux74gxGFkw4/N5cl7uIgyo8ilYzt8rFStM+BAwdQFCWVdfUCCV1NotEomzZtorKyso23YXPblKGCqzHKvu0+7Jkqxk2OTbWUTdSz6X0Pp04EGTX28nFtbub86RB6Q6xQuCukZ6oZNkLL2coQGo2UlCm+zGw150+HCQWjlJQN/kxYHNwVaw9fOqHd5/OLtBzc7cfdFMVi69r7d6IhQESBcYmKNRz14KiDJbd06Tgp2icajXLw4EGGDx9OWlpafw9nyJHQXMLTTz/N6tWrkSQJm83W6m8oEQ4Jdm7yotZIzJhjiveoSs9Uk52n5uTRIOHQ5SVaCQYVaqsiFBRrkbrRu2jsJD0arURWnrpbr/8kmS2c6wf7epfweVCeeRjl0R+g/OMvMaXfJ8gr1IAUmw3oKodqfUjA2ASdNahoLk5OZV7J4MSJE/h8vlTW1UskdCu9d+9ennnmmUHXKqQrCCHYs82Lz6swe6G5jaP3mAl6Nv7LQ8XxYI/XbgYTVWfCCEG367N0epl511rQdF9k2AqjScZklvF6lEGvNBRb10EoBFNmId75B+L4QeQv/TtSCzNcvUEmI0vNhbPhVn6SiXC41kdRmg6zLrH3SZQfA40Whg3v4pmkaI99+/aRlpZGcXFxfw9lSJJQ5lVYWIjH4+ntsfQrJ48EqbkQYdwUQ7vTY2npavIKNVQcCxAK9nFX2X7k3OkQFpuMNa37gcJoktu0MukJ2Xlq9AapQwPgwYAQArHhXSgeherrP0T68veg6izKz76D2L251bb5wzR43QquxmgHe2tLVBEcrfczPlGJPCDKj8DwUUjqJN1pXMZUV1dTU1PD5MmTh/S6bH+SsNrwt7/9LZMnT24zVTh//vxeGVhfUlsd5uiBAAVFGkaM7jjDGDNBT9W5MOVHg4ydPHSz0Ga8nijOhihjJw2sTHPsJAOjx3UtCxlwlB+F86eRvvB1AOSZVyGGj0L5/aMozzyCtOAGpDvuQdJoyRum4eBuPxfOhtvtJt0eFc4AgYhIfL0rHIIzFUip9a6k0CyPLytLlRz0Fgn9EtatW8fRo0fxer1t+nkN9uDl80bZvcWHxSYzaaax0wuixaaioFhDxYkgI0p1SW0WOBA5fzpWIFvQzSnD3kKllhKW7A9UxIZ3QG9AumJe/DEpKxf5/z2CWPU3xHurECcPI3/5e+jyCsnIVlN7IczYSYndNB2ujbn7J1ycfPokRCNIJWO6fC4pWtMsj584cWLKOb4XSSh4vfXWW0O2n9fOTT6EEMyca05IBj9mvJ4LZ8KcPBJgwrTktykfKDQ7yGdkqzEYh3aQ7muE14PYuQlpziIkfevgIqk1SJ++G1E2EeVPT6L8/AGkO79Kmn0OFccjKIpIqBfaoVofuWYNGcbEpgBFeao4OVkcPHgwJY/vAxK6KqWlpZGZOTSLFpucUaZdacKUoIOByaJi2IhY4XKy+i0NRJocUbxupUu1XSkSQ2z5IGbBNG9ph9tIE2cg//hXMKIU8edfYdr7HooS64l2yf0LweE6P+MSbYHCxeCVlYtkTUm6e0KzPL64uBi73d7fwxnSJBS8brzxRp566imOHz9OTU1Nq7/BzuhxOnLyu3aBbm51f/xQ4BJbDl7OnQ4hyxel2imSRlyoMaIUqWhkp9tK9gzkB/8H6ebPYdn3PgDupkuLNs66QriD0YTFGkIISBUnJ4Xy8nK8Xi+TJ0/u76EMeRKaNnz22WcB2LVrV5vnBns/rzHdcC4wmmSKS7ScOhliVJku4axtsKAogvNnwuTka5KqEkwBnDgMVWeRvpiY5Zokq5Bu+gxmrRGcCq5TdeQPK+j0Nc3NJxMVa1BfA65GSJnx9pi9e/dis9lS8vg+IKHgNdgDVGd0t3B21Fg9pytCHD8UYOqVQ8spur4mQigoKEhNGSYdseEdMBiRZl7dpdep5y3G9NIZ3GcCwKWClx+7XkWepWvrXSkn+Z5RU1NDdXU18+bNG9xK2EFC6ra6m+gNMiNG6zh3OpzQVM5g4tzpEBqtRHYCDvJDARGJIHZtQkR793MUHhdi12akWQuQdF3L+CWDEYshjDukRzQ5O932UK2PcdmdK2dbUX4UdAYoKOrSmFK0plkeP3Zsavq1L+gw83rooYf44Q9/CMCPf/zjDn8IP/3pT3tnZIOAUWU6Tp8McuxggBlzh0b2FYkIqs+FKRyuvWxawIidGxHPPoG09Dak277Ye8fZ/AFEwkjzr+vW6y3Dc6g+pSay7j00t6xod5taT5h6X4RlXSlOrjgKI0uR5KE1/d2X+Hw+jh8/zoQJE1Ly+D6iw+DVsn5r0aJFfTKYwYZWJzNyjI7jh4I0OSMJF5AOZBodEaJRyCm4UVzIHgAAIABJREFUPLIuAA7uBohZNJWOR5o4I+mHEEIgNr4LI8cgFY7o1j6sBWlw2odn5z7SblzexglDCMHOCzEnnISLkwN+OHsK6cZPd2tMKWKk5PF9T4dX26uuuir+7wULFvTFWAYlI0v1VJ4IcfRAgFnzzJd+wQDH1RiTYtt6YAc1mBCKgji8F6bNhtpqlD89gfxfTyKlZyX3QMcPQfV5pLu+3e1dNLvKu7Fi27UZadZ8Gnxh9lX72FftZV+1D6c/QqZRTXFagnf/p06AUJBS9V3dJhqNcuDAAYqKikhPT7z9TIqeMfhThX5Go5UoKdNxdH8AR32E9MzB/Za6GqNodRI6/eUxZci5SnA3IU2ehTRyDMrPH0T5/aPI//4LJHXyPsuYUMOENOOqS2/cASazjCTD8cIreXt3PftrKzjnirnN23QqJuUamZxrYkaBGVWCQqSPi5NTzhrdpVken5qh6lv65EpbX1/PypUraWxsRJIkFi9ezA033IDH4+GJJ56grq6OrKwsHnjgAcxmM0II/vznP7Nnzx50Oh33338/I0fGamLWrVvHa6+9BsDy5cvjWWFFRQUrV64kFAoxdepU7r777j5T/IwYraP8aJBTJ4NDInhZ01SXjVpKHNpDQKVmly/KiLBC/ue/Bs8+jlj9N6Tb70rOMdwuxO7NSPOWInVjPSQYUXj3ZCObTrsZFzXisZaxLlzLBDnEkmlZTM41UZymQ+7GZybKj0LeMCTT4J816C/27duHzWZj+PDh/T2Uy4o+udKqVCq+8IUvMHLkSPx+P9///veZNGkS69atY+LEidx6662sXr2a1atX8/nPf549e/ZQXV3NU089xYkTJ/jjH//IL37xCzweD6+++iqPPPIIAN///veZMWMGZrOZP/zhD3zlK19h9OjRPPzww+zdu5epU6f2xemhVkukZ6lodAxu1aGiCNyuKMNLLp8FZ3FoD0eGT2Dv4SPsPXyEzMxMJs26ltHvrUZbOh5p0syeH2Pz+xCJdOqo0R7+sMLbx52sPuKgKRhlVLoes1VFVkjNvVseQTtpOvKN3+3+uBQFKo4hTb2y2/u43KmtraWqqoqrr776srnhGyh0KJVvVhoC/P3vf+/RQex2ezxzMhgMFBQU4HA42LFjR1wYMn/+fHbs2AHAzp0747USpaWleL1enE4ne/fuZdKkSZjNZsxmM5MmTWLv3r04nU78fj+lpaVIksS8efPi++or0tLVeN0K4fDgbVbp9SgoUXrU/mQwIQJ+OHmEyrQcMjIyWLx4MQAf+BSeHzefLav+juf8mZ4do9lRY9RYpASl6N5QlFcO1vOlf5bzl711jEzX88iSIh67fjiThhuJBiWkOUsQOzchGh3dH1zNBfC6U8XJPaBZHj9u3Lj+HsplR4eZ14ULFwiFQmi1Wt544w0+/enkqJFqa2uprKxk1KhRNDU1xf2/7HY7LpcLAIfD0cpLMSMjA4fDgcPhICMjI/54enp6u483b98ea9euZe3atQA88sgjSfNsDA73cuxAFSgmMjP71rBXrVYn5TxcTjfgpmh4BhmZ/ZN9JetcEiG4YxPnJZmqUJSFkyYxb948rr76aiorK9n84QfsPCWz+9VVTJw8mTlz55KXl9el/avVamxVp3HWXsD62XsxXOK8XIEIf997nr/vvYA7GGXuCDt3XVHEuFxLfBvfMC9HD1QhL1wBH6zGsHMD5s/c163z9+/bigtInz4bdSdj68vPpLdJ5rnU1dVx4sQJpk2bRkFB54XjvcFQ+ly6Q4fBa+bMmXz7298mOzubUCjET37yk3a360qdVyAQ4LHHHuOuu+7CaOz4Ai9E2+ylo5RckqR2t++IxYsXx++wIbYelxRUMZXe6UoHGp0vOftMkMzMzKScx/mzfiQJIoqL+vr+mQJJ1rkkgrJ1PZX2WEDKy8uLH9dqtbL0llu5Yv2/2Pf+uxw+ILFv/34KCgqYMmUKI0eOTGiKKDMzk8Y1r4DRjKd0Et4OzssVjPL6EQdvHHPijyjMKjSzYmImJel6IEh9fTC+rZBiU9MXPCoKJ0zH+/Zr+OffiNSNVtXKvp1gNOPUGZE6ec/78jPpbZJxLoqisHfvXrZs2YJaraasrKxf3p/++lzy8/P7/Jjt0WHwuv/++zl69Ci1tbWcPHmShQsX9uhAkUiExx57jKuvvppZs2YBYLPZcDqd2O12nE4nVqsViGVOLT+UhoYG7HY76enpHD58OP64w+Fg3LhxZGRk0NDQ0Gr7vpas6nQyBpNM0yBe93I1RjFb5cunOPnQHipzRmGz2Vpl7s2kz1/C/LMnmLVxLUdu+iL76xy8+eabXH311QmtpyqNDsSerUgLb0DStp/Jrjnq4G/76ghGBHOKLNwxIYPh9o7dN4wmGZUK3C4F+ZqbUJ78CWLXR0hXdv33KU4egZIyJDlltJMoTqeTf/3rX1RXVzNixAgWLVqEyTQ0DAoGG50KNsrKyigrKyMSifSo1ksIwW9/+1sKCgr41Kc+FX98xowZrF+/nltvvZX169czc+bM+OPvvPMOc+fO5cSJExiNRux2O1OmTOHFF1/E44kVYu7bt4/Pfe5zmM1mDAYDx48fZ/To0WzYsIGlS7u2OJ4M0uyDW7ThaoySkT241ZKJIuprCNZVcy57LFNKSjrO7Ffch67iGFPWvsKUHz7OG5u3snXrVkpLSy950fJ/8GasweO89h016n1h/rS7lok5Ru6bkUOR7dJTtZIkYbGpYpZk86dAbiFi7RrErAVdEgwInydmENyiGWaKjvlktnXttdcyZsyYlEijH0noSrVo0SIOHjzIhg0b4pnSvHnzmDBhQkIHOXbsGBs2bKCoqIj/+I//AOCzn/0st956K0888QQffPABmZmZPPjggwBMnTqV3bt3861vfQutVsv9998PgNls5rbbbuM///M/Abj99tsxm2MS3/vuu4/f/OY3hEIhpkyZ0mdKw5akpauoOhcmFFTQ6gbX3WwoqBDwi8tHrHF4D6ctmShASUlJh9tJGi3yV/4fys8fgGcfY9593+P/XnqJzZs3s2TJko73ryj43/snlI5HyhvW7jbvHG8E4OuzcskxJ96t2mJTUVsVRpIkpEWfQrzwW6g41jXhxbGDsfNLiTUuicPhYO3atalsa4CRUPB6//33efHFF1m0aBGjR4+mvr6eX/3qV6xYsaLV+lFHlJWV8corr7T73I9//OM2j0mSxH33tb8IvWjRonaLAUtKSnjssccuOZbexJYeu/A3OaNk5Q6u4OW6aC5stV0mwevQHiqyhmE0GsnNze10WyknH+nfvoH4/aPYPlzD1KlT2bVrFxMmTOhYxHF0H9GaC0g3fbbdp0PRWO3WzAJzlwIXgMUmc7ZSEAwqaGcvRKx6HvHBGwkHIrF7M8qffgVp6ani5E5omW1pNBquu+66uKI5Rf+TUPB6/fXX+dGPftSqCG/OnDk89thjCQWvywWbPXbhb3REycodXN6AzbZQl0PmJaJRIkcPcrpkFmM7mTJsiTzzapTjBxHvrWJadj5Hs0pZ9/IL3K4NoTIawWAGgxGMJjCYEFs/RLLYkKbNaXd/G0+5cAWjfGpM17vtxm2imhQysw1Ic5cgPnwD8em7kdLart3Fz1tREGteRLzxMowoRf7q97vsbn+50DLbGjlyJAsXLkxlWwOMhIKX2+2msLCw1WP5+fnxtacUMbRaGZNZptE5+Na9LitbqMrjnFXpiEC8/jARpDvuBZMFXV0Nc/xB/oWJo40NjKs8Dn4fBP2ttjcsu5NgOypAIQRrjjkptumYmNP1sgprPHhFycxWIy28AfH+64j17yDdcme7rxE+L8qzj8P+HUhzr0G682tImq5lfEONYDCI2+3G7Xbjcrla/bu+vj6VbQ1wEgpeZWVlPP/889x5553odDoCgQAvvPACpaWlvT2+QUdaugpHfaS/h9FlLidbKHFoDxW2HLRabZubss6QNFqkWz8PQJkQHPrHP9ji0DP6wR+j1+tj/cACPvB5IejHPH4KwaamNvs5XOen0hnk67Nyu/V+6/QSGq0U7yMnZefBpJmI9e8gbrijjWxeVJ1D+c1DUFeN9LmvIC244bL4nD9JbW0t7733HvX19bjdboLBYKvnZVnGYrFgtVqZMGECM2bMSGVbA5iEgteXvvQlnnzySe666y7MZjMej4fS0lK+/e3uO2QPVWzpKs6fCRMMKOj0g2PdK24LNerysIWKHt7DqbR8RowYgUrVvWlSSZKYP38+L730Etu2bWP+/PlIKhWYLLE/6LD26o1jTsxamfnDrd0+tsUqt2qCKi/6FMq+7YidHyHN/lg2L/Zui2VcGi3ygz9DKk1MZDXUUBSFd999l0AgQE5ODnl5eVitViwWSzxgGY1daOCZot9JKHjZ7XZ++tOf0tDQEFcbtlcXkwLSLvb0anREyckfHMErbgt1GYg1hNfDhdo6AiOGdaoyTISsrCwmTJjA/v37GT9+fEJuB3XeMFvPurl1bDo6dfe/HxabigtnwgghYhfcsZMhbxji/TWIKxeAEIg3XkaseRGKRyHf/5/Jb/MyiDh27BhOp5MVK1aQk5PT38NJkQS69OvJyMhg1KhRqcDVCc2ijaZBtO7laryoNLwMxBoc2UuFJROVLFNcXNzj3V155ZXodDrWr1+fkNPL28edAFw/uutCjZZYbCrCYUEwEDtms2ye0yfh0B6UZx5GrHkRafZC5O89fFkHrmg0yrZt28jKymLs2LH9PZwUSWJwpAaDCLVGwmyVaXQMnnUvV2MUSQKzdeh/HZRDe6i05VBUXIymG5ZKn8RgMHDllVdy/vx5Tpw40em2wYjCeycbmVVoIdvcs2M3Kw5dLaYOpdkLwWBCeep/YsKMFfch3f2dDt09LhcOHTqEy+Vi9uzZyCk3kSFD6pPsBQab08blYgslhKDmxFE8Gh2jRo1K2n4nTJhAZmYmH330EeFwuMPt1p9y4Q4p3NQNefwnsdhiP92W616STo+0+GawWJEf+B/kxTdf9ms44XCYHTt2kJ+fn5RMO8XA4ZLBS1EUDh48SCQyeDKJ/saWriYYEAT8Sn8PJSGalYZDnupzVKBFAkaMGJG03cqyzIIFC/B4POzcubPdbYQQvHHMyQi7jnHZhh4fU6eT0ekl3E2tv2PSTZ9BfvQ5pLJJPT7GUGD//v14vV5mz5592QfyocYlg5csy/zyl79EncSW6EOdtPSPi5UHOpeTLZQ4tIdKazYFOdno9cktzs3Pz2fMmDHs3r2bpnbk8QdrfZxuDPKpMfakXUTjHoctkCSp7412hUDv2kX66ccxOteDGBg3bcFgkF27dlFUVNQvLUtS9C4JfcvHjh3L8ePHe3ssQ4ZYvRSDYt0rbgt1GQSvhkP7cOpNlJT1zqL93LlzkWWZDRs2tHnujWNOLDoVVxd3Tx7fHs1y+a60BEo2qmA1aed/j7X2VSQliLnhHWxVzyFF+t/AYM+ePQQCAebMad/lJMXgJqF0Kisri4cffpgZM2aQkZHR6s5xxYoVvTa4wYpaHavDGQyKw7gt1BCXyYtwiIp6B2TZuuSq0RXMZjMzZ85k8+bNnDp1Ki6dr/GE2H7Ow/JxGT2Sx38Si01FNAo+r4LJ3Lefn6QEMDWsxdC0BSHrcWXfRsAyDb1rB5b6N0g/+xSunBWEjT0rR+gufr+fPXv2UFJSQnZ2dr+MIUXvklDwCoVC8XYlHXUoTtEaW7qamgst6nAGKM22UHrDENfunDxCpSmdHIsZi8Vy6e27yZQpUzh8+DAbNmxgypQpALx10T3++tK0pB7L2sLjsM+ClxDoPPsx17+JHPUQsM7Ek3EtQhVzogjYZhHWF2GrfpG0C8/isy/Em34NSH37/dq1axeRSIQrr7yyT4+bou9IKHg1tyRJkThp6SrOVobw+wRG08AOXpfDlKFr/05qjTZm93Kdj1qtZt68ebz++uusXbuW8ZOn8q/yRmYPs5BpTK5Zs7mFx2FuQe8bQatCtVjqXkfrLyesy6cp7wtE9G3bvUR1eTiHfR1z3euYnB+g8Vfiyl2Borb1+hgBPB4P+/btY8yYMama1CFMwiqMc+fOsXXrVpqamrj33nu5cOEC4XA4JT/tgLS4w3wEo2lgGqAqisDdFGX46KFfB1RReQqMWYwa0/v9q4YPH87EiRPZvHkzR2tceIN5SZHHfxKNRsJglNqINpJONIip4V2Mzo0IWYM762b81lmdZlNC1uHO+TRhQwnmun+SfuZpXDm3EzL1/vu/Y8cOhBDxju0phiYJ5fJbtmzhJz/5CQ6HI74Y7ff7ef7553t1cIMZS5oKSR7YThtej4KiXAbrXY0OKhQVdq0auz35QaQ9FixYwPTp03GUH2S6OMWYzN5pPdKe4jCZyOFGpH0/weRcR8AymYai7+K3zU54GjBgnYZz2DeIqi2kVf0FU/1bIHpPyNTU1MShQ4cYP348NlvfZHop+oeEvoGvvPIK//Vf/8WXv/zleIV6cXExp06d6s2xDWpUKgmrbWAXK18utlC+fTu5YEqjpEU/ut5GkiTypszjvK6ANOcJtm/f3iuqQKtNhcetoCi9ozg0NG2BkBNnwZdw53waoTZ3eR9RbRbOwvvx2a7E1LgR+7nfIYedvTBa2LZtG5IkxdfoUwxdEgpeTU1NbaYHJUka0EKEgYDNrqLJ0b9S5s5otoWyDHFbqMrDBxGSTMmUaX163Ff3VVGVPpGysePYvn0727ZtS/oxLDYVihLLopOOiGBw7wL7ZMKGHio0ZQ2erFtoyr0TVbge+7lnUAfOJ2ecF2loaODo0aNMnjwZs7nrQTbF4CKhq9bIkSPb1K5s2rQpqRY7Q5G09Jh5qs87MIo2P0mzLZQ8hG2hhKJQ0eTGIgmy+9BNvModYnOlg+tK7SxZfA3jxvVOAGvPJipZ6LxHkKNeRM68pO0zaJ6As/CrIKlIO/97tN5jSdv31q1b0Wg0TJ8+PWn7TDFwSSh43X333bz00kv85Cc/IRgM8tBDD/Hyyy/zxS9+sbfHN6gZ6E4bl4PSMFR5grN6KyOyMvt0puCt405kWWLp6DQkSeKaa65h7NixbNu2LakBzGxRgdQ7wcvQtJ2oOg1s45K636g2B2fh14hqMrBVPY/e1b6lVleoqamhvLycadOmYTD03H4rxcAnIbVhQUEBTz75JLt27WL69OlkZGQwffr0pFvsDDUsNhWyDE2OKAVF/T2a1gxmWyiHP0KNJ8TYLOMltz29axtRWUXJ1L6ZMgxHBWuOOXjnRCMLR2WQcVEe3xzA4ON1mSuuuKLHx1OpJUxmGVdTcrN7VbgBrf8knvQlGHuhRktRW2ks/ArW6v/DWvsPVOHGi/Vg3bvB2LJlC3q9Pl5b90mkqB+9exeSN4ysm9Znsv0UvUfCUnmdTkdZWRkOh4P09PRU4EoAWZawpqloHICKw8Es1vj9jhq2n3Pz+PXDGW7v/HtYfr4KvaSlYPSYXh/X7gse/rCzlgvuEDMLTHxz3kjwu+LPy7LMNddcgxCCrVu3Jk1Y0BuKQ33TDgQyAet0Ln2L0D2ErKMp74tYaldhcr6PHGnEnb0MpK59J8+fP8+ZM2e46qqr0Olal32ogtUYm7agd+9BEmEEMhnSB/jSrsKXNh+hSl3HBisJBa/6+nqeeuopTpw4gclkwuv1MmrUKL71rW+RlXX5NrlLhLR0FedOhQac00bznfpgk8l7Q1F2nvcQFbByWzWPXFuMSm7/fY14PZxGQ4lZ36t9nKrcIf60u5bt5zzkWTT814JCZhSYyTRpqfe33laWZRYvXowQgi1btgD0OIBZbTLV58NEoyI5bW1EFL17FyFTWcIZihCCyspKCgoK2gSQTpFUuLNvQ1GnxQJY1IUr906EfOl9RKNRDhw4wLZt2zCZTEyaNCk+fp33CIamLWj9FQhJTcA8BX/abNIyCwideAmTcx2Gph140xfht10BUsp4fLCR0Ce2cuVKRo4cyQ9+8AP0ej2BQICXXnqJlStX8t///d+9PMTBTVq6ilMnweNWsFgHTqAYrLZQW085CSuCG6q38RazeOvRX3ND0wFQa0CjAY0W1BqiajX7FA0htZWS0t7JugIRhVcPNrD6iAOVDP82JYuby+xoVJ2/p7Iss2TJEiA23SVJEjNmzOj2OCw2FQjwuKLY7D2/COu8R1BFPbitiQfVAwcOsG7dOjIzM1m2bFnX1p0kCW/GYqIaG5ba1aSd/z1NeV9EUXdsYnzq1Ck2btyI0+mkqKiI+fPno5ECGBw7MLi2oYo0EVWn4clYit86I25fhS4DV+4KfIGrMDe8jaV+DYamzXgzriNomtDtacsUfU9C3/SKigp++MMfxtui6PV6Pv/5z3PPPff06uCGAs0XkyZHdMAFr8E2ZSjqqtmwfj85kon70hqoEg38rWAhszJkMsJuiITxh8McEloOYMSnVpMtwgybOTu54xCCj067+fOeWhp8EeYPt/LFqVnx9a1EaBnANm/ejBCi2xmYpYXHoS0JNdh613aiahshY2lC2zscDjZu3EhWVhYOh4NVq1Zx6623YjR2bcIxYJ2JorJirX4B+7lnaMy/m6i2tamu0+lk48YNVJ+rJDfTyPWfmkF+lhmd71/oK/cjESVkKMGdeXPMzaOD9bqIvoDG/HvR+o7FnPCrXyCsL8KdcQMRQ8o1aDCQUPAaPXo0J0+epKzsY2uX8vJySksT+3JfzsQ6FMdsogqHDwybqMFoCyUO7MLx3G/ZP/UBludEUC15kK95QnzjjUr+MPoWvjrBwL59+zhy5AjRaJSioiKmTJlCcXFxUqdrTzkD/GFXLQdrfIyw6/j3ufmMy+7eqtAnMzDo3hSiySwjyclRHMphB1rfyYTNdKPRKO+++y4ajYabb76ZhoYG1qxZw6pVq1i2bFmXA1jINIbGgi9jq3oO+7nf4rfORI76INyE31VLTtTDXWOiqJsFkEol1IAiafHbZuK3zW4T8DpEkgiZynAYR6N378bU8C/Sz/+WgGk83ozriGpTSyIDmQ6D18svvxz/d05ODg8//DDTpk0jIyODhoYG9uzZw1VXXdUngxzMyLKE1T6wRBte90VbqEGQeQlFQbz5CmLNi2we9ykUSWb+zNg0YLZJw/KCMEcOruf/9jWgUqkoKytjypQpvWLIeqLBz/ffO41BLfO1K3JYUpLW4XpbojQHMEmS2LJlC0KIdlWIBudGZMWHN+O6dvYhYbbI8d5sPcFwUbYesCY2jblt2zbq6uq48cYbMZlMmEwmbr75ZtasWcNrr73G8uXLuxzAIvoCnIVfI63qrxgbPyIkdDg9UVx+CbUxG8k2HFlnR1GbUVQWFJUJRZOe0DpZu0gqAtaZBMyTMTZuxOjcgM53DGfBV4noU00sByodBq+GhoZW/282uXS5XGg0Gq644gpCoVDvjm6IkJau5kx5EEURyD282CWDeAPKAS7WEF4PyrOPw4GdSFcu5KOCxRRHFOyqEAcPnmDv3r04HA7SVDouWEv57rKryLL1jrNCOCp4ems1Np2aJ24Yjk2fvAX+ZhEHxAptP2kqqwrVYW54BwmFoLGs3Wktq02Fo76HnoEiit61k5BxTEJCjfPnz7Nz507GjRtHScnHfbuGDRvGzTffzOuvv84//vEPli9fjslk6tJQFE06+1jGxu0bqa9vID8/n3nz5pGWnU2wyyeWILIWX/o1BKwzsZ9dibXmJRzDvgnywJgxSdGaDn+BqTYoySPNrqIyCh6XMiCynYFqC+Xz+aisrKSqqgrP+TN4t6zHF4nim30TTWo9WSfeQSvC/Lkitn1mZmYsa8kYxn+uPcerxzx87YreCV7/ONTA6cYgP5pfmNTA1UxzAJMkiW3btsUDmCRJmBreRUgaFFmDueEdGgu+3EZYYLGpOH8mTDgs0Gi6d4Ok9R5FFXXjtl26/iwYDPLee+9hs9mYN6+tA0dhYSG33HJLqwCWiGWTEIIzZ86wY8cOLly4gMViYenSpYwePbrP1LqK2oorZwVpF/6Ipf4N3NnL++S4gwG1/zSQ39/DALpQ5xUMBqmuriYQCLR6fMyY3q+fGew0O200OSMDJngNBFsoIQQNDQ1UVlZSWVlJdXV1q+dlUwYmgxGjyUpI0VCrNbF0fB7ZaRYyMjLIzc2NX9A+NcbO60edzB9u7fYaVEecbgzy90P1zBtuZWZh73nmtQxg27dvB+CqSbnovYfwpF+LojJirVuN1neUkKl1X7Jm0YanKYo9s3vB1eDaTlRlTUiosX79ejweD7fffjtabfuZSUFBAbfccgv//Oc/4wGso0agzVL7HTt2UFNTg9lsZv78+YwfPz4uFOtLwsaR+OzzMTnXETKOJmie2OdjGEhISgBT/TsYXdugJLkCqO6S0Ldi/fr1/OlPf0KtVrf5oj7zzDO9MrChhMkio1bHbKKGjejv0cSCV0Z2/9S1RCIRzp07R2VlJadOncLtdgOQnZ3NFTNnUHTqCOpNazEVj8DwpX9HTksH4NtvVqJLl1l0VftKsM9NymLrWTcrt1Xz5A3DLylXT5SoInh6axVGjYr7pvd+O/lmJ45YANvGVbYgUb0VX9pckFQYGzdibngXh3FMK0FFs8ehq5vBSw470fpO4LMvvGSR8PHjxzl69ChXXHEFeXl5nW6bn5/PrbfeGg9gt912W6sAJoTg5MmT7Nixg/r6eqxWK4sWLaKsrKxfglZLvOmL0fpOYql9jbBuGIomuZ2wBwtaz2Esdf9Ejrrx2ebScQFD35LQt+Nvf/sb3/3udz8uAkzRJSRJwpauHhAeh822ULY+zAD9fj8VFRVUVlZy5swZIpEIarWaoqIiZs6cyYgRIzCGAyi/+yWcPIK05Bak5V9EunjxOtMY5FRjkC/P6NhY16CR+crMXH627hz/OOzgMxMzkzL21486ONEQ4Ltz83tlurA9JEli0aJFFBrDfUVAAAAgAElEQVRqSdfsZ49zMvnDNUiShDfjOmzVL6B37yFg/diA1miKqVrdru7ZRDULNfyXqO1yu918+OGH5OTkJKyMzMvL49Zbb2X16tWtphCPHz/Ojh07cDqdpKWlsWTJEkpLS1Gp+n92AgBJhSv3M9jPPIW15hUaC+5LuI/ZUECOuDDXrUHvPUhEm4sz7/NE9MMGV/BSq9WMG5dcc87LjTS7isoTQZSo6NfpumZbKEsfBa9AIMALL7yA1+vFbDYzduxYRowYQWFhYfzOWhw/hPL7X0LAj+27/4OnrLU/3YZTLmQJ5ha1P+XUzIwCM1cXW/j7wQauKrJQaOtZKcAFV4gX9tdzRWFsv32JhMLsgvM0ek2s2lTDVP9m5syZQ9A0gbCuEJPjXwTMk0D+2Dux2zZRcaFGaafZhRCCtWvXoigK1113XasgoyiCc6dC5BZo0OraXuBzc3NZtmwZq1ev5tVXX0WlUtHU1ER6ejpLly5l1KhRveqC0l2imgw8Wbdgrf07Ruc6fOmL+ntIvY9Q0Lt2Ym54G0lE8KRfh89+dZdtu3qbhL4tK1as4Pnnn8flcl164xTtYkuP9V1yu/o3+2oOXj3NvETAj/Lhm4hjBzvdbv369fj9fpYtW8bdd9/NwoULGT58OGq1GiEEyvtrUB7/EegMyP/5KPqrFrc+jhBsPO1iUq6JNMOl77Xum56DTi2xcls1Sg/6qClC8OttVWhkia/OzOlzay+DazvqcAOi6DbGT5jErl27YrVgkoQn43pUkaZYo8gWWKzdC15a3zFUURd+a+dCjb1793L27Fmuvvpq0tJaB7njhwLs2+HnwC5/B6+OldwsW7aMSCSCVqvlxhtv5M4776S0tHRABq5mApapBMyTMTnevyhYGLqoQrWknf8D1rpVRHT5OIZ9G1/6ggEXuCDBzCs/P59XXnmFd999t81zLevBUnRMy/YoybDw6S6uJgWtTkKn7/7FQuzdivLi78FRjwCYNBN5+ReRPmGdX1FRwbFjx7jiiisYNmxY630Eg4jnf43Yvh4mX4F8zwNIxrZy6uMNAao9Ye6YkFjdVppBzd1Ts/n1tmrWljdx7ajurVO8e6KRQ7V+vjErt0vOGclAUoKYHO8TMowkbCpjwYIyFEVh586dZGVlMXr0aILGUkzOdQSsMxGqmBWTxSZz9pQgGFTQtZP9dIShaTtRlYWQqWPxVX19PZs2bWLEiBGMHz++1XO11WFOHA6iN0pcOBumuDZMZnb771l2djb33nsvsiwPKK/PTpEk3Fm3ogmcwVbzMo5h3xp6hr4igtG5HpPjQ4SswZV9GwHL9AFtl5XQVfTpp59m3rx5zJkzp0NlUYrOMZpkNFqJRkeU4pJLb99b9MQWSjTUxoLWvu1QUIz84LcRp04i3v47yk+/hTT3GqSbP4dkz8Dv9/PBBx+QmZnZZm1E1FahPPMwnD+NdOvnka6/HamDO+8Np1xoZIkrhyU+bbe4xMa6yiae21PLzAIz9gQytpbUecM8t6eOyblGFpf0fesMo3MDctSLJ2MpSBISsGDBAhoaGli7di2ZmZmoM5ZiP/s0Rud6vJlLgdY2UbrsxIKXHG5E6zuOz76gw7vrcDjMu+++i16vj4tJmgn4FfZs9WGxysxZZGbDe24O7vYz71p1hzWNA2ZNqwsIlZ6mnBXYz/8eS90/ceWu6O8hJRVz3RsYXdsImCfiybwJRd230+TdIaFvuMfjYcWKFRQVFZGbm9vqL0ViSJKEza6iqR+dNpptoboavEQkgvLuayg//joc2Yd0+13IP3oCaexk5OtvQ37o90jXfAqx5UOUH30FZdXfWP/BBwQCAZYsWdLqYiX270B56EFw1CN/68fIN97RYeCKKoKPTruYUWDCpE18zJIkcf+sPEIRwe92VBOOJj59KITgme3VCCH4+qzcPs8O5IgLY+NGAuZJRPQfZ6sqlYrrr78elUrFW2+9hV/OJGCZgrFpE3KkCWgZvBL/jiUi1Hj//fdpaGhg8eLFrdwyFEWwe4uXaEQwfa4JrU5m/FQD7iaF0+VDz8AgYijGm74IvWcvOvee/h5O0lAFqzC4tuOzzcaV+7lBEbggweC1YMECNmzY0NtjGfKkpatwNUWJduFimky6YwslTh5G+fkDiFefg7GTkf9nJfJ1y+NKQADJYkVecR/yz36DNOVKyj/6kOPl5czIsJFpj03bCUVBef1FlKd/BhnZyD96HGlC5+3aD9T4aAxEmTe86/qmAquWz0zMZMtZD199vZw3jjkIRi6txFtX6WLXBS9fmJJFjrnvZxlMjrUgFDzt2EBZLBauu+46Ghoa+PDDD/HYF4MQsdcAeoOERiMlHrxEFL17JyHjaBRNW0ffxsZG3n//fTZv3szEiRMZPnx4q+ePHwrQUBdl4nRj3HQ6t0BDZo6aYwcDBIPJbZA5EPDZFxLSD8dS+09U4YZLv2CgIwSW+jcQsh5v+uJLbz+ASGg+5eTJk7zzzju89tprbRZqf/rTn17y9b/5zW/YvXs3NpuNxx57DIhlc0888QR1dXVkZWXxwAMPYDabEULw5z//mT179qDT6bj//vsZOXIkAOvWreO1114DYPny5SxYsACIra2sXLmSUCjE1KlTufvuuwfkfHpaugqhgLsxSlpG3697NdtCJSLWEF434h9/QWx8D9Izkb/+A6QpV3b6Gikrl8Dnv866v/yFzICXaR+8inJgI9LNn0Vs3xizeZq9EOnO+5ES6Pm08bQLg1pmen73CoNvG5/OCLuOvx9q4A87a3nlQAM3l6VzfWlau5lcoz/Cs7tqKMs0cOOYJNizdxFVqAa9ayd+2xwUTXq72xQXFzNr1iy2bdtGfn4+V+ZciaFpM760q4hqc7DY5ISD1//f3pnHSVGde/9b1dt0T8++MxvMMAMMDLIMyL64R43BNWqMMcZEo9Gbaxbxja96k2tickMw3sAbTYhJ9Ko3MWpMIi4oArIIAwzINgszMCyz9yy9L1Xn/aOhBZmBmWF2zvfz6U9XV1dVn6eru351nvOc5zF7KjCE2nEmf/G09c3NzZSWllJZWYmqqsycOZPp00+/0Wg6Mc6VPdpM9pjPRF5RFCZNtbLuXSfln/qYXNJfpSwHCUWlI+3LJB75NbH1/0tr1r1DMpihu5jd+zB7q3EmX4cwDK9z1a0r6KWXXhopYd4bFi1axFVXXcWKFSsi6958802Ki4sj8z/efPNN7rjjDnbu3El9fX2k+OXvf/97fvrTn+JyuXjttdd4+umnAVi6dCklJSXY7XZ+97vfce+991JQUMDPfvYzysrKmDp1aq/b21+cDNRoa+1avHRNEAwKAn6BwQi26L77Y3S0aSgq2GPO3uHWN69F/GUVeFwoV1yP8sVbUaK6V59p3bp1+EMhlnzlTkz1i9D/9kfEquVgMKDcfh/Koi9068YiqOlsrnUyK9uOxdi74BJFUZieaWd6pp29jR5e29PCi7uaeH1fC1cXJvDF8Qmnzd16rrQBX0jw4Kx01EG4+bE3v4tQLbgTF591uxkzZlBXV8e6devIuPFaxqml2Fveoz3jq8TEGTh6OIDfp58zKMfavu1EoEa4WkRdXR3btm3j0KFDmEwmpk2bFsnM39zcHNnP59XZ+YkHe6zKpOln/i5i4gyMHmumpjJAbr55UAOU+gPdFI8z9Qbi6l8m2vEB7qQrBrtJvUOEiGl+m5A5LVyQc5jRrV/VyR5ObykqKqKxsfG0ddu2bYsUsly4cCFPPvkkd9xxB6WlpSxYsABFUSgsLMTtdtPa2srevXuZPHlyJD/a5MmTKSsrY+LEiXi93kh5lgULFrBt27YhKV5Wm4LZolBbHaCjTSMYEAQCIvzs1wkGBKHP5Va12VVS042kZphISjViNPb+otrRphETc/a0UPqWtYg/LIf88ah3fBslq/spQaqqqqioqGDWrFnhCtspKagTpyC2b0JJSUcZXdDtY20/7sYd1HvlMuyMiak2Jl5i46DDx2t7W3htbwt/P+DgyrHxfGlCIlUtPjbVOvnqRSnnPT+sN5i81Vg8+3ElXfVZ4cQuUFWVK6+8kldeeYV/vLOWjKvnEt/xISbvIcYUZnOkJsCeHV6mz+n6OOGMGgdwxy+k9sgxtm3bxrFjx4iKimLWrFlMnjyZqKgzI+qELtixxUMwKJi9yN7l73HcpCiO1QbZs8PLnEvsQ9ITcj747cV4Y0uwtX6EovtxJyxCDJOxopPY2jZiCDloHXX3sOw9dku8Pvzwwy7fu+SS3k3aa29vJyEh7JpJSEiIzCFzOBwkJ3+WHSEpKQmHw4HD4TitzEViYmKn609u3xVr1qxhzZrwGMHTTz992mcNBLljdKrKnfi8AkuUAYvFQEysIbwcpWKxnHiOMuDzahyr9XD0kJdDVQFUFdJGWcnMsZGVYyM+0YyiKBiNxm7Z4epwkpEZ3eW2WsNxWl5+DtOEi0j4yW9QehAV5na7wz2BjIwzJrDyheu7fZyTtnyytZl4q4lLJuVi7MNM/MnJcHFhFocdHl4qPcrb5U2srmzDYlQpTInmnvkFGPsotVR3zwtCoOx5DmFOwJb/RWzdzGJ+2223sWrVKlaXBbl1XBzxHR8QV/RD2meY2PmJg/EdUeTmfc7l6j6K0rAWmrcgUHlzUzMHDr0ZSYBbUlJyRkTxqXbs3OqgpTHEvEtSGZN/9huLGXMsbFzbhLM1irzCoXFh7/Y56Q4Jd8FhK9bGjVid2yHjUkTGlWAcGPfbedkSaEepXotIuIi4nKGRq7CndEu8NmzYcNrrtrY26uvrGT9+fK/FqytEJxNLu7prUxSl0+3PxmWXXRYpPwGc5g4ZCMZfZGDc5Liz3InqJx4hYhMgdZQZTTPhaArRVB+isd5P6SYvpZtaiLIqpKSbyM2Lx+93YzCAwahgNCoYjISfDeHlYEDgcWtYrMFObRaahv5fjwGgfe1BWlpbe2TX6tWr8Xq9fOlLX6K1h/ueSnJyMrV1DXxc3cJl+XG0OfpnUDwauHdaItcXxvDm/ha2H3dz/4wU2lq7vvHpKcnJyd36fVmcu4lzH6Ij9SZ8ju4nArBarcybN4/169ezJz2P4uBO2ms3MCpnAgcPqGxc24A5yoPJJLC492Ft24zZV4MmDOxtjGFdhRGfGjotl2BniQhO2tHcEKRsm5usXBPxyf5z2paQIohLMPDJx43YYnwYe5ntvi/p7jnpNrFXY4iaQbRjDVHH3kbUfYgnYSGeuDn9XkrlfGyJafgbUXoIR8xlaD08xqhRwyir/BNPPHHGug8//JBjx471+oPj4uJobW0lISGB1tZWYmPDd3FJSUmnnZCWlhYSEhJITExk3759kfUOh4OioqJIccxTt09M7Hywe6jQUxeKwRAWqZR0E0VY8Xp0muqDNNaFqD8a5EhN4zmPcTIavau0UOLtv8LBAyj3fA8lqWcJaCsrK6msrGT27Nl9clf7yREXAU2wILf/s6il2k18a8YgTvkQIewt7xI0p+OL6bmr+6KLLqKuro7X1ldS8IV47C3vEsgex0UzbWz/qB7vgc2kx+zEoHXg0aPZUJPElmoj9vg0ps+d3u20TH6fzo4tHuwxKsXTbd36DSuKwqRpVjZ+4KJyv48Jk7s3bjrc0MwpdKTfhse/kOiW97G3vIu1bSOehMXhsSRlaI35GX3HiHJuxxs/D808sJ6nvqTX3+qiRYv4xje+wVe/+tVe7V9SUsK6detYsmQJ69ati0xkLSkp4Z133mHu3LlUVlZis9lISEhgypQpvPLKK7hcLgB27drF7bffjt1ux2q1UlFRQUFBAevXr+eqq67qrVnDAqtNJSfPQk6eBV0XWExxNDU50EIQ0gRaSKCFQAuJyOtQKCxgySlnnnJx8ADin6+iXLwQ9eKFPWqLx+Nh7dq1pKamnhGR1ls2HO4gNdrIuJSRebE7FWv7JxhCDpwZX+9V0teTWeibm5v516c6N05qILrlfWJD7Ywt3o2q6Bx3JrOuPIV9dQaysnO48prpZGdnd/smSj9lnGvWQnuPelCJyUayRpuoLveTM8ZMdMzwG1vpLiHLKNpHfQ2j9zD2lneJaf4HtrYNuBMvDd+YDIVxJSGwN/8TYbDhThjeeRq7JV66fvp8jUAgwPr167tdHfWZZ55h3759OJ1O7rvvPm655RaWLFnC8uXLI1kYHn74YQCmTp3Kjh07eOihhzCbzZGimHa7nRtvvJFHH30UgJtuuikSvHHPPfewcuVKAoEAU6ZM6VGwhhBiWA8mq6pCXIKZoNa7+xDh84SrFScko9x+X4/3/+ijjwgEAlx++eV9kp+u1RNkZ52bJRMSByXibyBRdB/RjrUErPkEbN0PZvk8ZrOZq6++mv/931eZOyaadNahKWYqOjJ5p8xPs9vI2LFj+fKt00lN7XlZl93bW2luCDG5xNqr7CwTJlupOxpkb5mXmfP7rx7aUCFkzaUt85uYvFXYW94ltvFvGOo+Yr/vi7iVHIynuvZNJ5cVjCdc/UZzeL5ef1Rdt7g+xew7REfK9cM+xZUiujFo9OUvn5kKJTExkXvvvZcpU6Z0ssfw4cj1cyA2AeISIC4RJe7EcvzJ5URIz0IxDWx+u55wPr5v/YVfIzavRf3BT1EKelY5oKKignfeeYfZs2d3uzzGudhwPMgv1x7k11ePZnTC8P5zneu82BwfYHeswZH1AKGorPP+vP3791P68Wom5pjZWhVCw0Re3gS8jgIKi5KZNLXnPdkjNQF2bfMwKtvE1Fndcxd2RtUBH/t3+Zi5IJq0jMH7L/X5mFcnCCHoaNM4ejjI8Vo/aZYKZmatJdrkZFPtFVS0dK+0lMmkYDKHH2bLiWfzZ+vGF6US1HqQLF0PklT7K3TVSmv2d3pd3mVYjXn95je/Oe21xWKJjFENd5RFV0NbK6LdAcdrEft3gdcNQETVjSbIG4dSOBGlYCLkj0exDO8LK4C+7WPEpg9Qrv1yj4RL13X27t3Lxo0bSUtL6zN3IcB75U1kx5nJjR/4cPWBRNHc4TRQ0RP7RLgAJkyYQGNjI6Xl5UyZXsLkyZOx2Wx8ut1DTYWfzGxTtwtVCl2w/1MfBw/4Sc+0MrnEfF4eirwCC7XVAfbu9JKSahz0Kt79gdulcexwkGOHA7icOooCqRlGknKn4E6bSFTzq8wfvZqpkztoi72SkKYSCp5w70ceEIpModEjU2nCAVd6ZHoNAg4eOMrcS6K77Yq1ta3HEGqjY9TNI6IuWbd+ySkpKf3djkFDvfnuM9YJvx86WqHdgWhtgeoKROVexL/+ihD/CwYD5OSjFE5CKZwIYyeg2IaXO0Q4mhAvrYAxhSjXdD/JaF1dHR999BFNTU2MGjWKK664os/KWTS5g+w+3sFXJicPa1dud7C1rkfRA7gTL+/T4y5YsCAyT/Ik4ydbqT8epGybhwVXxGA4h3CEgoIdW9w0HA+Rm29m0eWjcLSeX9SnalCYONXK1vVuair95I8f/jd/EA5kOV4b5FhtgNaWcGaTxBQDxYVWRmWfWtvMTNuou7A3/wt7+0ZMoUY60m5DRPe8NyyEwOXU2bzWzSfr3cy7zN5pDbVTUUPtRLeuwxc9iaAtr8efORQ5q3idK/WToig8/vjjfdqgoYBisUBKOqSkowDMmA+A8Hrg4H5Exd6wmK15C/Hu6+GyAVmjUYpnoMy5BCVtaHSru0LoGvqq5aDpqPd877Q8hV3hdrvZtGkT+/fvJzo6mquuuoqCgoI+FZkNh8IukPl9NDF5qKKGOrC1b8YXMwXN0nV16N7Q2fkwmRQml9jYut5N5T4f44u7vmB63BpbN7hxdehMmmZlTIGlz3pJaRkm0kYZKd/rIzPXTJR1+N79u10alfv8HD0UQAiIjVeZMDmKUTlmbNFd2KUYcKVcR8icTkzTWyQcXUl7xp1o5p51DhRFISbWwKVXZ/DOm8fYttHNrIX2s96U2FveAQSu5C/06LOGMme9as2fP7/T9Q6Hg9WrV+P3+/ulUUMVxWqDSdMjCWVFwA81FWExK/8Usfo1xNt/CffE5lyKMn1upzWqBhvx7ptQsQflrn9DSc0467aaprF7924++eQTQqEQ06dPZ8aMGX1eGscf0lld2cqkjBgyYkZ22R1b61oQ2oAmQk3LMJGVa6Jqv5+MLDNxCWe6mlqaQpRudCN0uHhBNCnpfT82NXGKlY/ecbJhjZOii8K9k+HUy3Y7T4jW4QCKCqPHmsnNt0Qy+ncHX9xMNHMKcXX/Q8LRlXSk3UYgurDHbUnLsDJlpo0dWzzs3uZhysWdj0kafbVEOctwJyzqMmfmcOSs4vX5CchOp5M33niDDz74gDlz5nDTTTf1a+OGOorZAuOKUcYVwxdvRbS2ILZ8hNj0QbjQ4qvPo0ydjTLnUhhfjKIOfqisOFyF+PtLYWGdc/ZQ2SNHjrBu3TocDge5ubksWLAgkhWlr/n7AQeN7hCPXZkLhM65/XBFDTqwtm/FGztjwC8kE6daaawPsWubh3mX2U+LZqut9rN7uxdbtMrM+dHY+ymkPTrGwOzFdj7d7mXHZg81lQYmTbUSnzi05kJ9njNEq8DC2PGWXvceg9YxOLIfIK7uz8TV/RFX8tV44+b2uPhjZq4Zt0unfI+P6Bg/hRM/544VOjFN/0QzxIRrto0guvWL8Xg8vPXWW7z77rtMmzaNn//857KWVycoCUkoX7gRcdUN4R7Z5g8RW9cjPlkHickosy4ZVLei8PvQf7cMYhNQvnp/l3e8TqeTDRs2UFVVRWxsLNdeey1jxozptzvkFk+Q1/a0MDvbzvTs+AHPejKQRDs+AEXFkzjwc2zMFpXi6Va2b/JQXeFn7PgohC7Yt8tHdYWf5DQj0+fYMJv7152XmGxkweV2amsCHPjUx4b3XeTkmRlfHNWjCt9aSNBQF+T4kSA+r44tWj3tYY1WsdrU8wo5dzs1Kvb5OHY42CeidSq6KYG2rPuIafgrMc3/wuivx5m6pMeTmguKLLhdGuV7fNjsKlm5Yc+Formxtm/B5D9CR+pNCHVkBUGd9VsKBAL861//4p///CdFRUX8+Mc/PqOcu+RMFEUJRyfmjUPc8g1E2dZwb+ykW/GimahfewglZmDHdsRfVkHjcdSHf4IS3XmuuebmZv7617+i6zqzZs1i2rRpGLsxJnY+/LmsCU3AXVN7PgdpOGEINBDl3Iknfh66cXDG9TKyTKRnmijf4yM5NVx3q7EuxJgCM0VTrP0yt6gzFFUhN9/CqGwzFft81FT4OX4kQGFR1FnH2TRN0FQf4nhtgPrjQbQQmC0K9lgVR1OIY7XilDBhQAGrVTkhaAYSk1sIBsOpqk7OsTKawvOqjCYirz1uncp9Po4eDqKqMKbAQn4fidapCNVCR/rtaI4PiG79EEOwGVfy1YTM6d1OL6UoCheV2PC6XdTsOkKm4QgJlGPyHUZBELDm9Sp7y1DnrPO8vvnNb6LrOtdddx35+Z3Xrp80aVK/NW4gOH78+IB9lmhrQXz8PuJff4GYeNRv/QBl7ITzPm535q6IHZvR/9/PUK66EfXGr3W6jaZp/OUvf8HlcnHLLbcQFxd33m07F+XNXn747mFuLErkzqmpAzIPZ6D4vC2xdf+D2VNJy+gfnDNzfH/i8+p8tNpJMCRQgEnTrIwe2/Vd+UCcE1eHxt4yL411IaLt4YrMqRlGFEVB1wXNDSGO1wapOxYgFASTWSEjy8SoHBNJKcaI6Oq6wOfR8bjPfHjdOj5v93OhqgYYnd8/otUZFuduYhtfQxFBBAqaKYWQJYOQZRRBSwYhSwbC8FlUc3JyMs1NDZh8tZjd+zG79mMKhc+T35hOKKYIf/QEQpZRfRoaPyzmeZ0clH/vvfc6fV9RlDPmgEm6RolPQrn2VkTxDPTnfo7+y/+DcsOdKJcv6ddBa9HSiP6nZyF3LMqXbu9yu23bttHU1MQ111wzIMKlC8HvSxtIiDJw06Skc+8wjDH6jhLl3oMr8dJBFS6AKKtKcYmVA7t9XDTDSnLa4E/At8cauHiBnYa6IHt3etm6wU1KuhGrTaXuaJBgQGA0hSs1j8oxk5Jm7LSXqKoKNrsBm73zMbukpCQa6psJhcJ180InH6HwczAYniqgqJAzxtwjN+b54o+ZTIt1DEZfLSb/cYyBOky+w0S5dkW20QyxJwQtA6XNT7JjF6ruQWAgYM2j2TqLdduyCarxzLv03CH0w5mzitepxSMvRI62+/njziauLoxnWi+r+XaGkpuP+thy9D89i/jrC4iKvahf/y5KdN/PFROahv67X4Kuh3t6xs4vVI2NjZSWljJu3Lgue9l9zfpDHVS0+HhoVjo20+AHs/Qn0Y730FUb3vh5g90UADJzzGTmDL2ozrQMEylpRmoq/VTs9eFohvRRJwQr3XjOOWrnQlGUiMuwm/VVBxTdGEPAPpGAfWJknaK5MfrrMZ4UNH8dZk8lGKIIRBfijy4iYCtAqOFgjaKLQ2z5yEXpiRD6kTghHM4jMe9IRgjB+wfb+X1pA35NUNniZcW1edgtfXeBVWzRqPctRXzwD8Rrf0T/yXdR730EZUzvc9x1hnjrlXC2+G9+v8uw+FAoxHvvvYfVamXhwp4l5u0tvpDOn3c2MTYxisV5/d/LG0xM3hosnkqcSV+IXGAkXaOqCvnjosKuTBEu83MhIwzRBG35BG2n3FSKEMnJqXS0nFnCJynFGAmh31XqYcrM3qf1GspI8focLr/Giq31bKp1MjndxpfGJ/LUuqO8sLORB2edfU5UT1EUBeWy6xB549Cf+wX6zx9BueVulMXX9MmPTezfhVj9V5R5l6POXNDldp988gkOh4Prrruu0+q5/cHf9rbQ4g3xg3mjRnYCXiGIbnkPzRCLN254Fv0bLM63lzWiUYxnHcc6NYReC3mIsp74LhWFyLeqEF4+scJoDAe+xMYZsNnPL0pzIMl0v0QAABtoSURBVLjgxev111/HYrFgsVhwhlS21ftxaSo35SQwK9dIlN7KlwrsvFHRzsLRsUxO7/vxCiVvHOrjz6D/4RnEK89DxV648zvnNcFZdLSFs8WnZ6Hc+s0ut6urq2PHjh0UFRUxevToXn9eT2h0BXlzv4P5uTFMSB2YqrODhdlTcSKL9xJQB39sSXLhUFBkIeDXOXooiDgZgnlqMObnlk8tHqKqYI9ViYkzhB+xBmLjwtMPhgoXvHhpmkZraxttbi+BgJ90Ec5P1rofVu8Pb6OqKhebE3l5zTGyrp1BYnzfhzkr0TGoD/wI8d4biDdeRBypDrsRc3qeh0zoOvoLz4Dbhfrd/+gyiXAoFGLNmjXY7fYus6n0B3/cGS6e+bURHhqP0Il2vIdmTMQX23fJiyWS7hAuBmpj0rTubR8KCVwdGs52HWeHhrNdo6UpxLHDwcg2BiPc82BmP7W4Z1zw4rXwC0v41abj7G/ysnhMLHdPT8EoNPx+P4FAAK/XS21tLfsrqrA79vLSn/eSlpZGXl4eeXl5JCYm9pk/WVFVlKtuRORPQH/+F+g/+z7Kkq+iXH5dj7JziPf/Dnt2oHzl2yhZo7vcbtOmTbS2tnL99ddjsQzMBMa9jR421jq5tTiJlOgR3hNx7MDkP05H6s1DrpquRPJ5jEaF+EQj8Z9L/BIMiIiYOdu1wWlcJ1zw/6jvvl2DLuDhORksHHMycMB02thPTk4Oc+fO5b8/quDgwYPEax1s3ryZzZs3ExcXR35+Pnl5eaSnp/dJhnWloAj18WfRX/wN4rUXELu3ot71bygp585qImoqEG/8GabNQVnYdUXpY8eOUVZWRnFx8YBNPNf0cGh8ks3IDUUjOzQeoaEc/Tshcyq+mOFd805yYWMyKyQmG0nsZjmdgWJotWYQyIw18725o0g/RzJYRVG4e85YHnColNlMPHltEocPH6K6upqysjJ27NiB1WolLy+P/Px8srOzMRh6H52oxMSifvvRcIqpV55H/49/Q7n1HpS5l3XZ0xMeN/rz/wXxSah3fqfL7QKBAO+//z6xsbHMnTu3123sKR9Wt1Pd6ufhORlYjEPHd94fRDnLUHz1uNLvGBG1kySSocYFL14/uyIXYzejauwWA98qSeMXHx/nw2MBlhQXU1xcjN/v5/Dhwxw8eJCKigr27t2L2Wxm9OjR5Ofnk5ub26ss7IqioMy5FDGuOFzx+E//jdi1FfWrD6DExp+2rRAC8eIKcDSh/vDps84Z27hxIx0dHdx44419nh2+KzxBjRd3NTE+2cqCkVTyRAhUzYUh2IQh0Iwx2IQh0ITJdxgRnUsgumfVqSUSSfe44MWru8J1kjk5MczMsvM/u5qZlRVDeowZi8VCYWEhhYWFhEIhjhw5wsGDB6murqaiogKDwUBOTg75+fmMGTMGq7VnsyOVpFTUh38Srh/2xovoTz6IeucDKFNmRbYRH7+PKP04nLEjf3yXx6qtreXTTz9lypQpZGYO3MDrX/e00O7T+L+LUofOnBOhhedgufZg9tYgFBWhWk5/KOFn/cRrFBNqqBVjoDksWMFmVP2z0kBCMRIyJROwFWDOuxE8Q8RWiWSEccGLV09RFIV7Z6TxnX/UsHJrPf9xSfZpF2Oj0ciYMWMYM2YMuq5z/PhxqqurqaqqoqamBkVRyMrKimSy6G6ghKKqKFcsQUycir7qV+grfhp2IX75HkK11YhXn4eiKShX3tDlMfx+P2vWrCEhIYE5c+ac93fRXeqcAd460MolebEUJA1yWgMRwuw5iMW9B4trH6ruQVfMBK15oKgouh9Vc6MEW1F0f/ghAiicnhNPM8ajmZLxxUxDMyWjmZMJmVLQjXERN2GyLRk8IyNPo0Qy1JDi1QuSbSa+NjWF325rYG1NB5d0kSFCVVWysrLIyspi/vz5NDU1UVVVRWVlJWvWrGHt2rWMHj2acePGMXr06G5lb1cyc1H/zy8R/3gVsfpviAO7aYuKgigb6jf+HeUsASMbNmzA7XZz880393um+JN4ghort9ZjVOGOi3pWMbbP0IOYvVVYXJ9ice9H1X3oioVA9AR89kkEbIVnn4MldBQRPCFmATRjbLczfkskkv5BilcvubIgnnWHOvjD9gamjYomPursX6WiKKSmppKamsrs2bNpaGigvLyciopwBKPZbGbs2LGMGzeOzMzMs0YtKkYTyvVfRRSXoP9hOdqx2vB8rtjOC0W2tLSwfft2Dhw4wPTp0wesFltli5dlG4/T4Ary7ZnpJNkGMDReCEy+GqztWzG7D6AKP7oahT96In77RAK2gu6HrytqxH0okUiGBmctiXIhcD4lUY60+/nu24eYkx3D9+b1rkyAruscPXqU8vJyqqqqCAaD2Gy2yBhaWlraWceIhN9HghagzXZmEERdXR2lpaXU1NRgNBopLi5m9uzZ/d7r0oXgzf0OXiprIsFq5HtzR1HUzUwa511+Q+hY3Huxta7H5D+Krlrx2yfhj55EwJY3oPOtRkp5l5FiB0hb+oJhURJFcnay4yzcPCmJV3Y3s3BMLCWZPc8Kr6oqOTk55OTksHjxYmpqaigvL2f37t2UlZVhs9kYPXo0eXl5ZGdnYzKd3ntRLFEYk7PgxI9YCEFtbS2lpaUcO3aMqKgoZs6cyUUXXdTjQJHe4PCG+PWm45TVe5idHcN3Lk7v04TGXaIHsTq3Y23bgDHoIGRKoiNlCb6YaTItk0QyApHidZ7cWJTExsMd/L+t9fz3tWPOq7SH0WikoKCAgoICfD4fhw4doqamhqqqKvbt24fBYCA7OzsSEGK3fyaWuq5TVVXF9u3baWpqIjo6mvnz5zNx4sQBC4cvPebi2c11eEM6D1yczuX5cf0eWXiy1LmtfTOq5iZoyaI9/Qv4o4vk/CqJZAQj3YZ9UEn5QJOXpe8dZkpGNP82O4MEa9/eE2iaFolarKmpoaOjA4DU1FTGjBlDcnIyH3/8Me3t7cTHxzN9+nTGjx9/XpOke0JQ0/lTWRP/ONBKbryF788bRU5c78aHuusKUYMObG0fY+0oRRFB/LbxeBIWEIwaDUMkFH+kuKhGih0gbekLhorbUIpXH4gXwOqKVv6woxGLQeGbJWksGB3bL70OIQQOh4Oamhqqq6upr68HwkJWUlJCXl5en6So6i5H2/38cuNxalr9XDMugbumpmA29P7zu/xDCoEh2IjZXYHFU4HJexBQ8cVMwRM/H82S1nsj+omRcqEcKXaAtKUvGCriJd2GfcQXChMoTrfx7OZ6frWpjo21Tu6fmU58H/fCFEUhKSmJpKQkSkpK8Hg8mEwmjEZjv4mlLyTwBDW8QR1vSMcT1PEGdY53BHj102bMRpUfLcxkZlZMn362ovsweQ5i8VRg9lRgCLUBEDKn4klYiDduVnhelUQiueCQ4tWHZMVa+NnlObx1wMH/7GrmO/+q4VslaczPjem3sR+bzdYnd2C6EFS2+NhyxMnOOjcdPg1vKCxSZ+uaT06z8d05GX0TBi90cNdic2zF7KnA5DuMgh6ek2UbizthMQFbIbop/tzHkkgkIxopXn2MQVW4viiJGZl2fr25jmUbj7Op1s59M9PPORdsoAnpgj0NHrYccfLJURcObwiDAhNTbeQnRmE1qlhNKjbTyWdDePnE+mizSmq06dzCLDRUzYUa6kDVnKghF6rWgSHkPPHaGVmvoGEHguYMPPHzCUSPIxiVA8rAjN9JJJLhwdC6mo4gsuIsPH1FLn/f7+Dl3c08+M8a7p2RxrzcwU1K6wvp7DzuZstRJ6XHXLgCOhaDwrRR0czKjqFklL3PQtvVUDvW9k+wdmxF1dxnvK+r0ejGGDRDDCFzKrohBmtSHg4tHd04gpL3SiSSPkeKVz9iUBVumJhESZadZzfX8V8fH2djrZO7pqZ0r8fSTYQQ+EM6roCGK3DyWcN9yrIroNPoCrKr3k1AE8SYVWZm2ZmVFcOUjOi+K1EiBCbfYaztm7G49gCCQPQE/LZCdGMMuiEG3RiLbrB32puyJiejj5ABdYlE0n9I8RoAcuIs/PyKXN7Y7+CV3c1sqnUSZVTJjDWTdeKRGWcmK9ZCRoyp02g9T1CjwRWk3hmk3hUIL7vCyy2ecgLa2YNGo00qcVFGLs+PY1Z2DBNTbRh6mFH/rOhBoly7sbZvwuQ/jq5G4Y2fiyduFrop8dz7SyQSSQ+Q4jVAGFSFmyYmMSc7hrJ6N0c7AhzrCLCv0cO6Qx2R7VQFUqNNZMaasZnUiEh1+E8vv203q6TZzeQlRLGoIBajFiDarGI3G4ixGCLLdnN4nKpPheoU1FAH1vYtEddgyJx6IrPFVJm8ViKR9BtSvPoKPRh2g50jq8OoWDOjYk+/qPtC4bDzsKD5I8J2rEMnzW5idnYMaXYT6XYT6TFm0qJNp41LDcR8D0XzYgi1oYZaMQTbMITaMASaMHsqCLsGx+OJm0PQmj9kJglLJJKRixQvoZ9YOHHB/fyFVwgU3YMa6sAQaj/x3IGqdaCG2sPLoXZU3YvAgGZKPPFI+twjocuIuSijSl5iFHmJUf1n57kQAlVzYvTXYwg0YAg5IiKlhlpPK7gI4aKLmjEeb9xsPPFzpGtQIpEMKBe8eKUe/FGn6wWfidjnCxEKFHRDNLoxFs2YQCAqF90Yg6IHMAQdGIItmLw1qCJwyj4qujEuImSaMe5E4EIcmjEW3RiHUKMGpNei6H4MgQaM/nqMgfrIs6p7I9voalS44KIxgYB1DJoxHt2UcGJdPMJglz0siUQyaFzw4uVKvAxOiJMiiCyHCS/rBltYeAxhkdGNMeeedyQEiubCGGzBEGyJiJoh2BIuiKi5ztxFMUWETDfGohliEQYbumo98WxDN1gj684YUxIhVM0TrgSsucNzqzT3Z4+QE2OgHkOoNbKLrpjRzGn47ZMImdMJWdIJmdMQhuief5kSiUQyQIwo8SorK+OFF15A13UuvfRSlixZcs59PImX9k9jFAVhjCFojCFoHX3m+yKEGnJGXJFhF2T7CXdkBybvISwhJwramfuePIRiRFdtKEcsJAedqLqv8+1QwoJnsBOMysJrLokIlW6Ml9nXJRLJsGPEiJeu66xatYrHHnuMpKQkHn30UUpKSsjKyhrspnWOYkQ3JaCbOq9+DIAQIILh3pTuRTnt2YOieVF1D1EmFV/IEHZlGuwIQ/SJ5fBDqFYpUBKJZEQxYsSrqqqK9PR00tLC2cXnzJnDtm3bhq54dQdFAcWMrprR6TqfnyU5GZec2CuRSC4gRox4ORwOkpKSIq+TkpKorKw8Y7s1a9awZs0aAJ5++mmSk5MHrI39hdFoHBF2gLRlKDJS7ABpy0hixIhXZ2XJOku/dNlll3HZZZdFXo+E2j6yRtHQZKTYMlLsAGlLXzBU6nmNmIGQpKQkWlpaIq9bWlpISDjLeJJEIpFIhi0jRrzy8/Opq6ujsbGRUCjEpk2bKCkpGexmSSQSiaQfGDFuQ4PBwN13381TTz2FrussXryY7OzswW6WRCKRSPqBESNeANOmTWPatGmD3QyJRCKR9DMjxm0okUgkkgsHKV4SiUQiGXYoorMYc4lEIpFIhjAXdM9r6dKlg92EPmGk2AHSlqHISLEDpC0jiQtavCQSiUQyPJHiJZFIJJJhh+HJJ598crAbMZjk5eUNdhP6hJFiB0hbhiIjxQ6QtowUZMCGRCKRSIYd0m0okUgkkmGHFC+JRCKRDDtGVHqolStXsmPHDuLi4li2bBkAhw4d4ne/+x0+n4+UlBQeeughbDYboVCI3/72t9TU1KDrOgsWLOD6668HoKysjBdeeAFd17n00ktZsmTJsLXlgQceICoqClVVMRgMPP3000Pajueff56DBw+iqip33XUXEydOBKC6upoVK1YQCASYOnUqX//61zsteTMcbHnyySdpbW3FbDYD8NhjjxEXFzegtjQ3N7NixQra2tpQFIXLLruMq6++GpfLxfLly2lqaiIlJYV///d/x263I4TghRdeYOfOnVgsFu6///7IeMtHH33E66+/DsANN9zAokWLhqUdX/7yl8nJyQHC5UYeeeSRAbOjN7YcO3aMlStXUlNTw6233sp1110XOdZQuIb1O2IEsXfvXnHw4EHx8MMPR9YtXbpU7N27VwghxAcffCBeeeUVIYQQGzZsEMuXLxdCCOHz+cT9998vGhoahKZp4jvf+Y6or68XwWBQfP/73xdHjhwZlrYIIcT9998v2tvbB7j1n9ETO1avXi1WrFghhBCira1N/PCHPxSapkX2KS8vF7qui6eeekrs2LFjgC3pO1ueeOIJUVVVNcCtPx2HwyEOHjwohBDC4/GIhx56SBw5ckS8+OKL4o033hBCCPHGG2+IF198UQghxPbt28VTTz0ldF0X5eXl4tFHHxVCCOF0OsUDDzwgnE7nacvDzQ4hhLjjjjsGrN2d0VNb2traRGVlpXj55ZfF3//+98hxhso1rL8ZUW7DoqIi7Hb7aeuOHz/OhAkTAJg8eTKffPJJ5D2fz4emaQQCAYxGIzabjaqqKtLT00lLS8NoNDJnzhy2bds2oHZA39gyFOiJHUePHmXSpEkAxMXFER0dTXV1Na2trXi9XgoLC1EUhQULFgz5c9KVLUOFhISESI/DarWSmZmJw+Fg27ZtLFy4EICFCxdGvufS0lIWLFiAoigUFhbidrtpbW2lrKyMyZMnY7fbsdvtTJ48mbKysmFnx1Cgp7bExcUxduxYDAbDaccZKtew/mZEiVdnZGdnU1paCsCWLVsiBStnzZpFVFQU3/rWt7j//vv54he/iN1ux+FwkJSUFNk/KSkJh8MxKG3/PD215SRPPfUUjzzyCGvWrBmUdn+eruwYPXo0paWlaJpGY2Mj1dXVNDc3D8tz0pUtJ1m5ciU/+MEPeO211zqtAj6QNDY2UlNTw9ixY2lvb48UcU1ISKCjowMAh8NxWsn5k+fg8+cmMTFx0M7N+dgBEAwGWbp0KT/60Y/YunXrwBtwCt2xpSuG8v+lLxlRY16d8e1vf5sXXniB1157jZKSEozGsMlVVVWoqspzzz2H2+3m8ccfp7i4uNMLyUCPrXRFT21JS0vjJz/5CYmJibS3t/Of//mfjBo1iqKioiFpx+LFizl69ChLly4lJSWFcePGYTAYBv3ifjZ6agvAQw89RGJiIl6vl2XLlrF+/frInfVA4/P5WLZsGXfddddZe+s9+V8Mxv+lL+xYuXIliYmJNDQ08OMf/5icnBzS09P7rc1d0V1bumIoX8P6khEvXpmZmTz22GNA2MWzY8cOAD7++GOmTJmC0WgkLi6OcePGcfDgQZKTkyN3zwAtLS2Ru57Bpqe2pKWlkZiYCIRdDDNmzKCqqmrQxasrOwwGA3fddVdku8cee4yMjAyio6PPOCcn7RpsemoLEGm71Wpl3rx5VFVVDYp4hUIhli1bxvz587n44ouB8O+ktbWVhIQEWltbiY2NBcJ376f2HE/+LxITE9m3b19kvcPhGPDfV1/YAZ+dl7S0NIqKijh06NCAi1dPbOmKpKSkIXsN60tGvNuwvb0dAF3Xef3117n88suBcDTRnj17EELg8/morKwkMzOT/Px86urqaGxsJBQKsWnTJkpKSgbThAg9tcXn8+H1eoHw3dzu3bsj0VSDSVd2+P1+fD4fALt378ZgMJCVlUVCQgJWq5WKigqEEKxfv37In5OubNE0LeL2CYVCbN++fVAqfgsh+O1vf0tmZibXXnttZH1JSQnr1q0DYN26dcyYMSOyfv369QghqKiowGazkZCQwJQpU9i1axculwuXy8WuXbuYMmXKsLPD5XIRDAYB6OjooLy8nKysrAGzoze2dMVQvob1JSMqw8YzzzzDvn37cDqdxMXFccstt+Dz+Xj33XcBmDlzJrfffjuKouDz+Vi5ciVHjx5FCMHixYsjoaY7duzgT3/6E7qus3jxYm644YZhaUtDQwO//OUvAdA0jXnz5g24LT2xo7GxkaeeegpVVUlMTOS+++4jJSUFgIMHD7Jy5UoCgQBTpkzh7rvvHnBXSF/Y4vP5eOKJJ9A0DV3XKS4u5mtf+xqqOrD3kQcOHODxxx8nJycn8j3edtttFBQUsHz5cpqbm0lOTubhhx+OhJivWrWKXbt2YTabuf/++8nPzwfgww8/5I033gDCofKLFy8ednaUl5fz/PPPo6oquq5zzTXXcMkllwyYHb2xpa2tjaVLl+L1elEUhaioKH71q19hs9mGxDWsvxlR4iWRSCSSC4MR7zaUSCQSychDipdEIpFIhh1SvCQSiUQy7JDiJZFIJJJhhxQviUQikQw7pHhJJBKJZNghxUsi6WOeffZZVq5cedq6ffv2cffddw+ZJLASyXBHipdE0sd8/etfZ+fOnezevRuAQCDAc889x5133tmnaXp0Xe+zY0kkw40Rn9tQIhloYmJiuPvuu3nuuedYtmwZr7/+OmlpaSxatAhd13nzzTdZu3YtHo+H4uJi7rnnHux2O7qus3z5cg4cOEAwGGT06NHcc889kTRFzz77LDabjYaGBg4cOMDSpUvx+Xy89NJLtLS0YLPZuPbaa09LLSSRjFRkhg2JpJ9YtmwZoVCI8vJyfvGLX5CcnMxbb73Ftm3bItVwV61aRSgU4sEHH0TXddavX8/FF1+MwWDgxRdfpLKyMlL9+tlnn2Xnzp08+uijjB07Fk3TuO+++/jhD3/IuHHjcLlcNDY2RmpCSSQjGek2lEj6iW984xvs2bOHm266KVJDas2aNdx2220kJiZiNpu5+eab2bx5M7quo6oqixYtwmq1Rt6rrq6OJPgFmDFjBoWFhaiqislkwmg0cvToUbxeL3a7XQqX5IJBug0lkn4iPj6e2NjY07KTNzc38/Of//y0pMKKotDR0UFsbCwvv/wyW7Zswel0RrZxOp1ERUUBnFZIEeD73/8+r7/+Oi+99BK5ubl85StfoaCgYACsk0gGFyleEskAkpSUxEMPPdSpwKxdu5adO3fy+OOPk5KSgtPp5J577jlrMc6CggIeeeQRQqEQb7/9Ns888wwrVqzoTxMkkiGBdBtKJAPI5ZdfziuvvBIpiNje3k5paSkAXq8Xo9FITEwMfr+fV1999azHCgQCfPzxx3g8HoxGI1ardcBLq0gkg4XseUkkA8jJSMAf//jHtLW1ERcXx9y5cykpKWHx4sXs3r2be++9l5iYGG6++WbWrFlz1uOtW7eOVatWoes6o0aN4sEHHxwIMySSQUdGG0okEolk2CF9DBKJRCIZdkjxkkgkEsmwQ4qXRCKRSIYdUrwkEolEMuyQ4iWRSCSSYYcUL4lEIpEMO6R4SSQSiWTYIcVLIpFIJMOO/w9OVXYlWgPLEwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"### type your answer here\n",
"df_can['Total'] = df_can[years].sum(axis=1)\n",
"#df_can['Total'] = df_can['Total'].sort_values(axis=0, ascending=False)\n",
"df_can.sort_values('Total', axis=0, ascending=False, inplace=True)\n",
"df_can['Total'].head() \n",
"# India, China, United Kingdom of Great Britain and Northern Ireland, Philippines, Pakistan\n",
"\n",
"df_top5 = df_can.loc[['India', 'China', 'United Kingdom of Great Britain and Northern Ireland', 'Philippines', 'Pakistan'], years]\n",
"df_top5 = df_top5.transpose()\n",
"\n",
"df_top5.plot(kind='line')\n",
"\n",
"plt.title('Comparison of top 5 countries immigrating to Canada')\n",
"plt.xlabel('Years')\n",
"plt.ylabel('Number of immigrants')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Double-click __here__ for the solution.\n",
"<!-- The correct answer is:\n",
"\\\\ # Step 1: Get the dataset. Recall that we created a Total column that calculates the cumulative immigration by country. \\\\ We will sort on this column to get our top 5 countries using pandas sort_values() method.\n",
"\\\\ inplace = True paramemter saves the changes to the original df_can dataframe\n",
"df_can.sort_values(by='Total', ascending=False, axis=0, inplace=True)\n",
"-->\n",
"\n",
"<!--\n",
"# get the top 5 entries\n",
"df_top5 = df_can.head(5)\n",
"-->\n",
"\n",
"<!--\n",
"# transpose the dataframe\n",
"df_top5 = df_top5[years].transpose() \n",
"-->\n",
"\n",
"<!--\n",
"print(df_top5)\n",
"-->\n",
"\n",
"<!--\n",
"\\\\ # Step 2: Plot the dataframe. To make the plot more readeable, we will change the size using the `figsize` parameter.\n",
"df_top5.index = df_top5.index.map(int) # let's change the index values of df_top5 to type integer for plotting\n",
"df_top5.plot(kind='line', figsize=(14, 8)) # pass a tuple (x, y) size\n",
"-->\n",
"\n",
"<!--\n",
"plt.title('Immigration Trend of Top 5 Countries')\n",
"plt.ylabel('Number of Immigrants')\n",
"plt.xlabel('Years')\n",
"-->\n",
"\n",
"<!--\n",
"plt.show()\n",
"-->"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Other Plots\n",
"\n",
"Congratulations! you have learned how to wrangle data with python and create a line plot with Matplotlib. There are many other plotting styles available other than the default Line plot, all of which can be accessed by passing `kind` keyword to `plot()`. The full list of available plots are as follows:\n",
"\n",
"* `bar` for vertical bar plots\n",
"* `barh` for horizontal bar plots\n",
"* `hist` for histogram\n",
"* `box` for boxplot\n",
"* `kde` or `density` for density plots\n",
"* `area` for area plots\n",
"* `pie` for pie plots\n",
"* `scatter` for scatter plots\n",
"* `hexbin` for hexbin plot"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"### Thank you for completing this lab!\n",
"\n",
"This notebook was originally created by [Jay Rajasekharan](https://www.linkedin.com/in/jayrajasekharan) with contributions from [Ehsan M. Kermani](https://www.linkedin.com/in/ehsanmkermani), and [Slobodan Markovic](https://www.linkedin.com/in/slobodan-markovic).\n",
"\n",
"This notebook was recently revised by [Alex Aklson](https://www.linkedin.com/in/aklson/). I hope you found this lab session interesting. Feel free to contact me if you have any questions!"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"This notebook is part of the free course on **Cognitive Class** called *Data Visualization with Python*. If you accessed this notebook outside the course, you can take this free self-paced course online by clicking [here](https://cocl.us/DV0101EN_Lab1)."
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"<hr>\n",
"Copyright &copy; 2018 [Cognitive Class](https://cognitiveclass.ai/?utm_source=bducopyrightlink&utm_medium=dswb&utm_campaign=bdu). This notebook and its source code are released under the terms of the [MIT License](https://bigdatauniversity.com/mit-license/)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"widgets": {
"state": {},
"version": "1.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment