Skip to content

Instantly share code, notes, and snippets.

library(treemap)
data <- read.csv('d:/sheet1.csv',T)
tmPlot(data,
index=c("item", "subitem"),
vSize="time1206",
vColor="time1106",
type="comp",
title='苹果公司财务报表可视化',
palette='RdBu')
library(treemap)
data <- read.csv('d:/olympic.csv',T)
tmPlot(data,
index=c("sports", "events"),
vSize="gold",
vColor="china",
type="value",
title='中国奥运金牌分布',
fontsize.labels=13,
lowerbound.cex.labels=0.7,
@xccds
xccds / qq.R
Created December 13, 2012 13:56
# 数据读入
data <- read.csv('qq.csv',T,stringsAsFactors=F)
data <- data[-nrow(data),] # 最后一行有问题,删除
library(stringr)
library(plyr)
library(lubridate)
library(ggplot2)
library(reshape2)
library(igraph)
@xccds
xccds / Survival.R
Created August 2, 2013 08:21
Example of Survival Analysis
# Example from Survival Analysis- A Self-Learning Text, Third Edition
library(survival)
addicts <- read.table('ADDICTS.txt',T)
names(addicts) <- c('id','clinic','status', 'survt','prison','dose')
# 1. 估计生存函数,观察不同组间的区别
# 建立生存对象
Surv(addicts$survt,addicts$status==1)
@xccds
xccds / svd.R
Last active December 25, 2015 16:39
# 原始文件读入
txt <- readLines('txtdm.txt')
ignore = ",|:|!|'"
stopwords = c('and','edition','for','in','little','of','the','to')
txt <- tolower(txt)
# 文档分词
doc <- strsplit(txt,' ')
# 去除常用词和标点
doc <- lapply(doc,function(x)gsub(ignore,'',x))
@xccds
xccds / walk.py
Last active December 30, 2015 02:09
# 加载库
import numpy as np
import pandas as pd
from ggplot import *
# 生成二维随机游走数据
def walk(n):
NS = randint(0,2,size=n)
WE = 1 - NS
xstep = np.random.choice([1,-1],size=n,replace=True) * WE
rem2 <- function (){
library(nlme)
a0 <- 9.9
a1 <- 2
# 对6个人重复测量多次
ni <- c(12, 13, 14, 15, 16, 13)
nyear <- length(ni)
set.seed(205)
# 构造x值
xx <- matrix(rep(0, length=max(ni) * nyear),
# Data generation of Random Intercept and slope model
a0 <- 9.9
a1 <- 2
n <- c(12, 13, 14, 15, 16, 13)
npeople <- length(n)
set.seed(1)
si <- rnorm(npeople, mean = 0, sd = 0.5) # random slope
x <- matrix(rep(0, length = max(n) * npeople),
ncol = npeople)
for (i in 1:npeople){
@xccds
xccds / lme4.R
Last active August 29, 2015 13:56
lme4.R
# 广义混合效应模型
glme <- function (){
library(lme4)
set.seed(820)
ni <- c(12, 13, 14, 15, 16, 13, 11, 17, 13, 16)
ndset <- length(ni)
xx <- matrix(rep(0, length = max(ni) * ndset),
ncol = ndset)
bbi <- rnorm(ndset, mean = 0, sd = 1)
for (ii in 1:ndset){
# 基于《统计模拟和R实现》一书例子
import numpy as np
from numpy import random as rm
import pandas as pd
def simulation(T=4200):
t = 0;nA =0;nD=0;n=0;A=[];D=[];N=[];S=[]
tA = rm.exponential(10,1) # 客来时间
tD = inf # 客走时间
while True: