Skip to content

Instantly share code, notes, and snippets.

@wrighter
Last active December 9, 2019 00:06
Show Gist options
  • Save wrighter/140bc6d57d08d5492bf268739cea87b6 to your computer and use it in GitHub Desktop.
Save wrighter/140bc6d57d08d5492bf268739cea87b6 to your computer and use it in GitHub Desktop.
Shows a few simple zipline backtests
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"%load_ext zipline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A simple model that buys 10 shares of Apple each period."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AAPL</th>\n",
" <th>algo_volatility</th>\n",
" <th>algorithm_period_return</th>\n",
" <th>alpha</th>\n",
" <th>benchmark_period_return</th>\n",
" <th>benchmark_volatility</th>\n",
" <th>beta</th>\n",
" <th>capital_used</th>\n",
" <th>ending_cash</th>\n",
" <th>ending_exposure</th>\n",
" <th>...</th>\n",
" <th>short_exposure</th>\n",
" <th>short_value</th>\n",
" <th>shorts_count</th>\n",
" <th>sortino</th>\n",
" <th>starting_cash</th>\n",
" <th>starting_exposure</th>\n",
" <th>starting_value</th>\n",
" <th>trading_days</th>\n",
" <th>transactions</th>\n",
" <th>treasury_period_return</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2015-01-02 21:00:00+00:00</th>\n",
" <td>109.330</td>\n",
" <td>NaN</td>\n",
" <td>0.000000e+00</td>\n",
" <td>NaN</td>\n",
" <td>-0.000535</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.00000</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-05 21:00:00+00:00</th>\n",
" <td>106.250</td>\n",
" <td>6.075516e-07</td>\n",
" <td>-5.412500e-08</td>\n",
" <td>4.165327e-07</td>\n",
" <td>-0.018585</td>\n",
" <td>0.196712</td>\n",
" <td>0.000003</td>\n",
" <td>-1063.04125</td>\n",
" <td>9.998937e+06</td>\n",
" <td>1062.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-11.224972</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>2</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-06 21:00:00+00:00</th>\n",
" <td>106.260</td>\n",
" <td>4.571965e-07</td>\n",
" <td>-9.825500e-08</td>\n",
" <td>-9.648674e-07</td>\n",
" <td>-0.027829</td>\n",
" <td>0.139101</td>\n",
" <td>0.000003</td>\n",
" <td>-1063.14130</td>\n",
" <td>9.997874e+06</td>\n",
" <td>2125.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-12.894935</td>\n",
" <td>9.998937e+06</td>\n",
" <td>1062.50</td>\n",
" <td>1062.50</td>\n",
" <td>3</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-07 21:00:00+00:00</th>\n",
" <td>107.750</td>\n",
" <td>2.348039e-05</td>\n",
" <td>2.826870e-06</td>\n",
" <td>2.719581e-04</td>\n",
" <td>-0.015715</td>\n",
" <td>0.206972</td>\n",
" <td>0.000096</td>\n",
" <td>-1078.04875</td>\n",
" <td>9.996796e+06</td>\n",
" <td>3232.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>321.292799</td>\n",
" <td>9.997874e+06</td>\n",
" <td>2125.20</td>\n",
" <td>2125.20</td>\n",
" <td>4</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-08 21:00:00+00:00</th>\n",
" <td>111.890</td>\n",
" <td>8.521334e-05</td>\n",
" <td>1.518993e-05</td>\n",
" <td>7.345319e-04</td>\n",
" <td>0.001751</td>\n",
" <td>0.236040</td>\n",
" <td>0.000283</td>\n",
" <td>-1119.46945</td>\n",
" <td>9.995676e+06</td>\n",
" <td>4475.60</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1544.168691</td>\n",
" <td>9.996796e+06</td>\n",
" <td>3232.50</td>\n",
" <td>3232.50</td>\n",
" <td>5</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-09 21:00:00+00:00</th>\n",
" <td>112.010</td>\n",
" <td>7.807851e-05</td>\n",
" <td>1.561292e-05</td>\n",
" <td>7.256760e-04</td>\n",
" <td>-0.006276</td>\n",
" <td>0.218111</td>\n",
" <td>0.000285</td>\n",
" <td>-1120.67005</td>\n",
" <td>9.994556e+06</td>\n",
" <td>5600.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1448.880183</td>\n",
" <td>9.995676e+06</td>\n",
" <td>4475.60</td>\n",
" <td>4475.60</td>\n",
" <td>6</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-12 21:00:00+00:00</th>\n",
" <td>109.250</td>\n",
" <td>1.217820e-04</td>\n",
" <td>1.757295e-06</td>\n",
" <td>2.459898e-04</td>\n",
" <td>-0.014061</td>\n",
" <td>0.203321</td>\n",
" <td>0.000372</td>\n",
" <td>-1093.05625</td>\n",
" <td>9.993463e+06</td>\n",
" <td>6555.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.761052</td>\n",
" <td>9.994556e+06</td>\n",
" <td>5600.50</td>\n",
" <td>5600.50</td>\n",
" <td>7</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-13 21:00:00+00:00</th>\n",
" <td>110.220</td>\n",
" <td>1.169165e-04</td>\n",
" <td>7.521185e-06</td>\n",
" <td>4.274790e-04</td>\n",
" <td>-0.016834</td>\n",
" <td>0.188301</td>\n",
" <td>0.000367</td>\n",
" <td>-1102.76110</td>\n",
" <td>9.992360e+06</td>\n",
" <td>7715.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>3.046676</td>\n",
" <td>9.993463e+06</td>\n",
" <td>6555.00</td>\n",
" <td>6555.00</td>\n",
" <td>8</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-14 21:00:00+00:00</th>\n",
" <td>109.800</td>\n",
" <td>1.113310e-04</td>\n",
" <td>4.525285e-06</td>\n",
" <td>3.636721e-04</td>\n",
" <td>-0.022769</td>\n",
" <td>0.177393</td>\n",
" <td>0.000376</td>\n",
" <td>-1098.55900</td>\n",
" <td>9.991261e+06</td>\n",
" <td>8784.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.689259</td>\n",
" <td>9.992360e+06</td>\n",
" <td>7715.40</td>\n",
" <td>7715.40</td>\n",
" <td>9</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-15 21:00:00+00:00</th>\n",
" <td>106.820</td>\n",
" <td>1.612977e-04</td>\n",
" <td>-1.936912e-05</td>\n",
" <td>-8.730670e-05</td>\n",
" <td>-0.031721</td>\n",
" <td>0.170557</td>\n",
" <td>0.000502</td>\n",
" <td>-1068.74410</td>\n",
" <td>9.990193e+06</td>\n",
" <td>9613.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-3.499660</td>\n",
" <td>9.991261e+06</td>\n",
" <td>8784.00</td>\n",
" <td>8784.00</td>\n",
" <td>10</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-16 21:00:00+00:00</th>\n",
" <td>105.990</td>\n",
" <td>1.553397e-04</td>\n",
" <td>-2.689312e-05</td>\n",
" <td>-4.701771e-04</td>\n",
" <td>-0.019023</td>\n",
" <td>0.179591</td>\n",
" <td>0.000343</td>\n",
" <td>-1060.43995</td>\n",
" <td>9.989132e+06</td>\n",
" <td>10599.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-4.471937</td>\n",
" <td>9.990193e+06</td>\n",
" <td>9613.80</td>\n",
" <td>9613.80</td>\n",
" <td>11</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-20 21:00:00+00:00</th>\n",
" <td>108.720</td>\n",
" <td>2.011179e-04</td>\n",
" <td>3.515200e-07</td>\n",
" <td>1.521907e-04</td>\n",
" <td>-0.016931</td>\n",
" <td>0.172126</td>\n",
" <td>0.000420</td>\n",
" <td>-1087.75360</td>\n",
" <td>9.988044e+06</td>\n",
" <td>11959.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.056105</td>\n",
" <td>9.989132e+06</td>\n",
" <td>10599.00</td>\n",
" <td>10599.00</td>\n",
" <td>12</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-21 21:00:00+00:00</th>\n",
" <td>109.550</td>\n",
" <td>1.966305e-04</td>\n",
" <td>9.425745e-06</td>\n",
" <td>2.815507e-04</td>\n",
" <td>-0.011968</td>\n",
" <td>0.167201</td>\n",
" <td>0.000448</td>\n",
" <td>-1096.05775</td>\n",
" <td>9.986948e+06</td>\n",
" <td>13146.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.441909</td>\n",
" <td>9.988044e+06</td>\n",
" <td>11959.20</td>\n",
" <td>11959.20</td>\n",
" <td>13</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-22 21:00:00+00:00</th>\n",
" <td>112.400</td>\n",
" <td>2.361999e-04</td>\n",
" <td>4.356854e-05</td>\n",
" <td>7.407250e-04</td>\n",
" <td>0.002725</td>\n",
" <td>0.173978</td>\n",
" <td>0.000695</td>\n",
" <td>-1124.57200</td>\n",
" <td>9.985824e+06</td>\n",
" <td>14612.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>6.421964</td>\n",
" <td>9.986948e+06</td>\n",
" <td>13146.00</td>\n",
" <td>13146.00</td>\n",
" <td>14</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-23 21:00:00+00:00</th>\n",
" <td>112.980</td>\n",
" <td>2.283116e-04</td>\n",
" <td>5.105106e-05</td>\n",
" <td>8.802561e-04</td>\n",
" <td>-0.002773</td>\n",
" <td>0.169288</td>\n",
" <td>0.000667</td>\n",
" <td>-1130.37490</td>\n",
" <td>9.984693e+06</td>\n",
" <td>15817.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.269664</td>\n",
" <td>9.985824e+06</td>\n",
" <td>14612.00</td>\n",
" <td>14612.00</td>\n",
" <td>15</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-26 21:00:00+00:00</th>\n",
" <td>113.100</td>\n",
" <td>2.206832e-04</td>\n",
" <td>5.267351e-05</td>\n",
" <td>8.262006e-04</td>\n",
" <td>-0.000438</td>\n",
" <td>0.163843</td>\n",
" <td>0.000662</td>\n",
" <td>-1131.57550</td>\n",
" <td>9.983562e+06</td>\n",
" <td>16965.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.262510</td>\n",
" <td>9.984693e+06</td>\n",
" <td>15817.20</td>\n",
" <td>15817.20</td>\n",
" <td>16</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-27 21:00:00+00:00</th>\n",
" <td>109.140</td>\n",
" <td>3.225146e-04</td>\n",
" <td>-6.782065e-06</td>\n",
" <td>9.789820e-05</td>\n",
" <td>-0.013623</td>\n",
" <td>0.166597</td>\n",
" <td>0.001043</td>\n",
" <td>-1091.95570</td>\n",
" <td>9.982470e+06</td>\n",
" <td>17462.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-0.395121</td>\n",
" <td>9.983562e+06</td>\n",
" <td>16965.00</td>\n",
" <td>16965.00</td>\n",
" <td>17</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-28 21:00:00+00:00</th>\n",
" <td>115.310</td>\n",
" <td>4.850563e-04</td>\n",
" <td>9.187928e-05</td>\n",
" <td>1.421373e-03</td>\n",
" <td>-0.026272</td>\n",
" <td>0.167814</td>\n",
" <td>0.000373</td>\n",
" <td>-1153.68655</td>\n",
" <td>9.981316e+06</td>\n",
" <td>19602.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>5.204787</td>\n",
" <td>9.982470e+06</td>\n",
" <td>17462.40</td>\n",
" <td>17462.40</td>\n",
" <td>18</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-29 21:00:00+00:00</th>\n",
" <td>118.900</td>\n",
" <td>5.134132e-04</td>\n",
" <td>1.528488e-04</td>\n",
" <td>2.167635e-03</td>\n",
" <td>-0.017272</td>\n",
" <td>0.167650</td>\n",
" <td>0.000634</td>\n",
" <td>-1189.60450</td>\n",
" <td>9.980126e+06</td>\n",
" <td>21402.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>8.427205</td>\n",
" <td>9.981316e+06</td>\n",
" <td>19602.70</td>\n",
" <td>19602.70</td>\n",
" <td>19</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-30 21:00:00+00:00</th>\n",
" <td>117.160</td>\n",
" <td>5.189400e-04</td>\n",
" <td>1.214693e-04</td>\n",
" <td>1.824668e-03</td>\n",
" <td>-0.029629</td>\n",
" <td>0.168390</td>\n",
" <td>0.000801</td>\n",
" <td>-1172.19580</td>\n",
" <td>9.978954e+06</td>\n",
" <td>22260.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>5.896422</td>\n",
" <td>9.980126e+06</td>\n",
" <td>21402.00</td>\n",
" <td>21402.00</td>\n",
" <td>20</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-02 21:00:00+00:00</th>\n",
" <td>118.630</td>\n",
" <td>5.114028e-04</td>\n",
" <td>1.493389e-04</td>\n",
" <td>1.965643e-03</td>\n",
" <td>-0.017612</td>\n",
" <td>0.170979</td>\n",
" <td>0.000862</td>\n",
" <td>-1186.90315</td>\n",
" <td>9.977767e+06</td>\n",
" <td>23726.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.074385</td>\n",
" <td>9.978954e+06</td>\n",
" <td>22260.40</td>\n",
" <td>22260.40</td>\n",
" <td>21</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-03 21:00:00+00:00</th>\n",
" <td>118.650</td>\n",
" <td>4.996040e-04</td>\n",
" <td>1.496786e-04</td>\n",
" <td>1.734330e-03</td>\n",
" <td>-0.003406</td>\n",
" <td>0.174661</td>\n",
" <td>0.000748</td>\n",
" <td>-1187.10325</td>\n",
" <td>9.976580e+06</td>\n",
" <td>24916.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>6.927452</td>\n",
" <td>9.977767e+06</td>\n",
" <td>23726.00</td>\n",
" <td>23726.00</td>\n",
" <td>22</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-04 21:00:00+00:00</th>\n",
" <td>119.560</td>\n",
" <td>4.897966e-04</td>\n",
" <td>1.687278e-04</td>\n",
" <td>1.897796e-03</td>\n",
" <td>-0.007201</td>\n",
" <td>0.171086</td>\n",
" <td>0.000727</td>\n",
" <td>-1196.20780</td>\n",
" <td>9.975384e+06</td>\n",
" <td>26303.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.637315</td>\n",
" <td>9.976580e+06</td>\n",
" <td>24916.50</td>\n",
" <td>24916.50</td>\n",
" <td>23</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-05 21:00:00+00:00</th>\n",
" <td>119.940</td>\n",
" <td>4.790407e-04</td>\n",
" <td>1.770269e-04</td>\n",
" <td>1.829832e-03</td>\n",
" <td>0.002822</td>\n",
" <td>0.170656</td>\n",
" <td>0.000702</td>\n",
" <td>-1200.00970</td>\n",
" <td>9.974184e+06</td>\n",
" <td>27586.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.844195</td>\n",
" <td>9.975384e+06</td>\n",
" <td>26303.20</td>\n",
" <td>26303.20</td>\n",
" <td>24</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-06 21:00:00+00:00</th>\n",
" <td>118.930</td>\n",
" <td>4.789523e-04</td>\n",
" <td>1.537364e-04</td>\n",
" <td>1.540647e-03</td>\n",
" <td>0.000049</td>\n",
" <td>0.167323</td>\n",
" <td>0.000732</td>\n",
" <td>-1189.90465</td>\n",
" <td>9.972994e+06</td>\n",
" <td>28543.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>6.360016</td>\n",
" <td>9.974184e+06</td>\n",
" <td>27586.20</td>\n",
" <td>27586.20</td>\n",
" <td>25</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-09 21:00:00+00:00</th>\n",
" <td>119.720</td>\n",
" <td>4.709504e-04</td>\n",
" <td>1.726355e-04</td>\n",
" <td>1.695828e-03</td>\n",
" <td>-0.004427</td>\n",
" <td>0.164548</td>\n",
" <td>0.000706</td>\n",
" <td>-1197.80860</td>\n",
" <td>9.971796e+06</td>\n",
" <td>29930.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.003060</td>\n",
" <td>9.972994e+06</td>\n",
" <td>28543.20</td>\n",
" <td>28543.20</td>\n",
" <td>26</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-10 21:00:00+00:00</th>\n",
" <td>122.020</td>\n",
" <td>4.871742e-04</td>\n",
" <td>2.300735e-04</td>\n",
" <td>2.088274e-03</td>\n",
" <td>0.006179</td>\n",
" <td>0.164675</td>\n",
" <td>0.000866</td>\n",
" <td>-1220.82010</td>\n",
" <td>9.970576e+06</td>\n",
" <td>31725.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>9.158250</td>\n",
" <td>9.971796e+06</td>\n",
" <td>29930.00</td>\n",
" <td>29930.00</td>\n",
" <td>27</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-11 21:00:00+00:00</th>\n",
" <td>124.880</td>\n",
" <td>5.171714e-04</td>\n",
" <td>3.043701e-04</td>\n",
" <td>2.678662e-03</td>\n",
" <td>0.006763</td>\n",
" <td>0.161599</td>\n",
" <td>0.000873</td>\n",
" <td>-1249.43440</td>\n",
" <td>9.969326e+06</td>\n",
" <td>33717.60</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>11.896861</td>\n",
" <td>9.970576e+06</td>\n",
" <td>31725.20</td>\n",
" <td>31725.20</td>\n",
" <td>28</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-12 21:00:00+00:00</th>\n",
" <td>126.460</td>\n",
" <td>5.163850e-04</td>\n",
" <td>3.469659e-04</td>\n",
" <td>2.872644e-03</td>\n",
" <td>0.016444</td>\n",
" <td>0.161051</td>\n",
" <td>0.000947</td>\n",
" <td>-1265.24230</td>\n",
" <td>9.968061e+06</td>\n",
" <td>35408.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>13.325585</td>\n",
" <td>9.969326e+06</td>\n",
" <td>33717.60</td>\n",
" <td>33717.60</td>\n",
" <td>29</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-13 21:00:00+00:00</th>\n",
" <td>127.080</td>\n",
" <td>5.076385e-04</td>\n",
" <td>3.642613e-04</td>\n",
" <td>2.889130e-03</td>\n",
" <td>0.020629</td>\n",
" <td>0.158575</td>\n",
" <td>0.000949</td>\n",
" <td>-1271.44540</td>\n",
" <td>9.966789e+06</td>\n",
" <td>36853.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>13.754550</td>\n",
" <td>9.968061e+06</td>\n",
" <td>35408.80</td>\n",
" <td>35408.80</td>\n",
" <td>30</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-16 21:00:00+00:00</th>\n",
" <td>171.100</td>\n",
" <td>1.086985e-02</td>\n",
" <td>3.470210e-02</td>\n",
" <td>8.986113e-03</td>\n",
" <td>0.258247</td>\n",
" <td>0.125812</td>\n",
" <td>0.033698</td>\n",
" <td>-1711.86550</td>\n",
" <td>9.106546e+06</td>\n",
" <td>1240475.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.701983</td>\n",
" <td>9.108258e+06</td>\n",
" <td>1224139.20</td>\n",
" <td>1224139.20</td>\n",
" <td>726</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-17 21:00:00+00:00</th>\n",
" <td>170.150</td>\n",
" <td>1.087047e-02</td>\n",
" <td>3.401326e-02</td>\n",
" <td>8.771735e-03</td>\n",
" <td>0.254549</td>\n",
" <td>0.125740</td>\n",
" <td>0.033741</td>\n",
" <td>-1702.36075</td>\n",
" <td>9.104844e+06</td>\n",
" <td>1235289.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.665168</td>\n",
" <td>9.106546e+06</td>\n",
" <td>1240475.00</td>\n",
" <td>1240475.00</td>\n",
" <td>727</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-20 21:00:00+00:00</th>\n",
" <td>169.980</td>\n",
" <td>1.086343e-02</td>\n",
" <td>3.388976e-02</td>\n",
" <td>8.698381e-03</td>\n",
" <td>0.256690</td>\n",
" <td>0.125656</td>\n",
" <td>0.033735</td>\n",
" <td>-1700.65990</td>\n",
" <td>9.103143e+06</td>\n",
" <td>1235754.60</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.658028</td>\n",
" <td>9.104844e+06</td>\n",
" <td>1235289.00</td>\n",
" <td>1235289.00</td>\n",
" <td>728</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-21 21:00:00+00:00</th>\n",
" <td>173.140</td>\n",
" <td>1.093108e-02</td>\n",
" <td>3.618699e-02</td>\n",
" <td>9.360376e-03</td>\n",
" <td>0.264912</td>\n",
" <td>0.125622</td>\n",
" <td>0.034002</td>\n",
" <td>-1732.27570</td>\n",
" <td>9.101411e+06</td>\n",
" <td>1260459.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.766789</td>\n",
" <td>9.103143e+06</td>\n",
" <td>1235754.60</td>\n",
" <td>1235754.60</td>\n",
" <td>729</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-22 21:00:00+00:00</th>\n",
" <td>174.960</td>\n",
" <td>1.094745e-02</td>\n",
" <td>3.751186e-02</td>\n",
" <td>9.806658e-03</td>\n",
" <td>0.263793</td>\n",
" <td>0.125538</td>\n",
" <td>0.033967</td>\n",
" <td>-1750.48480</td>\n",
" <td>9.099660e+06</td>\n",
" <td>1275458.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.828776</td>\n",
" <td>9.101411e+06</td>\n",
" <td>1260459.20</td>\n",
" <td>1260459.20</td>\n",
" <td>730</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-24 18:00:00+00:00</th>\n",
" <td>174.970</td>\n",
" <td>1.093998e-02</td>\n",
" <td>3.751906e-02</td>\n",
" <td>9.768709e-03</td>\n",
" <td>0.266712</td>\n",
" <td>0.125458</td>\n",
" <td>0.033962</td>\n",
" <td>-1750.58485</td>\n",
" <td>9.097910e+06</td>\n",
" <td>1277281.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.827867</td>\n",
" <td>9.099660e+06</td>\n",
" <td>1275458.40</td>\n",
" <td>1275458.40</td>\n",
" <td>731</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-27 21:00:00+00:00</th>\n",
" <td>174.090</td>\n",
" <td>1.093955e-02</td>\n",
" <td>3.687658e-02</td>\n",
" <td>9.544880e-03</td>\n",
" <td>0.266080</td>\n",
" <td>0.125373</td>\n",
" <td>0.033974</td>\n",
" <td>-1741.78045</td>\n",
" <td>9.096168e+06</td>\n",
" <td>1272597.90</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.793620</td>\n",
" <td>9.097910e+06</td>\n",
" <td>1277281.00</td>\n",
" <td>1277281.00</td>\n",
" <td>732</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-28 21:00:00+00:00</th>\n",
" <td>173.070</td>\n",
" <td>1.094137e-02</td>\n",
" <td>3.613087e-02</td>\n",
" <td>9.184643e-03</td>\n",
" <td>0.278924</td>\n",
" <td>0.125419</td>\n",
" <td>0.033739</td>\n",
" <td>-1731.57535</td>\n",
" <td>9.094436e+06</td>\n",
" <td>1266872.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.753772</td>\n",
" <td>9.096168e+06</td>\n",
" <td>1272597.90</td>\n",
" <td>1272597.90</td>\n",
" <td>733</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-29 21:00:00+00:00</th>\n",
" <td>169.480</td>\n",
" <td>1.103832e-02</td>\n",
" <td>3.350290e-02</td>\n",
" <td>8.295771e-03</td>\n",
" <td>0.278145</td>\n",
" <td>0.125334</td>\n",
" <td>0.033793</td>\n",
" <td>-1695.65740</td>\n",
" <td>9.092741e+06</td>\n",
" <td>1242288.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.592335</td>\n",
" <td>9.094436e+06</td>\n",
" <td>1266872.40</td>\n",
" <td>1266872.40</td>\n",
" <td>734</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-30 21:00:00+00:00</th>\n",
" <td>171.850</td>\n",
" <td>1.107230e-02</td>\n",
" <td>3.524003e-02</td>\n",
" <td>8.739588e-03</td>\n",
" <td>0.289335</td>\n",
" <td>0.125345</td>\n",
" <td>0.034041</td>\n",
" <td>-1719.36925</td>\n",
" <td>9.091021e+06</td>\n",
" <td>1261379.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.671977</td>\n",
" <td>9.092741e+06</td>\n",
" <td>1242288.40</td>\n",
" <td>1242288.40</td>\n",
" <td>735</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-01 21:00:00+00:00</th>\n",
" <td>171.050</td>\n",
" <td>1.107061e-02</td>\n",
" <td>3.465274e-02</td>\n",
" <td>8.553451e-03</td>\n",
" <td>0.286660</td>\n",
" <td>0.125268</td>\n",
" <td>0.034069</td>\n",
" <td>-1711.36525</td>\n",
" <td>9.089310e+06</td>\n",
" <td>1257217.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.641837</td>\n",
" <td>9.091021e+06</td>\n",
" <td>1261379.00</td>\n",
" <td>1261379.00</td>\n",
" <td>736</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-04 21:00:00+00:00</th>\n",
" <td>169.800</td>\n",
" <td>1.107657e-02</td>\n",
" <td>3.373390e-02</td>\n",
" <td>8.246946e-03</td>\n",
" <td>0.285103</td>\n",
" <td>0.125186</td>\n",
" <td>0.034099</td>\n",
" <td>-1698.85900</td>\n",
" <td>9.087611e+06</td>\n",
" <td>1249728.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.593961</td>\n",
" <td>9.089310e+06</td>\n",
" <td>1257217.50</td>\n",
" <td>1257217.50</td>\n",
" <td>737</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-05 21:00:00+00:00</th>\n",
" <td>169.640</td>\n",
" <td>1.106945e-02</td>\n",
" <td>3.361606e-02</td>\n",
" <td>8.238508e-03</td>\n",
" <td>0.280481</td>\n",
" <td>0.125123</td>\n",
" <td>0.034102</td>\n",
" <td>-1697.25820</td>\n",
" <td>9.085914e+06</td>\n",
" <td>1250246.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.587368</td>\n",
" <td>9.087611e+06</td>\n",
" <td>1249728.00</td>\n",
" <td>1249728.00</td>\n",
" <td>738</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-06 21:00:00+00:00</th>\n",
" <td>169.010</td>\n",
" <td>1.106571e-02</td>\n",
" <td>3.315166e-02</td>\n",
" <td>8.070460e-03</td>\n",
" <td>0.280724</td>\n",
" <td>0.125038</td>\n",
" <td>0.034103</td>\n",
" <td>-1690.95505</td>\n",
" <td>9.084223e+06</td>\n",
" <td>1247293.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.563801</td>\n",
" <td>9.085914e+06</td>\n",
" <td>1250246.80</td>\n",
" <td>1250246.80</td>\n",
" <td>739</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-07 21:00:00+00:00</th>\n",
" <td>169.452</td>\n",
" <td>1.105935e-02</td>\n",
" <td>3.347777e-02</td>\n",
" <td>8.129948e-03</td>\n",
" <td>0.284762</td>\n",
" <td>0.124964</td>\n",
" <td>0.034114</td>\n",
" <td>-1695.37726</td>\n",
" <td>9.082527e+06</td>\n",
" <td>1252250.28</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.577785</td>\n",
" <td>9.084223e+06</td>\n",
" <td>1247293.80</td>\n",
" <td>1247293.80</td>\n",
" <td>740</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-08 21:00:00+00:00</th>\n",
" <td>169.370</td>\n",
" <td>1.105204e-02</td>\n",
" <td>3.341709e-02</td>\n",
" <td>8.037963e-03</td>\n",
" <td>0.291768</td>\n",
" <td>0.124915</td>\n",
" <td>0.034083</td>\n",
" <td>-1694.55685</td>\n",
" <td>9.080833e+06</td>\n",
" <td>1253338.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.573906</td>\n",
" <td>9.082527e+06</td>\n",
" <td>1252250.28</td>\n",
" <td>1252250.28</td>\n",
" <td>741</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-11 21:00:00+00:00</th>\n",
" <td>172.670</td>\n",
" <td>1.112691e-02</td>\n",
" <td>3.585900e-02</td>\n",
" <td>8.788783e-03</td>\n",
" <td>0.295660</td>\n",
" <td>0.124840</td>\n",
" <td>0.034211</td>\n",
" <td>-1727.57335</td>\n",
" <td>9.079105e+06</td>\n",
" <td>1279484.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.685294</td>\n",
" <td>9.080833e+06</td>\n",
" <td>1253338.00</td>\n",
" <td>1253338.00</td>\n",
" <td>742</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-12 21:00:00+00:00</th>\n",
" <td>171.700</td>\n",
" <td>1.112780e-02</td>\n",
" <td>3.514014e-02</td>\n",
" <td>8.521161e-03</td>\n",
" <td>0.297947</td>\n",
" <td>0.124758</td>\n",
" <td>0.034188</td>\n",
" <td>-1717.86850</td>\n",
" <td>9.077387e+06</td>\n",
" <td>1274014.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.648512</td>\n",
" <td>9.079105e+06</td>\n",
" <td>1279484.70</td>\n",
" <td>1279484.70</td>\n",
" <td>743</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-13 21:00:00+00:00</th>\n",
" <td>172.270</td>\n",
" <td>1.112230e-02</td>\n",
" <td>3.556300e-02</td>\n",
" <td>8.650913e-03</td>\n",
" <td>0.297801</td>\n",
" <td>0.124675</td>\n",
" <td>0.034184</td>\n",
" <td>-1723.57135</td>\n",
" <td>9.075664e+06</td>\n",
" <td>1279966.10</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.666786</td>\n",
" <td>9.077387e+06</td>\n",
" <td>1274014.00</td>\n",
" <td>1274014.00</td>\n",
" <td>744</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-14 21:00:00+00:00</th>\n",
" <td>172.220</td>\n",
" <td>1.111493e-02</td>\n",
" <td>3.552576e-02</td>\n",
" <td>8.675284e-03</td>\n",
" <td>0.292498</td>\n",
" <td>0.124618</td>\n",
" <td>0.034177</td>\n",
" <td>-1723.07110</td>\n",
" <td>9.073941e+06</td>\n",
" <td>1281316.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.663955</td>\n",
" <td>9.075664e+06</td>\n",
" <td>1279966.10</td>\n",
" <td>1279966.10</td>\n",
" <td>745</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-15 21:00:00+00:00</th>\n",
" <td>173.870</td>\n",
" <td>1.112715e-02</td>\n",
" <td>3.675327e-02</td>\n",
" <td>9.024123e-03</td>\n",
" <td>0.296633</td>\n",
" <td>0.124545</td>\n",
" <td>0.034241</td>\n",
" <td>-1739.57935</td>\n",
" <td>9.072201e+06</td>\n",
" <td>1295331.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.719009</td>\n",
" <td>9.073941e+06</td>\n",
" <td>1281316.80</td>\n",
" <td>1281316.80</td>\n",
" <td>746</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-18 21:00:00+00:00</th>\n",
" <td>176.420</td>\n",
" <td>1.116785e-02</td>\n",
" <td>3.865293e-02</td>\n",
" <td>9.541732e-03</td>\n",
" <td>0.304856</td>\n",
" <td>0.124510</td>\n",
" <td>0.034446</td>\n",
" <td>-1765.09210</td>\n",
" <td>9.070436e+06</td>\n",
" <td>1316093.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.804624</td>\n",
" <td>9.072201e+06</td>\n",
" <td>1295331.50</td>\n",
" <td>1295331.50</td>\n",
" <td>747</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-19 21:00:00+00:00</th>\n",
" <td>174.540</td>\n",
" <td>1.118997e-02</td>\n",
" <td>3.725037e-02</td>\n",
" <td>9.103535e-03</td>\n",
" <td>0.299844</td>\n",
" <td>0.124451</td>\n",
" <td>0.034561</td>\n",
" <td>-1746.28270</td>\n",
" <td>9.068690e+06</td>\n",
" <td>1303813.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.729069</td>\n",
" <td>9.070436e+06</td>\n",
" <td>1316093.20</td>\n",
" <td>1316093.20</td>\n",
" <td>748</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-20 21:00:00+00:00</th>\n",
" <td>174.350</td>\n",
" <td>1.118301e-02</td>\n",
" <td>3.710835e-02</td>\n",
" <td>9.050697e-03</td>\n",
" <td>0.299163</td>\n",
" <td>0.124369</td>\n",
" <td>0.034564</td>\n",
" <td>-1744.38175</td>\n",
" <td>9.066945e+06</td>\n",
" <td>1304138.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.721372</td>\n",
" <td>9.068690e+06</td>\n",
" <td>1303813.80</td>\n",
" <td>1303813.80</td>\n",
" <td>749</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-21 21:00:00+00:00</th>\n",
" <td>175.010</td>\n",
" <td>1.117828e-02</td>\n",
" <td>3.760194e-02</td>\n",
" <td>9.174490e-03</td>\n",
" <td>0.301839</td>\n",
" <td>0.124289</td>\n",
" <td>0.034578</td>\n",
" <td>-1750.98505</td>\n",
" <td>9.065194e+06</td>\n",
" <td>1310824.90</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.742579</td>\n",
" <td>9.066945e+06</td>\n",
" <td>1304138.00</td>\n",
" <td>1304138.00</td>\n",
" <td>750</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-22 21:00:00+00:00</th>\n",
" <td>175.010</td>\n",
" <td>1.117087e-02</td>\n",
" <td>3.760185e-02</td>\n",
" <td>9.165215e-03</td>\n",
" <td>0.301498</td>\n",
" <td>0.124207</td>\n",
" <td>0.034578</td>\n",
" <td>-1750.98505</td>\n",
" <td>9.063443e+06</td>\n",
" <td>1312575.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.741415</td>\n",
" <td>9.065194e+06</td>\n",
" <td>1310824.90</td>\n",
" <td>1310824.90</td>\n",
" <td>751</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-26 21:00:00+00:00</th>\n",
" <td>170.570</td>\n",
" <td>1.132170e-02</td>\n",
" <td>3.427176e-02</td>\n",
" <td>8.071629e-03</td>\n",
" <td>0.299942</td>\n",
" <td>0.124128</td>\n",
" <td>0.034688</td>\n",
" <td>-1706.56285</td>\n",
" <td>9.061737e+06</td>\n",
" <td>1280980.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.538529</td>\n",
" <td>9.063443e+06</td>\n",
" <td>1312575.00</td>\n",
" <td>1312575.00</td>\n",
" <td>752</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-27 21:00:00+00:00</th>\n",
" <td>170.600</td>\n",
" <td>1.131418e-02</td>\n",
" <td>3.429421e-02</td>\n",
" <td>8.062500e-03</td>\n",
" <td>0.300574</td>\n",
" <td>0.124045</td>\n",
" <td>0.034688</td>\n",
" <td>-1706.86300</td>\n",
" <td>9.060030e+06</td>\n",
" <td>1282912.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.538491</td>\n",
" <td>9.061737e+06</td>\n",
" <td>1280980.70</td>\n",
" <td>1280980.70</td>\n",
" <td>753</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-28 21:00:00+00:00</th>\n",
" <td>171.080</td>\n",
" <td>1.130803e-02</td>\n",
" <td>3.465508e-02</td>\n",
" <td>8.144401e-03</td>\n",
" <td>0.303250</td>\n",
" <td>0.123966</td>\n",
" <td>0.034697</td>\n",
" <td>-1711.66540</td>\n",
" <td>9.058318e+06</td>\n",
" <td>1288232.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.553289</td>\n",
" <td>9.060030e+06</td>\n",
" <td>1282912.00</td>\n",
" <td>1282912.00</td>\n",
" <td>754</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-29 21:00:00+00:00</th>\n",
" <td>169.230</td>\n",
" <td>1.132910e-02</td>\n",
" <td>3.326195e-02</td>\n",
" <td>7.713847e-03</td>\n",
" <td>0.298336</td>\n",
" <td>0.123907</td>\n",
" <td>0.034810</td>\n",
" <td>-1693.15615</td>\n",
" <td>9.056625e+06</td>\n",
" <td>1275994.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.483009</td>\n",
" <td>9.058318e+06</td>\n",
" <td>1288232.40</td>\n",
" <td>1288232.40</td>\n",
" <td>755</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>755 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" AAPL algo_volatility algorithm_period_return \\\n",
"2015-01-02 21:00:00+00:00 109.330 NaN 0.000000e+00 \n",
"2015-01-05 21:00:00+00:00 106.250 6.075516e-07 -5.412500e-08 \n",
"2015-01-06 21:00:00+00:00 106.260 4.571965e-07 -9.825500e-08 \n",
"2015-01-07 21:00:00+00:00 107.750 2.348039e-05 2.826870e-06 \n",
"2015-01-08 21:00:00+00:00 111.890 8.521334e-05 1.518993e-05 \n",
"2015-01-09 21:00:00+00:00 112.010 7.807851e-05 1.561292e-05 \n",
"2015-01-12 21:00:00+00:00 109.250 1.217820e-04 1.757295e-06 \n",
"2015-01-13 21:00:00+00:00 110.220 1.169165e-04 7.521185e-06 \n",
"2015-01-14 21:00:00+00:00 109.800 1.113310e-04 4.525285e-06 \n",
"2015-01-15 21:00:00+00:00 106.820 1.612977e-04 -1.936912e-05 \n",
"2015-01-16 21:00:00+00:00 105.990 1.553397e-04 -2.689312e-05 \n",
"2015-01-20 21:00:00+00:00 108.720 2.011179e-04 3.515200e-07 \n",
"2015-01-21 21:00:00+00:00 109.550 1.966305e-04 9.425745e-06 \n",
"2015-01-22 21:00:00+00:00 112.400 2.361999e-04 4.356854e-05 \n",
"2015-01-23 21:00:00+00:00 112.980 2.283116e-04 5.105106e-05 \n",
"2015-01-26 21:00:00+00:00 113.100 2.206832e-04 5.267351e-05 \n",
"2015-01-27 21:00:00+00:00 109.140 3.225146e-04 -6.782065e-06 \n",
"2015-01-28 21:00:00+00:00 115.310 4.850563e-04 9.187928e-05 \n",
"2015-01-29 21:00:00+00:00 118.900 5.134132e-04 1.528488e-04 \n",
"2015-01-30 21:00:00+00:00 117.160 5.189400e-04 1.214693e-04 \n",
"2015-02-02 21:00:00+00:00 118.630 5.114028e-04 1.493389e-04 \n",
"2015-02-03 21:00:00+00:00 118.650 4.996040e-04 1.496786e-04 \n",
"2015-02-04 21:00:00+00:00 119.560 4.897966e-04 1.687278e-04 \n",
"2015-02-05 21:00:00+00:00 119.940 4.790407e-04 1.770269e-04 \n",
"2015-02-06 21:00:00+00:00 118.930 4.789523e-04 1.537364e-04 \n",
"2015-02-09 21:00:00+00:00 119.720 4.709504e-04 1.726355e-04 \n",
"2015-02-10 21:00:00+00:00 122.020 4.871742e-04 2.300735e-04 \n",
"2015-02-11 21:00:00+00:00 124.880 5.171714e-04 3.043701e-04 \n",
"2015-02-12 21:00:00+00:00 126.460 5.163850e-04 3.469659e-04 \n",
"2015-02-13 21:00:00+00:00 127.080 5.076385e-04 3.642613e-04 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 171.100 1.086985e-02 3.470210e-02 \n",
"2017-11-17 21:00:00+00:00 170.150 1.087047e-02 3.401326e-02 \n",
"2017-11-20 21:00:00+00:00 169.980 1.086343e-02 3.388976e-02 \n",
"2017-11-21 21:00:00+00:00 173.140 1.093108e-02 3.618699e-02 \n",
"2017-11-22 21:00:00+00:00 174.960 1.094745e-02 3.751186e-02 \n",
"2017-11-24 18:00:00+00:00 174.970 1.093998e-02 3.751906e-02 \n",
"2017-11-27 21:00:00+00:00 174.090 1.093955e-02 3.687658e-02 \n",
"2017-11-28 21:00:00+00:00 173.070 1.094137e-02 3.613087e-02 \n",
"2017-11-29 21:00:00+00:00 169.480 1.103832e-02 3.350290e-02 \n",
"2017-11-30 21:00:00+00:00 171.850 1.107230e-02 3.524003e-02 \n",
"2017-12-01 21:00:00+00:00 171.050 1.107061e-02 3.465274e-02 \n",
"2017-12-04 21:00:00+00:00 169.800 1.107657e-02 3.373390e-02 \n",
"2017-12-05 21:00:00+00:00 169.640 1.106945e-02 3.361606e-02 \n",
"2017-12-06 21:00:00+00:00 169.010 1.106571e-02 3.315166e-02 \n",
"2017-12-07 21:00:00+00:00 169.452 1.105935e-02 3.347777e-02 \n",
"2017-12-08 21:00:00+00:00 169.370 1.105204e-02 3.341709e-02 \n",
"2017-12-11 21:00:00+00:00 172.670 1.112691e-02 3.585900e-02 \n",
"2017-12-12 21:00:00+00:00 171.700 1.112780e-02 3.514014e-02 \n",
"2017-12-13 21:00:00+00:00 172.270 1.112230e-02 3.556300e-02 \n",
"2017-12-14 21:00:00+00:00 172.220 1.111493e-02 3.552576e-02 \n",
"2017-12-15 21:00:00+00:00 173.870 1.112715e-02 3.675327e-02 \n",
"2017-12-18 21:00:00+00:00 176.420 1.116785e-02 3.865293e-02 \n",
"2017-12-19 21:00:00+00:00 174.540 1.118997e-02 3.725037e-02 \n",
"2017-12-20 21:00:00+00:00 174.350 1.118301e-02 3.710835e-02 \n",
"2017-12-21 21:00:00+00:00 175.010 1.117828e-02 3.760194e-02 \n",
"2017-12-22 21:00:00+00:00 175.010 1.117087e-02 3.760185e-02 \n",
"2017-12-26 21:00:00+00:00 170.570 1.132170e-02 3.427176e-02 \n",
"2017-12-27 21:00:00+00:00 170.600 1.131418e-02 3.429421e-02 \n",
"2017-12-28 21:00:00+00:00 171.080 1.130803e-02 3.465508e-02 \n",
"2017-12-29 21:00:00+00:00 169.230 1.132910e-02 3.326195e-02 \n",
"\n",
" alpha benchmark_period_return \\\n",
"2015-01-02 21:00:00+00:00 NaN -0.000535 \n",
"2015-01-05 21:00:00+00:00 4.165327e-07 -0.018585 \n",
"2015-01-06 21:00:00+00:00 -9.648674e-07 -0.027829 \n",
"2015-01-07 21:00:00+00:00 2.719581e-04 -0.015715 \n",
"2015-01-08 21:00:00+00:00 7.345319e-04 0.001751 \n",
"2015-01-09 21:00:00+00:00 7.256760e-04 -0.006276 \n",
"2015-01-12 21:00:00+00:00 2.459898e-04 -0.014061 \n",
"2015-01-13 21:00:00+00:00 4.274790e-04 -0.016834 \n",
"2015-01-14 21:00:00+00:00 3.636721e-04 -0.022769 \n",
"2015-01-15 21:00:00+00:00 -8.730670e-05 -0.031721 \n",
"2015-01-16 21:00:00+00:00 -4.701771e-04 -0.019023 \n",
"2015-01-20 21:00:00+00:00 1.521907e-04 -0.016931 \n",
"2015-01-21 21:00:00+00:00 2.815507e-04 -0.011968 \n",
"2015-01-22 21:00:00+00:00 7.407250e-04 0.002725 \n",
"2015-01-23 21:00:00+00:00 8.802561e-04 -0.002773 \n",
"2015-01-26 21:00:00+00:00 8.262006e-04 -0.000438 \n",
"2015-01-27 21:00:00+00:00 9.789820e-05 -0.013623 \n",
"2015-01-28 21:00:00+00:00 1.421373e-03 -0.026272 \n",
"2015-01-29 21:00:00+00:00 2.167635e-03 -0.017272 \n",
"2015-01-30 21:00:00+00:00 1.824668e-03 -0.029629 \n",
"2015-02-02 21:00:00+00:00 1.965643e-03 -0.017612 \n",
"2015-02-03 21:00:00+00:00 1.734330e-03 -0.003406 \n",
"2015-02-04 21:00:00+00:00 1.897796e-03 -0.007201 \n",
"2015-02-05 21:00:00+00:00 1.829832e-03 0.002822 \n",
"2015-02-06 21:00:00+00:00 1.540647e-03 0.000049 \n",
"2015-02-09 21:00:00+00:00 1.695828e-03 -0.004427 \n",
"2015-02-10 21:00:00+00:00 2.088274e-03 0.006179 \n",
"2015-02-11 21:00:00+00:00 2.678662e-03 0.006763 \n",
"2015-02-12 21:00:00+00:00 2.872644e-03 0.016444 \n",
"2015-02-13 21:00:00+00:00 2.889130e-03 0.020629 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 8.986113e-03 0.258247 \n",
"2017-11-17 21:00:00+00:00 8.771735e-03 0.254549 \n",
"2017-11-20 21:00:00+00:00 8.698381e-03 0.256690 \n",
"2017-11-21 21:00:00+00:00 9.360376e-03 0.264912 \n",
"2017-11-22 21:00:00+00:00 9.806658e-03 0.263793 \n",
"2017-11-24 18:00:00+00:00 9.768709e-03 0.266712 \n",
"2017-11-27 21:00:00+00:00 9.544880e-03 0.266080 \n",
"2017-11-28 21:00:00+00:00 9.184643e-03 0.278924 \n",
"2017-11-29 21:00:00+00:00 8.295771e-03 0.278145 \n",
"2017-11-30 21:00:00+00:00 8.739588e-03 0.289335 \n",
"2017-12-01 21:00:00+00:00 8.553451e-03 0.286660 \n",
"2017-12-04 21:00:00+00:00 8.246946e-03 0.285103 \n",
"2017-12-05 21:00:00+00:00 8.238508e-03 0.280481 \n",
"2017-12-06 21:00:00+00:00 8.070460e-03 0.280724 \n",
"2017-12-07 21:00:00+00:00 8.129948e-03 0.284762 \n",
"2017-12-08 21:00:00+00:00 8.037963e-03 0.291768 \n",
"2017-12-11 21:00:00+00:00 8.788783e-03 0.295660 \n",
"2017-12-12 21:00:00+00:00 8.521161e-03 0.297947 \n",
"2017-12-13 21:00:00+00:00 8.650913e-03 0.297801 \n",
"2017-12-14 21:00:00+00:00 8.675284e-03 0.292498 \n",
"2017-12-15 21:00:00+00:00 9.024123e-03 0.296633 \n",
"2017-12-18 21:00:00+00:00 9.541732e-03 0.304856 \n",
"2017-12-19 21:00:00+00:00 9.103535e-03 0.299844 \n",
"2017-12-20 21:00:00+00:00 9.050697e-03 0.299163 \n",
"2017-12-21 21:00:00+00:00 9.174490e-03 0.301839 \n",
"2017-12-22 21:00:00+00:00 9.165215e-03 0.301498 \n",
"2017-12-26 21:00:00+00:00 8.071629e-03 0.299942 \n",
"2017-12-27 21:00:00+00:00 8.062500e-03 0.300574 \n",
"2017-12-28 21:00:00+00:00 8.144401e-03 0.303250 \n",
"2017-12-29 21:00:00+00:00 7.713847e-03 0.298336 \n",
"\n",
" benchmark_volatility beta capital_used \\\n",
"2015-01-02 21:00:00+00:00 NaN NaN 0.00000 \n",
"2015-01-05 21:00:00+00:00 0.196712 0.000003 -1063.04125 \n",
"2015-01-06 21:00:00+00:00 0.139101 0.000003 -1063.14130 \n",
"2015-01-07 21:00:00+00:00 0.206972 0.000096 -1078.04875 \n",
"2015-01-08 21:00:00+00:00 0.236040 0.000283 -1119.46945 \n",
"2015-01-09 21:00:00+00:00 0.218111 0.000285 -1120.67005 \n",
"2015-01-12 21:00:00+00:00 0.203321 0.000372 -1093.05625 \n",
"2015-01-13 21:00:00+00:00 0.188301 0.000367 -1102.76110 \n",
"2015-01-14 21:00:00+00:00 0.177393 0.000376 -1098.55900 \n",
"2015-01-15 21:00:00+00:00 0.170557 0.000502 -1068.74410 \n",
"2015-01-16 21:00:00+00:00 0.179591 0.000343 -1060.43995 \n",
"2015-01-20 21:00:00+00:00 0.172126 0.000420 -1087.75360 \n",
"2015-01-21 21:00:00+00:00 0.167201 0.000448 -1096.05775 \n",
"2015-01-22 21:00:00+00:00 0.173978 0.000695 -1124.57200 \n",
"2015-01-23 21:00:00+00:00 0.169288 0.000667 -1130.37490 \n",
"2015-01-26 21:00:00+00:00 0.163843 0.000662 -1131.57550 \n",
"2015-01-27 21:00:00+00:00 0.166597 0.001043 -1091.95570 \n",
"2015-01-28 21:00:00+00:00 0.167814 0.000373 -1153.68655 \n",
"2015-01-29 21:00:00+00:00 0.167650 0.000634 -1189.60450 \n",
"2015-01-30 21:00:00+00:00 0.168390 0.000801 -1172.19580 \n",
"2015-02-02 21:00:00+00:00 0.170979 0.000862 -1186.90315 \n",
"2015-02-03 21:00:00+00:00 0.174661 0.000748 -1187.10325 \n",
"2015-02-04 21:00:00+00:00 0.171086 0.000727 -1196.20780 \n",
"2015-02-05 21:00:00+00:00 0.170656 0.000702 -1200.00970 \n",
"2015-02-06 21:00:00+00:00 0.167323 0.000732 -1189.90465 \n",
"2015-02-09 21:00:00+00:00 0.164548 0.000706 -1197.80860 \n",
"2015-02-10 21:00:00+00:00 0.164675 0.000866 -1220.82010 \n",
"2015-02-11 21:00:00+00:00 0.161599 0.000873 -1249.43440 \n",
"2015-02-12 21:00:00+00:00 0.161051 0.000947 -1265.24230 \n",
"2015-02-13 21:00:00+00:00 0.158575 0.000949 -1271.44540 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 0.125812 0.033698 -1711.86550 \n",
"2017-11-17 21:00:00+00:00 0.125740 0.033741 -1702.36075 \n",
"2017-11-20 21:00:00+00:00 0.125656 0.033735 -1700.65990 \n",
"2017-11-21 21:00:00+00:00 0.125622 0.034002 -1732.27570 \n",
"2017-11-22 21:00:00+00:00 0.125538 0.033967 -1750.48480 \n",
"2017-11-24 18:00:00+00:00 0.125458 0.033962 -1750.58485 \n",
"2017-11-27 21:00:00+00:00 0.125373 0.033974 -1741.78045 \n",
"2017-11-28 21:00:00+00:00 0.125419 0.033739 -1731.57535 \n",
"2017-11-29 21:00:00+00:00 0.125334 0.033793 -1695.65740 \n",
"2017-11-30 21:00:00+00:00 0.125345 0.034041 -1719.36925 \n",
"2017-12-01 21:00:00+00:00 0.125268 0.034069 -1711.36525 \n",
"2017-12-04 21:00:00+00:00 0.125186 0.034099 -1698.85900 \n",
"2017-12-05 21:00:00+00:00 0.125123 0.034102 -1697.25820 \n",
"2017-12-06 21:00:00+00:00 0.125038 0.034103 -1690.95505 \n",
"2017-12-07 21:00:00+00:00 0.124964 0.034114 -1695.37726 \n",
"2017-12-08 21:00:00+00:00 0.124915 0.034083 -1694.55685 \n",
"2017-12-11 21:00:00+00:00 0.124840 0.034211 -1727.57335 \n",
"2017-12-12 21:00:00+00:00 0.124758 0.034188 -1717.86850 \n",
"2017-12-13 21:00:00+00:00 0.124675 0.034184 -1723.57135 \n",
"2017-12-14 21:00:00+00:00 0.124618 0.034177 -1723.07110 \n",
"2017-12-15 21:00:00+00:00 0.124545 0.034241 -1739.57935 \n",
"2017-12-18 21:00:00+00:00 0.124510 0.034446 -1765.09210 \n",
"2017-12-19 21:00:00+00:00 0.124451 0.034561 -1746.28270 \n",
"2017-12-20 21:00:00+00:00 0.124369 0.034564 -1744.38175 \n",
"2017-12-21 21:00:00+00:00 0.124289 0.034578 -1750.98505 \n",
"2017-12-22 21:00:00+00:00 0.124207 0.034578 -1750.98505 \n",
"2017-12-26 21:00:00+00:00 0.124128 0.034688 -1706.56285 \n",
"2017-12-27 21:00:00+00:00 0.124045 0.034688 -1706.86300 \n",
"2017-12-28 21:00:00+00:00 0.123966 0.034697 -1711.66540 \n",
"2017-12-29 21:00:00+00:00 0.123907 0.034810 -1693.15615 \n",
"\n",
" ending_cash ending_exposure \\\n",
"2015-01-02 21:00:00+00:00 1.000000e+07 0.00 \n",
"2015-01-05 21:00:00+00:00 9.998937e+06 1062.50 \n",
"2015-01-06 21:00:00+00:00 9.997874e+06 2125.20 \n",
"2015-01-07 21:00:00+00:00 9.996796e+06 3232.50 \n",
"2015-01-08 21:00:00+00:00 9.995676e+06 4475.60 \n",
"2015-01-09 21:00:00+00:00 9.994556e+06 5600.50 \n",
"2015-01-12 21:00:00+00:00 9.993463e+06 6555.00 \n",
"2015-01-13 21:00:00+00:00 9.992360e+06 7715.40 \n",
"2015-01-14 21:00:00+00:00 9.991261e+06 8784.00 \n",
"2015-01-15 21:00:00+00:00 9.990193e+06 9613.80 \n",
"2015-01-16 21:00:00+00:00 9.989132e+06 10599.00 \n",
"2015-01-20 21:00:00+00:00 9.988044e+06 11959.20 \n",
"2015-01-21 21:00:00+00:00 9.986948e+06 13146.00 \n",
"2015-01-22 21:00:00+00:00 9.985824e+06 14612.00 \n",
"2015-01-23 21:00:00+00:00 9.984693e+06 15817.20 \n",
"2015-01-26 21:00:00+00:00 9.983562e+06 16965.00 \n",
"2015-01-27 21:00:00+00:00 9.982470e+06 17462.40 \n",
"2015-01-28 21:00:00+00:00 9.981316e+06 19602.70 \n",
"2015-01-29 21:00:00+00:00 9.980126e+06 21402.00 \n",
"2015-01-30 21:00:00+00:00 9.978954e+06 22260.40 \n",
"2015-02-02 21:00:00+00:00 9.977767e+06 23726.00 \n",
"2015-02-03 21:00:00+00:00 9.976580e+06 24916.50 \n",
"2015-02-04 21:00:00+00:00 9.975384e+06 26303.20 \n",
"2015-02-05 21:00:00+00:00 9.974184e+06 27586.20 \n",
"2015-02-06 21:00:00+00:00 9.972994e+06 28543.20 \n",
"2015-02-09 21:00:00+00:00 9.971796e+06 29930.00 \n",
"2015-02-10 21:00:00+00:00 9.970576e+06 31725.20 \n",
"2015-02-11 21:00:00+00:00 9.969326e+06 33717.60 \n",
"2015-02-12 21:00:00+00:00 9.968061e+06 35408.80 \n",
"2015-02-13 21:00:00+00:00 9.966789e+06 36853.20 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 9.106546e+06 1240475.00 \n",
"2017-11-17 21:00:00+00:00 9.104844e+06 1235289.00 \n",
"2017-11-20 21:00:00+00:00 9.103143e+06 1235754.60 \n",
"2017-11-21 21:00:00+00:00 9.101411e+06 1260459.20 \n",
"2017-11-22 21:00:00+00:00 9.099660e+06 1275458.40 \n",
"2017-11-24 18:00:00+00:00 9.097910e+06 1277281.00 \n",
"2017-11-27 21:00:00+00:00 9.096168e+06 1272597.90 \n",
"2017-11-28 21:00:00+00:00 9.094436e+06 1266872.40 \n",
"2017-11-29 21:00:00+00:00 9.092741e+06 1242288.40 \n",
"2017-11-30 21:00:00+00:00 9.091021e+06 1261379.00 \n",
"2017-12-01 21:00:00+00:00 9.089310e+06 1257217.50 \n",
"2017-12-04 21:00:00+00:00 9.087611e+06 1249728.00 \n",
"2017-12-05 21:00:00+00:00 9.085914e+06 1250246.80 \n",
"2017-12-06 21:00:00+00:00 9.084223e+06 1247293.80 \n",
"2017-12-07 21:00:00+00:00 9.082527e+06 1252250.28 \n",
"2017-12-08 21:00:00+00:00 9.080833e+06 1253338.00 \n",
"2017-12-11 21:00:00+00:00 9.079105e+06 1279484.70 \n",
"2017-12-12 21:00:00+00:00 9.077387e+06 1274014.00 \n",
"2017-12-13 21:00:00+00:00 9.075664e+06 1279966.10 \n",
"2017-12-14 21:00:00+00:00 9.073941e+06 1281316.80 \n",
"2017-12-15 21:00:00+00:00 9.072201e+06 1295331.50 \n",
"2017-12-18 21:00:00+00:00 9.070436e+06 1316093.20 \n",
"2017-12-19 21:00:00+00:00 9.068690e+06 1303813.80 \n",
"2017-12-20 21:00:00+00:00 9.066945e+06 1304138.00 \n",
"2017-12-21 21:00:00+00:00 9.065194e+06 1310824.90 \n",
"2017-12-22 21:00:00+00:00 9.063443e+06 1312575.00 \n",
"2017-12-26 21:00:00+00:00 9.061737e+06 1280980.70 \n",
"2017-12-27 21:00:00+00:00 9.060030e+06 1282912.00 \n",
"2017-12-28 21:00:00+00:00 9.058318e+06 1288232.40 \n",
"2017-12-29 21:00:00+00:00 9.056625e+06 1275994.20 \n",
"\n",
" ... short_exposure short_value \\\n",
"2015-01-02 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-05 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-06 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-07 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-08 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-09 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-12 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-13 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-14 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-15 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-16 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-20 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-21 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-22 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-23 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-26 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-27 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-28 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-29 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-01-30 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-02 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-03 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-04 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-05 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-06 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-09 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-10 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-11 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-12 21:00:00+00:00 ... 0.0 0.0 \n",
"2015-02-13 21:00:00+00:00 ... 0.0 0.0 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-17 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-20 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-21 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-22 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-24 18:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-27 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-28 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-29 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-30 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-01 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-04 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-05 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-06 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-07 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-08 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-11 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-12 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-13 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-14 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-15 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-18 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-19 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-20 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-21 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-22 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-26 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-27 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-28 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-29 21:00:00+00:00 ... 0.0 0.0 \n",
"\n",
" shorts_count sortino starting_cash \\\n",
"2015-01-02 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-05 21:00:00+00:00 0 -11.224972 1.000000e+07 \n",
"2015-01-06 21:00:00+00:00 0 -12.894935 9.998937e+06 \n",
"2015-01-07 21:00:00+00:00 0 321.292799 9.997874e+06 \n",
"2015-01-08 21:00:00+00:00 0 1544.168691 9.996796e+06 \n",
"2015-01-09 21:00:00+00:00 0 1448.880183 9.995676e+06 \n",
"2015-01-12 21:00:00+00:00 0 0.761052 9.994556e+06 \n",
"2015-01-13 21:00:00+00:00 0 3.046676 9.993463e+06 \n",
"2015-01-14 21:00:00+00:00 0 1.689259 9.992360e+06 \n",
"2015-01-15 21:00:00+00:00 0 -3.499660 9.991261e+06 \n",
"2015-01-16 21:00:00+00:00 0 -4.471937 9.990193e+06 \n",
"2015-01-20 21:00:00+00:00 0 0.056105 9.989132e+06 \n",
"2015-01-21 21:00:00+00:00 0 1.441909 9.988044e+06 \n",
"2015-01-22 21:00:00+00:00 0 6.421964 9.986948e+06 \n",
"2015-01-23 21:00:00+00:00 0 7.269664 9.985824e+06 \n",
"2015-01-26 21:00:00+00:00 0 7.262510 9.984693e+06 \n",
"2015-01-27 21:00:00+00:00 0 -0.395121 9.983562e+06 \n",
"2015-01-28 21:00:00+00:00 0 5.204787 9.982470e+06 \n",
"2015-01-29 21:00:00+00:00 0 8.427205 9.981316e+06 \n",
"2015-01-30 21:00:00+00:00 0 5.896422 9.980126e+06 \n",
"2015-02-02 21:00:00+00:00 0 7.074385 9.978954e+06 \n",
"2015-02-03 21:00:00+00:00 0 6.927452 9.977767e+06 \n",
"2015-02-04 21:00:00+00:00 0 7.637315 9.976580e+06 \n",
"2015-02-05 21:00:00+00:00 0 7.844195 9.975384e+06 \n",
"2015-02-06 21:00:00+00:00 0 6.360016 9.974184e+06 \n",
"2015-02-09 21:00:00+00:00 0 7.003060 9.972994e+06 \n",
"2015-02-10 21:00:00+00:00 0 9.158250 9.971796e+06 \n",
"2015-02-11 21:00:00+00:00 0 11.896861 9.970576e+06 \n",
"2015-02-12 21:00:00+00:00 0 13.325585 9.969326e+06 \n",
"2015-02-13 21:00:00+00:00 0 13.754550 9.968061e+06 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 0 1.701983 9.108258e+06 \n",
"2017-11-17 21:00:00+00:00 0 1.665168 9.106546e+06 \n",
"2017-11-20 21:00:00+00:00 0 1.658028 9.104844e+06 \n",
"2017-11-21 21:00:00+00:00 0 1.766789 9.103143e+06 \n",
"2017-11-22 21:00:00+00:00 0 1.828776 9.101411e+06 \n",
"2017-11-24 18:00:00+00:00 0 1.827867 9.099660e+06 \n",
"2017-11-27 21:00:00+00:00 0 1.793620 9.097910e+06 \n",
"2017-11-28 21:00:00+00:00 0 1.753772 9.096168e+06 \n",
"2017-11-29 21:00:00+00:00 0 1.592335 9.094436e+06 \n",
"2017-11-30 21:00:00+00:00 0 1.671977 9.092741e+06 \n",
"2017-12-01 21:00:00+00:00 0 1.641837 9.091021e+06 \n",
"2017-12-04 21:00:00+00:00 0 1.593961 9.089310e+06 \n",
"2017-12-05 21:00:00+00:00 0 1.587368 9.087611e+06 \n",
"2017-12-06 21:00:00+00:00 0 1.563801 9.085914e+06 \n",
"2017-12-07 21:00:00+00:00 0 1.577785 9.084223e+06 \n",
"2017-12-08 21:00:00+00:00 0 1.573906 9.082527e+06 \n",
"2017-12-11 21:00:00+00:00 0 1.685294 9.080833e+06 \n",
"2017-12-12 21:00:00+00:00 0 1.648512 9.079105e+06 \n",
"2017-12-13 21:00:00+00:00 0 1.666786 9.077387e+06 \n",
"2017-12-14 21:00:00+00:00 0 1.663955 9.075664e+06 \n",
"2017-12-15 21:00:00+00:00 0 1.719009 9.073941e+06 \n",
"2017-12-18 21:00:00+00:00 0 1.804624 9.072201e+06 \n",
"2017-12-19 21:00:00+00:00 0 1.729069 9.070436e+06 \n",
"2017-12-20 21:00:00+00:00 0 1.721372 9.068690e+06 \n",
"2017-12-21 21:00:00+00:00 0 1.742579 9.066945e+06 \n",
"2017-12-22 21:00:00+00:00 0 1.741415 9.065194e+06 \n",
"2017-12-26 21:00:00+00:00 0 1.538529 9.063443e+06 \n",
"2017-12-27 21:00:00+00:00 0 1.538491 9.061737e+06 \n",
"2017-12-28 21:00:00+00:00 0 1.553289 9.060030e+06 \n",
"2017-12-29 21:00:00+00:00 0 1.483009 9.058318e+06 \n",
"\n",
" starting_exposure starting_value trading_days \\\n",
"2015-01-02 21:00:00+00:00 0.00 0.00 1 \n",
"2015-01-05 21:00:00+00:00 0.00 0.00 2 \n",
"2015-01-06 21:00:00+00:00 1062.50 1062.50 3 \n",
"2015-01-07 21:00:00+00:00 2125.20 2125.20 4 \n",
"2015-01-08 21:00:00+00:00 3232.50 3232.50 5 \n",
"2015-01-09 21:00:00+00:00 4475.60 4475.60 6 \n",
"2015-01-12 21:00:00+00:00 5600.50 5600.50 7 \n",
"2015-01-13 21:00:00+00:00 6555.00 6555.00 8 \n",
"2015-01-14 21:00:00+00:00 7715.40 7715.40 9 \n",
"2015-01-15 21:00:00+00:00 8784.00 8784.00 10 \n",
"2015-01-16 21:00:00+00:00 9613.80 9613.80 11 \n",
"2015-01-20 21:00:00+00:00 10599.00 10599.00 12 \n",
"2015-01-21 21:00:00+00:00 11959.20 11959.20 13 \n",
"2015-01-22 21:00:00+00:00 13146.00 13146.00 14 \n",
"2015-01-23 21:00:00+00:00 14612.00 14612.00 15 \n",
"2015-01-26 21:00:00+00:00 15817.20 15817.20 16 \n",
"2015-01-27 21:00:00+00:00 16965.00 16965.00 17 \n",
"2015-01-28 21:00:00+00:00 17462.40 17462.40 18 \n",
"2015-01-29 21:00:00+00:00 19602.70 19602.70 19 \n",
"2015-01-30 21:00:00+00:00 21402.00 21402.00 20 \n",
"2015-02-02 21:00:00+00:00 22260.40 22260.40 21 \n",
"2015-02-03 21:00:00+00:00 23726.00 23726.00 22 \n",
"2015-02-04 21:00:00+00:00 24916.50 24916.50 23 \n",
"2015-02-05 21:00:00+00:00 26303.20 26303.20 24 \n",
"2015-02-06 21:00:00+00:00 27586.20 27586.20 25 \n",
"2015-02-09 21:00:00+00:00 28543.20 28543.20 26 \n",
"2015-02-10 21:00:00+00:00 29930.00 29930.00 27 \n",
"2015-02-11 21:00:00+00:00 31725.20 31725.20 28 \n",
"2015-02-12 21:00:00+00:00 33717.60 33717.60 29 \n",
"2015-02-13 21:00:00+00:00 35408.80 35408.80 30 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 1224139.20 1224139.20 726 \n",
"2017-11-17 21:00:00+00:00 1240475.00 1240475.00 727 \n",
"2017-11-20 21:00:00+00:00 1235289.00 1235289.00 728 \n",
"2017-11-21 21:00:00+00:00 1235754.60 1235754.60 729 \n",
"2017-11-22 21:00:00+00:00 1260459.20 1260459.20 730 \n",
"2017-11-24 18:00:00+00:00 1275458.40 1275458.40 731 \n",
"2017-11-27 21:00:00+00:00 1277281.00 1277281.00 732 \n",
"2017-11-28 21:00:00+00:00 1272597.90 1272597.90 733 \n",
"2017-11-29 21:00:00+00:00 1266872.40 1266872.40 734 \n",
"2017-11-30 21:00:00+00:00 1242288.40 1242288.40 735 \n",
"2017-12-01 21:00:00+00:00 1261379.00 1261379.00 736 \n",
"2017-12-04 21:00:00+00:00 1257217.50 1257217.50 737 \n",
"2017-12-05 21:00:00+00:00 1249728.00 1249728.00 738 \n",
"2017-12-06 21:00:00+00:00 1250246.80 1250246.80 739 \n",
"2017-12-07 21:00:00+00:00 1247293.80 1247293.80 740 \n",
"2017-12-08 21:00:00+00:00 1252250.28 1252250.28 741 \n",
"2017-12-11 21:00:00+00:00 1253338.00 1253338.00 742 \n",
"2017-12-12 21:00:00+00:00 1279484.70 1279484.70 743 \n",
"2017-12-13 21:00:00+00:00 1274014.00 1274014.00 744 \n",
"2017-12-14 21:00:00+00:00 1279966.10 1279966.10 745 \n",
"2017-12-15 21:00:00+00:00 1281316.80 1281316.80 746 \n",
"2017-12-18 21:00:00+00:00 1295331.50 1295331.50 747 \n",
"2017-12-19 21:00:00+00:00 1316093.20 1316093.20 748 \n",
"2017-12-20 21:00:00+00:00 1303813.80 1303813.80 749 \n",
"2017-12-21 21:00:00+00:00 1304138.00 1304138.00 750 \n",
"2017-12-22 21:00:00+00:00 1310824.90 1310824.90 751 \n",
"2017-12-26 21:00:00+00:00 1312575.00 1312575.00 752 \n",
"2017-12-27 21:00:00+00:00 1280980.70 1280980.70 753 \n",
"2017-12-28 21:00:00+00:00 1282912.00 1282912.00 754 \n",
"2017-12-29 21:00:00+00:00 1288232.40 1288232.40 755 \n",
"\n",
" transactions \\\n",
"2015-01-02 21:00:00+00:00 [] \n",
"2015-01-05 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-06 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-07 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-08 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-09 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-12 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-13 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-14 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-15 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-16 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-20 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-21 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-22 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-23 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-26 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-27 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-28 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-29 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-01-30 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-02 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-03 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-04 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-05 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-06 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-09 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-10 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-11 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-12 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2015-02-13 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"... ... \n",
"2017-11-16 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-17 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-20 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-21 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-22 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-24 18:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-27 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-28 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-29 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-30 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-01 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-04 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-05 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-06 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-07 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-08 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-11 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-12 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-13 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-14 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-15 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-18 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-19 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-20 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-21 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-22 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-26 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-27 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-28 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-29 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"\n",
" treasury_period_return \n",
"2015-01-02 21:00:00+00:00 0.0 \n",
"2015-01-05 21:00:00+00:00 0.0 \n",
"2015-01-06 21:00:00+00:00 0.0 \n",
"2015-01-07 21:00:00+00:00 0.0 \n",
"2015-01-08 21:00:00+00:00 0.0 \n",
"2015-01-09 21:00:00+00:00 0.0 \n",
"2015-01-12 21:00:00+00:00 0.0 \n",
"2015-01-13 21:00:00+00:00 0.0 \n",
"2015-01-14 21:00:00+00:00 0.0 \n",
"2015-01-15 21:00:00+00:00 0.0 \n",
"2015-01-16 21:00:00+00:00 0.0 \n",
"2015-01-20 21:00:00+00:00 0.0 \n",
"2015-01-21 21:00:00+00:00 0.0 \n",
"2015-01-22 21:00:00+00:00 0.0 \n",
"2015-01-23 21:00:00+00:00 0.0 \n",
"2015-01-26 21:00:00+00:00 0.0 \n",
"2015-01-27 21:00:00+00:00 0.0 \n",
"2015-01-28 21:00:00+00:00 0.0 \n",
"2015-01-29 21:00:00+00:00 0.0 \n",
"2015-01-30 21:00:00+00:00 0.0 \n",
"2015-02-02 21:00:00+00:00 0.0 \n",
"2015-02-03 21:00:00+00:00 0.0 \n",
"2015-02-04 21:00:00+00:00 0.0 \n",
"2015-02-05 21:00:00+00:00 0.0 \n",
"2015-02-06 21:00:00+00:00 0.0 \n",
"2015-02-09 21:00:00+00:00 0.0 \n",
"2015-02-10 21:00:00+00:00 0.0 \n",
"2015-02-11 21:00:00+00:00 0.0 \n",
"2015-02-12 21:00:00+00:00 0.0 \n",
"2015-02-13 21:00:00+00:00 0.0 \n",
"... ... \n",
"2017-11-16 21:00:00+00:00 0.0 \n",
"2017-11-17 21:00:00+00:00 0.0 \n",
"2017-11-20 21:00:00+00:00 0.0 \n",
"2017-11-21 21:00:00+00:00 0.0 \n",
"2017-11-22 21:00:00+00:00 0.0 \n",
"2017-11-24 18:00:00+00:00 0.0 \n",
"2017-11-27 21:00:00+00:00 0.0 \n",
"2017-11-28 21:00:00+00:00 0.0 \n",
"2017-11-29 21:00:00+00:00 0.0 \n",
"2017-11-30 21:00:00+00:00 0.0 \n",
"2017-12-01 21:00:00+00:00 0.0 \n",
"2017-12-04 21:00:00+00:00 0.0 \n",
"2017-12-05 21:00:00+00:00 0.0 \n",
"2017-12-06 21:00:00+00:00 0.0 \n",
"2017-12-07 21:00:00+00:00 0.0 \n",
"2017-12-08 21:00:00+00:00 0.0 \n",
"2017-12-11 21:00:00+00:00 0.0 \n",
"2017-12-12 21:00:00+00:00 0.0 \n",
"2017-12-13 21:00:00+00:00 0.0 \n",
"2017-12-14 21:00:00+00:00 0.0 \n",
"2017-12-15 21:00:00+00:00 0.0 \n",
"2017-12-18 21:00:00+00:00 0.0 \n",
"2017-12-19 21:00:00+00:00 0.0 \n",
"2017-12-20 21:00:00+00:00 0.0 \n",
"2017-12-21 21:00:00+00:00 0.0 \n",
"2017-12-22 21:00:00+00:00 0.0 \n",
"2017-12-26 21:00:00+00:00 0.0 \n",
"2017-12-27 21:00:00+00:00 0.0 \n",
"2017-12-28 21:00:00+00:00 0.0 \n",
"2017-12-29 21:00:00+00:00 0.0 \n",
"\n",
"[755 rows x 38 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%zipline --start 2015-1-1 --end 2018-1-1\n",
"from zipline.api import order, record, symbol\n",
"def initialize(context):\n",
" pass\n",
"\n",
"def handle_data(context, data):\n",
" order(symbol('AAPL'), 10)\n",
" record(AAPL=data.current(symbol('AAPL'), 'price'))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# the %zipline magic returns a dataframe of results\n",
"perf = _"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Text(0, 0.5, 'AAPL Stock Price')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%matplotlib notebook\n",
"\n",
"ax1 = plt.subplot(211)\n",
"perf.portfolio_value.plot(ax=ax1)\n",
"ax1.set_ylabel('Portfolio Value')\n",
"ax2 = plt.subplot(212, sharex=ax1)\n",
"perf.AAPL.plot(ax=ax2)\n",
"ax2.set_ylabel('AAPL Stock Price')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see what happens to the data if we go back far enough to see the 2014 7-for-1 split of AAPL. Dealing with splits, dividends, and corporate actions is another area to explore."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AAPL</th>\n",
" <th>algo_volatility</th>\n",
" <th>algorithm_period_return</th>\n",
" <th>alpha</th>\n",
" <th>benchmark_period_return</th>\n",
" <th>benchmark_volatility</th>\n",
" <th>beta</th>\n",
" <th>capital_used</th>\n",
" <th>ending_cash</th>\n",
" <th>ending_exposure</th>\n",
" <th>...</th>\n",
" <th>short_exposure</th>\n",
" <th>short_value</th>\n",
" <th>shorts_count</th>\n",
" <th>sortino</th>\n",
" <th>starting_cash</th>\n",
" <th>starting_exposure</th>\n",
" <th>starting_value</th>\n",
" <th>trading_days</th>\n",
" <th>transactions</th>\n",
" <th>treasury_period_return</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2014-01-02 21:00:00+00:00</th>\n",
" <td>553.130</td>\n",
" <td>NaN</td>\n",
" <td>0.000000e+00</td>\n",
" <td>NaN</td>\n",
" <td>-0.000678</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-03 21:00:00+00:00</th>\n",
" <td>540.980</td>\n",
" <td>0.000003</td>\n",
" <td>-2.714900e-07</td>\n",
" <td>NaN</td>\n",
" <td>-0.001355</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5412.514900</td>\n",
" <td>9.994587e+06</td>\n",
" <td>5409.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-11.224972</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>2</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-06 21:00:00+00:00</th>\n",
" <td>543.930</td>\n",
" <td>0.000026</td>\n",
" <td>2.405545e-06</td>\n",
" <td>NaN</td>\n",
" <td>-0.002031</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5442.029650</td>\n",
" <td>9.989145e+06</td>\n",
" <td>10878.60</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>81.208114</td>\n",
" <td>9.994587e+06</td>\n",
" <td>5409.80</td>\n",
" <td>5409.80</td>\n",
" <td>3</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-07 21:00:00+00:00</th>\n",
" <td>540.037</td>\n",
" <td>0.000073</td>\n",
" <td>-5.651473e-06</td>\n",
" <td>NaN</td>\n",
" <td>-0.002708</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5403.080185</td>\n",
" <td>9.983742e+06</td>\n",
" <td>16201.11</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-5.564302</td>\n",
" <td>9.989145e+06</td>\n",
" <td>10878.60</td>\n",
" <td>10878.60</td>\n",
" <td>4</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-08 21:00:00+00:00</th>\n",
" <td>543.460</td>\n",
" <td>0.000103</td>\n",
" <td>4.344797e-06</td>\n",
" <td>NaN</td>\n",
" <td>-0.003383</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5437.327300</td>\n",
" <td>9.978305e+06</td>\n",
" <td>21738.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>3.826244</td>\n",
" <td>9.983742e+06</td>\n",
" <td>16201.11</td>\n",
" <td>16201.11</td>\n",
" <td>5</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-09 21:00:00+00:00</th>\n",
" <td>536.519</td>\n",
" <td>0.000209</td>\n",
" <td>-2.368846e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.004059</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5367.882595</td>\n",
" <td>9.972937e+06</td>\n",
" <td>26825.95</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-5.262989</td>\n",
" <td>9.978305e+06</td>\n",
" <td>21738.40</td>\n",
" <td>21738.40</td>\n",
" <td>6</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-10 21:00:00+00:00</th>\n",
" <td>532.940</td>\n",
" <td>0.000209</td>\n",
" <td>-4.185093e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.004734</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5332.074700</td>\n",
" <td>9.967605e+06</td>\n",
" <td>31976.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-7.307726</td>\n",
" <td>9.972937e+06</td>\n",
" <td>26825.95</td>\n",
" <td>26825.95</td>\n",
" <td>7</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-13 21:00:00+00:00</th>\n",
" <td>535.730</td>\n",
" <td>0.000231</td>\n",
" <td>-2.537980e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.005408</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5359.988650</td>\n",
" <td>9.962245e+06</td>\n",
" <td>37501.10</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-4.145330</td>\n",
" <td>9.967605e+06</td>\n",
" <td>31976.40</td>\n",
" <td>31976.40</td>\n",
" <td>8</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-14 21:00:00+00:00</th>\n",
" <td>546.390</td>\n",
" <td>0.000464</td>\n",
" <td>4.896601e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.006082</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5466.641950</td>\n",
" <td>9.956778e+06</td>\n",
" <td>43711.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>7.540809</td>\n",
" <td>9.962245e+06</td>\n",
" <td>37501.10</td>\n",
" <td>37501.10</td>\n",
" <td>9</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-15 21:00:00+00:00</th>\n",
" <td>557.360</td>\n",
" <td>0.000600</td>\n",
" <td>1.364463e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.006755</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5576.396800</td>\n",
" <td>9.951202e+06</td>\n",
" <td>50162.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>19.933310</td>\n",
" <td>9.956778e+06</td>\n",
" <td>43711.20</td>\n",
" <td>43711.20</td>\n",
" <td>10</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-16 21:00:00+00:00</th>\n",
" <td>554.250</td>\n",
" <td>0.000604</td>\n",
" <td>1.081782e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.007428</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5545.281250</td>\n",
" <td>9.945657e+06</td>\n",
" <td>55425.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>11.637563</td>\n",
" <td>9.951202e+06</td>\n",
" <td>50162.40</td>\n",
" <td>50162.40</td>\n",
" <td>11</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-17 21:00:00+00:00</th>\n",
" <td>540.670</td>\n",
" <td>0.000882</td>\n",
" <td>-2.789313e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.008101</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5409.413350</td>\n",
" <td>9.940247e+06</td>\n",
" <td>59473.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-0.892414</td>\n",
" <td>9.945657e+06</td>\n",
" <td>55425.00</td>\n",
" <td>55425.00</td>\n",
" <td>12</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-21 21:00:00+00:00</th>\n",
" <td>549.070</td>\n",
" <td>0.000942</td>\n",
" <td>6.423133e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.008773</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5493.455350</td>\n",
" <td>9.934754e+06</td>\n",
" <td>65888.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.976167</td>\n",
" <td>9.940247e+06</td>\n",
" <td>59473.70</td>\n",
" <td>59473.70</td>\n",
" <td>13</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-22 21:00:00+00:00</th>\n",
" <td>551.510</td>\n",
" <td>0.000910</td>\n",
" <td>9.323458e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.009445</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5517.867550</td>\n",
" <td>9.929236e+06</td>\n",
" <td>71696.30</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>2.763837</td>\n",
" <td>9.934754e+06</td>\n",
" <td>65888.40</td>\n",
" <td>65888.40</td>\n",
" <td>14</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-23 21:00:00+00:00</th>\n",
" <td>556.180</td>\n",
" <td>0.000905</td>\n",
" <td>1.536655e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.010116</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5564.590900</td>\n",
" <td>9.923671e+06</td>\n",
" <td>77865.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>4.400301</td>\n",
" <td>9.929236e+06</td>\n",
" <td>71696.30</td>\n",
" <td>71696.30</td>\n",
" <td>15</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-24 21:00:00+00:00</th>\n",
" <td>546.070</td>\n",
" <td>0.001062</td>\n",
" <td>1.185145e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.010787</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5463.440350</td>\n",
" <td>9.918208e+06</td>\n",
" <td>81910.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.234097</td>\n",
" <td>9.923671e+06</td>\n",
" <td>77865.20</td>\n",
" <td>77865.20</td>\n",
" <td>16</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-27 21:00:00+00:00</th>\n",
" <td>550.500</td>\n",
" <td>0.001059</td>\n",
" <td>7.802520e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.011457</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5507.762500</td>\n",
" <td>9.912700e+06</td>\n",
" <td>88080.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.491595</td>\n",
" <td>9.918208e+06</td>\n",
" <td>81910.50</td>\n",
" <td>81910.50</td>\n",
" <td>17</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-28 21:00:00+00:00</th>\n",
" <td>506.500</td>\n",
" <td>0.002844</td>\n",
" <td>-6.262290e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.012127</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5067.542500</td>\n",
" <td>9.907633e+06</td>\n",
" <td>86105.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-3.198560</td>\n",
" <td>9.912700e+06</td>\n",
" <td>88080.00</td>\n",
" <td>88080.00</td>\n",
" <td>18</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-29 21:00:00+00:00</th>\n",
" <td>500.750</td>\n",
" <td>0.002773</td>\n",
" <td>-7.242304e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.012796</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5010.013750</td>\n",
" <td>9.902623e+06</td>\n",
" <td>90135.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-3.568986</td>\n",
" <td>9.907633e+06</td>\n",
" <td>86105.00</td>\n",
" <td>86105.00</td>\n",
" <td>19</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-30 21:00:00+00:00</th>\n",
" <td>499.782</td>\n",
" <td>0.002700</td>\n",
" <td>-7.419053e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.013465</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5000.328910</td>\n",
" <td>9.897622e+06</td>\n",
" <td>94958.58</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-3.562557</td>\n",
" <td>9.902623e+06</td>\n",
" <td>90135.00</td>\n",
" <td>90135.00</td>\n",
" <td>20</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-01-31 21:00:00+00:00</th>\n",
" <td>500.600</td>\n",
" <td>0.002638</td>\n",
" <td>-7.266146e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.014134</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5008.513000</td>\n",
" <td>9.892614e+06</td>\n",
" <td>100120.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-3.404990</td>\n",
" <td>9.897622e+06</td>\n",
" <td>94958.58</td>\n",
" <td>94958.58</td>\n",
" <td>21</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-03 21:00:00+00:00</th>\n",
" <td>501.530</td>\n",
" <td>0.002581</td>\n",
" <td>-7.082664e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.014802</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5017.817650</td>\n",
" <td>9.887596e+06</td>\n",
" <td>105321.30</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-3.242636</td>\n",
" <td>9.892614e+06</td>\n",
" <td>100120.00</td>\n",
" <td>100120.00</td>\n",
" <td>22</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-04 21:00:00+00:00</th>\n",
" <td>508.790</td>\n",
" <td>0.002595</td>\n",
" <td>-5.560618e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.015469</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5090.453950</td>\n",
" <td>9.882506e+06</td>\n",
" <td>111933.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-2.489323</td>\n",
" <td>9.887596e+06</td>\n",
" <td>105321.30</td>\n",
" <td>105321.30</td>\n",
" <td>23</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-05 21:00:00+00:00</th>\n",
" <td>512.590</td>\n",
" <td>0.002561</td>\n",
" <td>-4.727191e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.016136</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5128.472950</td>\n",
" <td>9.877377e+06</td>\n",
" <td>117895.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-2.071367</td>\n",
" <td>9.882506e+06</td>\n",
" <td>111933.80</td>\n",
" <td>111933.80</td>\n",
" <td>24</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-06 21:00:00+00:00</th>\n",
" <td>512.510</td>\n",
" <td>0.002508</td>\n",
" <td>-4.748163e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.016803</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5127.672550</td>\n",
" <td>9.872249e+06</td>\n",
" <td>123002.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-2.038520</td>\n",
" <td>9.877377e+06</td>\n",
" <td>117895.70</td>\n",
" <td>117895.70</td>\n",
" <td>25</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-07 21:00:00+00:00</th>\n",
" <td>519.679</td>\n",
" <td>0.002528</td>\n",
" <td>-3.030212e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.017469</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5199.398395</td>\n",
" <td>9.867050e+06</td>\n",
" <td>129919.75</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-1.275056</td>\n",
" <td>9.872249e+06</td>\n",
" <td>123002.40</td>\n",
" <td>123002.40</td>\n",
" <td>26</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-10 21:00:00+00:00</th>\n",
" <td>528.990</td>\n",
" <td>0.002589</td>\n",
" <td>-7.051166e-05</td>\n",
" <td>NaN</td>\n",
" <td>-0.018135</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5292.554950</td>\n",
" <td>9.861757e+06</td>\n",
" <td>137537.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>-0.289997</td>\n",
" <td>9.867050e+06</td>\n",
" <td>129919.75</td>\n",
" <td>129919.75</td>\n",
" <td>27</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-11 21:00:00+00:00</th>\n",
" <td>535.960</td>\n",
" <td>0.002600</td>\n",
" <td>1.104394e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.018800</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5362.289800</td>\n",
" <td>9.856395e+06</td>\n",
" <td>144709.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.449653</td>\n",
" <td>9.861757e+06</td>\n",
" <td>137537.40</td>\n",
" <td>137537.40</td>\n",
" <td>28</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-12 21:00:00+00:00</th>\n",
" <td>535.920</td>\n",
" <td>0.002553</td>\n",
" <td>1.090904e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.019465</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5361.889600</td>\n",
" <td>9.851033e+06</td>\n",
" <td>150057.60</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.436453</td>\n",
" <td>9.856395e+06</td>\n",
" <td>144709.20</td>\n",
" <td>144709.20</td>\n",
" <td>29</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014-02-13 21:00:00+00:00</th>\n",
" <td>544.430</td>\n",
" <td>0.002599</td>\n",
" <td>3.470972e-04</td>\n",
" <td>NaN</td>\n",
" <td>-0.020130</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-5447.032150</td>\n",
" <td>9.845586e+06</td>\n",
" <td>157884.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.362189</td>\n",
" <td>9.851033e+06</td>\n",
" <td>150057.60</td>\n",
" <td>150057.60</td>\n",
" <td>30</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 5...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-16 21:00:00+00:00</th>\n",
" <td>171.100</td>\n",
" <td>0.029146</td>\n",
" <td>1.140948e-01</td>\n",
" <td>0.025302</td>\n",
" <td>0.068134</td>\n",
" <td>0.110736</td>\n",
" <td>0.141713</td>\n",
" <td>-1711.865500</td>\n",
" <td>8.360573e+06</td>\n",
" <td>2780375.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.441294</td>\n",
" <td>8.362285e+06</td>\n",
" <td>2745859.20</td>\n",
" <td>2745859.20</td>\n",
" <td>978</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-17 21:00:00+00:00</th>\n",
" <td>170.150</td>\n",
" <td>0.029141</td>\n",
" <td>1.125510e-01</td>\n",
" <td>0.025019</td>\n",
" <td>0.064995</td>\n",
" <td>0.110690</td>\n",
" <td>0.141781</td>\n",
" <td>-1702.360750</td>\n",
" <td>8.358871e+06</td>\n",
" <td>2766639.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.421445</td>\n",
" <td>8.360573e+06</td>\n",
" <td>2780375.00</td>\n",
" <td>2780375.00</td>\n",
" <td>979</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-20 21:00:00+00:00</th>\n",
" <td>169.980</td>\n",
" <td>0.029127</td>\n",
" <td>1.122745e-01</td>\n",
" <td>0.024864</td>\n",
" <td>0.066813</td>\n",
" <td>0.110637</td>\n",
" <td>0.141761</td>\n",
" <td>-1700.659900</td>\n",
" <td>8.357170e+06</td>\n",
" <td>2765574.60</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.417430</td>\n",
" <td>8.358871e+06</td>\n",
" <td>2766639.00</td>\n",
" <td>2766639.00</td>\n",
" <td>980</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-21 21:00:00+00:00</th>\n",
" <td>173.140</td>\n",
" <td>0.029202</td>\n",
" <td>1.174157e-01</td>\n",
" <td>0.025799</td>\n",
" <td>0.073793</td>\n",
" <td>0.110628</td>\n",
" <td>0.142248</td>\n",
" <td>-1732.275700</td>\n",
" <td>8.355438e+06</td>\n",
" <td>2818719.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.477307</td>\n",
" <td>8.357170e+06</td>\n",
" <td>2765574.60</td>\n",
" <td>2765574.60</td>\n",
" <td>981</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-22 21:00:00+00:00</th>\n",
" <td>174.960</td>\n",
" <td>0.029215</td>\n",
" <td>1.203786e-01</td>\n",
" <td>0.026505</td>\n",
" <td>0.072843</td>\n",
" <td>0.110573</td>\n",
" <td>0.142193</td>\n",
" <td>-1750.484800</td>\n",
" <td>8.353687e+06</td>\n",
" <td>2850098.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.511300</td>\n",
" <td>8.355438e+06</td>\n",
" <td>2818719.20</td>\n",
" <td>2818719.20</td>\n",
" <td>982</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-24 18:00:00+00:00</th>\n",
" <td>174.970</td>\n",
" <td>0.029200</td>\n",
" <td>1.203948e-01</td>\n",
" <td>0.026396</td>\n",
" <td>0.075321</td>\n",
" <td>0.110522</td>\n",
" <td>0.142173</td>\n",
" <td>-1750.584850</td>\n",
" <td>8.351937e+06</td>\n",
" <td>2852011.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.510720</td>\n",
" <td>8.353687e+06</td>\n",
" <td>2850098.40</td>\n",
" <td>2850098.40</td>\n",
" <td>983</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-27 21:00:00+00:00</th>\n",
" <td>174.090</td>\n",
" <td>0.029194</td>\n",
" <td>1.189603e-01</td>\n",
" <td>0.026051</td>\n",
" <td>0.074784</td>\n",
" <td>0.110467</td>\n",
" <td>0.142190</td>\n",
" <td>-1741.780450</td>\n",
" <td>8.350195e+06</td>\n",
" <td>2839407.90</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.492374</td>\n",
" <td>8.351937e+06</td>\n",
" <td>2852011.00</td>\n",
" <td>2852011.00</td>\n",
" <td>984</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-28 21:00:00+00:00</th>\n",
" <td>173.070</td>\n",
" <td>0.029191</td>\n",
" <td>1.172966e-01</td>\n",
" <td>0.025273</td>\n",
" <td>0.085687</td>\n",
" <td>0.110527</td>\n",
" <td>0.141552</td>\n",
" <td>-1731.575350</td>\n",
" <td>8.348463e+06</td>\n",
" <td>2824502.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.471087</td>\n",
" <td>8.350195e+06</td>\n",
" <td>2839407.90</td>\n",
" <td>2839407.90</td>\n",
" <td>985</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-29 21:00:00+00:00</th>\n",
" <td>169.480</td>\n",
" <td>0.029301</td>\n",
" <td>1.114376e-01</td>\n",
" <td>0.023894</td>\n",
" <td>0.085027</td>\n",
" <td>0.110472</td>\n",
" <td>0.141631</td>\n",
" <td>-1695.657400</td>\n",
" <td>8.346768e+06</td>\n",
" <td>2767608.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.389166</td>\n",
" <td>8.348463e+06</td>\n",
" <td>2824502.40</td>\n",
" <td>2824502.40</td>\n",
" <td>986</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-30 21:00:00+00:00</th>\n",
" <td>171.850</td>\n",
" <td>0.029336</td>\n",
" <td>1.153077e-01</td>\n",
" <td>0.024445</td>\n",
" <td>0.094526</td>\n",
" <td>0.110502</td>\n",
" <td>0.142019</td>\n",
" <td>-1719.369250</td>\n",
" <td>8.345048e+06</td>\n",
" <td>2808029.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.433504</td>\n",
" <td>8.346768e+06</td>\n",
" <td>2767608.40</td>\n",
" <td>2767608.40</td>\n",
" <td>987</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-01 21:00:00+00:00</th>\n",
" <td>171.050</td>\n",
" <td>0.029328</td>\n",
" <td>1.140004e-01</td>\n",
" <td>0.024189</td>\n",
" <td>0.092254</td>\n",
" <td>0.110452</td>\n",
" <td>0.142064</td>\n",
" <td>-1711.365250</td>\n",
" <td>8.343337e+06</td>\n",
" <td>2796667.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.416986</td>\n",
" <td>8.345048e+06</td>\n",
" <td>2808029.00</td>\n",
" <td>2808029.00</td>\n",
" <td>988</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-04 21:00:00+00:00</th>\n",
" <td>169.800</td>\n",
" <td>0.029330</td>\n",
" <td>1.119566e-01</td>\n",
" <td>0.023729</td>\n",
" <td>0.090933</td>\n",
" <td>0.110398</td>\n",
" <td>0.142112</td>\n",
" <td>-1698.859000</td>\n",
" <td>8.341638e+06</td>\n",
" <td>2777928.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.391040</td>\n",
" <td>8.343337e+06</td>\n",
" <td>2796667.50</td>\n",
" <td>2796667.50</td>\n",
" <td>989</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-05 21:00:00+00:00</th>\n",
" <td>169.640</td>\n",
" <td>0.029316</td>\n",
" <td>1.116948e-01</td>\n",
" <td>0.023777</td>\n",
" <td>0.087009</td>\n",
" <td>0.110358</td>\n",
" <td>0.142098</td>\n",
" <td>-1697.258200</td>\n",
" <td>8.339941e+06</td>\n",
" <td>2777006.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.387275</td>\n",
" <td>8.341638e+06</td>\n",
" <td>2777928.00</td>\n",
" <td>2777928.00</td>\n",
" <td>990</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-06 21:00:00+00:00</th>\n",
" <td>169.010</td>\n",
" <td>0.029305</td>\n",
" <td>1.106634e-01</td>\n",
" <td>0.023504</td>\n",
" <td>0.087216</td>\n",
" <td>0.110302</td>\n",
" <td>0.142096</td>\n",
" <td>-1690.955050</td>\n",
" <td>8.338250e+06</td>\n",
" <td>2768383.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.374231</td>\n",
" <td>8.339941e+06</td>\n",
" <td>2777006.80</td>\n",
" <td>2777006.80</td>\n",
" <td>991</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-07 21:00:00+00:00</th>\n",
" <td>169.452</td>\n",
" <td>0.029292</td>\n",
" <td>1.113873e-01</td>\n",
" <td>0.023533</td>\n",
" <td>0.090644</td>\n",
" <td>0.110257</td>\n",
" <td>0.142104</td>\n",
" <td>-1695.377260</td>\n",
" <td>8.336554e+06</td>\n",
" <td>2777318.28</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.381932</td>\n",
" <td>8.338250e+06</td>\n",
" <td>2768383.80</td>\n",
" <td>2768383.80</td>\n",
" <td>992</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-08 21:00:00+00:00</th>\n",
" <td>169.370</td>\n",
" <td>0.029277</td>\n",
" <td>1.112528e-01</td>\n",
" <td>0.023280</td>\n",
" <td>0.096591</td>\n",
" <td>0.110235</td>\n",
" <td>0.141993</td>\n",
" <td>-1694.556850</td>\n",
" <td>8.334860e+06</td>\n",
" <td>2777668.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.379672</td>\n",
" <td>8.336554e+06</td>\n",
" <td>2777318.28</td>\n",
" <td>2777318.28</td>\n",
" <td>993</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-11 21:00:00+00:00</th>\n",
" <td>172.670</td>\n",
" <td>0.029361</td>\n",
" <td>1.166647e-01</td>\n",
" <td>0.024401</td>\n",
" <td>0.099895</td>\n",
" <td>0.110189</td>\n",
" <td>0.142256</td>\n",
" <td>-1727.573350</td>\n",
" <td>8.333132e+06</td>\n",
" <td>2833514.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.441636</td>\n",
" <td>8.334860e+06</td>\n",
" <td>2777668.00</td>\n",
" <td>2777668.00</td>\n",
" <td>994</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-12 21:00:00+00:00</th>\n",
" <td>171.700</td>\n",
" <td>0.029356</td>\n",
" <td>1.150728e-01</td>\n",
" <td>0.023943</td>\n",
" <td>0.101836</td>\n",
" <td>0.110136</td>\n",
" <td>0.142196</td>\n",
" <td>-1717.868500</td>\n",
" <td>8.331414e+06</td>\n",
" <td>2819314.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.421637</td>\n",
" <td>8.333132e+06</td>\n",
" <td>2833514.70</td>\n",
" <td>2833514.70</td>\n",
" <td>995</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-13 21:00:00+00:00</th>\n",
" <td>172.270</td>\n",
" <td>0.029344</td>\n",
" <td>1.160087e-01</td>\n",
" <td>0.024141</td>\n",
" <td>0.101712</td>\n",
" <td>0.110081</td>\n",
" <td>0.142192</td>\n",
" <td>-1723.571350</td>\n",
" <td>8.329691e+06</td>\n",
" <td>2830396.10</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.431703</td>\n",
" <td>8.331414e+06</td>\n",
" <td>2819314.00</td>\n",
" <td>2819314.00</td>\n",
" <td>996</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-14 21:00:00+00:00</th>\n",
" <td>172.220</td>\n",
" <td>0.029329</td>\n",
" <td>1.159265e-01</td>\n",
" <td>0.024248</td>\n",
" <td>0.097210</td>\n",
" <td>0.110046</td>\n",
" <td>0.142156</td>\n",
" <td>-1723.071100</td>\n",
" <td>8.327968e+06</td>\n",
" <td>2831296.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.430037</td>\n",
" <td>8.329691e+06</td>\n",
" <td>2830396.10</td>\n",
" <td>2830396.10</td>\n",
" <td>997</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-15 21:00:00+00:00</th>\n",
" <td>173.870</td>\n",
" <td>0.029338</td>\n",
" <td>1.186390e-01</td>\n",
" <td>0.024731</td>\n",
" <td>0.100721</td>\n",
" <td>0.110002</td>\n",
" <td>0.142277</td>\n",
" <td>-1739.579350</td>\n",
" <td>8.326228e+06</td>\n",
" <td>2860161.50</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.460510</td>\n",
" <td>8.327968e+06</td>\n",
" <td>2831296.80</td>\n",
" <td>2831296.80</td>\n",
" <td>998</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-18 21:00:00+00:00</th>\n",
" <td>176.420</td>\n",
" <td>0.029380</td>\n",
" <td>1.228336e-01</td>\n",
" <td>0.025431</td>\n",
" <td>0.107701</td>\n",
" <td>0.109991</td>\n",
" <td>0.142633</td>\n",
" <td>-1765.092100</td>\n",
" <td>8.324463e+06</td>\n",
" <td>2903873.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.507871</td>\n",
" <td>8.326228e+06</td>\n",
" <td>2860161.50</td>\n",
" <td>2860161.50</td>\n",
" <td>999</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-19 21:00:00+00:00</th>\n",
" <td>174.540</td>\n",
" <td>0.029400</td>\n",
" <td>1.197391e-01</td>\n",
" <td>0.024829</td>\n",
" <td>0.103447</td>\n",
" <td>0.109954</td>\n",
" <td>0.142824</td>\n",
" <td>-1746.282700</td>\n",
" <td>8.322717e+06</td>\n",
" <td>2874673.80</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.468156</td>\n",
" <td>8.324463e+06</td>\n",
" <td>2903873.20</td>\n",
" <td>2903873.20</td>\n",
" <td>1000</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-20 21:00:00+00:00</th>\n",
" <td>174.350</td>\n",
" <td>0.029386</td>\n",
" <td>1.194260e-01</td>\n",
" <td>0.024751</td>\n",
" <td>0.102869</td>\n",
" <td>0.109899</td>\n",
" <td>0.142828</td>\n",
" <td>-1744.381750</td>\n",
" <td>8.320972e+06</td>\n",
" <td>2873288.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.463813</td>\n",
" <td>8.322717e+06</td>\n",
" <td>2874673.80</td>\n",
" <td>2874673.80</td>\n",
" <td>1001</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-21 21:00:00+00:00</th>\n",
" <td>175.010</td>\n",
" <td>0.029375</td>\n",
" <td>1.205136e-01</td>\n",
" <td>0.024899</td>\n",
" <td>0.105140</td>\n",
" <td>0.109849</td>\n",
" <td>0.142852</td>\n",
" <td>-1750.985050</td>\n",
" <td>8.319222e+06</td>\n",
" <td>2885914.90</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.475493</td>\n",
" <td>8.320972e+06</td>\n",
" <td>2873288.00</td>\n",
" <td>2873288.00</td>\n",
" <td>1002</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-22 21:00:00+00:00</th>\n",
" <td>175.010</td>\n",
" <td>0.029360</td>\n",
" <td>1.205136e-01</td>\n",
" <td>0.024884</td>\n",
" <td>0.104851</td>\n",
" <td>0.109794</td>\n",
" <td>0.142852</td>\n",
" <td>-1750.985050</td>\n",
" <td>8.317471e+06</td>\n",
" <td>2887665.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.474756</td>\n",
" <td>8.319222e+06</td>\n",
" <td>2885914.90</td>\n",
" <td>2885914.90</td>\n",
" <td>1003</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-26 21:00:00+00:00</th>\n",
" <td>170.570</td>\n",
" <td>0.029534</td>\n",
" <td>1.131875e-01</td>\n",
" <td>0.023217</td>\n",
" <td>0.103530</td>\n",
" <td>0.109741</td>\n",
" <td>0.143030</td>\n",
" <td>-1706.562850</td>\n",
" <td>8.315764e+06</td>\n",
" <td>2816110.70</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.371694</td>\n",
" <td>8.317471e+06</td>\n",
" <td>2887665.00</td>\n",
" <td>2887665.00</td>\n",
" <td>1004</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-27 21:00:00+00:00</th>\n",
" <td>170.600</td>\n",
" <td>0.029520</td>\n",
" <td>1.132369e-01</td>\n",
" <td>0.023187</td>\n",
" <td>0.104066</td>\n",
" <td>0.109687</td>\n",
" <td>0.143029</td>\n",
" <td>-1706.863000</td>\n",
" <td>8.314057e+06</td>\n",
" <td>2818312.00</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.371570</td>\n",
" <td>8.315764e+06</td>\n",
" <td>2816110.70</td>\n",
" <td>2816110.70</td>\n",
" <td>1005</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-28 21:00:00+00:00</th>\n",
" <td>171.080</td>\n",
" <td>0.029506</td>\n",
" <td>1.140298e-01</td>\n",
" <td>0.023270</td>\n",
" <td>0.106338</td>\n",
" <td>0.109637</td>\n",
" <td>0.143042</td>\n",
" <td>-1711.665400</td>\n",
" <td>8.312345e+06</td>\n",
" <td>2827952.40</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.379845</td>\n",
" <td>8.314057e+06</td>\n",
" <td>2818312.00</td>\n",
" <td>2818312.00</td>\n",
" <td>1006</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-29 21:00:00+00:00</th>\n",
" <td>169.230</td>\n",
" <td>0.029526</td>\n",
" <td>1.109716e-01</td>\n",
" <td>0.022677</td>\n",
" <td>0.102167</td>\n",
" <td>0.109599</td>\n",
" <td>0.143229</td>\n",
" <td>-1693.156150</td>\n",
" <td>8.310652e+06</td>\n",
" <td>2799064.20</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.341469</td>\n",
" <td>8.312345e+06</td>\n",
" <td>2827952.40</td>\n",
" <td>2827952.40</td>\n",
" <td>1007</td>\n",
" <td>[{'amount': 10, 'commission': None, 'price': 1...</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1007 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" AAPL algo_volatility algorithm_period_return \\\n",
"2014-01-02 21:00:00+00:00 553.130 NaN 0.000000e+00 \n",
"2014-01-03 21:00:00+00:00 540.980 0.000003 -2.714900e-07 \n",
"2014-01-06 21:00:00+00:00 543.930 0.000026 2.405545e-06 \n",
"2014-01-07 21:00:00+00:00 540.037 0.000073 -5.651473e-06 \n",
"2014-01-08 21:00:00+00:00 543.460 0.000103 4.344797e-06 \n",
"2014-01-09 21:00:00+00:00 536.519 0.000209 -2.368846e-05 \n",
"2014-01-10 21:00:00+00:00 532.940 0.000209 -4.185093e-05 \n",
"2014-01-13 21:00:00+00:00 535.730 0.000231 -2.537980e-05 \n",
"2014-01-14 21:00:00+00:00 546.390 0.000464 4.896601e-05 \n",
"2014-01-15 21:00:00+00:00 557.360 0.000600 1.364463e-04 \n",
"2014-01-16 21:00:00+00:00 554.250 0.000604 1.081782e-04 \n",
"2014-01-17 21:00:00+00:00 540.670 0.000882 -2.789313e-05 \n",
"2014-01-21 21:00:00+00:00 549.070 0.000942 6.423133e-05 \n",
"2014-01-22 21:00:00+00:00 551.510 0.000910 9.323458e-05 \n",
"2014-01-23 21:00:00+00:00 556.180 0.000905 1.536655e-04 \n",
"2014-01-24 21:00:00+00:00 546.070 0.001062 1.185145e-05 \n",
"2014-01-27 21:00:00+00:00 550.500 0.001059 7.802520e-05 \n",
"2014-01-28 21:00:00+00:00 506.500 0.002844 -6.262290e-04 \n",
"2014-01-29 21:00:00+00:00 500.750 0.002773 -7.242304e-04 \n",
"2014-01-30 21:00:00+00:00 499.782 0.002700 -7.419053e-04 \n",
"2014-01-31 21:00:00+00:00 500.600 0.002638 -7.266146e-04 \n",
"2014-02-03 21:00:00+00:00 501.530 0.002581 -7.082664e-04 \n",
"2014-02-04 21:00:00+00:00 508.790 0.002595 -5.560618e-04 \n",
"2014-02-05 21:00:00+00:00 512.590 0.002561 -4.727191e-04 \n",
"2014-02-06 21:00:00+00:00 512.510 0.002508 -4.748163e-04 \n",
"2014-02-07 21:00:00+00:00 519.679 0.002528 -3.030212e-04 \n",
"2014-02-10 21:00:00+00:00 528.990 0.002589 -7.051166e-05 \n",
"2014-02-11 21:00:00+00:00 535.960 0.002600 1.104394e-04 \n",
"2014-02-12 21:00:00+00:00 535.920 0.002553 1.090904e-04 \n",
"2014-02-13 21:00:00+00:00 544.430 0.002599 3.470972e-04 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 171.100 0.029146 1.140948e-01 \n",
"2017-11-17 21:00:00+00:00 170.150 0.029141 1.125510e-01 \n",
"2017-11-20 21:00:00+00:00 169.980 0.029127 1.122745e-01 \n",
"2017-11-21 21:00:00+00:00 173.140 0.029202 1.174157e-01 \n",
"2017-11-22 21:00:00+00:00 174.960 0.029215 1.203786e-01 \n",
"2017-11-24 18:00:00+00:00 174.970 0.029200 1.203948e-01 \n",
"2017-11-27 21:00:00+00:00 174.090 0.029194 1.189603e-01 \n",
"2017-11-28 21:00:00+00:00 173.070 0.029191 1.172966e-01 \n",
"2017-11-29 21:00:00+00:00 169.480 0.029301 1.114376e-01 \n",
"2017-11-30 21:00:00+00:00 171.850 0.029336 1.153077e-01 \n",
"2017-12-01 21:00:00+00:00 171.050 0.029328 1.140004e-01 \n",
"2017-12-04 21:00:00+00:00 169.800 0.029330 1.119566e-01 \n",
"2017-12-05 21:00:00+00:00 169.640 0.029316 1.116948e-01 \n",
"2017-12-06 21:00:00+00:00 169.010 0.029305 1.106634e-01 \n",
"2017-12-07 21:00:00+00:00 169.452 0.029292 1.113873e-01 \n",
"2017-12-08 21:00:00+00:00 169.370 0.029277 1.112528e-01 \n",
"2017-12-11 21:00:00+00:00 172.670 0.029361 1.166647e-01 \n",
"2017-12-12 21:00:00+00:00 171.700 0.029356 1.150728e-01 \n",
"2017-12-13 21:00:00+00:00 172.270 0.029344 1.160087e-01 \n",
"2017-12-14 21:00:00+00:00 172.220 0.029329 1.159265e-01 \n",
"2017-12-15 21:00:00+00:00 173.870 0.029338 1.186390e-01 \n",
"2017-12-18 21:00:00+00:00 176.420 0.029380 1.228336e-01 \n",
"2017-12-19 21:00:00+00:00 174.540 0.029400 1.197391e-01 \n",
"2017-12-20 21:00:00+00:00 174.350 0.029386 1.194260e-01 \n",
"2017-12-21 21:00:00+00:00 175.010 0.029375 1.205136e-01 \n",
"2017-12-22 21:00:00+00:00 175.010 0.029360 1.205136e-01 \n",
"2017-12-26 21:00:00+00:00 170.570 0.029534 1.131875e-01 \n",
"2017-12-27 21:00:00+00:00 170.600 0.029520 1.132369e-01 \n",
"2017-12-28 21:00:00+00:00 171.080 0.029506 1.140298e-01 \n",
"2017-12-29 21:00:00+00:00 169.230 0.029526 1.109716e-01 \n",
"\n",
" alpha benchmark_period_return \\\n",
"2014-01-02 21:00:00+00:00 NaN -0.000678 \n",
"2014-01-03 21:00:00+00:00 NaN -0.001355 \n",
"2014-01-06 21:00:00+00:00 NaN -0.002031 \n",
"2014-01-07 21:00:00+00:00 NaN -0.002708 \n",
"2014-01-08 21:00:00+00:00 NaN -0.003383 \n",
"2014-01-09 21:00:00+00:00 NaN -0.004059 \n",
"2014-01-10 21:00:00+00:00 NaN -0.004734 \n",
"2014-01-13 21:00:00+00:00 NaN -0.005408 \n",
"2014-01-14 21:00:00+00:00 NaN -0.006082 \n",
"2014-01-15 21:00:00+00:00 NaN -0.006755 \n",
"2014-01-16 21:00:00+00:00 NaN -0.007428 \n",
"2014-01-17 21:00:00+00:00 NaN -0.008101 \n",
"2014-01-21 21:00:00+00:00 NaN -0.008773 \n",
"2014-01-22 21:00:00+00:00 NaN -0.009445 \n",
"2014-01-23 21:00:00+00:00 NaN -0.010116 \n",
"2014-01-24 21:00:00+00:00 NaN -0.010787 \n",
"2014-01-27 21:00:00+00:00 NaN -0.011457 \n",
"2014-01-28 21:00:00+00:00 NaN -0.012127 \n",
"2014-01-29 21:00:00+00:00 NaN -0.012796 \n",
"2014-01-30 21:00:00+00:00 NaN -0.013465 \n",
"2014-01-31 21:00:00+00:00 NaN -0.014134 \n",
"2014-02-03 21:00:00+00:00 NaN -0.014802 \n",
"2014-02-04 21:00:00+00:00 NaN -0.015469 \n",
"2014-02-05 21:00:00+00:00 NaN -0.016136 \n",
"2014-02-06 21:00:00+00:00 NaN -0.016803 \n",
"2014-02-07 21:00:00+00:00 NaN -0.017469 \n",
"2014-02-10 21:00:00+00:00 NaN -0.018135 \n",
"2014-02-11 21:00:00+00:00 NaN -0.018800 \n",
"2014-02-12 21:00:00+00:00 NaN -0.019465 \n",
"2014-02-13 21:00:00+00:00 NaN -0.020130 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 0.025302 0.068134 \n",
"2017-11-17 21:00:00+00:00 0.025019 0.064995 \n",
"2017-11-20 21:00:00+00:00 0.024864 0.066813 \n",
"2017-11-21 21:00:00+00:00 0.025799 0.073793 \n",
"2017-11-22 21:00:00+00:00 0.026505 0.072843 \n",
"2017-11-24 18:00:00+00:00 0.026396 0.075321 \n",
"2017-11-27 21:00:00+00:00 0.026051 0.074784 \n",
"2017-11-28 21:00:00+00:00 0.025273 0.085687 \n",
"2017-11-29 21:00:00+00:00 0.023894 0.085027 \n",
"2017-11-30 21:00:00+00:00 0.024445 0.094526 \n",
"2017-12-01 21:00:00+00:00 0.024189 0.092254 \n",
"2017-12-04 21:00:00+00:00 0.023729 0.090933 \n",
"2017-12-05 21:00:00+00:00 0.023777 0.087009 \n",
"2017-12-06 21:00:00+00:00 0.023504 0.087216 \n",
"2017-12-07 21:00:00+00:00 0.023533 0.090644 \n",
"2017-12-08 21:00:00+00:00 0.023280 0.096591 \n",
"2017-12-11 21:00:00+00:00 0.024401 0.099895 \n",
"2017-12-12 21:00:00+00:00 0.023943 0.101836 \n",
"2017-12-13 21:00:00+00:00 0.024141 0.101712 \n",
"2017-12-14 21:00:00+00:00 0.024248 0.097210 \n",
"2017-12-15 21:00:00+00:00 0.024731 0.100721 \n",
"2017-12-18 21:00:00+00:00 0.025431 0.107701 \n",
"2017-12-19 21:00:00+00:00 0.024829 0.103447 \n",
"2017-12-20 21:00:00+00:00 0.024751 0.102869 \n",
"2017-12-21 21:00:00+00:00 0.024899 0.105140 \n",
"2017-12-22 21:00:00+00:00 0.024884 0.104851 \n",
"2017-12-26 21:00:00+00:00 0.023217 0.103530 \n",
"2017-12-27 21:00:00+00:00 0.023187 0.104066 \n",
"2017-12-28 21:00:00+00:00 0.023270 0.106338 \n",
"2017-12-29 21:00:00+00:00 0.022677 0.102167 \n",
"\n",
" benchmark_volatility beta capital_used \\\n",
"2014-01-02 21:00:00+00:00 NaN NaN 0.000000 \n",
"2014-01-03 21:00:00+00:00 0.000000 NaN -5412.514900 \n",
"2014-01-06 21:00:00+00:00 0.000000 NaN -5442.029650 \n",
"2014-01-07 21:00:00+00:00 0.000000 NaN -5403.080185 \n",
"2014-01-08 21:00:00+00:00 0.000000 NaN -5437.327300 \n",
"2014-01-09 21:00:00+00:00 0.000000 NaN -5367.882595 \n",
"2014-01-10 21:00:00+00:00 0.000000 NaN -5332.074700 \n",
"2014-01-13 21:00:00+00:00 0.000000 NaN -5359.988650 \n",
"2014-01-14 21:00:00+00:00 0.000000 NaN -5466.641950 \n",
"2014-01-15 21:00:00+00:00 0.000000 NaN -5576.396800 \n",
"2014-01-16 21:00:00+00:00 0.000000 NaN -5545.281250 \n",
"2014-01-17 21:00:00+00:00 0.000000 NaN -5409.413350 \n",
"2014-01-21 21:00:00+00:00 0.000000 NaN -5493.455350 \n",
"2014-01-22 21:00:00+00:00 0.000000 NaN -5517.867550 \n",
"2014-01-23 21:00:00+00:00 0.000000 NaN -5564.590900 \n",
"2014-01-24 21:00:00+00:00 0.000000 NaN -5463.440350 \n",
"2014-01-27 21:00:00+00:00 0.000000 NaN -5507.762500 \n",
"2014-01-28 21:00:00+00:00 0.000000 NaN -5067.542500 \n",
"2014-01-29 21:00:00+00:00 0.000000 NaN -5010.013750 \n",
"2014-01-30 21:00:00+00:00 0.000000 NaN -5000.328910 \n",
"2014-01-31 21:00:00+00:00 0.000000 NaN -5008.513000 \n",
"2014-02-03 21:00:00+00:00 0.000000 NaN -5017.817650 \n",
"2014-02-04 21:00:00+00:00 0.000000 NaN -5090.453950 \n",
"2014-02-05 21:00:00+00:00 0.000000 NaN -5128.472950 \n",
"2014-02-06 21:00:00+00:00 0.000000 NaN -5127.672550 \n",
"2014-02-07 21:00:00+00:00 0.000000 NaN -5199.398395 \n",
"2014-02-10 21:00:00+00:00 0.000000 NaN -5292.554950 \n",
"2014-02-11 21:00:00+00:00 0.000000 NaN -5362.289800 \n",
"2014-02-12 21:00:00+00:00 0.000000 NaN -5361.889600 \n",
"2014-02-13 21:00:00+00:00 0.000000 NaN -5447.032150 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 0.110736 0.141713 -1711.865500 \n",
"2017-11-17 21:00:00+00:00 0.110690 0.141781 -1702.360750 \n",
"2017-11-20 21:00:00+00:00 0.110637 0.141761 -1700.659900 \n",
"2017-11-21 21:00:00+00:00 0.110628 0.142248 -1732.275700 \n",
"2017-11-22 21:00:00+00:00 0.110573 0.142193 -1750.484800 \n",
"2017-11-24 18:00:00+00:00 0.110522 0.142173 -1750.584850 \n",
"2017-11-27 21:00:00+00:00 0.110467 0.142190 -1741.780450 \n",
"2017-11-28 21:00:00+00:00 0.110527 0.141552 -1731.575350 \n",
"2017-11-29 21:00:00+00:00 0.110472 0.141631 -1695.657400 \n",
"2017-11-30 21:00:00+00:00 0.110502 0.142019 -1719.369250 \n",
"2017-12-01 21:00:00+00:00 0.110452 0.142064 -1711.365250 \n",
"2017-12-04 21:00:00+00:00 0.110398 0.142112 -1698.859000 \n",
"2017-12-05 21:00:00+00:00 0.110358 0.142098 -1697.258200 \n",
"2017-12-06 21:00:00+00:00 0.110302 0.142096 -1690.955050 \n",
"2017-12-07 21:00:00+00:00 0.110257 0.142104 -1695.377260 \n",
"2017-12-08 21:00:00+00:00 0.110235 0.141993 -1694.556850 \n",
"2017-12-11 21:00:00+00:00 0.110189 0.142256 -1727.573350 \n",
"2017-12-12 21:00:00+00:00 0.110136 0.142196 -1717.868500 \n",
"2017-12-13 21:00:00+00:00 0.110081 0.142192 -1723.571350 \n",
"2017-12-14 21:00:00+00:00 0.110046 0.142156 -1723.071100 \n",
"2017-12-15 21:00:00+00:00 0.110002 0.142277 -1739.579350 \n",
"2017-12-18 21:00:00+00:00 0.109991 0.142633 -1765.092100 \n",
"2017-12-19 21:00:00+00:00 0.109954 0.142824 -1746.282700 \n",
"2017-12-20 21:00:00+00:00 0.109899 0.142828 -1744.381750 \n",
"2017-12-21 21:00:00+00:00 0.109849 0.142852 -1750.985050 \n",
"2017-12-22 21:00:00+00:00 0.109794 0.142852 -1750.985050 \n",
"2017-12-26 21:00:00+00:00 0.109741 0.143030 -1706.562850 \n",
"2017-12-27 21:00:00+00:00 0.109687 0.143029 -1706.863000 \n",
"2017-12-28 21:00:00+00:00 0.109637 0.143042 -1711.665400 \n",
"2017-12-29 21:00:00+00:00 0.109599 0.143229 -1693.156150 \n",
"\n",
" ending_cash ending_exposure \\\n",
"2014-01-02 21:00:00+00:00 1.000000e+07 0.00 \n",
"2014-01-03 21:00:00+00:00 9.994587e+06 5409.80 \n",
"2014-01-06 21:00:00+00:00 9.989145e+06 10878.60 \n",
"2014-01-07 21:00:00+00:00 9.983742e+06 16201.11 \n",
"2014-01-08 21:00:00+00:00 9.978305e+06 21738.40 \n",
"2014-01-09 21:00:00+00:00 9.972937e+06 26825.95 \n",
"2014-01-10 21:00:00+00:00 9.967605e+06 31976.40 \n",
"2014-01-13 21:00:00+00:00 9.962245e+06 37501.10 \n",
"2014-01-14 21:00:00+00:00 9.956778e+06 43711.20 \n",
"2014-01-15 21:00:00+00:00 9.951202e+06 50162.40 \n",
"2014-01-16 21:00:00+00:00 9.945657e+06 55425.00 \n",
"2014-01-17 21:00:00+00:00 9.940247e+06 59473.70 \n",
"2014-01-21 21:00:00+00:00 9.934754e+06 65888.40 \n",
"2014-01-22 21:00:00+00:00 9.929236e+06 71696.30 \n",
"2014-01-23 21:00:00+00:00 9.923671e+06 77865.20 \n",
"2014-01-24 21:00:00+00:00 9.918208e+06 81910.50 \n",
"2014-01-27 21:00:00+00:00 9.912700e+06 88080.00 \n",
"2014-01-28 21:00:00+00:00 9.907633e+06 86105.00 \n",
"2014-01-29 21:00:00+00:00 9.902623e+06 90135.00 \n",
"2014-01-30 21:00:00+00:00 9.897622e+06 94958.58 \n",
"2014-01-31 21:00:00+00:00 9.892614e+06 100120.00 \n",
"2014-02-03 21:00:00+00:00 9.887596e+06 105321.30 \n",
"2014-02-04 21:00:00+00:00 9.882506e+06 111933.80 \n",
"2014-02-05 21:00:00+00:00 9.877377e+06 117895.70 \n",
"2014-02-06 21:00:00+00:00 9.872249e+06 123002.40 \n",
"2014-02-07 21:00:00+00:00 9.867050e+06 129919.75 \n",
"2014-02-10 21:00:00+00:00 9.861757e+06 137537.40 \n",
"2014-02-11 21:00:00+00:00 9.856395e+06 144709.20 \n",
"2014-02-12 21:00:00+00:00 9.851033e+06 150057.60 \n",
"2014-02-13 21:00:00+00:00 9.845586e+06 157884.70 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 8.360573e+06 2780375.00 \n",
"2017-11-17 21:00:00+00:00 8.358871e+06 2766639.00 \n",
"2017-11-20 21:00:00+00:00 8.357170e+06 2765574.60 \n",
"2017-11-21 21:00:00+00:00 8.355438e+06 2818719.20 \n",
"2017-11-22 21:00:00+00:00 8.353687e+06 2850098.40 \n",
"2017-11-24 18:00:00+00:00 8.351937e+06 2852011.00 \n",
"2017-11-27 21:00:00+00:00 8.350195e+06 2839407.90 \n",
"2017-11-28 21:00:00+00:00 8.348463e+06 2824502.40 \n",
"2017-11-29 21:00:00+00:00 8.346768e+06 2767608.40 \n",
"2017-11-30 21:00:00+00:00 8.345048e+06 2808029.00 \n",
"2017-12-01 21:00:00+00:00 8.343337e+06 2796667.50 \n",
"2017-12-04 21:00:00+00:00 8.341638e+06 2777928.00 \n",
"2017-12-05 21:00:00+00:00 8.339941e+06 2777006.80 \n",
"2017-12-06 21:00:00+00:00 8.338250e+06 2768383.80 \n",
"2017-12-07 21:00:00+00:00 8.336554e+06 2777318.28 \n",
"2017-12-08 21:00:00+00:00 8.334860e+06 2777668.00 \n",
"2017-12-11 21:00:00+00:00 8.333132e+06 2833514.70 \n",
"2017-12-12 21:00:00+00:00 8.331414e+06 2819314.00 \n",
"2017-12-13 21:00:00+00:00 8.329691e+06 2830396.10 \n",
"2017-12-14 21:00:00+00:00 8.327968e+06 2831296.80 \n",
"2017-12-15 21:00:00+00:00 8.326228e+06 2860161.50 \n",
"2017-12-18 21:00:00+00:00 8.324463e+06 2903873.20 \n",
"2017-12-19 21:00:00+00:00 8.322717e+06 2874673.80 \n",
"2017-12-20 21:00:00+00:00 8.320972e+06 2873288.00 \n",
"2017-12-21 21:00:00+00:00 8.319222e+06 2885914.90 \n",
"2017-12-22 21:00:00+00:00 8.317471e+06 2887665.00 \n",
"2017-12-26 21:00:00+00:00 8.315764e+06 2816110.70 \n",
"2017-12-27 21:00:00+00:00 8.314057e+06 2818312.00 \n",
"2017-12-28 21:00:00+00:00 8.312345e+06 2827952.40 \n",
"2017-12-29 21:00:00+00:00 8.310652e+06 2799064.20 \n",
"\n",
" ... short_exposure short_value \\\n",
"2014-01-02 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-03 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-06 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-07 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-08 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-09 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-10 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-13 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-14 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-15 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-16 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-17 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-21 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-22 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-23 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-24 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-27 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-28 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-29 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-30 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-01-31 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-03 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-04 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-05 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-06 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-07 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-10 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-11 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-12 21:00:00+00:00 ... 0.0 0.0 \n",
"2014-02-13 21:00:00+00:00 ... 0.0 0.0 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-17 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-20 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-21 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-22 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-24 18:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-27 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-28 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-29 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-11-30 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-01 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-04 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-05 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-06 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-07 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-08 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-11 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-12 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-13 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-14 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-15 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-18 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-19 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-20 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-21 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-22 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-26 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-27 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-28 21:00:00+00:00 ... 0.0 0.0 \n",
"2017-12-29 21:00:00+00:00 ... 0.0 0.0 \n",
"\n",
" shorts_count sortino starting_cash \\\n",
"2014-01-02 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2014-01-03 21:00:00+00:00 0 -11.224972 1.000000e+07 \n",
"2014-01-06 21:00:00+00:00 0 81.208114 9.994587e+06 \n",
"2014-01-07 21:00:00+00:00 0 -5.564302 9.989145e+06 \n",
"2014-01-08 21:00:00+00:00 0 3.826244 9.983742e+06 \n",
"2014-01-09 21:00:00+00:00 0 -5.262989 9.978305e+06 \n",
"2014-01-10 21:00:00+00:00 0 -7.307726 9.972937e+06 \n",
"2014-01-13 21:00:00+00:00 0 -4.145330 9.967605e+06 \n",
"2014-01-14 21:00:00+00:00 0 7.540809 9.962245e+06 \n",
"2014-01-15 21:00:00+00:00 0 19.933310 9.956778e+06 \n",
"2014-01-16 21:00:00+00:00 0 11.637563 9.951202e+06 \n",
"2014-01-17 21:00:00+00:00 0 -0.892414 9.945657e+06 \n",
"2014-01-21 21:00:00+00:00 0 1.976167 9.940247e+06 \n",
"2014-01-22 21:00:00+00:00 0 2.763837 9.934754e+06 \n",
"2014-01-23 21:00:00+00:00 0 4.400301 9.929236e+06 \n",
"2014-01-24 21:00:00+00:00 0 0.234097 9.923671e+06 \n",
"2014-01-27 21:00:00+00:00 0 1.491595 9.918208e+06 \n",
"2014-01-28 21:00:00+00:00 0 -3.198560 9.912700e+06 \n",
"2014-01-29 21:00:00+00:00 0 -3.568986 9.907633e+06 \n",
"2014-01-30 21:00:00+00:00 0 -3.562557 9.902623e+06 \n",
"2014-01-31 21:00:00+00:00 0 -3.404990 9.897622e+06 \n",
"2014-02-03 21:00:00+00:00 0 -3.242636 9.892614e+06 \n",
"2014-02-04 21:00:00+00:00 0 -2.489323 9.887596e+06 \n",
"2014-02-05 21:00:00+00:00 0 -2.071367 9.882506e+06 \n",
"2014-02-06 21:00:00+00:00 0 -2.038520 9.877377e+06 \n",
"2014-02-07 21:00:00+00:00 0 -1.275056 9.872249e+06 \n",
"2014-02-10 21:00:00+00:00 0 -0.289997 9.867050e+06 \n",
"2014-02-11 21:00:00+00:00 0 0.449653 9.861757e+06 \n",
"2014-02-12 21:00:00+00:00 0 0.436453 9.856395e+06 \n",
"2014-02-13 21:00:00+00:00 0 1.362189 9.851033e+06 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 0 1.441294 8.362285e+06 \n",
"2017-11-17 21:00:00+00:00 0 1.421445 8.360573e+06 \n",
"2017-11-20 21:00:00+00:00 0 1.417430 8.358871e+06 \n",
"2017-11-21 21:00:00+00:00 0 1.477307 8.357170e+06 \n",
"2017-11-22 21:00:00+00:00 0 1.511300 8.355438e+06 \n",
"2017-11-24 18:00:00+00:00 0 1.510720 8.353687e+06 \n",
"2017-11-27 21:00:00+00:00 0 1.492374 8.351937e+06 \n",
"2017-11-28 21:00:00+00:00 0 1.471087 8.350195e+06 \n",
"2017-11-29 21:00:00+00:00 0 1.389166 8.348463e+06 \n",
"2017-11-30 21:00:00+00:00 0 1.433504 8.346768e+06 \n",
"2017-12-01 21:00:00+00:00 0 1.416986 8.345048e+06 \n",
"2017-12-04 21:00:00+00:00 0 1.391040 8.343337e+06 \n",
"2017-12-05 21:00:00+00:00 0 1.387275 8.341638e+06 \n",
"2017-12-06 21:00:00+00:00 0 1.374231 8.339941e+06 \n",
"2017-12-07 21:00:00+00:00 0 1.381932 8.338250e+06 \n",
"2017-12-08 21:00:00+00:00 0 1.379672 8.336554e+06 \n",
"2017-12-11 21:00:00+00:00 0 1.441636 8.334860e+06 \n",
"2017-12-12 21:00:00+00:00 0 1.421637 8.333132e+06 \n",
"2017-12-13 21:00:00+00:00 0 1.431703 8.331414e+06 \n",
"2017-12-14 21:00:00+00:00 0 1.430037 8.329691e+06 \n",
"2017-12-15 21:00:00+00:00 0 1.460510 8.327968e+06 \n",
"2017-12-18 21:00:00+00:00 0 1.507871 8.326228e+06 \n",
"2017-12-19 21:00:00+00:00 0 1.468156 8.324463e+06 \n",
"2017-12-20 21:00:00+00:00 0 1.463813 8.322717e+06 \n",
"2017-12-21 21:00:00+00:00 0 1.475493 8.320972e+06 \n",
"2017-12-22 21:00:00+00:00 0 1.474756 8.319222e+06 \n",
"2017-12-26 21:00:00+00:00 0 1.371694 8.317471e+06 \n",
"2017-12-27 21:00:00+00:00 0 1.371570 8.315764e+06 \n",
"2017-12-28 21:00:00+00:00 0 1.379845 8.314057e+06 \n",
"2017-12-29 21:00:00+00:00 0 1.341469 8.312345e+06 \n",
"\n",
" starting_exposure starting_value trading_days \\\n",
"2014-01-02 21:00:00+00:00 0.00 0.00 1 \n",
"2014-01-03 21:00:00+00:00 0.00 0.00 2 \n",
"2014-01-06 21:00:00+00:00 5409.80 5409.80 3 \n",
"2014-01-07 21:00:00+00:00 10878.60 10878.60 4 \n",
"2014-01-08 21:00:00+00:00 16201.11 16201.11 5 \n",
"2014-01-09 21:00:00+00:00 21738.40 21738.40 6 \n",
"2014-01-10 21:00:00+00:00 26825.95 26825.95 7 \n",
"2014-01-13 21:00:00+00:00 31976.40 31976.40 8 \n",
"2014-01-14 21:00:00+00:00 37501.10 37501.10 9 \n",
"2014-01-15 21:00:00+00:00 43711.20 43711.20 10 \n",
"2014-01-16 21:00:00+00:00 50162.40 50162.40 11 \n",
"2014-01-17 21:00:00+00:00 55425.00 55425.00 12 \n",
"2014-01-21 21:00:00+00:00 59473.70 59473.70 13 \n",
"2014-01-22 21:00:00+00:00 65888.40 65888.40 14 \n",
"2014-01-23 21:00:00+00:00 71696.30 71696.30 15 \n",
"2014-01-24 21:00:00+00:00 77865.20 77865.20 16 \n",
"2014-01-27 21:00:00+00:00 81910.50 81910.50 17 \n",
"2014-01-28 21:00:00+00:00 88080.00 88080.00 18 \n",
"2014-01-29 21:00:00+00:00 86105.00 86105.00 19 \n",
"2014-01-30 21:00:00+00:00 90135.00 90135.00 20 \n",
"2014-01-31 21:00:00+00:00 94958.58 94958.58 21 \n",
"2014-02-03 21:00:00+00:00 100120.00 100120.00 22 \n",
"2014-02-04 21:00:00+00:00 105321.30 105321.30 23 \n",
"2014-02-05 21:00:00+00:00 111933.80 111933.80 24 \n",
"2014-02-06 21:00:00+00:00 117895.70 117895.70 25 \n",
"2014-02-07 21:00:00+00:00 123002.40 123002.40 26 \n",
"2014-02-10 21:00:00+00:00 129919.75 129919.75 27 \n",
"2014-02-11 21:00:00+00:00 137537.40 137537.40 28 \n",
"2014-02-12 21:00:00+00:00 144709.20 144709.20 29 \n",
"2014-02-13 21:00:00+00:00 150057.60 150057.60 30 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 2745859.20 2745859.20 978 \n",
"2017-11-17 21:00:00+00:00 2780375.00 2780375.00 979 \n",
"2017-11-20 21:00:00+00:00 2766639.00 2766639.00 980 \n",
"2017-11-21 21:00:00+00:00 2765574.60 2765574.60 981 \n",
"2017-11-22 21:00:00+00:00 2818719.20 2818719.20 982 \n",
"2017-11-24 18:00:00+00:00 2850098.40 2850098.40 983 \n",
"2017-11-27 21:00:00+00:00 2852011.00 2852011.00 984 \n",
"2017-11-28 21:00:00+00:00 2839407.90 2839407.90 985 \n",
"2017-11-29 21:00:00+00:00 2824502.40 2824502.40 986 \n",
"2017-11-30 21:00:00+00:00 2767608.40 2767608.40 987 \n",
"2017-12-01 21:00:00+00:00 2808029.00 2808029.00 988 \n",
"2017-12-04 21:00:00+00:00 2796667.50 2796667.50 989 \n",
"2017-12-05 21:00:00+00:00 2777928.00 2777928.00 990 \n",
"2017-12-06 21:00:00+00:00 2777006.80 2777006.80 991 \n",
"2017-12-07 21:00:00+00:00 2768383.80 2768383.80 992 \n",
"2017-12-08 21:00:00+00:00 2777318.28 2777318.28 993 \n",
"2017-12-11 21:00:00+00:00 2777668.00 2777668.00 994 \n",
"2017-12-12 21:00:00+00:00 2833514.70 2833514.70 995 \n",
"2017-12-13 21:00:00+00:00 2819314.00 2819314.00 996 \n",
"2017-12-14 21:00:00+00:00 2830396.10 2830396.10 997 \n",
"2017-12-15 21:00:00+00:00 2831296.80 2831296.80 998 \n",
"2017-12-18 21:00:00+00:00 2860161.50 2860161.50 999 \n",
"2017-12-19 21:00:00+00:00 2903873.20 2903873.20 1000 \n",
"2017-12-20 21:00:00+00:00 2874673.80 2874673.80 1001 \n",
"2017-12-21 21:00:00+00:00 2873288.00 2873288.00 1002 \n",
"2017-12-22 21:00:00+00:00 2885914.90 2885914.90 1003 \n",
"2017-12-26 21:00:00+00:00 2887665.00 2887665.00 1004 \n",
"2017-12-27 21:00:00+00:00 2816110.70 2816110.70 1005 \n",
"2017-12-28 21:00:00+00:00 2818312.00 2818312.00 1006 \n",
"2017-12-29 21:00:00+00:00 2827952.40 2827952.40 1007 \n",
"\n",
" transactions \\\n",
"2014-01-02 21:00:00+00:00 [] \n",
"2014-01-03 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-06 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-07 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-08 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-09 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-10 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-13 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-14 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-15 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-16 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-17 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-21 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-22 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-23 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-24 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-27 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-28 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-29 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-30 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-01-31 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-03 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-04 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-05 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-06 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-07 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-10 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-11 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-12 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"2014-02-13 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 5... \n",
"... ... \n",
"2017-11-16 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-17 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-20 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-21 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-22 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-24 18:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-27 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-28 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-29 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-11-30 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-01 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-04 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-05 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-06 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-07 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-08 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-11 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-12 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-13 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-14 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-15 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-18 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-19 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-20 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-21 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-22 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-26 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-27 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-28 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"2017-12-29 21:00:00+00:00 [{'amount': 10, 'commission': None, 'price': 1... \n",
"\n",
" treasury_period_return \n",
"2014-01-02 21:00:00+00:00 0.0 \n",
"2014-01-03 21:00:00+00:00 0.0 \n",
"2014-01-06 21:00:00+00:00 0.0 \n",
"2014-01-07 21:00:00+00:00 0.0 \n",
"2014-01-08 21:00:00+00:00 0.0 \n",
"2014-01-09 21:00:00+00:00 0.0 \n",
"2014-01-10 21:00:00+00:00 0.0 \n",
"2014-01-13 21:00:00+00:00 0.0 \n",
"2014-01-14 21:00:00+00:00 0.0 \n",
"2014-01-15 21:00:00+00:00 0.0 \n",
"2014-01-16 21:00:00+00:00 0.0 \n",
"2014-01-17 21:00:00+00:00 0.0 \n",
"2014-01-21 21:00:00+00:00 0.0 \n",
"2014-01-22 21:00:00+00:00 0.0 \n",
"2014-01-23 21:00:00+00:00 0.0 \n",
"2014-01-24 21:00:00+00:00 0.0 \n",
"2014-01-27 21:00:00+00:00 0.0 \n",
"2014-01-28 21:00:00+00:00 0.0 \n",
"2014-01-29 21:00:00+00:00 0.0 \n",
"2014-01-30 21:00:00+00:00 0.0 \n",
"2014-01-31 21:00:00+00:00 0.0 \n",
"2014-02-03 21:00:00+00:00 0.0 \n",
"2014-02-04 21:00:00+00:00 0.0 \n",
"2014-02-05 21:00:00+00:00 0.0 \n",
"2014-02-06 21:00:00+00:00 0.0 \n",
"2014-02-07 21:00:00+00:00 0.0 \n",
"2014-02-10 21:00:00+00:00 0.0 \n",
"2014-02-11 21:00:00+00:00 0.0 \n",
"2014-02-12 21:00:00+00:00 0.0 \n",
"2014-02-13 21:00:00+00:00 0.0 \n",
"... ... \n",
"2017-11-16 21:00:00+00:00 0.0 \n",
"2017-11-17 21:00:00+00:00 0.0 \n",
"2017-11-20 21:00:00+00:00 0.0 \n",
"2017-11-21 21:00:00+00:00 0.0 \n",
"2017-11-22 21:00:00+00:00 0.0 \n",
"2017-11-24 18:00:00+00:00 0.0 \n",
"2017-11-27 21:00:00+00:00 0.0 \n",
"2017-11-28 21:00:00+00:00 0.0 \n",
"2017-11-29 21:00:00+00:00 0.0 \n",
"2017-11-30 21:00:00+00:00 0.0 \n",
"2017-12-01 21:00:00+00:00 0.0 \n",
"2017-12-04 21:00:00+00:00 0.0 \n",
"2017-12-05 21:00:00+00:00 0.0 \n",
"2017-12-06 21:00:00+00:00 0.0 \n",
"2017-12-07 21:00:00+00:00 0.0 \n",
"2017-12-08 21:00:00+00:00 0.0 \n",
"2017-12-11 21:00:00+00:00 0.0 \n",
"2017-12-12 21:00:00+00:00 0.0 \n",
"2017-12-13 21:00:00+00:00 0.0 \n",
"2017-12-14 21:00:00+00:00 0.0 \n",
"2017-12-15 21:00:00+00:00 0.0 \n",
"2017-12-18 21:00:00+00:00 0.0 \n",
"2017-12-19 21:00:00+00:00 0.0 \n",
"2017-12-20 21:00:00+00:00 0.0 \n",
"2017-12-21 21:00:00+00:00 0.0 \n",
"2017-12-22 21:00:00+00:00 0.0 \n",
"2017-12-26 21:00:00+00:00 0.0 \n",
"2017-12-27 21:00:00+00:00 0.0 \n",
"2017-12-28 21:00:00+00:00 0.0 \n",
"2017-12-29 21:00:00+00:00 0.0 \n",
"\n",
"[1007 rows x 38 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%zipline --start 2014-1-1 --end 2018-1-1\n",
"from zipline.api import order, record, symbol\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def initialize(context):\n",
" pass\n",
"\n",
"def handle_data(context, data):\n",
" order(symbol('AAPL'), 10)\n",
" record(AAPL=data.current(symbol('AAPL'), 'price'))\n",
" \n",
"\n",
"def analyze(context, perf):\n",
" fig = plt.figure()\n",
"\n",
" ax1 = fig.add_subplot(111)\n",
" perf['AAPL'].plot(ax=ax1)\n",
"\n",
" plt.legend(loc=0)\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mcw/.pyenv/versions/3.5.8/envs/zipline/lib/python3.5/site-packages/empyrical/stats.py:711: RuntimeWarning: invalid value encountered in true_divide\n",
" out=out,\n",
"/Users/mcw/.pyenv/versions/3.5.8/envs/zipline/lib/python3.5/site-packages/empyrical/stats.py:797: RuntimeWarning: invalid value encountered in true_divide\n",
" np.divide(average_annual_return, annualized_downside_risk, out=out)\n"
]
},
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AAPL</th>\n",
" <th>algo_volatility</th>\n",
" <th>algorithm_period_return</th>\n",
" <th>alpha</th>\n",
" <th>benchmark_period_return</th>\n",
" <th>benchmark_volatility</th>\n",
" <th>beta</th>\n",
" <th>capital_used</th>\n",
" <th>ending_cash</th>\n",
" <th>ending_exposure</th>\n",
" <th>...</th>\n",
" <th>short_mavg</th>\n",
" <th>short_value</th>\n",
" <th>shorts_count</th>\n",
" <th>sortino</th>\n",
" <th>starting_cash</th>\n",
" <th>starting_exposure</th>\n",
" <th>starting_value</th>\n",
" <th>trading_days</th>\n",
" <th>transactions</th>\n",
" <th>treasury_period_return</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2015-01-02 21:00:00+00:00</th>\n",
" <td>109.330</td>\n",
" <td>NaN</td>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>-0.000535</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-05 21:00:00+00:00</th>\n",
" <td>106.250</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.018585</td>\n",
" <td>0.196712</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>2</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-06 21:00:00+00:00</th>\n",
" <td>106.260</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.027829</td>\n",
" <td>0.139101</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-07 21:00:00+00:00</th>\n",
" <td>107.750</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.015715</td>\n",
" <td>0.206972</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-08 21:00:00+00:00</th>\n",
" <td>111.890</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.001751</td>\n",
" <td>0.236040</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>5</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-09 21:00:00+00:00</th>\n",
" <td>112.010</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.006276</td>\n",
" <td>0.218111</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>6</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-12 21:00:00+00:00</th>\n",
" <td>109.250</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.014061</td>\n",
" <td>0.203321</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>7</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-13 21:00:00+00:00</th>\n",
" <td>110.220</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.016834</td>\n",
" <td>0.188301</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>8</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-14 21:00:00+00:00</th>\n",
" <td>109.800</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.022769</td>\n",
" <td>0.177393</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>9</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-15 21:00:00+00:00</th>\n",
" <td>106.820</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.031721</td>\n",
" <td>0.170557</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>10</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-16 21:00:00+00:00</th>\n",
" <td>105.990</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.019023</td>\n",
" <td>0.179591</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>11</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-20 21:00:00+00:00</th>\n",
" <td>108.720</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.016931</td>\n",
" <td>0.172126</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>12</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-21 21:00:00+00:00</th>\n",
" <td>109.550</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.011968</td>\n",
" <td>0.167201</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>13</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-22 21:00:00+00:00</th>\n",
" <td>112.400</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.002725</td>\n",
" <td>0.173978</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>14</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-23 21:00:00+00:00</th>\n",
" <td>112.980</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.002773</td>\n",
" <td>0.169288</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>15</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-26 21:00:00+00:00</th>\n",
" <td>113.100</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.000438</td>\n",
" <td>0.163843</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>16</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-27 21:00:00+00:00</th>\n",
" <td>109.140</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.013623</td>\n",
" <td>0.166597</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>17</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-28 21:00:00+00:00</th>\n",
" <td>115.310</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.026272</td>\n",
" <td>0.167814</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>18</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-29 21:00:00+00:00</th>\n",
" <td>118.900</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.017272</td>\n",
" <td>0.167650</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>19</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-30 21:00:00+00:00</th>\n",
" <td>117.160</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.029629</td>\n",
" <td>0.168390</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>20</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-02 21:00:00+00:00</th>\n",
" <td>118.630</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.017612</td>\n",
" <td>0.170979</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>21</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-03 21:00:00+00:00</th>\n",
" <td>118.650</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.003406</td>\n",
" <td>0.174661</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>22</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-04 21:00:00+00:00</th>\n",
" <td>119.560</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.007201</td>\n",
" <td>0.171086</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>23</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-05 21:00:00+00:00</th>\n",
" <td>119.940</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.002822</td>\n",
" <td>0.170656</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>24</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-06 21:00:00+00:00</th>\n",
" <td>118.930</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000049</td>\n",
" <td>0.167323</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>25</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-09 21:00:00+00:00</th>\n",
" <td>119.720</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>-0.004427</td>\n",
" <td>0.164548</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>26</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-10 21:00:00+00:00</th>\n",
" <td>122.020</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.006179</td>\n",
" <td>0.164675</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>27</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-11 21:00:00+00:00</th>\n",
" <td>124.880</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.006763</td>\n",
" <td>0.161599</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>28</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-12 21:00:00+00:00</th>\n",
" <td>126.460</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.016444</td>\n",
" <td>0.161051</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>29</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-02-13 21:00:00+00:00</th>\n",
" <td>127.080</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.020629</td>\n",
" <td>0.158575</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>1.000000e+07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-16 21:00:00+00:00</th>\n",
" <td>171.100</td>\n",
" <td>0.000157</td>\n",
" <td>0.000534</td>\n",
" <td>0.000166</td>\n",
" <td>0.258247</td>\n",
" <td>0.125812</td>\n",
" <td>0.000216</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17110.0</td>\n",
" <td>...</td>\n",
" <td>157.284780</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.879972</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16908.0</td>\n",
" <td>16908.0</td>\n",
" <td>726</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-17 21:00:00+00:00</th>\n",
" <td>170.150</td>\n",
" <td>0.000157</td>\n",
" <td>0.000524</td>\n",
" <td>0.000163</td>\n",
" <td>0.254549</td>\n",
" <td>0.125740</td>\n",
" <td>0.000217</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17015.0</td>\n",
" <td>...</td>\n",
" <td>157.533680</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.842296</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17110.0</td>\n",
" <td>17110.0</td>\n",
" <td>727</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-20 21:00:00+00:00</th>\n",
" <td>169.980</td>\n",
" <td>0.000157</td>\n",
" <td>0.000523</td>\n",
" <td>0.000162</td>\n",
" <td>0.256690</td>\n",
" <td>0.125656</td>\n",
" <td>0.000217</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16998.0</td>\n",
" <td>...</td>\n",
" <td>157.802300</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.834970</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17015.0</td>\n",
" <td>17015.0</td>\n",
" <td>728</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-21 21:00:00+00:00</th>\n",
" <td>173.140</td>\n",
" <td>0.000158</td>\n",
" <td>0.000554</td>\n",
" <td>0.000172</td>\n",
" <td>0.264912</td>\n",
" <td>0.125622</td>\n",
" <td>0.000221</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17314.0</td>\n",
" <td>...</td>\n",
" <td>158.099130</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.944532</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16998.0</td>\n",
" <td>16998.0</td>\n",
" <td>729</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-22 21:00:00+00:00</th>\n",
" <td>174.960</td>\n",
" <td>0.000158</td>\n",
" <td>0.000573</td>\n",
" <td>0.000178</td>\n",
" <td>0.263793</td>\n",
" <td>0.125538</td>\n",
" <td>0.000220</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17496.0</td>\n",
" <td>...</td>\n",
" <td>158.419340</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>2.006981</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17314.0</td>\n",
" <td>17314.0</td>\n",
" <td>730</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-24 18:00:00+00:00</th>\n",
" <td>174.970</td>\n",
" <td>0.000158</td>\n",
" <td>0.000573</td>\n",
" <td>0.000178</td>\n",
" <td>0.266712</td>\n",
" <td>0.125458</td>\n",
" <td>0.000220</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17497.0</td>\n",
" <td>...</td>\n",
" <td>158.733780</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>2.005958</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17496.0</td>\n",
" <td>17496.0</td>\n",
" <td>731</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-27 21:00:00+00:00</th>\n",
" <td>174.090</td>\n",
" <td>0.000158</td>\n",
" <td>0.000564</td>\n",
" <td>0.000174</td>\n",
" <td>0.266080</td>\n",
" <td>0.125373</td>\n",
" <td>0.000220</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17409.0</td>\n",
" <td>...</td>\n",
" <td>159.052960</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.971077</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17497.0</td>\n",
" <td>17497.0</td>\n",
" <td>732</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-28 21:00:00+00:00</th>\n",
" <td>173.070</td>\n",
" <td>0.000158</td>\n",
" <td>0.000554</td>\n",
" <td>0.000170</td>\n",
" <td>0.278924</td>\n",
" <td>0.125419</td>\n",
" <td>0.000217</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17307.0</td>\n",
" <td>...</td>\n",
" <td>159.347500</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.930550</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17409.0</td>\n",
" <td>17409.0</td>\n",
" <td>733</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-29 21:00:00+00:00</th>\n",
" <td>169.480</td>\n",
" <td>0.000159</td>\n",
" <td>0.000518</td>\n",
" <td>0.000158</td>\n",
" <td>0.278145</td>\n",
" <td>0.125334</td>\n",
" <td>0.000218</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16948.0</td>\n",
" <td>...</td>\n",
" <td>159.597370</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.764426</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17307.0</td>\n",
" <td>17307.0</td>\n",
" <td>734</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-11-30 21:00:00+00:00</th>\n",
" <td>171.850</td>\n",
" <td>0.000160</td>\n",
" <td>0.000541</td>\n",
" <td>0.000165</td>\n",
" <td>0.289335</td>\n",
" <td>0.125345</td>\n",
" <td>0.000222</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17185.0</td>\n",
" <td>...</td>\n",
" <td>159.866260</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.843918</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16948.0</td>\n",
" <td>16948.0</td>\n",
" <td>735</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-01 21:00:00+00:00</th>\n",
" <td>171.050</td>\n",
" <td>0.000160</td>\n",
" <td>0.000533</td>\n",
" <td>0.000162</td>\n",
" <td>0.286660</td>\n",
" <td>0.125268</td>\n",
" <td>0.000222</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17105.0</td>\n",
" <td>...</td>\n",
" <td>160.125060</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.813485</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17185.0</td>\n",
" <td>17185.0</td>\n",
" <td>736</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-04 21:00:00+00:00</th>\n",
" <td>169.800</td>\n",
" <td>0.000160</td>\n",
" <td>0.000521</td>\n",
" <td>0.000157</td>\n",
" <td>0.285103</td>\n",
" <td>0.125186</td>\n",
" <td>0.000223</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16980.0</td>\n",
" <td>...</td>\n",
" <td>160.351140</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.765153</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17105.0</td>\n",
" <td>17105.0</td>\n",
" <td>737</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-05 21:00:00+00:00</th>\n",
" <td>169.640</td>\n",
" <td>0.000160</td>\n",
" <td>0.000519</td>\n",
" <td>0.000157</td>\n",
" <td>0.280481</td>\n",
" <td>0.125123</td>\n",
" <td>0.000223</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16964.0</td>\n",
" <td>...</td>\n",
" <td>160.562970</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.758465</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16980.0</td>\n",
" <td>16980.0</td>\n",
" <td>738</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-06 21:00:00+00:00</th>\n",
" <td>169.010</td>\n",
" <td>0.000160</td>\n",
" <td>0.000513</td>\n",
" <td>0.000154</td>\n",
" <td>0.280724</td>\n",
" <td>0.125038</td>\n",
" <td>0.000223</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16901.0</td>\n",
" <td>...</td>\n",
" <td>160.763320</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.734808</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16964.0</td>\n",
" <td>16964.0</td>\n",
" <td>739</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-07 21:00:00+00:00</th>\n",
" <td>169.452</td>\n",
" <td>0.000159</td>\n",
" <td>0.000517</td>\n",
" <td>0.000155</td>\n",
" <td>0.284762</td>\n",
" <td>0.124964</td>\n",
" <td>0.000223</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16945.2</td>\n",
" <td>...</td>\n",
" <td>160.962910</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.748567</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16901.0</td>\n",
" <td>16901.0</td>\n",
" <td>740</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-08 21:00:00+00:00</th>\n",
" <td>169.370</td>\n",
" <td>0.000159</td>\n",
" <td>0.000517</td>\n",
" <td>0.000155</td>\n",
" <td>0.291768</td>\n",
" <td>0.124915</td>\n",
" <td>0.000223</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16937.0</td>\n",
" <td>...</td>\n",
" <td>161.152320</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.744599</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16945.2</td>\n",
" <td>16945.2</td>\n",
" <td>741</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-11 21:00:00+00:00</th>\n",
" <td>172.670</td>\n",
" <td>0.000160</td>\n",
" <td>0.000550</td>\n",
" <td>0.000165</td>\n",
" <td>0.295660</td>\n",
" <td>0.124840</td>\n",
" <td>0.000225</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17267.0</td>\n",
" <td>...</td>\n",
" <td>161.381500</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.854754</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16937.0</td>\n",
" <td>16937.0</td>\n",
" <td>742</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-12 21:00:00+00:00</th>\n",
" <td>171.700</td>\n",
" <td>0.000160</td>\n",
" <td>0.000540</td>\n",
" <td>0.000161</td>\n",
" <td>0.297947</td>\n",
" <td>0.124758</td>\n",
" <td>0.000224</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17170.0</td>\n",
" <td>...</td>\n",
" <td>161.601680</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.817940</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17267.0</td>\n",
" <td>17267.0</td>\n",
" <td>743</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-13 21:00:00+00:00</th>\n",
" <td>172.270</td>\n",
" <td>0.000160</td>\n",
" <td>0.000546</td>\n",
" <td>0.000163</td>\n",
" <td>0.297801</td>\n",
" <td>0.124675</td>\n",
" <td>0.000224</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17227.0</td>\n",
" <td>...</td>\n",
" <td>161.809430</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.835892</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17170.0</td>\n",
" <td>17170.0</td>\n",
" <td>744</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-14 21:00:00+00:00</th>\n",
" <td>172.220</td>\n",
" <td>0.000160</td>\n",
" <td>0.000545</td>\n",
" <td>0.000163</td>\n",
" <td>0.292498</td>\n",
" <td>0.124618</td>\n",
" <td>0.000224</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17222.0</td>\n",
" <td>...</td>\n",
" <td>162.010200</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.832971</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17227.0</td>\n",
" <td>17227.0</td>\n",
" <td>745</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-15 21:00:00+00:00</th>\n",
" <td>173.870</td>\n",
" <td>0.000160</td>\n",
" <td>0.000562</td>\n",
" <td>0.000168</td>\n",
" <td>0.296633</td>\n",
" <td>0.124545</td>\n",
" <td>0.000225</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17387.0</td>\n",
" <td>...</td>\n",
" <td>162.220300</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.887169</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17222.0</td>\n",
" <td>17222.0</td>\n",
" <td>746</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-18 21:00:00+00:00</th>\n",
" <td>176.420</td>\n",
" <td>0.000161</td>\n",
" <td>0.000587</td>\n",
" <td>0.000176</td>\n",
" <td>0.304856</td>\n",
" <td>0.124510</td>\n",
" <td>0.000228</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17642.0</td>\n",
" <td>...</td>\n",
" <td>162.484790</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.971507</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17387.0</td>\n",
" <td>17387.0</td>\n",
" <td>747</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-19 21:00:00+00:00</th>\n",
" <td>174.540</td>\n",
" <td>0.000161</td>\n",
" <td>0.000568</td>\n",
" <td>0.000169</td>\n",
" <td>0.299844</td>\n",
" <td>0.124451</td>\n",
" <td>0.000230</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17454.0</td>\n",
" <td>...</td>\n",
" <td>162.741040</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.895963</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17642.0</td>\n",
" <td>17642.0</td>\n",
" <td>748</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-20 21:00:00+00:00</th>\n",
" <td>174.350</td>\n",
" <td>0.000161</td>\n",
" <td>0.000566</td>\n",
" <td>0.000168</td>\n",
" <td>0.299163</td>\n",
" <td>0.124369</td>\n",
" <td>0.000230</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17435.0</td>\n",
" <td>...</td>\n",
" <td>163.001860</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.888252</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17454.0</td>\n",
" <td>17454.0</td>\n",
" <td>749</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-21 21:00:00+00:00</th>\n",
" <td>175.010</td>\n",
" <td>0.000161</td>\n",
" <td>0.000573</td>\n",
" <td>0.000170</td>\n",
" <td>0.301839</td>\n",
" <td>0.124289</td>\n",
" <td>0.000230</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>...</td>\n",
" <td>163.257330</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.908974</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17435.0</td>\n",
" <td>17435.0</td>\n",
" <td>750</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-22 21:00:00+00:00</th>\n",
" <td>175.010</td>\n",
" <td>0.000161</td>\n",
" <td>0.000573</td>\n",
" <td>0.000170</td>\n",
" <td>0.301498</td>\n",
" <td>0.124207</td>\n",
" <td>0.000230</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>...</td>\n",
" <td>163.442180</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.907702</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>17501.0</td>\n",
" <td>751</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-26 21:00:00+00:00</th>\n",
" <td>170.570</td>\n",
" <td>0.000163</td>\n",
" <td>0.000529</td>\n",
" <td>0.000155</td>\n",
" <td>0.299942</td>\n",
" <td>0.124128</td>\n",
" <td>0.000232</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17057.0</td>\n",
" <td>...</td>\n",
" <td>163.598270</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.704187</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>17501.0</td>\n",
" <td>752</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-27 21:00:00+00:00</th>\n",
" <td>170.600</td>\n",
" <td>0.000163</td>\n",
" <td>0.000529</td>\n",
" <td>0.000155</td>\n",
" <td>0.300574</td>\n",
" <td>0.124045</td>\n",
" <td>0.000232</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17060.0</td>\n",
" <td>...</td>\n",
" <td>163.746493</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.704022</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17057.0</td>\n",
" <td>17057.0</td>\n",
" <td>753</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-28 21:00:00+00:00</th>\n",
" <td>171.080</td>\n",
" <td>0.000163</td>\n",
" <td>0.000534</td>\n",
" <td>0.000156</td>\n",
" <td>0.303250</td>\n",
" <td>0.123966</td>\n",
" <td>0.000232</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17108.0</td>\n",
" <td>...</td>\n",
" <td>163.899510</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.718340</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17060.0</td>\n",
" <td>17060.0</td>\n",
" <td>754</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-29 21:00:00+00:00</th>\n",
" <td>169.230</td>\n",
" <td>0.000163</td>\n",
" <td>0.000515</td>\n",
" <td>0.000150</td>\n",
" <td>0.298336</td>\n",
" <td>0.123907</td>\n",
" <td>0.000234</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16923.0</td>\n",
" <td>...</td>\n",
" <td>163.997270</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.648975</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17108.0</td>\n",
" <td>17108.0</td>\n",
" <td>755</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>755 rows × 40 columns</p>\n",
"</div>"
],
"text/plain": [
" AAPL algo_volatility algorithm_period_return \\\n",
"2015-01-02 21:00:00+00:00 109.330 NaN 0.000000 \n",
"2015-01-05 21:00:00+00:00 106.250 0.000000 0.000000 \n",
"2015-01-06 21:00:00+00:00 106.260 0.000000 0.000000 \n",
"2015-01-07 21:00:00+00:00 107.750 0.000000 0.000000 \n",
"2015-01-08 21:00:00+00:00 111.890 0.000000 0.000000 \n",
"2015-01-09 21:00:00+00:00 112.010 0.000000 0.000000 \n",
"2015-01-12 21:00:00+00:00 109.250 0.000000 0.000000 \n",
"2015-01-13 21:00:00+00:00 110.220 0.000000 0.000000 \n",
"2015-01-14 21:00:00+00:00 109.800 0.000000 0.000000 \n",
"2015-01-15 21:00:00+00:00 106.820 0.000000 0.000000 \n",
"2015-01-16 21:00:00+00:00 105.990 0.000000 0.000000 \n",
"2015-01-20 21:00:00+00:00 108.720 0.000000 0.000000 \n",
"2015-01-21 21:00:00+00:00 109.550 0.000000 0.000000 \n",
"2015-01-22 21:00:00+00:00 112.400 0.000000 0.000000 \n",
"2015-01-23 21:00:00+00:00 112.980 0.000000 0.000000 \n",
"2015-01-26 21:00:00+00:00 113.100 0.000000 0.000000 \n",
"2015-01-27 21:00:00+00:00 109.140 0.000000 0.000000 \n",
"2015-01-28 21:00:00+00:00 115.310 0.000000 0.000000 \n",
"2015-01-29 21:00:00+00:00 118.900 0.000000 0.000000 \n",
"2015-01-30 21:00:00+00:00 117.160 0.000000 0.000000 \n",
"2015-02-02 21:00:00+00:00 118.630 0.000000 0.000000 \n",
"2015-02-03 21:00:00+00:00 118.650 0.000000 0.000000 \n",
"2015-02-04 21:00:00+00:00 119.560 0.000000 0.000000 \n",
"2015-02-05 21:00:00+00:00 119.940 0.000000 0.000000 \n",
"2015-02-06 21:00:00+00:00 118.930 0.000000 0.000000 \n",
"2015-02-09 21:00:00+00:00 119.720 0.000000 0.000000 \n",
"2015-02-10 21:00:00+00:00 122.020 0.000000 0.000000 \n",
"2015-02-11 21:00:00+00:00 124.880 0.000000 0.000000 \n",
"2015-02-12 21:00:00+00:00 126.460 0.000000 0.000000 \n",
"2015-02-13 21:00:00+00:00 127.080 0.000000 0.000000 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 171.100 0.000157 0.000534 \n",
"2017-11-17 21:00:00+00:00 170.150 0.000157 0.000524 \n",
"2017-11-20 21:00:00+00:00 169.980 0.000157 0.000523 \n",
"2017-11-21 21:00:00+00:00 173.140 0.000158 0.000554 \n",
"2017-11-22 21:00:00+00:00 174.960 0.000158 0.000573 \n",
"2017-11-24 18:00:00+00:00 174.970 0.000158 0.000573 \n",
"2017-11-27 21:00:00+00:00 174.090 0.000158 0.000564 \n",
"2017-11-28 21:00:00+00:00 173.070 0.000158 0.000554 \n",
"2017-11-29 21:00:00+00:00 169.480 0.000159 0.000518 \n",
"2017-11-30 21:00:00+00:00 171.850 0.000160 0.000541 \n",
"2017-12-01 21:00:00+00:00 171.050 0.000160 0.000533 \n",
"2017-12-04 21:00:00+00:00 169.800 0.000160 0.000521 \n",
"2017-12-05 21:00:00+00:00 169.640 0.000160 0.000519 \n",
"2017-12-06 21:00:00+00:00 169.010 0.000160 0.000513 \n",
"2017-12-07 21:00:00+00:00 169.452 0.000159 0.000517 \n",
"2017-12-08 21:00:00+00:00 169.370 0.000159 0.000517 \n",
"2017-12-11 21:00:00+00:00 172.670 0.000160 0.000550 \n",
"2017-12-12 21:00:00+00:00 171.700 0.000160 0.000540 \n",
"2017-12-13 21:00:00+00:00 172.270 0.000160 0.000546 \n",
"2017-12-14 21:00:00+00:00 172.220 0.000160 0.000545 \n",
"2017-12-15 21:00:00+00:00 173.870 0.000160 0.000562 \n",
"2017-12-18 21:00:00+00:00 176.420 0.000161 0.000587 \n",
"2017-12-19 21:00:00+00:00 174.540 0.000161 0.000568 \n",
"2017-12-20 21:00:00+00:00 174.350 0.000161 0.000566 \n",
"2017-12-21 21:00:00+00:00 175.010 0.000161 0.000573 \n",
"2017-12-22 21:00:00+00:00 175.010 0.000161 0.000573 \n",
"2017-12-26 21:00:00+00:00 170.570 0.000163 0.000529 \n",
"2017-12-27 21:00:00+00:00 170.600 0.000163 0.000529 \n",
"2017-12-28 21:00:00+00:00 171.080 0.000163 0.000534 \n",
"2017-12-29 21:00:00+00:00 169.230 0.000163 0.000515 \n",
"\n",
" alpha benchmark_period_return \\\n",
"2015-01-02 21:00:00+00:00 NaN -0.000535 \n",
"2015-01-05 21:00:00+00:00 0.000000 -0.018585 \n",
"2015-01-06 21:00:00+00:00 0.000000 -0.027829 \n",
"2015-01-07 21:00:00+00:00 0.000000 -0.015715 \n",
"2015-01-08 21:00:00+00:00 0.000000 0.001751 \n",
"2015-01-09 21:00:00+00:00 0.000000 -0.006276 \n",
"2015-01-12 21:00:00+00:00 0.000000 -0.014061 \n",
"2015-01-13 21:00:00+00:00 0.000000 -0.016834 \n",
"2015-01-14 21:00:00+00:00 0.000000 -0.022769 \n",
"2015-01-15 21:00:00+00:00 0.000000 -0.031721 \n",
"2015-01-16 21:00:00+00:00 0.000000 -0.019023 \n",
"2015-01-20 21:00:00+00:00 0.000000 -0.016931 \n",
"2015-01-21 21:00:00+00:00 0.000000 -0.011968 \n",
"2015-01-22 21:00:00+00:00 0.000000 0.002725 \n",
"2015-01-23 21:00:00+00:00 0.000000 -0.002773 \n",
"2015-01-26 21:00:00+00:00 0.000000 -0.000438 \n",
"2015-01-27 21:00:00+00:00 0.000000 -0.013623 \n",
"2015-01-28 21:00:00+00:00 0.000000 -0.026272 \n",
"2015-01-29 21:00:00+00:00 0.000000 -0.017272 \n",
"2015-01-30 21:00:00+00:00 0.000000 -0.029629 \n",
"2015-02-02 21:00:00+00:00 0.000000 -0.017612 \n",
"2015-02-03 21:00:00+00:00 0.000000 -0.003406 \n",
"2015-02-04 21:00:00+00:00 0.000000 -0.007201 \n",
"2015-02-05 21:00:00+00:00 0.000000 0.002822 \n",
"2015-02-06 21:00:00+00:00 0.000000 0.000049 \n",
"2015-02-09 21:00:00+00:00 0.000000 -0.004427 \n",
"2015-02-10 21:00:00+00:00 0.000000 0.006179 \n",
"2015-02-11 21:00:00+00:00 0.000000 0.006763 \n",
"2015-02-12 21:00:00+00:00 0.000000 0.016444 \n",
"2015-02-13 21:00:00+00:00 0.000000 0.020629 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 0.000166 0.258247 \n",
"2017-11-17 21:00:00+00:00 0.000163 0.254549 \n",
"2017-11-20 21:00:00+00:00 0.000162 0.256690 \n",
"2017-11-21 21:00:00+00:00 0.000172 0.264912 \n",
"2017-11-22 21:00:00+00:00 0.000178 0.263793 \n",
"2017-11-24 18:00:00+00:00 0.000178 0.266712 \n",
"2017-11-27 21:00:00+00:00 0.000174 0.266080 \n",
"2017-11-28 21:00:00+00:00 0.000170 0.278924 \n",
"2017-11-29 21:00:00+00:00 0.000158 0.278145 \n",
"2017-11-30 21:00:00+00:00 0.000165 0.289335 \n",
"2017-12-01 21:00:00+00:00 0.000162 0.286660 \n",
"2017-12-04 21:00:00+00:00 0.000157 0.285103 \n",
"2017-12-05 21:00:00+00:00 0.000157 0.280481 \n",
"2017-12-06 21:00:00+00:00 0.000154 0.280724 \n",
"2017-12-07 21:00:00+00:00 0.000155 0.284762 \n",
"2017-12-08 21:00:00+00:00 0.000155 0.291768 \n",
"2017-12-11 21:00:00+00:00 0.000165 0.295660 \n",
"2017-12-12 21:00:00+00:00 0.000161 0.297947 \n",
"2017-12-13 21:00:00+00:00 0.000163 0.297801 \n",
"2017-12-14 21:00:00+00:00 0.000163 0.292498 \n",
"2017-12-15 21:00:00+00:00 0.000168 0.296633 \n",
"2017-12-18 21:00:00+00:00 0.000176 0.304856 \n",
"2017-12-19 21:00:00+00:00 0.000169 0.299844 \n",
"2017-12-20 21:00:00+00:00 0.000168 0.299163 \n",
"2017-12-21 21:00:00+00:00 0.000170 0.301839 \n",
"2017-12-22 21:00:00+00:00 0.000170 0.301498 \n",
"2017-12-26 21:00:00+00:00 0.000155 0.299942 \n",
"2017-12-27 21:00:00+00:00 0.000155 0.300574 \n",
"2017-12-28 21:00:00+00:00 0.000156 0.303250 \n",
"2017-12-29 21:00:00+00:00 0.000150 0.298336 \n",
"\n",
" benchmark_volatility beta capital_used \\\n",
"2015-01-02 21:00:00+00:00 NaN NaN 0.0 \n",
"2015-01-05 21:00:00+00:00 0.196712 0.000000 0.0 \n",
"2015-01-06 21:00:00+00:00 0.139101 0.000000 0.0 \n",
"2015-01-07 21:00:00+00:00 0.206972 0.000000 0.0 \n",
"2015-01-08 21:00:00+00:00 0.236040 0.000000 0.0 \n",
"2015-01-09 21:00:00+00:00 0.218111 0.000000 0.0 \n",
"2015-01-12 21:00:00+00:00 0.203321 0.000000 0.0 \n",
"2015-01-13 21:00:00+00:00 0.188301 0.000000 0.0 \n",
"2015-01-14 21:00:00+00:00 0.177393 0.000000 0.0 \n",
"2015-01-15 21:00:00+00:00 0.170557 0.000000 0.0 \n",
"2015-01-16 21:00:00+00:00 0.179591 0.000000 0.0 \n",
"2015-01-20 21:00:00+00:00 0.172126 0.000000 0.0 \n",
"2015-01-21 21:00:00+00:00 0.167201 0.000000 0.0 \n",
"2015-01-22 21:00:00+00:00 0.173978 0.000000 0.0 \n",
"2015-01-23 21:00:00+00:00 0.169288 0.000000 0.0 \n",
"2015-01-26 21:00:00+00:00 0.163843 0.000000 0.0 \n",
"2015-01-27 21:00:00+00:00 0.166597 0.000000 0.0 \n",
"2015-01-28 21:00:00+00:00 0.167814 0.000000 0.0 \n",
"2015-01-29 21:00:00+00:00 0.167650 0.000000 0.0 \n",
"2015-01-30 21:00:00+00:00 0.168390 0.000000 0.0 \n",
"2015-02-02 21:00:00+00:00 0.170979 0.000000 0.0 \n",
"2015-02-03 21:00:00+00:00 0.174661 0.000000 0.0 \n",
"2015-02-04 21:00:00+00:00 0.171086 0.000000 0.0 \n",
"2015-02-05 21:00:00+00:00 0.170656 0.000000 0.0 \n",
"2015-02-06 21:00:00+00:00 0.167323 0.000000 0.0 \n",
"2015-02-09 21:00:00+00:00 0.164548 0.000000 0.0 \n",
"2015-02-10 21:00:00+00:00 0.164675 0.000000 0.0 \n",
"2015-02-11 21:00:00+00:00 0.161599 0.000000 0.0 \n",
"2015-02-12 21:00:00+00:00 0.161051 0.000000 0.0 \n",
"2015-02-13 21:00:00+00:00 0.158575 0.000000 0.0 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 0.125812 0.000216 0.0 \n",
"2017-11-17 21:00:00+00:00 0.125740 0.000217 0.0 \n",
"2017-11-20 21:00:00+00:00 0.125656 0.000217 0.0 \n",
"2017-11-21 21:00:00+00:00 0.125622 0.000221 0.0 \n",
"2017-11-22 21:00:00+00:00 0.125538 0.000220 0.0 \n",
"2017-11-24 18:00:00+00:00 0.125458 0.000220 0.0 \n",
"2017-11-27 21:00:00+00:00 0.125373 0.000220 0.0 \n",
"2017-11-28 21:00:00+00:00 0.125419 0.000217 0.0 \n",
"2017-11-29 21:00:00+00:00 0.125334 0.000218 0.0 \n",
"2017-11-30 21:00:00+00:00 0.125345 0.000222 0.0 \n",
"2017-12-01 21:00:00+00:00 0.125268 0.000222 0.0 \n",
"2017-12-04 21:00:00+00:00 0.125186 0.000223 0.0 \n",
"2017-12-05 21:00:00+00:00 0.125123 0.000223 0.0 \n",
"2017-12-06 21:00:00+00:00 0.125038 0.000223 0.0 \n",
"2017-12-07 21:00:00+00:00 0.124964 0.000223 0.0 \n",
"2017-12-08 21:00:00+00:00 0.124915 0.000223 0.0 \n",
"2017-12-11 21:00:00+00:00 0.124840 0.000225 0.0 \n",
"2017-12-12 21:00:00+00:00 0.124758 0.000224 0.0 \n",
"2017-12-13 21:00:00+00:00 0.124675 0.000224 0.0 \n",
"2017-12-14 21:00:00+00:00 0.124618 0.000224 0.0 \n",
"2017-12-15 21:00:00+00:00 0.124545 0.000225 0.0 \n",
"2017-12-18 21:00:00+00:00 0.124510 0.000228 0.0 \n",
"2017-12-19 21:00:00+00:00 0.124451 0.000230 0.0 \n",
"2017-12-20 21:00:00+00:00 0.124369 0.000230 0.0 \n",
"2017-12-21 21:00:00+00:00 0.124289 0.000230 0.0 \n",
"2017-12-22 21:00:00+00:00 0.124207 0.000230 0.0 \n",
"2017-12-26 21:00:00+00:00 0.124128 0.000232 0.0 \n",
"2017-12-27 21:00:00+00:00 0.124045 0.000232 0.0 \n",
"2017-12-28 21:00:00+00:00 0.123966 0.000232 0.0 \n",
"2017-12-29 21:00:00+00:00 0.123907 0.000234 0.0 \n",
"\n",
" ending_cash ending_exposure \\\n",
"2015-01-02 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-05 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-06 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-07 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-08 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-09 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-12 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-13 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-14 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-15 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-16 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-20 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-21 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-22 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-23 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-26 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-27 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-28 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-29 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-01-30 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-02 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-03 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-04 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-05 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-06 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-09 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-10 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-11 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-12 21:00:00+00:00 1.000000e+07 0.0 \n",
"2015-02-13 21:00:00+00:00 1.000000e+07 0.0 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 9.988229e+06 17110.0 \n",
"2017-11-17 21:00:00+00:00 9.988229e+06 17015.0 \n",
"2017-11-20 21:00:00+00:00 9.988229e+06 16998.0 \n",
"2017-11-21 21:00:00+00:00 9.988229e+06 17314.0 \n",
"2017-11-22 21:00:00+00:00 9.988229e+06 17496.0 \n",
"2017-11-24 18:00:00+00:00 9.988229e+06 17497.0 \n",
"2017-11-27 21:00:00+00:00 9.988229e+06 17409.0 \n",
"2017-11-28 21:00:00+00:00 9.988229e+06 17307.0 \n",
"2017-11-29 21:00:00+00:00 9.988229e+06 16948.0 \n",
"2017-11-30 21:00:00+00:00 9.988229e+06 17185.0 \n",
"2017-12-01 21:00:00+00:00 9.988229e+06 17105.0 \n",
"2017-12-04 21:00:00+00:00 9.988229e+06 16980.0 \n",
"2017-12-05 21:00:00+00:00 9.988229e+06 16964.0 \n",
"2017-12-06 21:00:00+00:00 9.988229e+06 16901.0 \n",
"2017-12-07 21:00:00+00:00 9.988229e+06 16945.2 \n",
"2017-12-08 21:00:00+00:00 9.988229e+06 16937.0 \n",
"2017-12-11 21:00:00+00:00 9.988229e+06 17267.0 \n",
"2017-12-12 21:00:00+00:00 9.988229e+06 17170.0 \n",
"2017-12-13 21:00:00+00:00 9.988229e+06 17227.0 \n",
"2017-12-14 21:00:00+00:00 9.988229e+06 17222.0 \n",
"2017-12-15 21:00:00+00:00 9.988229e+06 17387.0 \n",
"2017-12-18 21:00:00+00:00 9.988229e+06 17642.0 \n",
"2017-12-19 21:00:00+00:00 9.988229e+06 17454.0 \n",
"2017-12-20 21:00:00+00:00 9.988229e+06 17435.0 \n",
"2017-12-21 21:00:00+00:00 9.988229e+06 17501.0 \n",
"2017-12-22 21:00:00+00:00 9.988229e+06 17501.0 \n",
"2017-12-26 21:00:00+00:00 9.988229e+06 17057.0 \n",
"2017-12-27 21:00:00+00:00 9.988229e+06 17060.0 \n",
"2017-12-28 21:00:00+00:00 9.988229e+06 17108.0 \n",
"2017-12-29 21:00:00+00:00 9.988229e+06 16923.0 \n",
"\n",
" ... short_mavg short_value \\\n",
"2015-01-02 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-05 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-06 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-07 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-08 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-09 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-12 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-13 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-14 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-15 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-16 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-20 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-21 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-22 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-23 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-26 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-27 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-28 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-29 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-30 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-02 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-03 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-04 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-05 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-06 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-09 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-10 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-11 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-12 21:00:00+00:00 ... NaN 0.0 \n",
"2015-02-13 21:00:00+00:00 ... NaN 0.0 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 ... 157.284780 0.0 \n",
"2017-11-17 21:00:00+00:00 ... 157.533680 0.0 \n",
"2017-11-20 21:00:00+00:00 ... 157.802300 0.0 \n",
"2017-11-21 21:00:00+00:00 ... 158.099130 0.0 \n",
"2017-11-22 21:00:00+00:00 ... 158.419340 0.0 \n",
"2017-11-24 18:00:00+00:00 ... 158.733780 0.0 \n",
"2017-11-27 21:00:00+00:00 ... 159.052960 0.0 \n",
"2017-11-28 21:00:00+00:00 ... 159.347500 0.0 \n",
"2017-11-29 21:00:00+00:00 ... 159.597370 0.0 \n",
"2017-11-30 21:00:00+00:00 ... 159.866260 0.0 \n",
"2017-12-01 21:00:00+00:00 ... 160.125060 0.0 \n",
"2017-12-04 21:00:00+00:00 ... 160.351140 0.0 \n",
"2017-12-05 21:00:00+00:00 ... 160.562970 0.0 \n",
"2017-12-06 21:00:00+00:00 ... 160.763320 0.0 \n",
"2017-12-07 21:00:00+00:00 ... 160.962910 0.0 \n",
"2017-12-08 21:00:00+00:00 ... 161.152320 0.0 \n",
"2017-12-11 21:00:00+00:00 ... 161.381500 0.0 \n",
"2017-12-12 21:00:00+00:00 ... 161.601680 0.0 \n",
"2017-12-13 21:00:00+00:00 ... 161.809430 0.0 \n",
"2017-12-14 21:00:00+00:00 ... 162.010200 0.0 \n",
"2017-12-15 21:00:00+00:00 ... 162.220300 0.0 \n",
"2017-12-18 21:00:00+00:00 ... 162.484790 0.0 \n",
"2017-12-19 21:00:00+00:00 ... 162.741040 0.0 \n",
"2017-12-20 21:00:00+00:00 ... 163.001860 0.0 \n",
"2017-12-21 21:00:00+00:00 ... 163.257330 0.0 \n",
"2017-12-22 21:00:00+00:00 ... 163.442180 0.0 \n",
"2017-12-26 21:00:00+00:00 ... 163.598270 0.0 \n",
"2017-12-27 21:00:00+00:00 ... 163.746493 0.0 \n",
"2017-12-28 21:00:00+00:00 ... 163.899510 0.0 \n",
"2017-12-29 21:00:00+00:00 ... 163.997270 0.0 \n",
"\n",
" shorts_count sortino starting_cash \\\n",
"2015-01-02 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-05 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-06 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-07 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-08 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-09 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-12 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-13 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-14 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-15 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-16 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-20 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-21 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-22 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-23 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-26 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-27 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-28 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-29 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-01-30 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-02 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-03 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-04 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-05 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-06 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-09 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-10 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-11 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-12 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"2015-02-13 21:00:00+00:00 0 NaN 1.000000e+07 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 0 1.879972 9.988229e+06 \n",
"2017-11-17 21:00:00+00:00 0 1.842296 9.988229e+06 \n",
"2017-11-20 21:00:00+00:00 0 1.834970 9.988229e+06 \n",
"2017-11-21 21:00:00+00:00 0 1.944532 9.988229e+06 \n",
"2017-11-22 21:00:00+00:00 0 2.006981 9.988229e+06 \n",
"2017-11-24 18:00:00+00:00 0 2.005958 9.988229e+06 \n",
"2017-11-27 21:00:00+00:00 0 1.971077 9.988229e+06 \n",
"2017-11-28 21:00:00+00:00 0 1.930550 9.988229e+06 \n",
"2017-11-29 21:00:00+00:00 0 1.764426 9.988229e+06 \n",
"2017-11-30 21:00:00+00:00 0 1.843918 9.988229e+06 \n",
"2017-12-01 21:00:00+00:00 0 1.813485 9.988229e+06 \n",
"2017-12-04 21:00:00+00:00 0 1.765153 9.988229e+06 \n",
"2017-12-05 21:00:00+00:00 0 1.758465 9.988229e+06 \n",
"2017-12-06 21:00:00+00:00 0 1.734808 9.988229e+06 \n",
"2017-12-07 21:00:00+00:00 0 1.748567 9.988229e+06 \n",
"2017-12-08 21:00:00+00:00 0 1.744599 9.988229e+06 \n",
"2017-12-11 21:00:00+00:00 0 1.854754 9.988229e+06 \n",
"2017-12-12 21:00:00+00:00 0 1.817940 9.988229e+06 \n",
"2017-12-13 21:00:00+00:00 0 1.835892 9.988229e+06 \n",
"2017-12-14 21:00:00+00:00 0 1.832971 9.988229e+06 \n",
"2017-12-15 21:00:00+00:00 0 1.887169 9.988229e+06 \n",
"2017-12-18 21:00:00+00:00 0 1.971507 9.988229e+06 \n",
"2017-12-19 21:00:00+00:00 0 1.895963 9.988229e+06 \n",
"2017-12-20 21:00:00+00:00 0 1.888252 9.988229e+06 \n",
"2017-12-21 21:00:00+00:00 0 1.908974 9.988229e+06 \n",
"2017-12-22 21:00:00+00:00 0 1.907702 9.988229e+06 \n",
"2017-12-26 21:00:00+00:00 0 1.704187 9.988229e+06 \n",
"2017-12-27 21:00:00+00:00 0 1.704022 9.988229e+06 \n",
"2017-12-28 21:00:00+00:00 0 1.718340 9.988229e+06 \n",
"2017-12-29 21:00:00+00:00 0 1.648975 9.988229e+06 \n",
"\n",
" starting_exposure starting_value trading_days \\\n",
"2015-01-02 21:00:00+00:00 0.0 0.0 1 \n",
"2015-01-05 21:00:00+00:00 0.0 0.0 2 \n",
"2015-01-06 21:00:00+00:00 0.0 0.0 3 \n",
"2015-01-07 21:00:00+00:00 0.0 0.0 4 \n",
"2015-01-08 21:00:00+00:00 0.0 0.0 5 \n",
"2015-01-09 21:00:00+00:00 0.0 0.0 6 \n",
"2015-01-12 21:00:00+00:00 0.0 0.0 7 \n",
"2015-01-13 21:00:00+00:00 0.0 0.0 8 \n",
"2015-01-14 21:00:00+00:00 0.0 0.0 9 \n",
"2015-01-15 21:00:00+00:00 0.0 0.0 10 \n",
"2015-01-16 21:00:00+00:00 0.0 0.0 11 \n",
"2015-01-20 21:00:00+00:00 0.0 0.0 12 \n",
"2015-01-21 21:00:00+00:00 0.0 0.0 13 \n",
"2015-01-22 21:00:00+00:00 0.0 0.0 14 \n",
"2015-01-23 21:00:00+00:00 0.0 0.0 15 \n",
"2015-01-26 21:00:00+00:00 0.0 0.0 16 \n",
"2015-01-27 21:00:00+00:00 0.0 0.0 17 \n",
"2015-01-28 21:00:00+00:00 0.0 0.0 18 \n",
"2015-01-29 21:00:00+00:00 0.0 0.0 19 \n",
"2015-01-30 21:00:00+00:00 0.0 0.0 20 \n",
"2015-02-02 21:00:00+00:00 0.0 0.0 21 \n",
"2015-02-03 21:00:00+00:00 0.0 0.0 22 \n",
"2015-02-04 21:00:00+00:00 0.0 0.0 23 \n",
"2015-02-05 21:00:00+00:00 0.0 0.0 24 \n",
"2015-02-06 21:00:00+00:00 0.0 0.0 25 \n",
"2015-02-09 21:00:00+00:00 0.0 0.0 26 \n",
"2015-02-10 21:00:00+00:00 0.0 0.0 27 \n",
"2015-02-11 21:00:00+00:00 0.0 0.0 28 \n",
"2015-02-12 21:00:00+00:00 0.0 0.0 29 \n",
"2015-02-13 21:00:00+00:00 0.0 0.0 30 \n",
"... ... ... ... \n",
"2017-11-16 21:00:00+00:00 16908.0 16908.0 726 \n",
"2017-11-17 21:00:00+00:00 17110.0 17110.0 727 \n",
"2017-11-20 21:00:00+00:00 17015.0 17015.0 728 \n",
"2017-11-21 21:00:00+00:00 16998.0 16998.0 729 \n",
"2017-11-22 21:00:00+00:00 17314.0 17314.0 730 \n",
"2017-11-24 18:00:00+00:00 17496.0 17496.0 731 \n",
"2017-11-27 21:00:00+00:00 17497.0 17497.0 732 \n",
"2017-11-28 21:00:00+00:00 17409.0 17409.0 733 \n",
"2017-11-29 21:00:00+00:00 17307.0 17307.0 734 \n",
"2017-11-30 21:00:00+00:00 16948.0 16948.0 735 \n",
"2017-12-01 21:00:00+00:00 17185.0 17185.0 736 \n",
"2017-12-04 21:00:00+00:00 17105.0 17105.0 737 \n",
"2017-12-05 21:00:00+00:00 16980.0 16980.0 738 \n",
"2017-12-06 21:00:00+00:00 16964.0 16964.0 739 \n",
"2017-12-07 21:00:00+00:00 16901.0 16901.0 740 \n",
"2017-12-08 21:00:00+00:00 16945.2 16945.2 741 \n",
"2017-12-11 21:00:00+00:00 16937.0 16937.0 742 \n",
"2017-12-12 21:00:00+00:00 17267.0 17267.0 743 \n",
"2017-12-13 21:00:00+00:00 17170.0 17170.0 744 \n",
"2017-12-14 21:00:00+00:00 17227.0 17227.0 745 \n",
"2017-12-15 21:00:00+00:00 17222.0 17222.0 746 \n",
"2017-12-18 21:00:00+00:00 17387.0 17387.0 747 \n",
"2017-12-19 21:00:00+00:00 17642.0 17642.0 748 \n",
"2017-12-20 21:00:00+00:00 17454.0 17454.0 749 \n",
"2017-12-21 21:00:00+00:00 17435.0 17435.0 750 \n",
"2017-12-22 21:00:00+00:00 17501.0 17501.0 751 \n",
"2017-12-26 21:00:00+00:00 17501.0 17501.0 752 \n",
"2017-12-27 21:00:00+00:00 17057.0 17057.0 753 \n",
"2017-12-28 21:00:00+00:00 17060.0 17060.0 754 \n",
"2017-12-29 21:00:00+00:00 17108.0 17108.0 755 \n",
"\n",
" transactions treasury_period_return \n",
"2015-01-02 21:00:00+00:00 [] 0.0 \n",
"2015-01-05 21:00:00+00:00 [] 0.0 \n",
"2015-01-06 21:00:00+00:00 [] 0.0 \n",
"2015-01-07 21:00:00+00:00 [] 0.0 \n",
"2015-01-08 21:00:00+00:00 [] 0.0 \n",
"2015-01-09 21:00:00+00:00 [] 0.0 \n",
"2015-01-12 21:00:00+00:00 [] 0.0 \n",
"2015-01-13 21:00:00+00:00 [] 0.0 \n",
"2015-01-14 21:00:00+00:00 [] 0.0 \n",
"2015-01-15 21:00:00+00:00 [] 0.0 \n",
"2015-01-16 21:00:00+00:00 [] 0.0 \n",
"2015-01-20 21:00:00+00:00 [] 0.0 \n",
"2015-01-21 21:00:00+00:00 [] 0.0 \n",
"2015-01-22 21:00:00+00:00 [] 0.0 \n",
"2015-01-23 21:00:00+00:00 [] 0.0 \n",
"2015-01-26 21:00:00+00:00 [] 0.0 \n",
"2015-01-27 21:00:00+00:00 [] 0.0 \n",
"2015-01-28 21:00:00+00:00 [] 0.0 \n",
"2015-01-29 21:00:00+00:00 [] 0.0 \n",
"2015-01-30 21:00:00+00:00 [] 0.0 \n",
"2015-02-02 21:00:00+00:00 [] 0.0 \n",
"2015-02-03 21:00:00+00:00 [] 0.0 \n",
"2015-02-04 21:00:00+00:00 [] 0.0 \n",
"2015-02-05 21:00:00+00:00 [] 0.0 \n",
"2015-02-06 21:00:00+00:00 [] 0.0 \n",
"2015-02-09 21:00:00+00:00 [] 0.0 \n",
"2015-02-10 21:00:00+00:00 [] 0.0 \n",
"2015-02-11 21:00:00+00:00 [] 0.0 \n",
"2015-02-12 21:00:00+00:00 [] 0.0 \n",
"2015-02-13 21:00:00+00:00 [] 0.0 \n",
"... ... ... \n",
"2017-11-16 21:00:00+00:00 [] 0.0 \n",
"2017-11-17 21:00:00+00:00 [] 0.0 \n",
"2017-11-20 21:00:00+00:00 [] 0.0 \n",
"2017-11-21 21:00:00+00:00 [] 0.0 \n",
"2017-11-22 21:00:00+00:00 [] 0.0 \n",
"2017-11-24 18:00:00+00:00 [] 0.0 \n",
"2017-11-27 21:00:00+00:00 [] 0.0 \n",
"2017-11-28 21:00:00+00:00 [] 0.0 \n",
"2017-11-29 21:00:00+00:00 [] 0.0 \n",
"2017-11-30 21:00:00+00:00 [] 0.0 \n",
"2017-12-01 21:00:00+00:00 [] 0.0 \n",
"2017-12-04 21:00:00+00:00 [] 0.0 \n",
"2017-12-05 21:00:00+00:00 [] 0.0 \n",
"2017-12-06 21:00:00+00:00 [] 0.0 \n",
"2017-12-07 21:00:00+00:00 [] 0.0 \n",
"2017-12-08 21:00:00+00:00 [] 0.0 \n",
"2017-12-11 21:00:00+00:00 [] 0.0 \n",
"2017-12-12 21:00:00+00:00 [] 0.0 \n",
"2017-12-13 21:00:00+00:00 [] 0.0 \n",
"2017-12-14 21:00:00+00:00 [] 0.0 \n",
"2017-12-15 21:00:00+00:00 [] 0.0 \n",
"2017-12-18 21:00:00+00:00 [] 0.0 \n",
"2017-12-19 21:00:00+00:00 [] 0.0 \n",
"2017-12-20 21:00:00+00:00 [] 0.0 \n",
"2017-12-21 21:00:00+00:00 [] 0.0 \n",
"2017-12-22 21:00:00+00:00 [] 0.0 \n",
"2017-12-26 21:00:00+00:00 [] 0.0 \n",
"2017-12-27 21:00:00+00:00 [] 0.0 \n",
"2017-12-28 21:00:00+00:00 [] 0.0 \n",
"2017-12-29 21:00:00+00:00 [] 0.0 \n",
"\n",
"[755 rows x 40 columns]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%zipline --start 2015-1-1 --end 2018-1-1 -o dma.pickle\n",
"\n",
"from zipline.api import order_target, record, symbol\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def initialize(context):\n",
" context.i = 0\n",
" context.asset = symbol('AAPL')\n",
"\n",
"\n",
"def handle_data(context, data):\n",
" # Skip first 300 days to get full windows\n",
" context.i += 1\n",
" if context.i < 300:\n",
" record(AAPL=data.current(context.asset, 'price'))\n",
" order_target(context.asset, 0)\n",
" return\n",
"\n",
" # Compute averages\n",
" # data.history() has to be called with the same params from above and returns a pandas dataframe.\n",
" short_mavg = data.history(context.asset, 'price', bar_count=100, frequency=\"1d\").mean()\n",
" long_mavg = data.history(context.asset, 'price', bar_count=300, frequency=\"1d\").mean()\n",
"\n",
" # Trading logic\n",
" if short_mavg > long_mavg:\n",
" # order_target will place order for as many shares as needed to reach target quantity\n",
" order_target(context.asset, 100)\n",
" elif short_mavg < long_mavg:\n",
" order_target(context.asset, 0)\n",
"\n",
" # Save values for later inspection\n",
" record(AAPL=data.current(context.asset, 'price'),\n",
" short_mavg=short_mavg,\n",
" long_mavg=long_mavg)\n",
"\n",
"\n",
"def analyze(context, perf):\n",
" fig = plt.figure()\n",
" ax1 = fig.add_subplot(211)\n",
" perf.portfolio_value.plot(ax=ax1)\n",
" ax1.set_ylabel('portfolio value in $')\n",
"\n",
" ax2 = fig.add_subplot(212)\n",
" perf['AAPL'].plot(ax=ax2)\n",
" perf[['short_mavg', 'long_mavg']].plot(ax=ax2)\n",
"\n",
" perf_trans = perf.ix[[t != [] for t in perf.transactions]]\n",
" buys = perf_trans.ix[[t[0]['amount'] > 0 for t in perf_trans.transactions]]\n",
" sells = perf_trans.ix[\n",
" [t[0]['amount'] < 0 for t in perf_trans.transactions]]\n",
" ax2.plot(buys.index, perf.short_mavg.ix[buys.index],\n",
" '^', markersize=10, color='m')\n",
" ax2.plot(sells.index, perf.short_mavg.ix[sells.index],\n",
" 'v', markersize=10, color='k')\n",
" ax2.set_ylabel('price in $')\n",
" plt.legend(loc=0)\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"results = _"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AAPL</th>\n",
" <th>algo_volatility</th>\n",
" <th>algorithm_period_return</th>\n",
" <th>alpha</th>\n",
" <th>benchmark_period_return</th>\n",
" <th>benchmark_volatility</th>\n",
" <th>beta</th>\n",
" <th>capital_used</th>\n",
" <th>ending_cash</th>\n",
" <th>ending_exposure</th>\n",
" <th>...</th>\n",
" <th>short_mavg</th>\n",
" <th>short_value</th>\n",
" <th>shorts_count</th>\n",
" <th>sortino</th>\n",
" <th>starting_cash</th>\n",
" <th>starting_exposure</th>\n",
" <th>starting_value</th>\n",
" <th>trading_days</th>\n",
" <th>transactions</th>\n",
" <th>treasury_period_return</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2015-01-02 21:00:00+00:00</th>\n",
" <td>109.33</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>-0.000535</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-05 21:00:00+00:00</th>\n",
" <td>106.25</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.018585</td>\n",
" <td>0.196712</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>2</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-06 21:00:00+00:00</th>\n",
" <td>106.26</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.027829</td>\n",
" <td>0.139101</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-07 21:00:00+00:00</th>\n",
" <td>107.75</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>-0.015715</td>\n",
" <td>0.206972</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015-01-08 21:00:00+00:00</th>\n",
" <td>111.89</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.001751</td>\n",
" <td>0.236040</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>10000000.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>5</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 40 columns</p>\n",
"</div>"
],
"text/plain": [
" AAPL algo_volatility algorithm_period_return \\\n",
"2015-01-02 21:00:00+00:00 109.33 NaN 0.0 \n",
"2015-01-05 21:00:00+00:00 106.25 0.0 0.0 \n",
"2015-01-06 21:00:00+00:00 106.26 0.0 0.0 \n",
"2015-01-07 21:00:00+00:00 107.75 0.0 0.0 \n",
"2015-01-08 21:00:00+00:00 111.89 0.0 0.0 \n",
"\n",
" alpha benchmark_period_return \\\n",
"2015-01-02 21:00:00+00:00 NaN -0.000535 \n",
"2015-01-05 21:00:00+00:00 0.0 -0.018585 \n",
"2015-01-06 21:00:00+00:00 0.0 -0.027829 \n",
"2015-01-07 21:00:00+00:00 0.0 -0.015715 \n",
"2015-01-08 21:00:00+00:00 0.0 0.001751 \n",
"\n",
" benchmark_volatility beta capital_used \\\n",
"2015-01-02 21:00:00+00:00 NaN NaN 0.0 \n",
"2015-01-05 21:00:00+00:00 0.196712 0.0 0.0 \n",
"2015-01-06 21:00:00+00:00 0.139101 0.0 0.0 \n",
"2015-01-07 21:00:00+00:00 0.206972 0.0 0.0 \n",
"2015-01-08 21:00:00+00:00 0.236040 0.0 0.0 \n",
"\n",
" ending_cash ending_exposure \\\n",
"2015-01-02 21:00:00+00:00 10000000.0 0.0 \n",
"2015-01-05 21:00:00+00:00 10000000.0 0.0 \n",
"2015-01-06 21:00:00+00:00 10000000.0 0.0 \n",
"2015-01-07 21:00:00+00:00 10000000.0 0.0 \n",
"2015-01-08 21:00:00+00:00 10000000.0 0.0 \n",
"\n",
" ... short_mavg short_value \\\n",
"2015-01-02 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-05 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-06 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-07 21:00:00+00:00 ... NaN 0.0 \n",
"2015-01-08 21:00:00+00:00 ... NaN 0.0 \n",
"\n",
" shorts_count sortino starting_cash \\\n",
"2015-01-02 21:00:00+00:00 0 NaN 10000000.0 \n",
"2015-01-05 21:00:00+00:00 0 NaN 10000000.0 \n",
"2015-01-06 21:00:00+00:00 0 NaN 10000000.0 \n",
"2015-01-07 21:00:00+00:00 0 NaN 10000000.0 \n",
"2015-01-08 21:00:00+00:00 0 NaN 10000000.0 \n",
"\n",
" starting_exposure starting_value trading_days \\\n",
"2015-01-02 21:00:00+00:00 0.0 0.0 1 \n",
"2015-01-05 21:00:00+00:00 0.0 0.0 2 \n",
"2015-01-06 21:00:00+00:00 0.0 0.0 3 \n",
"2015-01-07 21:00:00+00:00 0.0 0.0 4 \n",
"2015-01-08 21:00:00+00:00 0.0 0.0 5 \n",
"\n",
" transactions treasury_period_return \n",
"2015-01-02 21:00:00+00:00 [] 0.0 \n",
"2015-01-05 21:00:00+00:00 [] 0.0 \n",
"2015-01-06 21:00:00+00:00 [] 0.0 \n",
"2015-01-07 21:00:00+00:00 [] 0.0 \n",
"2015-01-08 21:00:00+00:00 [] 0.0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AAPL</th>\n",
" <th>algo_volatility</th>\n",
" <th>algorithm_period_return</th>\n",
" <th>alpha</th>\n",
" <th>benchmark_period_return</th>\n",
" <th>benchmark_volatility</th>\n",
" <th>beta</th>\n",
" <th>capital_used</th>\n",
" <th>ending_cash</th>\n",
" <th>ending_exposure</th>\n",
" <th>...</th>\n",
" <th>short_mavg</th>\n",
" <th>short_value</th>\n",
" <th>shorts_count</th>\n",
" <th>sortino</th>\n",
" <th>starting_cash</th>\n",
" <th>starting_exposure</th>\n",
" <th>starting_value</th>\n",
" <th>trading_days</th>\n",
" <th>transactions</th>\n",
" <th>treasury_period_return</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2017-12-22 21:00:00+00:00</th>\n",
" <td>175.01</td>\n",
" <td>0.000161</td>\n",
" <td>0.000573</td>\n",
" <td>0.000170</td>\n",
" <td>0.301498</td>\n",
" <td>0.124207</td>\n",
" <td>0.000230</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>...</td>\n",
" <td>163.442180</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.907702</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>17501.0</td>\n",
" <td>751</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-26 21:00:00+00:00</th>\n",
" <td>170.57</td>\n",
" <td>0.000163</td>\n",
" <td>0.000529</td>\n",
" <td>0.000155</td>\n",
" <td>0.299942</td>\n",
" <td>0.124128</td>\n",
" <td>0.000232</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17057.0</td>\n",
" <td>...</td>\n",
" <td>163.598270</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.704187</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17501.0</td>\n",
" <td>17501.0</td>\n",
" <td>752</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-27 21:00:00+00:00</th>\n",
" <td>170.60</td>\n",
" <td>0.000163</td>\n",
" <td>0.000529</td>\n",
" <td>0.000155</td>\n",
" <td>0.300574</td>\n",
" <td>0.124045</td>\n",
" <td>0.000232</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17060.0</td>\n",
" <td>...</td>\n",
" <td>163.746493</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.704022</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17057.0</td>\n",
" <td>17057.0</td>\n",
" <td>753</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-28 21:00:00+00:00</th>\n",
" <td>171.08</td>\n",
" <td>0.000163</td>\n",
" <td>0.000534</td>\n",
" <td>0.000156</td>\n",
" <td>0.303250</td>\n",
" <td>0.123966</td>\n",
" <td>0.000232</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17108.0</td>\n",
" <td>...</td>\n",
" <td>163.899510</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.718340</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17060.0</td>\n",
" <td>17060.0</td>\n",
" <td>754</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017-12-29 21:00:00+00:00</th>\n",
" <td>169.23</td>\n",
" <td>0.000163</td>\n",
" <td>0.000515</td>\n",
" <td>0.000150</td>\n",
" <td>0.298336</td>\n",
" <td>0.123907</td>\n",
" <td>0.000234</td>\n",
" <td>0.0</td>\n",
" <td>9.988229e+06</td>\n",
" <td>16923.0</td>\n",
" <td>...</td>\n",
" <td>163.997270</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>1.648975</td>\n",
" <td>9.988229e+06</td>\n",
" <td>17108.0</td>\n",
" <td>17108.0</td>\n",
" <td>755</td>\n",
" <td>[]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 40 columns</p>\n",
"</div>"
],
"text/plain": [
" AAPL algo_volatility algorithm_period_return \\\n",
"2017-12-22 21:00:00+00:00 175.01 0.000161 0.000573 \n",
"2017-12-26 21:00:00+00:00 170.57 0.000163 0.000529 \n",
"2017-12-27 21:00:00+00:00 170.60 0.000163 0.000529 \n",
"2017-12-28 21:00:00+00:00 171.08 0.000163 0.000534 \n",
"2017-12-29 21:00:00+00:00 169.23 0.000163 0.000515 \n",
"\n",
" alpha benchmark_period_return \\\n",
"2017-12-22 21:00:00+00:00 0.000170 0.301498 \n",
"2017-12-26 21:00:00+00:00 0.000155 0.299942 \n",
"2017-12-27 21:00:00+00:00 0.000155 0.300574 \n",
"2017-12-28 21:00:00+00:00 0.000156 0.303250 \n",
"2017-12-29 21:00:00+00:00 0.000150 0.298336 \n",
"\n",
" benchmark_volatility beta capital_used \\\n",
"2017-12-22 21:00:00+00:00 0.124207 0.000230 0.0 \n",
"2017-12-26 21:00:00+00:00 0.124128 0.000232 0.0 \n",
"2017-12-27 21:00:00+00:00 0.124045 0.000232 0.0 \n",
"2017-12-28 21:00:00+00:00 0.123966 0.000232 0.0 \n",
"2017-12-29 21:00:00+00:00 0.123907 0.000234 0.0 \n",
"\n",
" ending_cash ending_exposure \\\n",
"2017-12-22 21:00:00+00:00 9.988229e+06 17501.0 \n",
"2017-12-26 21:00:00+00:00 9.988229e+06 17057.0 \n",
"2017-12-27 21:00:00+00:00 9.988229e+06 17060.0 \n",
"2017-12-28 21:00:00+00:00 9.988229e+06 17108.0 \n",
"2017-12-29 21:00:00+00:00 9.988229e+06 16923.0 \n",
"\n",
" ... short_mavg short_value \\\n",
"2017-12-22 21:00:00+00:00 ... 163.442180 0.0 \n",
"2017-12-26 21:00:00+00:00 ... 163.598270 0.0 \n",
"2017-12-27 21:00:00+00:00 ... 163.746493 0.0 \n",
"2017-12-28 21:00:00+00:00 ... 163.899510 0.0 \n",
"2017-12-29 21:00:00+00:00 ... 163.997270 0.0 \n",
"\n",
" shorts_count sortino starting_cash \\\n",
"2017-12-22 21:00:00+00:00 0 1.907702 9.988229e+06 \n",
"2017-12-26 21:00:00+00:00 0 1.704187 9.988229e+06 \n",
"2017-12-27 21:00:00+00:00 0 1.704022 9.988229e+06 \n",
"2017-12-28 21:00:00+00:00 0 1.718340 9.988229e+06 \n",
"2017-12-29 21:00:00+00:00 0 1.648975 9.988229e+06 \n",
"\n",
" starting_exposure starting_value trading_days \\\n",
"2017-12-22 21:00:00+00:00 17501.0 17501.0 751 \n",
"2017-12-26 21:00:00+00:00 17501.0 17501.0 752 \n",
"2017-12-27 21:00:00+00:00 17057.0 17057.0 753 \n",
"2017-12-28 21:00:00+00:00 17060.0 17060.0 754 \n",
"2017-12-29 21:00:00+00:00 17108.0 17108.0 755 \n",
"\n",
" transactions treasury_period_return \n",
"2017-12-22 21:00:00+00:00 [] 0.0 \n",
"2017-12-26 21:00:00+00:00 [] 0.0 \n",
"2017-12-27 21:00:00+00:00 [] 0.0 \n",
"2017-12-28 21:00:00+00:00 [] 0.0 \n",
"2017-12-29 21:00:00+00:00 [] 0.0 \n",
"\n",
"[5 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(results.head())\n",
"display(results.tail())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment