PCST:
- why I work on PCST
- the road map: PCST->MST->Quota->Budget
- PCST->MST
- MST = Quota
- Quota -> Budget: how the 5-approximation comes?
- that's for undirected case
- incorrectness of the proof on the greedy primal-dual method
- the chapter
| all: btree types.h rule table cyk main | |
| g++-4.7 -std=c++11 *.o -o main | |
| main: main.cpp | |
| g++-4.7 -c -std=c++11 main.cpp | |
| cyk: cyk.cpp | |
| g++-4.7 -c -std=c++11 cyk.cpp | |
| btree: btree.cpp |
| """ | |
| Comparing adagrad, adadelta and constant learning in gradient descent(the seddle point function y^2 - x^2) | |
| Reference: | |
| 1. comparison on several learning rate update scheme: http://ml.memect.com/archive/2014-12-12/short.html#3786866375172817 | |
| 2. Saddle point, http://en.wikipedia.org/wiki/Saddle_point | |
| """ | |
| import numpy as np | |
| import theano |
| # -*- coding: utf-8 -*- | |
| """ | |
| Parser for Stanford Dependency Parser output to parse back the original data structure in Python | |
| The parser link: | |
| http://nlp.stanford.edu/software/nndep.shtml | |
| The visualization can be created by generating .dot file |
PCST:
| CXX=g++ | |
| CPPFLAGS=-std=c++11 -O2 -Wall | |
| ODIR=obj | |
| DEPS=-I boost | |
| %: $(ODIR)/%.o | |
| $(CXX) -o $@ $^ $(CPPFLAGS) | |
| $(ODIR)/%.o: %.cpp $(DEPS) | |
| $(CXX) -c -o $@ $< $(CPPFLAGS) |
| CXX=g++ | |
| CPPFLAGS=-std=c++11 -O2 -Wall | |
| ODIR=obj | |
| DEPS=-I boost | |
| %: $(ODIR)/%.o | |
| $(CXX) -o $@ $^ $(CPPFLAGS) | |
| $(ODIR)/%.o: %.cpp $(DEPS) | |
| $(CXX) -c -o $@ $< $(CPPFLAGS) |
| CXX=g++ | |
| CPPFLAGS=-std=c++11 -O2 -Wall | |
| LINK_OPTS=-shared -Wl,--export-dynamic | |
| COMPILE_OPTS=-fPIC | |
| INCLUDES=-I /usr/include/python3.5/ | |
| LIBS=-L /usr/lib/x86_64-linux-gnu/ -l boost_python-py35 | |
| %.so: %.o | |
| $(CXX) $^ $(CPPFLAGS) $(LINK_OPTS) $(LIBS) -o $@ |
| import tensorflow as tf | |
| checkpoint_file = 'runs/deepwalk/checkpoints/model-25000' | |
| sess = tf.InteractiveSession() | |
| saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) | |
| saver.restore(sess, checkpoint_file) | |
| embedding_table = sess.graph.get_operation_by_name('embedding/table') |