Choropleth charts built with the d3.chart framework. choropleth_chart.js
is the chart type definition, which allows for rapid iteration of different quantize-scale domain/range, colors, and projections. The colors are based on color brewer, and you can pass any of the sequential scale abbreviations ('BuGn', 'PuBuGn', etc) to the range
parameter to iterate on colors.
A Leaflet.js map created with Folium and a custom D3 threshold scale, with data bound between the Pandas DataFrame and the TopoJSON. See the Gist for the python code to generate the dataframe. The map was generated with the following Python code:
map_3 = folium.Map(location=[40, -99], zoom_start=4)
map_3.geo_json(geo_path=county_geo, data_out='data3.json', data=df,
columns=['GEO_ID', 'Median_Household_Income_2011'],
key_on='feature.id',
fill_color='PuRd', line_opacity=0.3,
legend_name='Median Household Income 2011 ($)',
topojson='objects.us_counties_20m')
A Leaflet.js map created with Folium and a custom D3 threshold scale, with data bound between the Pandas DataFrame and the TopoJSON. See the Gist for the python code to generate the dataframe. The map was generated with the following Python code:
map_2 = folium.Map(location=[40, -99], zoom_start=4)
map_2.geo_json(geo_path=county_geo, data_out='data2.json', data=df,
columns=['GEO_ID', 'Unemployment_rate_2011'],
key_on='feature.id',
threshold_scale=[0, 5, 7, 9, 11, 13],
fill_color='YlGnBu', line_opacity=0.3,
legend_name='Unemployment Rate 2011 (%)',
A Leaflet.js map created with Folium and the default D3 threshold scale, with data bound between the Pandas DataFrame and the TopoJSON. See the Gist for the python code to generate the dataframe. The map was generated with the following Python code:
map_1 = folium.Map(location=[48, -102], zoom_start=3)
map_1.geo_json(geo_path=county_geo, data_out='data1.json', data=df,
columns=['GEO_ID', 'Employed_2011'],
key_on='feature.id',
fill_color='YlOrRd', fill_opacity=0.7, line_opacity=0.3,
topojson='objects.us_counties_20m')
map_1.create_map(path='map_1.html')
A Leaflet.js map created with Folium and the default D3 threshold scale. See the Gist for the python code to generate the dataframe. The map was generated with the following Python code:
map.geo_json(geo_path=state_geo, data=state_data,
columns=['State', 'Unemployment'],
threshold_scale=[5, 6, 7, 8, 9, 10],
key_on='feature.id',
fill_color='BuPu', fill_opacity=0.7, line_opacity=0.5,
legend_name='Unemployment Rate (%)',
reset=True)
A Leaflet.js map created with Folium and the default D3 threshold scale. See the Gist for the python code to generate the dataframe. The map was generated with the following Python code:
map = folium.Map(location=[48, -102], zoom_start=3)
map.geo_json(geo_path=state_geo, data=state_data,
columns=['State', 'Unemployment'],
key_on='feature.id',
fill_color='YlGn', fill_opacity=0.7, line_opacity=0.2,
legend_name='Unemployment Rate (%)')
map.create_map(path='us_states.html')
A Leaflet.js map created with Folium using both GeoJSON and TopoJSON. The map was generated with the following Python code:
geo_path = r'data/antarctic_ice_edge.json'
topo_path = r'data/antarctic_ice_shelf_topo.json'
ice_map = folium.Map(location=[-59.1759, -11.6016],
tiles='Mapbox Bright', zoom_start=2)
ice_map.geo_json(geo_path=geo_path)
ice_map.geo_json(geo_path=topo_path, topojson='objects.antarctic_ice_shelf')
station_id,latitude (degrees north),longitude (degrees east),date_time,air_temperature (C°),sea_level_pressure (hPa),wind_speed (m/s),gust_speed (m/s),significant_wave_height (m),dominant_wave_period (s),sea_surface_temperature (C°) 2868187,47.34899902,-124.7080002,2013-04-18T00:50:00Z,7.199999809,1032.599976,5,8,1,8,10.10000038 2868187,47.34899902,-124.7080002,2013-04-18T01:50:00Z,6.800000191,1032.300049,4,5,1.100000024,6,10 2868187,47.34899902,-124.7080002,2013-04-18T02:50:00Z,6.900000095,1031.800049,3,4,1.100000024,7,10 2868187,47.34899902,-124.7080002,2013-04-18T03:50:00Z,7,1031.699951,2,3,1,6,9.899999619 2868187,47.34899902,-124.7080002,2013-04-18T04:50:00Z,7.099999905,1031.900024,1,2,0.899999976,8,9.899999619 2868187,47.34899902,-124.7080002,2013-04-18T05:50:00Z,7.199999809,1031.699951,0,1,0.899999976,6,9.800000191 2868187,47.34899902,-124.7080002,2013-04-18T06:50:00Z,7.400000095,1031.400024,3,3,0.899999976,6,9.800000191 2868187,47.34899902,-124.7080002,2013-04-18T07:50:00Z,7.400000095,1031.300049,2,3,0 |
A Leaflet.js map created with Folium. This map was generated with the following Python code:
map_5 = folium.Map(location=[45.5236, -122.6750], zoom_start=13)
map_5.polygon_marker(location=[45.5012, -122.6655], popup='Ross Island Bridge',
fill_color='#132b5e', num_sides=3, radius=10)
map_5.polygon_marker(location=[45.5132, -122.6708], popup='Hawthorne Bridge',
fill_color='#45647d', num_sides=4, radius=10)
map_5.polygon_marker(location=[45.5275, -122.6692], popup='Steel Bridge',
fill_color='#769d96', num_sides=6, radius=10)
A Leaflet.js map created with Folium- click on the map to add markers, double-click to remove them. This map was generated with the following Python code:
map_4 = folium.Map(location=[46.8527, -121.7649], tiles='Stamen Terrain',
zoom_start=13)
map_4.simple_marker(location=[46.8354, -121.7325], popup='Camp Muir')
map_4.click_for_marker(popup='Waypoint')
map_4.create_map(path='mtrainier.html')