Last active
October 1, 2019 12:55
-
-
Save wrighter/73c0ada3827daff4892eeedcc0c0cc3c to your computer and use it in GitHub Desktop.
Present Value
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"556.8374181775592" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"def present_value(fv, i_rate, n_periods):\n", | |
" return fv / (1 + i_rate) ** n_periods\n", | |
"\n", | |
"present_value(1000, 0.05, 12)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = pd.DataFrame([(1000, 0.05, 12), (1000, 0.07, 12), (1000, 0.09, 12), (500, 0.02, 24)],\n", | |
" columns=['fv', 'i_rate', 'n_periods'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>fv</th>\n", | |
" <th>i_rate</th>\n", | |
" <th>n_periods</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>1000</td>\n", | |
" <td>0.05</td>\n", | |
" <td>12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>1000</td>\n", | |
" <td>0.07</td>\n", | |
" <td>12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>1000</td>\n", | |
" <td>0.09</td>\n", | |
" <td>12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>500</td>\n", | |
" <td>0.02</td>\n", | |
" <td>24</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" fv i_rate n_periods\n", | |
"0 1000 0.05 12\n", | |
"1 1000 0.07 12\n", | |
"2 1000 0.09 12\n", | |
"3 500 0.02 24" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"for (index, row) in df.iterrows():\n", | |
" df.loc[index, 'pv'] = present_value(row.fv, row.i_rate, row.n_periods)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df['pv2'] = df.apply(lambda r: present_value(r['fv'], r['i_rate'], r['n_periods']), axis=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df['pv3'] = df['fv']/(1 + df['i_rate']) ** df['n_periods']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>fv</th>\n", | |
" <th>i_rate</th>\n", | |
" <th>n_periods</th>\n", | |
" <th>pv</th>\n", | |
" <th>pv2</th>\n", | |
" <th>pv3</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>1000</td>\n", | |
" <td>0.05</td>\n", | |
" <td>12</td>\n", | |
" <td>556.837418</td>\n", | |
" <td>556.837418</td>\n", | |
" <td>556.837418</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>1000</td>\n", | |
" <td>0.07</td>\n", | |
" <td>12</td>\n", | |
" <td>444.011959</td>\n", | |
" <td>444.011959</td>\n", | |
" <td>444.011959</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>1000</td>\n", | |
" <td>0.09</td>\n", | |
" <td>12</td>\n", | |
" <td>355.534725</td>\n", | |
" <td>355.534725</td>\n", | |
" <td>355.534725</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>500</td>\n", | |
" <td>0.02</td>\n", | |
" <td>24</td>\n", | |
" <td>310.860744</td>\n", | |
" <td>310.860744</td>\n", | |
" <td>310.860744</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" fv i_rate n_periods pv pv2 pv3\n", | |
"0 1000 0.05 12 556.837418 556.837418 556.837418\n", | |
"1 1000 0.07 12 444.011959 444.011959 444.011959\n", | |
"2 1000 0.09 12 355.534725 355.534725 355.534725\n", | |
"3 500 0.02 24 310.860744 310.860744 310.860744" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.18 ms ± 58.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit df.apply(lambda r: present_value(r['fv'], r['i_rate'], r['n_periods']), axis=1) " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"493 µs ± 45.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit df['fv']/(1 + df['i_rate']) ** df['n_periods'] " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment