Skip to content

Instantly share code, notes, and snippets.

@xlvecle
Created February 10, 2017 08:15
Show Gist options
  • Save xlvecle/712c77354e0d53f1c9c2365c7a56259f to your computer and use it in GitHub Desktop.
Save xlvecle/712c77354e0d53f1c9c2365c7a56259f to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数据来源\n",
"\n",
"过去将近七百天的连续签到数据\n"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df = pd.read_excel(\"test.xlsx\")\n",
"df1 = df[df[u'类型'] == u\"每日登录奖励\"][[u\"时间\", u\"数额\"]]\n",
"df1[u'时间'] = df1.apply(lambda x: x[u'时间'].split(\" \")[0], axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 平均值,方差,标准差"
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(26.371720116618075, 211.96532269717551, 14.559028906392607)"
]
},
"execution_count": 138,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset.mean(),dataset.var(),dataset.std()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"dataset = df1[u'数额'].values\n",
"total_size = len(dataset)\n",
"dict_count = {}\n",
"dict_prob = {}\n",
"def action(x):\n",
" dict_count[x] = dict_count.get(x, 0) + 1\n",
" dict_prob[x] = dict_count[x] * 1.0 / total_size\n",
"map(action, dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 统计散点图\n",
"``横轴是签到得到的数额,纵轴是出现次数``"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7fb4597e06d0>"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEw9JREFUeJzt3X+MHGd9x/H313HcLKU2Cb3EEgm7IFQcoZrEUqFV/uCs\n1hBaqdCqorRVBaitiERL1FYVCfxht+pf/SMoUmVVFZcoQvXhQluSoAYSFF8rKgGGxJxJ4pRWrBso\nsbc/aIlkkTR++seO48v5fDf7Y3Zmnn2/pFV253Z3vs+T2Y/Gz8wzEyklJEntt63uAiRJ02GgS1Im\nDHRJyoSBLkmZMNAlKRMGuiRlYstAj4jrI+LRiHgiIk5GxO8Vyw9GxHci4rHicWv15UqSLie2Og89\nInYDu1NKJyLilcDXgXcBvwr8IKV0V/VlSpK2sn2rN6SUngWeLZ4/FxFPAa8p/hwV1iZJGsFIY+gR\n0QNuAr5SLPrdiDgREZ+IiF1Trk2SNILSgV4Mt3wGuD2l9BxwGHh9SukmhnvwDr1IUo22HEMHiIjt\nwOeAh1JKd2/w9y7wYEpp7wZ/82IxkjSGlNJIw9pl99DvAZ5cG+bFwdILfhn45iZFtfZx8ODB2muY\n1/rbXLv11/9oe/3j2PKgaETcAvwGcDIiHgcS8FHg1yPiJuA80Ac+OFYFkqSpKHOWyz8BV2zwp89P\nvxxJ0ricKbqFxcXFukuYSJvrb3PtYP11a3v94yh1UHSiFUSkqtchSbmJCFJFB0UlSQ1noEtSJgx0\nScqEgS5JmTDQJSkTBrokZcJAl6RMGOiSlAkDXZIyYaBLUiYMdEnKhIEuSZkw0CUpEwa6JGXCQJek\nTBjokpQJA12SMmGgS1ImDHRJyoSBLkmZMNAlKRMGuiRlwkCXpEwY6JKUCQNdUimDwYDjx48zGAzq\nLkWXYaBL2tLy8lG63T0cOHAb3e4elpeP1l2SNhAppWpXEJGqXoek6gwGA7rdPZw7dwzYC6zS6ezn\n9OlTLCws1F1etiKClFKM8hn30CVtqt/vs2NHj2GYA+zlyiu79Pv9+orShgx0SZvq9Xo8/3wfWC2W\nrPLCC6fp9Xr1FaUNGeiSNrWwsMDS0mE6nf3s3LmPTmc/S0uHHW5pIMfQJZUyGAzo9/v0ej3DfAbG\nGUM30CWpgTwoKklzzECXpEwY6JKUCQNdkjJhoEtSJgx0ScqEgS5JmTDQJSkTBrokZcJAl6RMGOiS\nlAkDXZIyYaBLUia2DPSIuD4iHo2IJyLiZER8uFh+dUQ8HBFPR8QXImJX9eVKki5ny8vnRsRuYHdK\n6UREvBL4OvAu4APAf6aU/iwiPgJcnVK6Y4PPe/lcSRpRJZfPTSk9m1I6UTx/DngKuJ5hqN9XvO0+\n4N2jlStJmqaRxtAjogfcBHwZuC6ldAaGoQ9cO+3iJEnlbS/7xmK45TPA7Sml5yJi/TjKZcdVDh06\n9NLzxcVFFhcXR6tSkjK3srLCysrKRN9R6hZ0EbEd+BzwUErp7mLZU8BiSulMMc5+LKV04wafdQxd\nkkZU5S3o7gGevBDmhQeA9xfP3wfcP8qKJUnTVeYsl1uAfwROMhxWScBHga8Cfw3cAJwG3pNS+v4G\nn3cPXZJGNM4eeqkhl0kY6JI0uiqHXCRJDWegS1ImDHRJyoSBLkmZMNBVqcFgwPHjxxkMBnWXoky5\njV1koKsyy8tH6Xb3cODAbXS7e1hePlp3ScqM29jLedqiKjEYDOh293Du3DFgL7BKp7Of06dPsbCw\nUHd5ykDu25inLaox+v0+O3b0GP7QAPZy5ZVd+v1+fUUpK25jlzLQVYler8fzz/eB1WLJKi+8cJpe\nr1dfUcqK29ilDHRVYmFhgaWlw3Q6+9m5cx+dzn6Wlg5n8U9hNYPb2KUcQ1elBoMB/X6fXq831z80\nVSfXbcxruUhSJjwoKklzzECXpEwY6JKUCQM9E7lNf86tPZBnm9QsBnoGcpv+nFt7IM82qXk8y6Xl\ncpv+nFt7IM82qXqe5TKHcpv+nFt7IM82qZkM9JbLbfpzbu2BPNukZjLQWy636c+5tQfybJOayTH0\nTOQ2/Tm39kCebVJ1nPovSZnwoKgkzTEDXZIyYaBLUiYMdGlEbZ/C3/b6y5iHNm7EQJdG0PYp/G2v\nv4x5aOPleJaLVFLbp/C3vf4ycmqjZ7lIFWr7FP6211/GPLRxMwa6VFLbp/C3vf4y5qGNmzHQpZLa\nPoW/7fWXMQ9t3Ixj6NKI2j6Fv+31l5FDG536L0mZ8KCoJM0xA12SMmGgS1ImDPQKzOu0Y13U9m1g\n3Prb3u62M9CnbJ6nHWuo7dvAuPW3vd058CyXKcpp2rHG0/ZtYNz6297uJvIsl5rN+7RjtX8bGLf+\ntrc7Fwb6FM37tGO1fxsYt/62tzsXBvoUzfu0Y7V/Gxi3/ra3OxeOoVcgh2nHmkzbt4Fx6297u5vE\nqf+SlAkPikrSHDPQJSkTWwZ6RCxFxJmIWF2z7GBEfCciHiset1ZbpiRpK2X20O8F3rHB8rtSSvuK\nx+enXFdjzXpq8yTrcxr25ZXtmzLva3s/u41lJKW05QPoAqtrXh8E/rDkZ1Mujhz5VOp0rkm7du1L\nnc416ciRTzV2fbOutU3K9k2Z97W9n93GmqvIzlIZfeExSaB/GzgBfALYtclnZ9H2yp09ezZ1Otck\n+EaClOAbqdO5Jp09e7Zx65t1rW1Stm/KvK/t/ew21mzjBPr2MXfsDwN/klJKEfGnwF3Ab13uzYcO\nHXrp+eLiIouLi2Outj4XpjafO3fp1OYqzredZH2zrrVNyvZNmfe1vZ/dxpplZWWFlZWVyb6kTOqz\nbg+97N+Se+i1rM+9p8tzD/0it7Fmo8Ihlx5wcs3r3Wue/z5wZJPPVt/yGbkwZrhz580zHUMfZ32z\nrrVNyvZNmfe1vZ/dxpprnEDfcqZoRBwBFoFXA2cYjp/vB24CzgN94IMppTOX+Xzaah1tMuupzZOs\nz2nYl1e2b8q8r+397DbWTE79l6RMOPVfkuaYgS5JmTDQJSkTBvqEnPo8O/b1RW3vi43qb3ubGmHU\n02JGfZDRaYvrOfV5duzri9reFxvV3/Y2VYEqTlucVK5nuXiX89mxry9qe19sVP9VV72NiG2tbVNV\nPMtlhrzL+ezY1xe1vS82qv+KK65l27YbaGubmsRAH5N3OZ8d+/qitvfFRvW/+OJZzp9/hra2qUkM\n9DF5l/PZsa8vantfbFT/Pff8Ravb1CSOoU/Iqc+zY19f1Pa+2Kj+trdp2pz6L0mZ8KCoJM0xA12S\nMmGgS1ImDHRJyoSBrkvUcU2NqtfZ1OuElKmrbO1NbaNmaNRrBYz6IONrueSojmtqVL3Opl4npExd\nZWtvahs1Pqq6p+gkDwO9Peq48W/V62zqzYyneRPqprZRkxkn0B1y0UvquE5I1ets6rVPytRVtvam\ntlGzZ6DrJXVcJ6TqdTb12idl6ipbe1PbqBqMuks/6gOHXFrlwljszp03z3wMvap11tGmMsrUVbb2\nprZR48ProWsa6rimRtXrbOp1QsrUVbb2prZR4/FaLpKUCa/lIklzzECXpEwY6JKUCQO9Rk7V1jyY\nZDv3NzIaA70my8tH6Xb3cODAbXS7e1hePlp3SdLUTbKd+xsZnWe51GAwGNDt7uHcuWMMZ/et0uns\n5/TpU55upmxMsp37G/Esl9ZwqrbmwSTbub+R8RjoNXCqtubBJNu5v5HxGOg1WFhYYGnpMJ3Ofnbu\n3Eens5+lpcNz809JzYdJtnN/I+NxDL1GTtXWPJhkO5/n34hT/yUpEx4UlaQ5ZqBLUiYMdEnKhIE+\nI/Nwd/c66t/ou5raP2VV3T9tllt7pm7UO2KM+sA7Fs3F3d3rqH+j72pq/5RVdf+0WW7t2Qpj3LHI\nQK/YPNzdvY76N/quq656VSP7p6yq+6dNfbFebu0pY5xAd8ilYvNwd/c66t/ou6644lq2bbthKt9f\nh6r7p019sV5u7amKgV6xebi7ex31b/RdL754lvPnn5nK99eh6v5pU1+sl1t7KjPqLv2oD+Z8yCWl\n+bi7ex31b/RdTe2fsqrunzbLrT1bYYwhF2eKzsg83N29jvo3+q6m9k9ZVfdPm+XWns049V+SMuHU\nf0maYwa6JGViy0CPiKWIOBMRq2uWXR0RD0fE0xHxhYjYVW2ZkqStlNlDvxd4x7pldwBfTCm9EXgU\nuHPahWn6vPu6lLctAz2l9CXgv9ctfhdwX/H8PuDdU65LU+bd16X8lTrLJSK6wIMppb3F6/9KKV2z\n5u8ve73us57lUjPvvi61zzhnuWyf0ro3TexDhw699HxxcZHFxcUprVZlXJg2fe7cpdOmtwrlST4r\nqbyVlRVWVlYm+o5x99CfAhZTSmciYjdwLKV042U+6x56zdxDl9qnyvPQo3hc8ADw/uL5+4D7R1mp\nZsu7r0vzYcs99Ig4AiwCrwbOAAeBzwKfBm4ATgPvSSl9/zKfdw+9Ibz7utQeTv2XpEw49V+S5piB\nLkmZMNAlKRMGulTw8gZqOwNdwssbKA+e5aK55+QpNZFnuUhj8I7yyoWBrrnnHeWVCwNdc8/LGygX\njqFLBS9voCZx6r8kZcKDopI0xwx0ScqEgS5JmTDQ55zT3aV8GOhzzOnuUl48y2VOOd1dajbPclFp\nTneX8mOgzymnu0v5MdDnlNPdpfw4hj7nnO4uNZNT/yUpEx4UlaQ5ZqBLUiYMdEnKhIEuSZkw0CUp\nEwa6JGXCQJekTBjokpQJA12SMmGgS1ImDHRJyoSBLkmZMNAlKRMGuiRlwkCXpEwY6BrbYDDg+PHj\nDAaDukuRhIGuMS0vH6Xb3cOBA7fR7e5heflo3SVJc887Fmlkg8GAbncP584dA/YCq3Q6+zl9+pS3\nsZOmxDsWaSb6/T47dvQYhjnAXq68sku/36+vKEkGukbX6/V4/vk+sFosWeWFF07T6/XqK0qSga7R\nLSwssLR0mE5nPzt37qPT2c/S0mGHW6SaOYausQ0GA/r9Pr1ezzCXpmycMXQDXZIayIOikjTHtk/y\n4YjoA/8DnAdeSCm9ZRpFSZJGN+ke+nlgMaV0c65hvrKyUncJE2lz/W2uHay/bm2vfxyTBnpM4Tsa\nre0bRZvrb3PtYP11a3v945g0jBPwSEQcj4jfmUZBkqTxTDSGDtySUvpeRCwwDPanUkpfmkZhkqTR\nTO20xYg4CPwgpXTXuuWesyhJYxj1tMWx99Aj4hXAtpTScxHxo8DbgT+etCBJ0ngmGXK5Dvi7Yg98\nO/BXKaWHp1OWJGlUlc8UlSTNRiWnHEbEr0TENyPixYjYt+5vd0bEtyLiqYh4exXrn4aIuDUiTkXE\nP0fER+quZysRsRQRZyJidc2yqyPi4Yh4OiK+EBG76qxxMxFxfUQ8GhFPRMTJiPhwsbwVbYiIH4mI\nr0TE40X9B4vlragfICK2RcRjEfFA8bpNtfcj4htF/3+1WNam+ndFxKeLXHwiIt46Tv1VnUN+Evgl\n4B/WFX0j8B7gRuCdwOGIaNwYe0RsA/4ceAfwJuDXImJPvVVt6V6G9a51B/DFlNIbgUeBO2deVXn/\nB/xBSulNwM8AHyr6vBVtSCn9ENifUroZuAl4Z0S8hZbUX7gdeHLN6zbVvtEkxzbVfzfw9ymlG4E3\nA6cYp/6UUmUP4Biwb83rO4CPrHn9EPDWKmsYs+6fBh66XN1NfQBdYHXN61PAdcXz3cCpumscoS2f\nBX6ujW0AXgF8DfipttQPXA88AiwCD7Rt+wG+Dbx63bJW1A/sBP51g+Uj1z/rWZ6vAZ5Z8/q7xbKm\nWV/nd2hmnVu5NqV0BiCl9Cxwbc31lBIRPYZ7uV9muEG3og3FkMXjwLPAIyml47Sn/o8Df8RwsuAF\nbakdXj7J8beLZW2p/3XAf0TEvcWQ118WZxGOXP8kpy0+wvBMl5cWMezUj6WUHhz3e1Wpxh8Bj4hX\nAp8Bbk/DU2LX19zYNqSUzgM3R8ROhmeAvYlL621c/RHxC8CZlNKJiFjc5K2Nq32NtZMcH46Ip2lB\n3xe2A/uAD6WUvhYRH2c4KjBy/WMHekrpwBgf+y5ww5rX1xfLmua7wGvXvG5qnVs5ExHXpZTORMRu\n4GzdBW0mIrYzDPNPppTuLxa3qg0AKaX/jYgV4FbaUf8twC9GxM8DHeDHIuKTwLMtqB2AlNL3iv8O\nIuKzwFtoR9/DcATgmZTS14rXf8Mw0EeufxZDLmsPej4AvDcidkTE64A3AF+dQQ2jOg68ISK6EbED\neC/D2psuuLS/3188fx9w//oPNMw9wJMppbvXLGtFGyLixy+chRARHeAA8BQtqD+l9NGU0mtTSq9n\nuK0/mlL6TeBBGl47DCc5Fv+yY80kx5O0oO8BimGVZyLiJ4pFPws8wTj1VzTI/26GY9DngO/x8gOM\ndwL/wnBjf3vdByQ2acOtwNPAt4A76q6nRL1HgH8Hfgj8G/AB4Grgi0U7HgZeVXedm9R/C/AicAJ4\nHHis+H9wTRvaAPxkUfMJhnfP/lixvBX1r2nH27h4ULQVtTMcg76w3Zy88HttS/1FrW9muCN5Avhb\nYNc49TuxSJIykfW1zCVpnhjokpQJA12SMmGgS1ImDHRJyoSBLkmZMNAlKRMGuiRl4v8Bqi8QktcX\nT10AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fb459bbe990>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"lists = sorted(dict_count.items()) \n",
"x, y = zip(*lists)\n",
"plt.scatter(x, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 概率分布\n",
"``横轴是签到得到的数额,纵轴是出现频率``"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7fb45984e1d0>"
]
},
"execution_count": 135,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEACAYAAAC3adEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFr9JREFUeJzt3X+MHOd52PHvQ9F0znHIRA1NB/pxTC3HdIU6ooBSLFTA\nK6iySQowHSBoxD/qWkgbBjFRAw0Cyf0BX/+r/oltQVBltWxgBhEp1K0dOpFdKrCuRVpEoiFRcmxS\nogqToWiZvAI1CquCo1JP/9ghubPaO+7t7O7M7H0/wEI7c+/MPO9o7x7OPPO+G5mJJEmXras7AElS\ns5gYJEklJgZJUomJQZJUYmKQJJWYGCRJJWNJDBGxKyJORcQrEfHAMm0ejojTEXEiIrb3rD8TES9G\nxAsR8dw44pEkjW591R1ExDrgEeBu4IfA8Yj448w81dNmN/CBzPxgRNwB/FtgZ/Hjt4FOZv7vqrFI\nkqobxxXDDuB0Zp7NzLeAI8DevjZ7gUMAmfkssCkithQ/izHFIUkag3H8Qb4BONez/FqxbqU253va\nJPB0RByPiH8yhngkSRVUvpU0Bndm5usRsZlugjiZmX9ed1CStFaNIzGcB27uWb6xWNff5qZBbTLz\n9eK/SxHxNbq3pt6RGCLCSZ0kaQSZGatpP45bSceBWyJiPiI2APcBR/vaHAU+BRARO4EfZ+aFiHhP\nRLy3WP+zwMeAv1zuQJnZ2tfnP//52mNYq/G3OXbjr//V9vhHUfmKITMvRcQB4BjdRHMwM09GxP7u\nj/PxzHwqIvZExKvAG8D9xeZbgK8VVwPrgT/KzGNVY5IkjW4sNYbM/Bbwob51X+5bPjBgux8At40j\nBknSePiY6JR0Op26Q6ikzfG3OXYw/rq1Pf5RxKj3oKYtIrItsUpSU0QEWUPxWZI0Q0wMkqQSE4Mk\nqcTEIEkqMTFIkkpMDJKkEhODJKnExCBJKjExSJJKTAySpBITgySpxMQgSSoxMUiSSkwMkqQSE4Mk\nqcTEIEkqMTFIkkpMDJKkEhODJKnExCBJKjExSJJKTAySpBITgySpxMQgSSoxMUiSSkwMkqSSsSSG\niNgVEaci4pWIeGCZNg9HxOmIOBERt/X9bF1EPB8RR8cRjyRpdJUTQ0SsAx4BPg7cCuyLiG19bXYD\nH8jMDwL7gcf6dvNZ4PtVY5EkVTeOK4YdwOnMPJuZbwFHgL19bfYChwAy81lgU0RsAYiIG4E9wL8f\nQyySpIrGkRhuAM71LL9WrFupzfmeNl8Afg/IMcQiSaqo1uJzRNwLXMjME0AUL0lSjdaPYR/ngZt7\nlm8s1vW3uWlAm18HPhERe4A54Oci4lBmfmrQgRYWFq6873Q6dDqdqrFL0kxZXFxkcXGx0j4is9od\nnIi4DngZuBt4HXgO2JeZJ3va7AE+k5n3RsRO4IuZubNvPx8FfjczP7HMcbJqrJK01kQEmbmquzGV\nrxgy81JEHACO0b01dTAzT0bE/u6P8/HMfCoi9kTEq8AbwP1VjytJmozKVwzT4hWDJK3eKFcMjnyW\nJJWYGCRJJSYGSVKJiUGSVGJikCSVmBgkSSUmBklSiYlBklRiYpAklZgYJEklJgZJUomJQZJUYmKQ\nJJWYGCRJJSYGSVKJiUGSVGJikCSVmBgkSSUmBklSiYlBklRiYpAklZgYJEklJgZJU7W0tMTx48dZ\nWlqqOxQtw8QgaWoOH36S+flt3HPPbzM/v43Dh5+sOyQNEJlZdwxDiYhsS6yS3mlpaYn5+W28+eYz\nwEeAl5ibu4uzZ0+xefPmusObWRFBZsZqtvGKQdJUnDlzhg0bttJNCgAf4V3vmufMmTP1BaWBTAyS\npmLr1q389V+fAV4q1rzEW2+dZevWrfUFpYFMDJKmYvPmzRw8+Chzc3excePtzM3dxcGDj3obqYGs\nMUiaqqWlJc6cOcPWrVtNClMwSo1hLIkhInYBX6R7BXIwMx8a0OZhYDfwBvDpzDwREe8G/huwAVgP\nfDUz//UyxzAxSNIq1VJ8joh1wCPAx4FbgX0Rsa2vzW7gA5n5QWA/8BhAZv4UuCsztwO3AbsjYkfV\nmCRJoxtHjWEHcDozz2bmW8ARYG9fm73AIYDMfBbYFBFbiuX/W7R5N92rBi8LJKlG40gMNwDnepZf\nK9at1Ob85TYRsS4iXgB+BDydmcfHEJMkaUTr6w4gM98GtkfERuDrEfG3MvP7g9ouLCxced/pdOh0\nOlOJUZLaYnFxkcXFxUr7qFx8joidwEJm7iqWHwSytwAdEY8Bz2Tmk8XyKeCjmXmhb1//CngjM39/\nwHEsPkvSKtU18vk4cEtEzEfEBuA+4Ghfm6PAp4ogdwI/zswLEfGLEbGpWD8H3AOcGkNMkqQRVb6V\nlJmXIuIAcIyrj6uejIj93R/n45n5VETsiYhX6T6uen+x+S8BXymebFoHPJmZT1WNSZI0Oge4SdIM\ncxI9SVJlJga1gl/uoknzM3aViUGN55e7aNL8jJVZY1Cj+eUumrRZ/4xZY9DM8ctdNGl+xt7JxKBG\n88tdNGl+xt7JxKCSphXgqn65S9P6Mw6z2Kc6+QVCA2RmK17dUDVJTzxxJOfmrs9Nm27Pubnr84kn\njtQd0hUXL17M5557Li9evDj0Nk3uz6hmsU9NMcpnrA2Kv52r+ntr8VnA7BXgZq0/MJt90uRZfNbI\nZq0AN2v9gdnsk5rJxCBg9gpws9YfmM0+qZlMDAJmrwDXhv6stojctD6thSL4WujjQKstStT1wuLz\nVMxaAa6p/alSRG5Cn9ZCEXxW+ojFZ6n52l5Ebnv8w5ilPlp8llqg7UXktsc/jLXQx5WYGKQpa3sR\nue3xD2Mt9HElJgZpyppWRF6ttsc/jLXQx5VYY2iwpaUlzpw5w9atW9fMB3ItGeb/b5M/A5OMvyn9\nbkocVYxSY6j9aaNhX6yxp5Jm5YkIja7tn4FR4297v5sGn0qaDbP0RIRG0/bPwKjxt73fTeRTSTNi\nrT8RofZ/BkaNv+39nhUmhgZa609EqP2fgVHjb3u/Z4WJoSYrDbWfxBMRVYb2r9lpAYYw7LkZpl1v\nmzY+FVMl/svbAq3r90xabVGirhczVHwetrg2rqkPqhTzLAQub9hzM0y75do0YfqLYVSJf9C2bel3\nGzBC8bn2P/hDBzojieHixYs5N3d9wosJmfBizs1dP7FfgCrHm3asbTLsuRmmXdvPs5+xZhslMXgr\nacqmXVyrcjwLgcsb9twM067t59nP2OwxMUzZtItrVY5nIXB5w56bYdq1/Tz7GZtBq73EqOvFjNxK\nyrx6T3Xjxu1TuW9f5XjTjrVNhj03w7Rr+3n2M9Zc1DXALSJ2AV+kewVyMDMfGtDmYWA38Abw6cw8\nERE3AoeALcDbwL/LzIeXOUaOI9am6B9qP+mh91X2PwvTAvQaZ3+G3VdTp7+o41yMc9tB283a57Wq\nWqbEoJsMXgXmgXcBJ4BtfW12A39avL8D+Ivi/fuB24r37wVe7t+2Zx8TyKXN4JM/0+O5vqrt52JQ\n/G3v0yRQx1NJwE7gmz3LDwIP9LV5DPiNnuWTwJYB+/o6cPcyx5nISaubT2VMj+f6qrafi0Hx/8zP\n/Hyr+zQpoySGcRSfbwDO9Sy/Vqxbqc35/jYRsRW4DXh2DDG1hk9lTI/n+qq2n4tB8V933ftYt+4m\n2tqnJllfdwAAEfFe4KvAZzPzJ8u1W1hYuPK+0+nQ6XQmHtuklZ/K6E4a5lMZk+G5vqrt52JQ/Jcu\nXSRiHW3t07gsLi6yuLhYbServcTof9G9lfStnuVhbiWdoriVRDc5fYtuUlgTTyX1m9WnMuoYvXqt\nY1Y9100dkTtMXP1tljsXTe1jv0Hxz+rvUhXUVGO4jqvF5w10i88f7muzh6vF550Uxedi+RDw+0Mc\nZ0KnrRna8ss4rDqKgJOeaqSphc1xTrnR1D4uZ9D/y1n7XaqqlsTQPS676D5RdBp4sFi3H/itnjaP\nFAnkRWB7se5O4FKRTF4Angd2LXOMCZ46jVMdhc1JH7OpxdpxTrnR1D6qmlESw1hqDJn5LeBDfeu+\n3Ld8YMB2/53uFYdmyOXC4JtvvrMIOKnnyid9zDr6NK64ho29qX3U9DklhsaujmkOJn3Mpk7dMM4p\nN5raR9VgtZcYdb3wVlKr1FEEnPQxm1rYHOeUG03to0aH3/m8NjV1CoC2T/FQx/5HNc4pN9rcx0ls\n23a1TIkxrRdeMQzUtqdIpFH4ZVOjwyuGtWVpaYn5+W28+eYzXB7QMzd3F2fPnlpz/yrS7KryOfd3\nZLQrBovPLdb2aQ2kYfhFQNNnYmgxnyLRWuAXAU2fiaFllpaWOH78OEtLS2zevJmDBx9lbu4uNm68\nnbm5uzh48FGAK22G3VeTDBvXOOMftK+mnp9hTfr8TMtyn/NhbgVV/R1Zs1ZblKjrhcXnoaY1GLbQ\n1tSCXB3xz+K8/pM+P3WoMtXFKL8js4K6psSYxmutJ4a1MPVBHfHP4rz+kz4/bToX/WatP8MYJTF4\nK6klhimiDVtoa2pBro74Z3Fe/0mfnzadi36z1p9JMTG0xFqY+qCO+Aft69Kli7z99rmx7L8Okz4/\nbToX/WatPxOz2kuMul6s8VtJmc2Z+mBc93qrxDXOqRtmcV7/SZ+fNpu1/lwLDnCbfXVPfXD48JP8\n5m/+Dhs2dP/ldfDgo+zb9xtj3baOqRsG7avt0yhM+vy02az1ZyWjDHAzMWhojkCV2seRz5ooR6BK\na4OJQUNzBKq0NpgYNLRJjED1NpLUPNYYtGrOi7+ytdBHtYfFZ6lmVZ7akibBxCDVyCev1EQ+lSTV\nyCevNCtMDNKY+OSVZoWJQWPR9u8uGAefvNKssMagyiy4lvlUkprE4rOmzoKr1GwWnzV1Flyl2WNi\nUCUWXKXZM5bEEBG7IuJURLwSEQ8s0+bhiDgdESciYnvP+oMRcSEiXhq0nZrNgqs0eyrXGCJiHfAK\ncDfwQ+A4cF9mnuppsxs4kJn3RsQdwJcyc2fxs78H/AQ4lJkfeccBru7DGkODWXCVmmmUGsP6MRx3\nB3A6M88WQRwB9gKnetrsBQ4BZOazEbEpIrZk5oXM/POImB9DHKrR5s2bTQjSjBjHraQbgHM9y68V\n61Zqc35AG0lSA4zjimFqFhYWrrzvdDp0Op3aYpGkJlpcXGRxcbHSPsZRY9gJLGTmrmL5QbpfPv1Q\nT5vHgGcy88li+RTw0cy8UCzPA9+wxiBJ41XXOIbjwC0RMR8RG4D7gKN9bY4CnyqC3An8+HJSKETx\n0hrkdBpSs1RODJl5CTgAHAO+BxzJzJMRsT8ifqto8xTwg4h4Ffgy8DuXt4+IJ4D/AfxKRPxVRNxf\nNSa1x+HDTzI/v4177vlt5ue3cfjwk3WHJK15Tomh2jidhjR5TomhVnE6DamZTAyqjdNpSM1kYlBt\nnE5DaiZrDKqd02lIk+P3MUiSSiw+S5IqMzFIkkpMDJKkEhODJKnExCBJKjExSJJKTAySpBITgySp\nxMQgSSoxMUiSSkwMkqQSE4MkqcTEIEkqMTFIkkpMDJKkEhODJKnExCBJKjExSJJKTAySpBITgySp\nxMQgSSoxMUiSSkwMkqSSsSSGiNgVEaci4pWIeGCZNg9HxOmIOBERt61mW0nS9FRODBGxDngE+Dhw\nK7AvIrb1tdkNfCAzPwjsBx4bdltJ0nSN44phB3A6M89m5lvAEWBvX5u9wCGAzHwW2BQRW4bcVpI0\nReNIDDcA53qWXyvWDdNmmG0lSVNUV/E5ajquJOka1o9hH+eBm3uWbyzW9be5aUCbDUNse8XCwsKV\n951Oh06nM0q8kjSzFhcXWVxcrLSPyMxqO4i4DngZuBt4HXgO2JeZJ3va7AE+k5n3RsRO4IuZuXOY\nbXv2kVVjlaS1JiLIzFXdpal8xZCZlyLiAHCM7q2pg5l5MiL2d3+cj2fmUxGxJyJeBd4A7l9p26ox\nSZJGV/mKYVq8YpCk1RvlisGRz5KkEhODJKnExCBJKjExSJJKTAySpBITgySpxMQgSSoxMUiSSkwM\nkqQSE4MkqcTEIEkqMTFIkkpMDJKkEhODJKnExCBJKjExSJJKTAySpBITgySpxMQgSSoxMUiSSkwM\nkqQSE4MkqcTEIEkqMTFIkkpMDJKkEhODJKnExCBJKjExSJJKKiWGiPiFiDgWES9HxH+JiE3LtNsV\nEaci4pWIeKBn/a9HxF9GxKWIuL1KLJKk8ah6xfAg8GeZ+SHg28Dn+htExDrgEeDjwK3AvojYVvz4\nu8CvAf+1YhyNt7i4WHcIlbQ5/jbHDsZft7bHP4qqiWEv8JXi/VeATw5oswM4nZlnM/Mt4EixHZn5\ncmaeBqJiHI3X9g9Xm+Nvc+xg/HVre/yjqJoY3peZFwAy80fA+wa0uQE417P8WrFOktRA66/VICKe\nBrb0rgIS+JcDmueY4pIk1SQyR/9bHhEngU5mXoiI9wPPZOaH+9rsBBYyc1ex/CCQmflQT5tngN/N\nzOdXOJZJR5JGkJmrul1/zSuGazgKfBp4CPhHwB8PaHMcuCUi5oHXgfuAfQParRj4ajsmSRpN1RrD\nQ8A9EfEycDfwbwAi4pci4k8AMvMScAA4BnwPOJKZJ4t2n4yIc8BO4E8i4psV45EkVVTpVpIkafY0\neuTzSgPgIuJzEXE6Ik5GxMfqivFalhvc11QRcTAiLkTESz3rhhrI2AQRcWNEfDsivhcR342If1qs\nb0UfIuLdEfFsRLxQxP/5Yn0r4ofu2KWIeD4ijhbLbYr9TES8WJz/54p1bYp/U0T8x+Lv4vci4o5R\n4m90YmCZAXAR8WHgHwAfBnYDj0ZE42oQ1xjc11R/QDfeXtccyNgg/w/4Z5l5K/B3gc8U57wVfcjM\nnwJ3ZeZ24DZgd0TsoCXxFz4LfL9nuU2xv033gZrtmbmjWNem+L8EPFU8BPSrwClGiT8zG/8CngFu\n71l+EHigZ/mbwB11xzkg7p3AN5eLu6kvYB54qWf5FLCleP9+4FTdMa6iL18H/n4b+wC8B/gO8Hfa\nEj9wI/A00AGOtu3zA/wA+Bt961oRP7AR+J8D1q86/qZfMSynf9DceZo5aG5WBvcNM5CxcSJiK91/\ndf8F3V+MVvShuBXzAvAj4OnMPE574v8C8HuUxzS1JXboxv10RByPiH9crGtL/L8M/K+I+IPiVt7j\nEfEeRoi/6uOqla0wgO5fZOY36olK19D4JxYi4r3AV4HPZuZPBoyDaWwfMvNtYHtEbAS+FhG38s54\nGxd/RNwLXMjMExHRWaFp42LvcWdmvh4Rm4FjxROXjT/3hfXA7cBnMvM7EfEFuncpVh1/7YkhM+8Z\nYbPzwE09yzcW65rmPHBzz3JT47yWCxGxJa8OZLxYd0AriYj1dJPCH2bm5bE1reoDQGb+n4hYBHbR\njvjvBD4REXuAOeDnIuIPgR+1IHYAMvP14r9LEfF1unO9teHcQ/eOxLnM/E6x/J/oJoZVx9+mW0m9\nxeWjwH0RsSEifhm4BXiunrBWdGVwX0RsoDu472jNMQ0jeOf5/nTxfrmBjE3yH4DvZ+aXeta1og8R\n8YuXnxqJiDngHuAkLYg/M/95Zt6cmX+T7mf925n5D4Fv0PDYASLiPcWVJhHxs8DH6D4A0/hzD1Dc\nLjoXEb9SrLqb7tix1cdfd8HkGsWUT9K9R/8m3VHTvYXczwGv0v2l+Vjdsa7Qh13Ay8Bp4MG64xki\n3ieAHwI/Bf4KuB/4BeDPin4cA36+7jhXiP9O4BJwAngBeL74f3B9G/oA/O0i5hPAS3RvqdKW+Hv6\n8VGuFp9bETvde/SXPzffvfz72pb4i1h/le4/SE8A/xnYNEr8DnCTJJW06VaSJGkKTAySpBITgySp\nxMQgSSoxMUiSSkwMkqQSE4MkqcTEIEkq+f8iHcrUMAmhpgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fb459c18b10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"lists = sorted(dict_prob.items()) \n",
"x, y = zip(*lists)\n",
"plt.scatter(x, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 时间分布"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7fb459b2dfd0>"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAFHCAYAAADN1EMUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UZOldH/bvb7TIiJYRuwa07pa0uzRB4sUEYSx0osSa\nxRqQcSzpYEe87Bh1wAHbxwsxViwJU5lptR3eNjGwRE6Oj3EL7coIFBttHAvtyNKEABEgrV5BLHKr\nNYJusRD0YmtkjKx+8kdVb9f0VnX3THd1vX0+58yZqlv3ufXcW79+bv2q7vOraq0FAAAATtqZcXcA\nAACA2SThBAAAYCQknAAAAIyEhBMAAICRkHACAAAwEhJOAAAARuKmcXdgElTVh5J8IslOkk+31p5V\nVTcneV2S25J8KMmLW2ufGFsnAQAApoxvOLt2kpxtrT2ztfas3rKXJ3lza+3pSd6S5BVj6x0AAMAU\nknB2VR57LF6Y5NW9269O8qJT7REAAMCUk3B2tSSXqurXq+qv95Y9ubX2SJK01n4vyReOrXcAAABT\nyBzOrue01j5SVV+Q5MGqejjdJLTf/vsAAAAcQMKZpLX2kd7/f1BVP5/kWUkeqaont9Yeqapbk/z+\noLZVJREFAADmWmutBi2f+4Szqj4nyZnW2ieraiHJ1ydZTfJAkpUkP5zkJUneMGwbrck5mXwXL17M\nxYsXx90NOJRYZVqIVaaFWGXUqgbmmkkknEny5CT/svdN5U1J7m+tPVhVb0/ys1X1HUmuJHnxODsJ\nAABMv83NK+l01rO1tZOlpTNZW1vJHXfcNu5ujczcJ5yttc0kXzVg+UeTPO/0ewQAAMyizc0rOXfu\n3mxsrCZZSHI1b3vbhVy6dPfMJp2q1MKcOHv27Li7AEciVpkWYpVpIVYnR6ez3pdsJslCNjZW0+ms\nj7FXoyXhhDnhZMO0EKtMC7HKtBCrk2Nrayd7yeauhWxv74yjO6dCwjkit99+e6pq5v/dfvvt4z7U\nAAAwFZaWziS5um/p1Swuzm5aViqsHk9VtUHHsKrmonrtvOwnAAAc16A5nMvL0z+Hs5cTDCxVK+E8\nJgnnfOwnAACchN0qtdvbO1lcnI0qtRLOEZJwzsd+AgAAgx2UcM7uxcIAAACMlYQTAACAkbhp3B3g\n9D3wwAP50R/90VR1v/VuraWqcu7cuTz44IOPLt99bHFxMa973evG1V0AAGBKSTjHYHei8NbWTpaW\nbmyi8HG28ZGPfCSrq6v5uq/7ukeXfepTn8p3fud35s4778wrX/nKa9Z/8YtffF19AwAASCScp25Q\nKeS3ve36SiGfxDb2U/gHAAA4aeZwnrJOZ70vUUyShWxsrKbTWT/VbQAAAIyahPOUbW3tZC9R3LWQ\n7e2dU90GAADAqEk4T9nS0pkkV/ctvZrFxaO/FCexDQAAgFGToZyytbWVLC9fyF7CeDXLyxeytrZy\nqtsAAAAYNUWDTtkdd9yWS5fuTqdzT7a3d7K4eCZra9dX7OcktgEAADBqEs4xuOOO23LffRfGvg0A\nAIBRckntnNr/MygH/SyKn0wBAABuhG8459RLX/rS3HzzzUm6CeXOzk6Wlpbymte8Jr/0S7/06Hqt\ntXz0ox8dVzcBAIApVr69Op6qaoOOYVXNxTeD87KfAADAYL2coAY95pJaAAAARsIltcDc2dy8kk5n\nPVtbO1laOpO1tRVVnoGpYywDjuO0xhCX1B6TS2rnYz+ZHZubV3Lu3L3Z2FhNspDd37G9dMlPCwHT\nw1gGHMdJjyEuqQXo6XTW+wbXJFnIxsZqOp31MfYK4PoYy4DjOM0xxCW1I3LbbbelamCSP1Nuu82n\nqEyXra2d7A2uuxayvb0zju4A3BBjGXAcpzmGSDhH5EMf+tC4uwAMsLR0JsnVXDvIXs3iogs+gOlh\nLAOO4zTHEHM4j2nYHM6jMNkfTp95T8AsMJYBx3GaczglnMd0owmnEwWMz+6HPdvbO1lc9GEPMJ2M\nZcBxnOQYIuEcoRtNOM+fX8399780+7/Gvuuue3LffRdOrH8AAACjpErtBDLZHwAAmHUSzjHZm6jb\nz2R/AABgdshuxmRtbSXLyxeyl3R253Cura2MrU8AAAAnyRzOYzqJKrUm+wMwCqqhcxgxApwERYNG\n6DgJJwCMimroHEaMACdF0SAAmDOdznpfIpEkC9nYWE2nsz7GXjFJxAhwGiScADCDVEPnMGIEOA0S\nTgCYQaqhcxgxApwGIwoAzCDV0DmMGAFOg6JBx6RoEACTSjV0DiNGgJOgSu0ISTgBAIB5pkotAAAA\np07CCQAAwEhIOAEAABiJm8bdAQAA5ttu8aKtrZ0sLSleBLNE0aBjUjQIAODGbW5eyblz92ZjYzXJ\nQnZ/nuXSpbslnTAlFA0CAGAidTrrfclmkixkY2M1nc76GHsFnBQJJwAAY7O1tZO9ZHPXQra3d8bR\nHeCESTh7qupMVT1UVQ/07t9cVQ9W1cNV9aaqetK4+wgAMGuWls4kubpv6dUsLnqbCrPAX/Ke703y\nm333X57kza21pyd5S5JXjKVXAAAzbG1tJcvLF7KXdHbncK6trYytT8DJUTQoSVU9Jck/S/IPk3xf\na+0FVfVbSZ7bWnukqm5Ncrm19owBbRUNAuaeCpPAceyOIdvbO1lcNIZMEuM7R3FQ0SAJZ5Kq+rl0\nk80nJfm7vYTzY621m/vW+Whr7ZYBbSWcwFxTYRJgNhnfOSpVag9QVX8pySOttXclGXiQemSVAAOo\nMAkwm4zvnISbxt2BCfCcJC+oqm9M8oQkf7KqXpPk96rqyX2X1P7+sA1cvHjx0dtnz57N2bNnR9tj\ngAmiwiTAbDK+M8zly5dz+fLlI6079wlna+37k3x/klTVc9O9pPavVdWPJFlJ8sNJXpLkDcO20Z9w\nAsybvQqT/W9KVJgEmHbGd4bZ/yXb6urq0HVFy3A/lORcVT2c5C/07gOwjwqTALPppMb3zc0rOX9+\nNXfeeSHnz69mc/PKyXaUiaZo0DEpGgSgwiTArDru+K7w0HxQpXaEJJwAADDY+fOruf/+l2b/Zbl3\n3XVP7rvvwri6xQlTpRYAADh1Cg8h4QQAAEZir/BQP4WH5olXGgAAGAmF5TCH85jM4WTS7U7239ra\nydLSjRVzOYltAADzSWG52ado0AhJOJlkJ1EZTnU5AAAOomgQzKlOZ70vUUyShWxsrKbTWT/VbQAA\nMJ8knDDDTqIynOpyAADcKAknzLCTqAynuhwAADfKHM5jMoeTSWYOJ4yHQlsAzBNFg0ZIwsmkO4nK\ncKrLwdH5kAaAeSPhHCEJJwD9zp9fzf33vzTXzn2+mrvuuif33XdhXN0CgJFRpRYATolCWwCwR8IJ\nACdIoS0A2OPsBwAnaG1tJcvLF7KXdHbncK6trYytTwAwLuZwHpM5nAyjSuXJc0yZFgptAcflnMc0\nUTRohCScDKJK5clzTAGYF855TBtFg+CUdTrrfSeJJFnIxsZqOp31MfZqujmmAMwL5zxmiYQTRkCV\nypPnmAIwL5zzmCUSThgBVSpPnmMKwLxwzmOWiFoYAVUqT55jCsC8cM5jligadEyKBjGMKpUnzzEd\nDZUQASaPcx7TRJXaEZJwAtNMJUQA4LhUqQVgIJUQAYBRknACzDGVEAGAUZJwAswxlRABgFEyh/OY\nJmEOp4IfwI0yhxOAeeE98+goGjRC4044vVkEjkslRABmnffMoyXhHKFxJ5znz6/m/vtfmmvnYF3N\nXXfdk/vuuzCubgEAwMTwnnm0VKmdYQp+AADAwbxnHh8J55RT8AMAAA7mPfP4OMJTbm1tJcvLF7L3\nB9S9Hn1tbWVsfQIAgEniPfP4mMN5TOOew5ko+AEAAIfxnnl0FA0aoUlIOAEAAMZF0SAAAABOnYQT\nAACAkZBwAgAAMBISTgAAAEZCwgkAAMBISDgBAAAYCQknAAAAIyHhBAAAYCQknAAAAIzETePuAADA\nadncvJJOZz1bWztZWjqTtbWV3HHHbePuFsDMqtbauPsw1aqqOYYAMPk2N6/k3Ll7s7GxmmQhydUs\nL1/IpUt3SzoBjqGq0lqrQY+5pBYAmAudznpfspkkC9nYWE2nsz7GXgHMNgknADAXtrZ2spds7lrI\n9vbOOLoDMBfmPuGsqj9RVb9aVe+sqvdW1YXe8pur6sGqeriq3lRVTxp3XwGAG7e0dCbJ1X1Lr2Zx\nce7fDgGMjDmcSarqc1prn6qqxyX55STfk+SvJPnD1tqPVNXLktzcWnv5gLbmcALAFDCHE2A0DprD\nKeHsU1Wfk+QXk/zNJK9J8tzW2iNVdWuSy621ZwxoI+EEgCmxW6V2e3sni4uq1AKcBAnnIarqTJJ3\nJFlO8r+21l5RVR9rrd3ct85HW2u3DGgr4QQAAObWQQmn3+FM0lrbSfLMqvrcJP+yqr48yf4scmhW\nefHixUdvnz17NmfPnh1BLwEAAMbv8uXLuXz58pHW9Q3nPlXVSfKpJH89ydm+S2rf2lr70gHr+4YT\nAACYW36H8wBV9fm7FWir6glJziV5f5IHkqz0VntJkjeMpYMAAABTau6/4ayqP5Pk1ekm32eSvK61\n9g+r6pYkP5vkqUmuJHlxa+3jA9r7hrNntxDD1tZOlpYUYgAAgHmgaNAISTi7lJoHAID55JJaRq7T\nWe9LNpNkIRsbq+l01sfYKwAAYJwknJyIra2d7CWbuxayvb0zju4AAAATQMLJiVhaOpPk6r6lV7O4\nKMQAAGBeyQY4EWtrK1levpC9pLM7h3NtbWVsfQIAAMZL0aBjUjRoz26V2u3tnSwuqlILAADzQJXa\nEZJwAgAA80yVWgAAAE6dhBMAAICRkHACAAAwEjeNuwNw0naLF21t7WRpSfEiJpdYBYCjcc6cXooG\nHZOiQZNlc/NKzp27Nxsbq0kWsvvzLJcu3W1QYqKIVQA4GufMyadoEHOj01nvG4ySZCEbG6vpdNbH\n2Ct4LLEKAEfjnDndJJzMlK2tnewNRrsWsr29M47uwFBiFQCOxjlzukk4mSlLS2eSXN239GoWF4U6\nk0WsAsDROGdON68SM2VtbSXLyxeyNyh1r/FfW1sZW59gELEKAEfjnDndFA06JkWDJs9uFbPt7Z0s\nLqpixuQSqwCTRSXUyeWcOdkOKhok4TwmCScAwPRTCRVunCq1AABwAJVQYTQknAAAzD2VUGE0JJwA\nAMw9lVBhNPwFAQAw91RChdFQNOiYFA0CAJgNKqHCjVGldoQknAAAwDxTpRYAAIBTJ+EEAABgJCSc\nAAAAjISEEwAAgJGQcAIAADASEk4AAABGQsIJAADASEg4AQAAGAkJJwAAACMh4QQAAGAkJJwAAACM\nhIQTAACAkZBwAgAAMBISTgAAAEZCwnkCzp9fzebmlXF3gxO0uXkl58+v5s47L3h9AQDgBlVrbdx9\nmGpV1ZJPZnn5Qi5dujt33HHbuLvEMW1uXsm5c/dmY2M1yUKSq15fAAAYoqrSWqtBj/mG80QsZGNj\nNZ3O+rg7wgnodNb7ks3E6wsAADdGwnliFrK9vTPuTnACtrZ2spds7vL6AgDA9ZJwnpirWVx0OGfB\n0tKZJFf3LfX6AgDA9fIO+kR05/itra2MuyOcgLW1lSwvX8he0un1BQCAG6Fo0DFVVbvrrotZW1tR\nUGaGbG5eSaeznu3tnSwunvH6AvCo3XPE1tZOlpZu7BxxEtsAmBQHFQ2ScB5TVTXHEADmw0lUMlcN\nHZg1qtQCAJyAk6hkrho6ME8knAAAR3QSlcxVQwfmydwnnFX1lKp6S1X9RlW9t6q+p7f85qp6sKoe\nrqo3VdWTxt1XAGC8TqKSuWrowDyZ+zmcVXVrkltba++qqicmeUeSFyb5b5P8YWvtR6rqZUlubq29\nfEB7czgBYE6YwwnwWIoGXYeq+vkkP9n799zW2iO9pPRya+0ZA9aXcALAHDmJSuaqoQOzRMJ5RFV1\ne5LLSb4iye+01m7ue+yjrbVbBrSRcAIAAHProITzptPuzKTqXU77+iTf21r7ZFXtzyKHZpUXL158\n9PbZs2dz9uzZUXQRAABg7C5fvpzLly8faV3fcCapqpuS/Kskb2yt/Xhv2fuTnO27pPatrbUvHdDW\nN5wAAMDc8juch/upJL+5m2z2PJBkpXf7JUnecNqdAgAAmGZz/w1nVT0nyS8meW+6l822JN+f5NeS\n/GySpya5kuTFrbWPD2jvG04AAGBuKRo0QhJOAABgnrmkFgAAgFMn4QQAAGAkJJwAAACMhIQTAACA\nkZBwAgAAMBISTgAAAEZCwgkAAMBISDgBAAAYCQknAAAAI3HTuDsAAAAwDTY3r6TTWc/W1k6Wls5k\nbW0ld9xx27i7NdGqtTbuPky1qmqOIQAAzLbNzSs5d+7ebGysJllIcjXLyxdy6dLdc590VlVaazXo\nMZfUAgAAHKLTWe9LNpNkIRsbq+l01sfYq8kn4QQAADjE1tZO9pLNXQvZ3t4ZR3emhoQTAADgEEtL\nZ5Jc3bf0ahYXpVQHcXQAAAAOsba2kuXlC9lLOrtzONfWVsbWp2mgaNAxKRoE80mVutnltQVgmN1z\nxPb2ThYXnSN2HVQ0SMJ5TBJOmD+q1M0ury0AXD9VagFOkCp1s8trCwAnS8IJcJ1UqZtdXlsAOFkS\nToDrpErd7PLaAsDJcgYFuE6q1M0ury0AnCxFg45J0SCYT6rUzS6vLQBcH1VqR0jCCQAAzDNVagEA\nADh1Ek4AAABGQsIJAADASNw07g4wGXaLZGxt7WRpaXxFMialHwAAwPEpGnRMs1A0aHPzSs6duzcb\nG6vp/uB592cALl26+1STvUnpBwAAcHSKBnGgTme9L8lLkoVsbKym01mfy34AAAAnQ8JJtrZ2spfk\n7VrI9vbOXPYDAAA4GRJOsrR0JsnVfUuvZnHxdMNjUvoBAACcDHM4j8kcztnrBwAwfRQehPE5aA6n\nhPOYZiHhTPYG6e3tnSwujr9K7bj7AQBMDx9aw3hJOEdoVhJOAIBpdf78au6//6W5thbE1dx11z25\n774L4+oWzA1VagEAmFkKD8LkknACADDVFB6EyeWvEACAqba2tpLl5QvZSzq7czjX1lbG1iegyxzO\nYzKHEwBg/BQehPFRNGiEJJwAAMA8UzQIAACAUyfhBAAAYCQknAAAAIyEhBMAAIDrtrl5JefPrx64\njqJBx6RoEAAAMG82N6/k3Ll7s7GxmuSJigYBAABwMjqd9V6yuXDgehJOAAAArsvW1k4OSzYTCWeS\npKr+aVU9UlXv6Vt2c1U9WFUPV9WbqupJ4+wjAADApFhaOpPk6qHrSTi7/lmSb9i37OVJ3txae3qS\ntyR5xan3CgAAYAKtra1keflCDks6JZxJWmu/lORj+xa/MMmre7dfneRFp9opyF7lrzvvvJDz51ez\nuXll3F0CAIDcccdtuXTp7tx11z0HrqdKbU9V3Zbk/2ytfWXv/kdba7f0PX7N/b7lqtQyEtdW/lpI\ncjXLyxdy6dLdueOO28bdPQAASJJUlSq1J0BWyal6bOWvhWxsrKbTWR9jrwAA4OhuGncHJtgjVfXk\n1tojVXVrkt8ftuLFixcfvX327NmcPXt29L1j5g2u/LWQ7e2dcXQHAACSJJcvX87ly5ePtK6Ec0/1\n/u16IMlKkh9O8pIkbxjWsD/hhJOyV/mrP+m8msVFFyYAADA++79kW11dHbquOZxJquq1Sc4m+VNJ\nHklyIcnPJ/m5JE9NciXJi1trHx/Q1hxORsIcTgAApsFBczglnMck4WSUNjevpNNZz/b2ThYXz2Rt\nbUWyCXNi9+9/a2snS0vT//c/a/sDME6TNqZKOEdIwgnASZu1KxxmbX8AxmkSx1RVagFgisxalepZ\n2x+AcZq2MVXCCQATZtaqVM/a/gCM07SNqRJOAJgwe1Wq+01vlepZ2x+AcZq2MdUczmMyhxOOZtIm\nt8Mkm8T5Occxa/sDME6TOKYqGjRCEk443CQOjDDpZq1K9aztD8A4TdqYKuEcIQknHO78+dXcf/9L\nc+18g6u56657ct99F8bVLQAAToAqtcBYTdvkdgAAToaEExi5aZvcDgDAyfBuDxi5tbWVLC9fyF7S\n2Z3Duba2MrY+AQAweuZwHpM5nHA0kza5ndmkGjLAHmMip0XRoBGScAJMBtWQAfYYEzlNigYBMPM6\nnfW+N1ZJspCNjdV0Outj7BXAeBgTmRQSTgBmgmrIAHuMiUwKCScAM0E1ZIA9xkQmhYgDYCaohgyw\nx5jIpFA06JgUDQKYHKohA+wxJnJaVKkdIQknAAAwz1SpBQAA4NRJOAEAABgJCScAAAAjcdO4OwAA\nyV5xi62tnSwtKW4xSbw2ANwoRYOOSdEggOPb3LySc+fuzcbGaro/VN4t33/p0t0SmzHz2gBwGEWD\nAJhonc56X0KTJAvZ2FhNp7M+xl6ReG0AOB4JJwBjt7W1k72EZtdCtrd3xtEd+nhtADgOCScAY7e0\ndCbJ1X1Lr2Zx0Wlq3Lw2AByHOZzHZA4nME6zUszFPMHJ5bXhMLMyDp0Ux4N5dNAcTgnnMUk4gXGZ\ntURg903a9vZOFhe9SZskXhuGmbVx6LgcD+aVhHOEJJzAuJw/v5r7739prp1fdzV33XVP7rvvwri6\nBcwR49C1HA/mlSq1ADNIMRdg3IxD13I84LEknABTSjEXYNyMQ9dyPOCxRD/AlFpbW8ny8oXsvbnp\nzhVaW1sZW5+A+WIcupbjAY9lDucxmcMJjJNiLsC4GYeu5XgwjxQNGiEJJwAAMM8UDQIAAODUSTgB\nAAAYCQknAAAAIyHhBAAAYCRuGncHAACOYrf659bWTpaWVP8EmAaq1B6TKrUAMHqbm1dy7ty92dhY\nTbKQ3d83vHTpbkknwJipUgsATLVOZ70v2UyShWxsrKbTWR9jrwA4jIQTAJh4W1s72Us2dy1ke3tn\nHN0B4IgknADAxFtaOpPk6r6lV7O46K0MwCQzSgMAE29tbSXLyxeyl3R253Cura2MrU8AHE7RoGNS\nNAgATsduldrt7Z0sLqpSCzApDioaJOE8JgknAAAwz1SpBQAA4NRJOA9RVc+vqt+qqt+uqpeNuz8A\nAADTQsJ5gKo6k+Qnk3xDki9P8q1V9Yzx9gpuzOXLl8fdBTgSscq0EKtMC7HKOEk4D/asJB9orV1p\nrX06yc8keeGY+wQ3xMmGaSFWmRZilWkhVhknCefBlpL8Tt/93+0tAwAA4BASTgAAAEbCz6IcoKqe\nneRia+35vfsvT9Jaaz/ct44DCAAAzDW/w3kDqupxSR5O8heSfCTJryX51tba+8faMQAAgClw07g7\nMMlaa5+pqr+d5MF0Lz/+p5JNAACAo/ENJwAAACNxYNGgqnpKVb2lqn6jqt5bVd/T99jNVfVgVT1c\nVW+qqif1lt/Sa/Pvq+on+tZ/YlW9s6oe6v3/B1X1vwx53q+uqvdU1W9X1Y/1Lf87vb68q6ouVdVT\nh7T/r6rqHVX16ar6pn2PvaS33Yer6tuHtP+rVfW+qvpMVX113/KB+3bU9r3HvrKqfqX3+Lur6vED\n2v9IVb2/t5//R1V9bt9jr6iqD/Qe//phfThMVf1Ebzvvqqqv6lv+d3p9e09V3T+of4e0f35V/Vbv\nGL/sRvt3vSYwVofG4L72391r/86q+sX+33mtqjdW1ceq6oED2g/bt8+qqp/q2/Zzh7R/ZS8O31lV\nv1BVt/aW31ZVn+odg4eq6lXD+tBb/+9W1U5V3dK7f6S/laMQqxMTq0PH3yPG6sBxraqeV1Vv78Xh\nr1fVnUPaDzs2R4rVA9rfVFXrvWPzG9Wdq39DxOrExOpB7wGOEqvD3gMcNVaHxfqf6+377r8XDetD\nb/394+p1jcuHbHtmYnWK4/TxVfUzveP4/1bV0/oeG+f5/9v2HYPPVNVXDmg/9L1u7/Gn9Y7v9w3b\nh8PMUpzOvdba0H9Jbk3yVb3bT0x3PuMzevd/OMnf691+WZIf6t3+nCT/RZLvSvITB2z77UmeM+Sx\nX03y53q3/3WSb+jdfm6Sz+7d/htJfmZI+6cl+Yok60m+qW/5zUk2kjwpyeft3h7Q/ulJ/rMkb0ny\n1X3Lj7pvw9o/Lsm7k3xFX39qQPvnJTnTu/1DSX6wd/vLkrwz3Uuhb0/ybwe137etzQHL/mKS/6t3\n+2uTvK13ezHJB5M8vnf/dUm+/Tran+n16bYkn5XkXbvxMup/ExirA2NwQPsn9t3+y0ne2Hf/ziR/\nKckDB7Qftm9/K91LwJPkC5K8/QjPf3eSf9y7fVuS9xzx2D8lyS8k2Uxyy/UcW7E6VbE6dPw9YqwO\nG9f+8yS39m5/eZLfvc5YP1KsHtD+W5O8tnf7Cb04fppYnepYHbreEWN12Dn8qLE6LNY/u2/5rUke\n2b0/YBuDxtUjj8vzFKtTHKd/M8mrere/Odc/po7k/L9vna9I9/foj/x30vf4z/Vi6PvEqX8HfsPZ\nWvu91tq7erc/meT92fsdyhcmeXXv9quTvKi33qdaa7+S5D8O225VfUmSL2it/fKAx25N8idba7/e\nW/TTfdv+v1trf9Rb/rYM+U3M1tqHW2vvS9L2PfQNSR5srX2itfbxdOdmPn9A+4dbax9IUvuWH7pv\nB7VP8vVJ3t3rW1prH2u96N/X/s2ttZ2+/XxK7/YL0h2Q/lNr7UNJPpDkWQf1JY89Bkn3tfvp3nP9\napInVdWTe489LslCVd2U7oC8fR3tn5XuwHSltfbpJD/TW3fkJjBWh8Xg/n5/su/uE5Ps9D321iSf\nfEyja+3ft93j/WXpngTSWvuDJB+vqq855PkX+p8/j43fYf5Rkv9h33aP9LeyvzsDlonVTEysDh1/\njxKrw8a11tq7W2u/17v9G0k+u6o+a8AmBh6b3V086LkPad/SjaPHpRtH/zHJvztkW2J1smN16HpH\njNVh7wGOFKsHxPof9S1/Qq4db/d7zLjac9Rx+dHuDFg2U7E6rXG6r2+vT7dA5e4+jfv8v+tb030d\nH+OA97qpqhemmxT+xiH78OjmBiybqTidd0f+Hc6quj3JV6U7eCbJF7bWHkm6f+xJvvA6nveb0/1E\nYpClJL8DKhdRAAAIZklEQVTbd/93Mzix/M4kb7yO59zd9u/03d8asu3rVlX/ZNAlBft8SW/dX6ju\nZTmPnkwOaP8d6X5yltxY/wednAZup7W2neR/TvLh3rKPt9be3Ovfd1fVdw1pv/saDVt+qiYwVg9U\nVX+rqv5tup+Ef89h6++zf992B+N3J3lBVT2uqu5I8meTPLX3fNfEWlX9g6r6cJJvS/I/9m379t4l\nNW+tqv+yb/1H21fVC5L8TmvtvdfZ70HE6oTHap8bGX/7fceg9lX1V5M81HsTsD9Wn3zAsTk0Vge0\n3/1beX2ST6VbifxDSe7pfSB5ELE6PbE6EofEar9rYr2qnlVV70t3jP4buwnodYyrA2P9oK4OWDaz\nsTplcfro8WqtfSbdxPCW62g/yvP/rm9O8s/71j/0vW5VLST5e0lWc/QPSOYqTufRkarUVtUT0z0p\nf29r7eqQ1Q77JKfftyQ5fx3r7+/P+XT/gJ57o9s4aa21/+4Iq92U5DlJvibJHyX5N1X19tbaWwe1\nr6q/n+TTrbV/vv+xg1TVT/aeJ0n+dFU91Lv9c621Hzyg3eel+ynPbUk+keT1VfVtrbXXttb+94Oe\n8nr6N0qTFqtH0Vp7VZJXVdW3JOkkWTnO5nr//1SSL03y60muJPnlJJ/pPd81sdZa+4EkP9Cbx3B3\nkovpvvl+WmvtY72Ty89X1Ze11j65276qnpDk+5Oc69vcdcWCWJ2uWE2OP/72jWuv3bf8y5P8YPri\naV+s7j8Wu/cPjdUh7Xc/zf/aJP8p3cvy/lSS/6eq3ty6V5H090+sTlmsjsoRYnV3vcfEemvt15J8\nRVU9PclPV9UbW2t/fMRxdTtDYn3f885lrM5AnB73OJ7U+b/bmapnJbnaWvvNvvWP8l73YpJ/1Fr7\nVFUlQ/ZrXuN0Xh2acPa+rn59kte01t7Q99AjVfXk1tojvUsLfv8oT1jdicePa629s3f/TJJ3pPuH\n8kCS/y29T2J6npLuJxi77Z+X5BVJ/nzfJ4v/IN1r3Vtr7aBPXraSnN237bcepd8n5HeT/GJr7WNJ\nUlX/OslXD+pDVa0k+cYkX9e3eCsHHJtdrbW/3bedDw44JsO287wkH2ytfbTX9l+kO8fhtUds//h0\n5y4c2L9RmbRYHbLNg2L1db1tXo+B+9b7tPTRifpV9ctJfvuQbb023W/TL7bW/jjJH/e29VBVbaT7\nDf1DfesvpzuX+N3VPas8Jck7qupZrbUjHWOxOl2xOmj8vR5DxrVU1VOS/Iskf21/otdnWKwfJVaH\ntk/3krFf6H3T9Ae9v5WvSffbzkeJ1emK1VE5YqwOjfVdrbWHq+qT6c6Ru55x9WO99kNjfR5jdUrj\ndPc4blf3kv7P3T32RzSS83/fsm9J37eb1+Frk/yVqvqRdGuVfKaq/kPvw/VHzWOczrOjXFL7U0l+\ns7X24/uWP5C9b2JekuQNeaxBnyZ8a/oCuLW201p7Zmvtq1trF3uXBXyiupedVJJv3912VT0z3T/y\nF7TW/rBvGz+wu41D+vCmJOeq6klVdXO6nyC+aeieD9+Hg5Yf9vx/pqo+uzc4PjfJbz6mQdXz0527\n8YLWWv/8ggeSfEt1K5vdkeSLk/zaDfT/gXSPa6rq2elejvBIupcnPLvXv0p3PsGg3x0d1v7Xk3xx\ndSvpPT7dwWpohbURmJhYHbbt/bFaVV/ct95/nceeFGpI3w7ct6p6QlV9Tu/2uXQ/Zf+tx3Ts2ud/\nUXqvd1V9fu8Em6r6onRj7YP9bVtr72ut3dpa+6LW2h3pfqDyzAHJ5nEuqRGrjzWuWB04/u5rO/S1\nHjauVbey4r9K8rLW2tuGtc/wWD80Vge0X8ne/n84vaSgupeCPTvJY/5W9u/OkO2L1WuNJVaP0IfD\nxtWB7Y8aqwfE+u29xCJVdVu6RVc+1N/2oHH1OmJ9YP/7zGKsTmOcPtDrU5L8N+nNu9zX9tTP/73H\nKsmLM2T+5gD9+/nne/H7RUl+LMn/tD/ZPKh9n1mM0/nVDq4a9Zx0v4Z/V7rVUR9K8vzeY7ckeXO6\n1cAeTPJ5fe02k/x/6RZe+HD6qj+lWxnqSw553j+b5L3pFsX58b7ll9K9fOqhXn9+fkj7r0n3+ux/\nn+QPkry377GV3nZ/OwOqWvXWeVGv/X/oPd8bD9u3JP8kvSpdh7T/tiTvS/Ke9CqKDWj/gXQvg3io\n9+9Vfeu9oncM35/k6w86jr31Pzhk+U/2tvPuXFuF70Jv2+9JdxL6Z/WWf3eS7zpC++f3YuIDSV5+\nWP9O6t8ExurQGNzX/sd68fBQkn+T5Ev7HvvFdKsYXu317dyA9gP3Ld1LTX4r3Qn7DyZ56pBYe33v\ntX5XuierP91b/k19/Xp7km8c1H5/rKVXTfGwYytWpzJWh46/R4zVgeNakr/fe+7d7T6U5PMHxOqw\nWD9SrB7QfiHJz/a28b4craKiWJ3sWD3oPcBRYnXgOfw6YnVYrJ/fF6t/eVCs7o+17FWpHRrr8xyr\nUxynfyLdsecD6c45vf0643Qk5//eY89N8isDnvNI73X3xZMx1b/uT2oAAADASTtylVoAAAC4HhJO\nAAAARkLCCQAAwEhIOAEAABgJCScAAAAjIeEEAABgJCScAAAAjISEEwAAgJG4adwdAACOpqouJHl2\nkk8nqSSPS/KrA5a9rbX2ynH1EwB2STgBYHq0JN/cWvt3SVJVn5vkvx+yDADGziW1ADA96pD7w5YB\nwFhIOAEAABgJCScAAAAjIeEEAABgJCScAAAAjISEEwCmy6DCQQoFATCR/CwKAEyP30/y01X1mewl\nmr8wZBkAjF211sbdBwAAAGaQS2oBAAAYCQknAAAAIyHhBAAAYCQknAAAAIyEhBMAAICR+P8B2l3E\nEeCAmiMAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fb459b02c50>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"a = df1.iloc[0:50, :]\n",
"a.plot(x=u'时间', y=u'数额', style=\"o\", figsize=(15,5))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
},
"widgets": {
"state": {},
"version": "1.1.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment