Created
September 4, 2016 10:37
-
-
Save yagays/68f3201da57cc40cdc2daebbc66b726c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import pandas as pd\n", | |
"from datetime import datetime" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"df = pd.read_csv(\"http://api.bitcoincharts.com/v1/trades.csv?symbol=coincheckJPY\",\n", | |
" header=None,\n", | |
" parse_dates=True,\n", | |
" date_parser=lambda x: datetime.fromtimestamp(float(x)),\n", | |
" index_col='datetime',\n", | |
" names=['datetime', 'price', 'amount'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>price</th>\n", | |
" <th>amount</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>datetime</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:26:38</th>\n", | |
" <td>62298.0</td>\n", | |
" <td>0.500000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:10:58</th>\n", | |
" <td>62265.0</td>\n", | |
" <td>0.504143</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:10:58</th>\n", | |
" <td>62265.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:10:58</th>\n", | |
" <td>62269.0</td>\n", | |
" <td>0.331000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:08:57</th>\n", | |
" <td>62277.0</td>\n", | |
" <td>3.126399</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:08:57</th>\n", | |
" <td>62277.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:08:57</th>\n", | |
" <td>62279.0</td>\n", | |
" <td>0.038333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:01:47</th>\n", | |
" <td>62288.0</td>\n", | |
" <td>0.229719</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:01:36</th>\n", | |
" <td>62288.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:01:24</th>\n", | |
" <td>62283.0</td>\n", | |
" <td>1.062988</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 19:01:24</th>\n", | |
" <td>62283.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:55:08</th>\n", | |
" <td>62345.0</td>\n", | |
" <td>2.600000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:54:35</th>\n", | |
" <td>62345.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:54:35</th>\n", | |
" <td>62345.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:52:18</th>\n", | |
" <td>62358.0</td>\n", | |
" <td>0.526991</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:52:12</th>\n", | |
" <td>62357.0</td>\n", | |
" <td>0.752390</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:52:10</th>\n", | |
" <td>62357.0</td>\n", | |
" <td>0.752390</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:52:04</th>\n", | |
" <td>62357.0</td>\n", | |
" <td>0.520224</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:51:18</th>\n", | |
" <td>62381.0</td>\n", | |
" <td>0.016262</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:51:16</th>\n", | |
" <td>62381.0</td>\n", | |
" <td>0.016262</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:57</th>\n", | |
" <td>62352.0</td>\n", | |
" <td>0.573233</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:57</th>\n", | |
" <td>62353.0</td>\n", | |
" <td>0.213384</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:55</th>\n", | |
" <td>62353.0</td>\n", | |
" <td>0.786616</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:54</th>\n", | |
" <td>62352.0</td>\n", | |
" <td>0.414867</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:25</th>\n", | |
" <td>62390.0</td>\n", | |
" <td>0.020010</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:15</th>\n", | |
" <td>62488.0</td>\n", | |
" <td>1.205413</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:50:01</th>\n", | |
" <td>62488.0</td>\n", | |
" <td>1.205413</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:49:12</th>\n", | |
" <td>62500.0</td>\n", | |
" <td>0.320020</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:49:09</th>\n", | |
" <td>62488.0</td>\n", | |
" <td>0.589175</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-09-04 18:48:53</th>\n", | |
" <td>62500.0</td>\n", | |
" <td>0.019843</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:52:19</th>\n", | |
" <td>59088.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:51:37</th>\n", | |
" <td>59088.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:59</th>\n", | |
" <td>59050.0</td>\n", | |
" <td>0.489500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:47</th>\n", | |
" <td>59050.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:46</th>\n", | |
" <td>59091.0</td>\n", | |
" <td>0.027140</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:38</th>\n", | |
" <td>59091.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:32</th>\n", | |
" <td>59091.0</td>\n", | |
" <td>0.500000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:25</th>\n", | |
" <td>59091.0</td>\n", | |
" <td>0.500000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:47:08</th>\n", | |
" <td>59091.0</td>\n", | |
" <td>0.600000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:46:27</th>\n", | |
" <td>59091.0</td>\n", | |
" <td>0.472860</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:43:16</th>\n", | |
" <td>59090.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:41:52</th>\n", | |
" <td>59095.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:39:00</th>\n", | |
" <td>59106.0</td>\n", | |
" <td>0.600000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:38:58</th>\n", | |
" <td>59106.0</td>\n", | |
" <td>0.600000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:38:39</th>\n", | |
" <td>59106.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:36:40</th>\n", | |
" <td>59106.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:36:32</th>\n", | |
" <td>59106.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:36:14</th>\n", | |
" <td>59106.0</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:36:00</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.600000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:35:51</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.600000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:35:34</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.500000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:35:27</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.500000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:34:11</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.100000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:24:00</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.227700</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:23:44</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>0.762500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:18:38</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>1.367600</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 20:10:35</th>\n", | |
" <td>59140.0</td>\n", | |
" <td>0.339870</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 19:57:47</th>\n", | |
" <td>59117.0</td>\n", | |
" <td>1.470000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 19:42:27</th>\n", | |
" <td>59121.0</td>\n", | |
" <td>0.818797</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016-08-30 19:40:30</th>\n", | |
" <td>59133.0</td>\n", | |
" <td>0.777907</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>6994 rows × 2 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" price amount\n", | |
"datetime \n", | |
"2016-09-04 19:26:38 62298.0 0.500000\n", | |
"2016-09-04 19:10:58 62265.0 0.504143\n", | |
"2016-09-04 19:10:58 62265.0 1.000000\n", | |
"2016-09-04 19:10:58 62269.0 0.331000\n", | |
"2016-09-04 19:08:57 62277.0 3.126399\n", | |
"2016-09-04 19:08:57 62277.0 1.000000\n", | |
"2016-09-04 19:08:57 62279.0 0.038333\n", | |
"2016-09-04 19:01:47 62288.0 0.229719\n", | |
"2016-09-04 19:01:36 62288.0 1.000000\n", | |
"2016-09-04 19:01:24 62283.0 1.062988\n", | |
"2016-09-04 19:01:24 62283.0 1.000000\n", | |
"2016-09-04 18:55:08 62345.0 2.600000\n", | |
"2016-09-04 18:54:35 62345.0 1.000000\n", | |
"2016-09-04 18:54:35 62345.0 1.000000\n", | |
"2016-09-04 18:52:18 62358.0 0.526991\n", | |
"2016-09-04 18:52:12 62357.0 0.752390\n", | |
"2016-09-04 18:52:10 62357.0 0.752390\n", | |
"2016-09-04 18:52:04 62357.0 0.520224\n", | |
"2016-09-04 18:51:18 62381.0 0.016262\n", | |
"2016-09-04 18:51:16 62381.0 0.016262\n", | |
"2016-09-04 18:50:57 62352.0 0.573233\n", | |
"2016-09-04 18:50:57 62353.0 0.213384\n", | |
"2016-09-04 18:50:55 62353.0 0.786616\n", | |
"2016-09-04 18:50:54 62352.0 0.414867\n", | |
"2016-09-04 18:50:25 62390.0 0.020010\n", | |
"2016-09-04 18:50:15 62488.0 1.205413\n", | |
"2016-09-04 18:50:01 62488.0 1.205413\n", | |
"2016-09-04 18:49:12 62500.0 0.320020\n", | |
"2016-09-04 18:49:09 62488.0 0.589175\n", | |
"2016-09-04 18:48:53 62500.0 0.019843\n", | |
"... ... ...\n", | |
"2016-08-30 20:52:19 59088.0 0.100000\n", | |
"2016-08-30 20:51:37 59088.0 0.100000\n", | |
"2016-08-30 20:47:59 59050.0 0.489500\n", | |
"2016-08-30 20:47:47 59050.0 0.100000\n", | |
"2016-08-30 20:47:46 59091.0 0.027140\n", | |
"2016-08-30 20:47:38 59091.0 0.100000\n", | |
"2016-08-30 20:47:32 59091.0 0.500000\n", | |
"2016-08-30 20:47:25 59091.0 0.500000\n", | |
"2016-08-30 20:47:08 59091.0 0.600000\n", | |
"2016-08-30 20:46:27 59091.0 0.472860\n", | |
"2016-08-30 20:43:16 59090.0 0.100000\n", | |
"2016-08-30 20:41:52 59095.0 0.100000\n", | |
"2016-08-30 20:39:00 59106.0 0.600000\n", | |
"2016-08-30 20:38:58 59106.0 0.600000\n", | |
"2016-08-30 20:38:39 59106.0 0.100000\n", | |
"2016-08-30 20:36:40 59106.0 0.100000\n", | |
"2016-08-30 20:36:32 59106.0 0.100000\n", | |
"2016-08-30 20:36:14 59106.0 1.000000\n", | |
"2016-08-30 20:36:00 59117.0 0.600000\n", | |
"2016-08-30 20:35:51 59117.0 0.600000\n", | |
"2016-08-30 20:35:34 59117.0 0.500000\n", | |
"2016-08-30 20:35:27 59117.0 0.500000\n", | |
"2016-08-30 20:34:11 59117.0 0.100000\n", | |
"2016-08-30 20:24:00 59117.0 0.227700\n", | |
"2016-08-30 20:23:44 59117.0 0.762500\n", | |
"2016-08-30 20:18:38 59117.0 1.367600\n", | |
"2016-08-30 20:10:35 59140.0 0.339870\n", | |
"2016-08-30 19:57:47 59117.0 1.470000\n", | |
"2016-08-30 19:42:27 59121.0 0.818797\n", | |
"2016-08-30 19:40:30 59133.0 0.777907\n", | |
"\n", | |
"[6994 rows x 2 columns]" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x1129b31d0>" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEOCAYAAABhOhcDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucVWX1/98fQBCRQBRv3ETFCygkJKiFTmoKloqJSZaZ\nYprkpdu3REuhn2VqhahhpSBKahrm3VDUJs1UUFARMC5GwgCBIIMiAcOs3x/Pc9xnhjNzzjBnZg5z\n1vv12q/97LWfvffa68ys59nPbcnMcBzHcYqLFk2tgOM4jtP4uPN3HMcpQtz5O47jFCHu/B3HcYoQ\nd/6O4zhFiDt/x3GcIiSr85fUUdJUSfMlzZN0lKSfSXpT0huSnpPULS3/aEkLJb0j6aQ0+QBJc+K5\n8WnyNpIeiPJXJPXI/2s6juM46eRS8x8PPGVmhwJ9gfnATWbWz8w+DTwCXAsgqTdwNtAbGAJMkKR4\nn9uBkWbWC+glaUiUjwTWRPk44Ib8vJrjOI5TE7U6f0kdgMFmNgnAzCrMrNzMPkzLtivwfkyfDtxv\nZlvMbAmwCBgkaR+gvZnNiPnuAYbF9GnA3TH9EHBCPd/JcRzHyUKrLOd7Aqsl3QX0A14HrjCzjyX9\nHDgX2AgMjPn3BV5Ju34Z0AXYEtMpyqKcuF8KoXCRVC6pk5mt3f7XchzHcWojW7NPK6A/MMHM+gMb\ngCsBzOxqM+sO3AXc3KBaOo7jOHklW81/GbDMzGbG46lE55/GfcBTMV0GdEs71zXeoyymq8tT13QH\nlktqBXTIVOuX5IsQOY7j1BEzUyZ5rTV/M1sJLJV0UBSdCMyVdGBattOB2TH9GDBCUmtJPYFewIx4\nn/WSBsUO4HOBR9OuOS+mhwPP1aJPk2zXXnttkz270PQoBB0KRY9C0MH1KDwdCkWPa6+9tjb3nrXm\nD3AZcK+k1sBi4ALgTkkHA1uj7JLonOdJehCYB1QAo8wsVWMfBUwG2hJGD02L8onAFEkLgTXAiBx0\nchzHcepBVudvZm8CR1YTD68l/y+AX2SQvw4cnkG+CfhKVk0dx3GcvOEzfHOgpKSkqVUACkOPQtAB\nCkOPQtABXI9C0wEKQ49sOihplSlsJNmOoqvjOE4hIAnbng5fx3Ecp3nizt9xHKcIcefvOI5ThLjz\ndxzHKULc+TuO4+SJ3XaDKVOaWovccOfvOI6TJ9atgxdfbGotcsOdv+M4Th7ZurWpNcgNd/6O4zh5\nxJ2/4zhOEeLO33EcpwiprGxqDXLDnb/jOE4e8Zq/4zhOEbJwYVNrkBtZnb+kjpKmSpovaZ6koyTd\nFI/flPSXGOgdSftJ2ihpdtwmpN1ngKQ5khZKGp8mbyPpgSh/RVKPhnlVx3Gc/FFRATdnCGA7axZs\n3Nj4+tSVXGr+4wnBVw4F+gLzgWeAPmbWD1gAjE7Lv8jMjojbqDT57cBIM+sF9JI0JMpHAmuifBxw\nQ/1eyXEcp+FZsgS+973M5/7+90ZVZbuo1fnHGv1gM5sEYGYVZlZuZtPNLNWt8SpV4/Nmus8+QHsz\nmxFF9wDDYvo04O6Yfgg4oe6v4TiO0/ScfDK0aAGvvdbUmmQnW82/J7Ba0l2SZkm6Q9Iu1fJcQBLA\nHaBnbPIplfS5KOtCErAdQtD2LmnnlkIoXIBySZ2252Ucx3EaC2VYJd8MTjwRnn4aXnklHKd4//2q\nxw3JggXZn5UtjGMroD9wqZnNlHQzcCVwDYCkq4HNZnZfzL8c6GZmH0jqDzwiqU893qEKY8aM+SRd\nUlJSENFyHMcpTlrV4D2//GV44AE4+miYPx8OOSTIO3eGe++Fc85pOJ1KS0spLS1l7Fi47LLa82Zz\n/suAZWY2Mx5PJTh/JH0TOIW0Zhoz2wxsjulZkhYDvQg1/fSmoa4kXwJlQHdguaRWQAczW5tJmXTn\n7ziO05Skav7l5dChQ0ibwX77wfPPw8EHw7PPJs4fYPnyhtUpVSkeOxYuvBBuvXVsjXlrbfYxs5XA\nUkkHRdGJwNzYWft/wOlm9r9Ufkl7SGoZ0/sTHP+7ZrYCWC9pkCQB5wKPxsseA86L6eHAc3V8X8dx\nnEYnNZmrY8eq8lShcPrp8PjjVc81xiigVHPPpk2158tW8we4DLhXUmtgMaGNfybQGpgefDkvx5E9\nxwFjJW0BKoGLzWxdvM8oYDLQljB6aFqUTwSmSFoIrAFG5PKCjuM4TUm2mbzHHgsvvRTSKYdcUdGw\nOkEyySxbQZPV+ZvZm8CR1cS9asj7EGHETqZzrwOHZ5BvAr6STQ/HcZxCIpPzT+9k3X33xBE//HDY\n71J9uEwDkCpgsjl/n+HrOI6zHdRU8081++y8M/wvNoo/Ghu5Dzyw4fVKOf+PP649nzt/x3Gc7SDT\nUMp0WcuWSc1/8+awzzQ8NN+knP/q1bXnc+fvOI6zHaSP4pHgo4+SdGqfKgxmz248vVLOf/362vO5\n83ccx8kDe+8Nz6WNVUx3/v/6V9jPmLHtdfkm5fxXrqw9nzt/x3GcPFB9nZ9055/ihkZYuSzl/H/9\n69rzufN3HMepJx06JM4/U7PP2Wc3jh4bNsBf/wpt2mTP687fcRynnrRoAe3aVZVVr/nvsUfu91u3\nDs4/H6ZNgyFDwnEmVq+GG28M6a1bYddd4aKL4Ic/hKVLs+icuzqO4zhOJtq2hdatQzo1wqe687/w\nQjh8m5lOmZk/HyZPhqFDwyJxV16ZOd8LL8CPfwwfflg1z3HHQdda11rObYav4ziOUwvLlwdnf955\n0CcuZZnu/EtLoV+/7EsupJBg4MBQAPTuDY88AjNnhi+M9G1tXAXtU58K+zPOCBPKemWchlvtGdZY\na4zWE0m2o+jqOE7zp/qY/eru6c034dOfTo5nzYL+/eE734Ff/CIcH3lk+CLYsCE4+nbtYOJEePFF\nmDsX3norzNSdPz/cv7Iy2T7+OCwf3bZtMpu3e3d4771EF0mYWcbZBV7zdxzHqSejR28rKy9P0mee\nCQccENK//W3YqnPTTTB8eCgcvvc9OO20IG/bNhQaNSGFvPffH65/773cdHbn7ziOU08yzdxNLf9w\nxx2hdg+hRn7rrXD55VXz7rorvPsuvP46HHMM/OY3uT136NDw1ZBaPuKxx0ITU0467yhNKd7s4zhO\nIZHu8M85JwRqSaeyEv7xj7C6Zzr/+1+ozf/pT+F40qQwOuekk8Lx2LFwzTW56ZA079SkY83NPlmd\nv6SOwJ1AH8AISzqfCXyJELhlMXC+mZXH/KNjnq3A5Wb2TJQPICzpvDNhSecrorwNIaZvf8KSzmeb\n2X8y6OHO33GcgiFbm39d6dGjant9PqjN+ecy1HM8wVkfCvQF5gPPAH3MrB+wABgdH9QbOBvoDQwB\nJsTgLQC3AyPNrBfQKwaEARgJrInycUAjzIFzHMfJH5Mm1f8e//lP46z3n6JW5y+pAzDYzCZBCLBu\nZuVmNt3MUguavkoSovF04H4z22JmS4BFwCBJ+wDtzSy1ssU9wLCYPg24O6YfIi0spOM4zo7A/vvn\n5z4tW+bnPrmQrebfE1gt6S5JsyTdIal6OIILgKdiel+S2LzEdJcM8rIoJ+6XQihcgHJJner8Jo7j\nOI3M5z/f1BpsP9mcfytCW/wEM+sPbCAGcAeQdDWw2czuazgVHcdxCotUY3aPHk2rR33INtRzGbDM\nzGbG46lE5y/pm8ApVG2mKQO6pR13jfcoI2kaSpenrukOLJfUCuhgZmszKTNmzJhP0qko9Y7jOE3F\nSSeFJp8jqwe6bSJKS0spzXGsZy6jfV4ALjSzBZLGEAKw/w34NXCcmb2flrc3cB8wkNCc8yxwoJmZ\npFeBy4EZwJPALWY2TdIo4HAzu0TSCGCYmW0TxN1H+ziOUyikav6F7pLqO9SzH2GoZ2vCsM4LgJnx\nOFVDf9nMRsX8V8U8FcAVZvZ0lKeGerYljB66PMrbAFOAIwhDPUfEzuLqerjzdxynICgK518ouPN3\nHKdQaA7O35d0dhzHKULc+TuO4xQh7vwdx3GKEHf+juM4RYg7f8dxnCLEnb/jOE4R4s7fcRynCHHn\n7ziOU4S483ccxylC3Pk7juMUIe78HcdxihB3/o7jONtBTUHTdxTc+TuO42wHLXZw75lVfUkdJU2V\nNF/SPElHSTpL0lxJWyX1T8u7n6SNkmbHbULauQGS5khaKGl8mryNpAei/BVJO3BsHMdxioVW2UJh\nFTi5lF3jCevvHwr0BeYDc4AzgBcy5F9kZkfEbVSa/HZgpJn1AnpJGhLlI4E1UT4OuGE738VxHKfR\naMxg6w1Brc5fUgdgsJlNghBg3czKzewdM1uQ60Mk7QO0N7MZUXQPMCymTwPujumHqBoW0nEcpyBp\n7s0+PYHVku6SNEvSHZJ2yXZNbPIplfS5KOtCErMXQtzeLmnnlkIoXIBySZ3q9hqO4ziNS7Ou+RMC\nvPcHJphZf2ADMYB7DSwHupnZEcD3gfsktc+Lpo7jOAXEju78s3VZLAOWmdnMeDyVWpy/mW0GNsf0\nLEmLgV6Emn7XtKxdSb4EyoDuwHJJrYAOZraWDIwZM+aTdElJCSUlJVnUdxzHaRgmTMiep7EpLS2l\ntLQ0p7y5BHB/AbjQzBZIGgO0NbMfx3N/A35oZq/H4z2AD8xsq6T9CR3Ch5nZOkmvApcDM4AngVvM\nbJqkUcDhZnaJpBHAMDMbkUEPj+HrOE5B0L8/3Hln2BcytcXwzWWw0mXAvZJaA4uB8yWdAdwC7AE8\nKWm2mQ0FjgPGStoCVAIXm9m6eJ9RwGSgLWH00LQonwhMkbQQWANs4/gdx3EKicrKHb/DN2vNv1Dw\nmr/jOIVC374wZQr069fUmtRObTX/HbzschzHaXyaQ81/B1ffcRyn8TFz5+84jlN0eM3fcRynCKms\n9FU9Hcdxig5v9nEcxylCvNnHcRynCPFmH8dxnCLEm30cx3GKEG/2cRzHKULc+TuO4xQh3ubvOI5T\nZGzZAsuX7/jr+bvzdxzHqQObNoX9Xns1rR71xZ2/4zhOHTCDdu2KoM1fUkdJUyXNlzRP0lGSzpI0\nV9JWSf2r5R8taaGkdySdlCYfIGlOPDc+Td5G0gNR/oqkHvl9RcdxnPxhtuO390NuNf/xhOArhwJ9\ngfnAHOAMQqSuT5DUGzgb6A0MASZIn5jpdmCkmfUCekkaEuUjgTVRPg64oX6v5DiO03AUhfOX1AEY\nbGaTAMyswszKzewdM1uQ4ZLTgfvNbIuZLQEWAYMk7QO0N7MZMd89wLCYPg24O6YfAk6o1xs5juM0\nIEXh/IGewGpJd0maJekOSbvUkn9fksDsxHSXDPKyKCful0IoXIBySZ3q8A6O4ziNRnNx/tli+LYC\n+gOXmtlMSTcDVwLXNLhmGRgzZswn6ZKSEkpKSppCDcdxiphCdv6lpaWUlpbmlDeb818GLDOzmfF4\nKsH510QZ0C3tuGu8R1lMV5enrukOLJfUCuhgZmsz3Tzd+TuO4zQVher8q1eKx44dW2PeWpt9zGwl\nsFTSQVF0IjC3WrZ0MzwGjJDUWlJPoBcwI95nvaRBsQP4XODRtGvOi+nhwHO16eQ4jtOUmDW1Bvkh\nW80f4DLgXkmtgcXA+ZLOAG4B9gCelDTbzIaa2TxJDwLzgApglNknphoFTAbaEkYPTYvyicAUSQuB\nNcCIPL2b4zhO3inkZp+6INtBijFJtqPo6jhO82X1ajj0UHj//abWJDuSMLOMRdUOPkfNcRyncWku\nNX93/o7jOHXAnb/jOE4R4s7fcRynCHHn7ziOU4S483ccxylC3Pk7juMUIe78HcdxihB3/o7jOEWI\nO3/HcZwixJ2/4zhOEeLO33Ecpwhx5+84jlOEFI3zl9RR0lRJ8yXNi2vyd5I0XdICSc9I6hjz7idp\no6TZcZuQdp8BkuZIWihpfJq8jaQHovwVST0a5lUdx3HqT9E4f2A8Yf39Q4G+wDuEaF7TzewgQvCV\n9Ohei8zsiLiNSpPfDow0s15AL0lDonwksCbKxwE31O+VHMdxGo6icP6SOgCDzWwShADrZlYOnAbc\nHbPdDQzLcp99gPZmNiOK7km7Jv1eDwEn1PUlHMdxGouicP5AT2C1pLskzZJ0h6R2wF5m9t+Y57/A\nXunXxCafUkmfi7IuJDF7IcTt7ZJ2bimEwgUol9SpHu/kOI7TYBSL828F9AcmmFl/YAPVArjH8Fqp\nEFvLgW5mdgTwfeA+Se3zq7LjOE7T0Vycf7YYvsuAZWY2Mx5PBUYDKyXtbWYrY5POKgAz2wxsjulZ\nkhYTgriXAV3T7tuV5EugDOgOLJfUCuhgZmszKTNmzJhP0tWj1DuO4zQWher8S0tLKS0tzSlv1hi+\nkl4ALjSzBZLGALvEU2vM7AZJVwIdzexKSXsAH5jZVkn7Ay8Ah5nZOkmvApcDM4AngVvMbJqkUcDh\nZnaJpBHAMDPbJoi7x/B1HKcQePttOOUUeO+9ptYkO7XF8M1W8we4DLhXUmtgMXA+0BJ4UNJIYAnw\nlZj3WOBnkrYAlcDFZrYunhsFTAbaEkYPTYvyicAUSQuBNcA2jt9xHKdQaNECtm5tai3qT9aaf6Hg\nNX/HcQqBuXPhrLNg3rym1iQ7tdX8fYav4zhOHWguHb7u/B3HceqAO3/HcZwixJ2/4zhOEeLO33Ec\npwhx5+84jlOEuPN3HMcpQtz5O47jFCFmYaLXjk4zeAXHcZzGo7LSa/6O4zhFhzf7OI7jFCHu/B3H\ncYoQd/6O4zhFiDt/x3GcIqRonL+kjpKmSpovaZ6kQZI6SZouaYGkZyR1TMs/WtJCSe9IOilNPkDS\nnHhufJq8jaQHovwVST3y/5qO4zj5oWicPzCeEHzlUKAv8A4hju90MzsIeC4eI6k3cDbQGxgCTJA+\nMdPtwEgz6wX0kjQkykcSooL1AsYBN+TlzRzHcRqAonD+kjoAg81sEoCZVZhZOXAacHfMdjcwLKZP\nB+43sy1mtgRYBAyKcX7bm9mMmO+etGvS7/UQcEK938pxHKeBKJZJXj2B1ZLukjRL0h2S2gF7mdl/\nY57/AnvF9L4kgdmJ6S4Z5GVRTtwvhVC4AOWSOm3vCzmO4zQkzWWSV7YYvq2A/sClZjZT0s3EJp4U\nZmaSGiW+4pgxYz5Jl5SUUFJS0hiPdRzH+YRCbvYpLS2ltLQ0p7zZnP8yYJmZzYzHU4HRwEpJe5vZ\nytiksyqeLwO6pV3fNd6jLKary1PXdAeWS2oFdDCztZmUSXf+juM4TUEhO//qleKxY8fWmLfWZh8z\nWwkslXRQFJ0IzAUeB86LsvOAR2L6MWCEpNaSegK9gBnxPuvjSCEB5wKPpl2TutdwQgey4zhOQVLI\nzr8uZKv5A1wG3CupNbAYOB9oCTwoaSSwBPgKgJnNk/QgMA+oAEaZWapJaBQwGWhLGD00LconAlMk\nLQTWACPy8F6O4zgNQnNx/kp8c2EjyXYUXR3Hab488QTceCO88EJTa5IdSZhZxqKqGQxYchzHaTzM\nYOvWptai/rjzdxzHqQNbt8Keeza1FvXHnb/jOE4d2LwZdtqpqbWoP+78Hcdx6sCWLdC6dVNrUX/c\n+TuO49SBzZvd+TuO4xQdq1ZBq1wGyRc47vwdx3HqQIsWPtrHcRynIJk0CX7604a59+bNsNde2fMV\nOs3g48VxnGLDDMrKoGtcMez+++FXvwqjcLZuhddeC/J58+BHP4K994aWLUOtfbfdoG3b7X+2d/gW\nGevWwdKlmc899RRceWXmc47j5J/rroNu3eDVV+HNN+Gcc4JTHzcOJkyAWbPCTNxly+CUU2DwYDjq\nKNhvP+jUCa64IizRIMH++8Ppp+f+7E2bmsdQT1/eIUf23hv+GyMYPPccHH98cu744+Fvfwu1Ecdx\ncqOyEi69FK6+OqmZ58KMGfC5z4UaeIqf/zxUwLIFWdm8Gfr0gUWLoF8/OPNMOPpo+MIXYP58OOSQ\n2q83g1694JZbQqFS6PjyDnlg0KDwRwrw9NNVz330UePr4zg7OvfeC7ffDj16hNEzDz2U23VLloSa\n+n/+k9TYf/Sj3KJrtW4N3/9+SL/xRugXOPFE+PrXIZdl8KdOhcWLwzU7Ou78c+Sxx6BNm5DeuLHq\nuffea3x9HGdH4J134MMP4e23g9OG0CY/fTpMmQK/+U1otjn/fJg5s9ZbfcLataHppnt3eOSR8AVR\nl6GXX/rStrL994cVK7Jf+8QTcP31RdLmL2mJpLckzZY0I8r6SXo5yh+T1D7K95O0MeadLWlC2n0G\nSJojaaGk8WnyNpIeiPJXJPVoiBfNB8OHh/28eTB+fLKlmoMcx0n4/vfh0EPhU5+Cww+Hnj3hssuC\noz7pJOjQIfxP9ekDn/0sTJ4M5eXZ77tsGXTunBzXdXnlbt22baLt3j0pnGpj/nw49ti6Pa9QyaW8\nNKCkWnStO4Hvm9mLks4H/g+4Jp5bZGZHZLjP7cBIM5sh6SlJQ+Ka/iOBNWbWS9LZwA0U2Jr+ZqE9\n8sAD4cEH4R//gHffTc536xY6g8vKoEuXmu9TX5Yuhfvugx//uOGe4TRvKipCbbxz59BxOXt24gg7\ndYKBA2HnncPxxo0hnatzragITS8tWoT/j3HjgnzAAOjfP1SSbrstyK69FtID833zm/Dii9C3bygg\nKiuDXqkt/fjBB+HWW/NhjYRDD4Xf/z45njoV1qzZNt/MmXDwwfl9dlORtcNX0r+Bz5jZmjTZOjPr\nGNPdgGlm1kfSfsDjZnZ4tXvsAzxvZofG4xGEAuXbkqYB15rZqzGM4woz60w1mrLD97XX4Mgja+7Q\n3bgRdtkl1G7eeqvh9LjuutBG2Rw7llMOpjm+WyExfjx897shveeecMQRibNfuhQWLoRdd02aQP7w\nB/jWt7Lf96OPwoiaZcvgrrvg1FOTc7n+psuWwc03h3RqJE6LFkk6dbzTTvCDH0C7drndNxc++CAM\nG/3hD0On8C9/Gd67esHXoQPccMOOE8yltg7fXGv+z0raCvzezO4A5ko63cweBc6iatzenpJmA+XA\nT8zsH0AXkpi9EOL2purIXYClAGZWIalcUqea4vg2Bak/yJpo2xa+8Q24555QMzjyyIbRo3pfQ3Pk\nM5+Bxx+HffZpak2aJzvtFBxoWVkYYZOOWXDAH30EvXsH2eLFud13+vRwz+uug7PPTuTHHJO7bl27\nhrH6TcFuu8FNN8Hq1aEwfOgh+PKXm0aXRsPMat2AfeK+M/AGMBg4GHgaeI3Q3PN+zNMa2C2m+wPv\nAe2BzwDT0+45mPCFADAH2Dft3CKgUwY9rKno18/sscdqz3P33eGj9IorGk6P1IfvjgyY3XhjVdma\nNekf+Mk2Y0bT6Nic+fnPzX784+z50n+HP/0pka9fbzZypFn//ma77mrWu7fZ00+bnXqq2bhx215/\n7LH5fwcnd6LfzOjbs9b8zWxF3K+W9DAw0Mx+DZwMEIO7fzHm2QxsjulZkhYTgriXAV3TbtuV5Eug\nDOgOLI/NPh2shlr/mLRGwupR6huS8nI47LDa83zjG7BgQTIiqCFpyK+L7WHpUth339zHaf/oR+Hz\nOvXpvHBh2G/aBB9/HGqfhx8eRnIU0ns2B8rLQy03G7fcApdfHtKXXhqGQfbpE47fegt++9sw3v31\n12HYsPBV+sc/bnufc8/Nm+pODpSWllKay5hVqL3mD+wCtI/pdsBLwElA5yhrAdwDfDMe7wG0jOn9\nCQ6+Yzx+FRgECHgKGBLlo4DbY3oE8KcadGn4YrIG9t7bbPny7Pl++UuzH/yg4fRI1aY6d264Z9SV\nLVvq9kWSyvvvfyeyv/89yLZurZpv5Mi8qlo0vPuu2WWXBRv++c9BtnWr2YoVZl/4gtn99+d2n/bt\nzTZuNHv9dbPvfc+sTx+zDh3MXnyxar65c83uvbeqDMxOOKH+7+LUD+pR898LeFihitYKuNfMnpF0\nhaRRMc9DZjY5po8FfiZpC1AJXGxm6+K5UcBkoC3wlIWRPgATgSmSFgJrKLCRPgArVyadYrWx775w\n1VUN3265enXD3r8u1GV1w3feSdLp47L/+c+wrz5J56CDtl+vYmTlytD2ftttYRYshIlMw4fD3XfD\nBRcE2YMP5na/9evDvn//sM2fH36j6qNdevdO+gjSqazcvvdwGgdf3iELy5eH4ZupYW+1cc89cN55\nwSHmMtuwrqSPMLjlluAcTz45/8+pjeOOg29/G7761XB8221haB6EOv2CBYlzmD07TJffeecwQiJ9\n/aOlS5NFuTKN9LnmmtCMdO21Dfs+zYnqI1C++MVg+6lT4fOfD7/Fr36V31EyNVFWFp69++4N/yyn\nZmob7ePOPwv//neY/VdZmX14V2VlcFhbtjRMsIdMz29sk1R31Ok6ffRRGEFSfbmL//1v24Jz6dJQ\ns3zpJbjooqr3hNCm/PbbYfr/Bx+EWZU33pjfd2lutGkThimmuOYauPPOsPhZv36hItMYfVJO4eBr\n+2wn77+fDHXLZVxvagxyps/dior663P44dvKHnkkdMYtWZLbDMX6kL6MRaZ3/PKXMw/R3LQpSe+3\nX3J9nz6J46/OXnvBtGmhA/jRR8MwvPT7ffxxndVv9uy9N4walRy3aBHG7P/5z2EMvjt+pwo1dQYU\n2kYjd/juvXfV4W650qZN6CRL5513wj1+/vP66XTIIZmHRKZv1Z+dLyoqzAYNMrv+erODD86uh9m2\nskcfNZszJ6T/8IdEPmWK2W9/W/V5K1aY7bab2eOPm119dcj30Udmmzcn1513ntnDDzfM++5obN1q\ntvPOZhs2hL/BPfYwe+ONxFYvvdTUGjpNAbV0+HrNvwZWrgz7FSvq1rSSKcRbapnYq6+uXydYLp2r\nRx+9/feviQkTQjNWRUVYWqL6iobf/W7mha46dqx6fOyxyZDZdesS+de/XrXGCqEW+7WvhWGg//lP\nkP3gB6HTMcXdd8MZZ4QmoVWrtu/ddjTMwpo56faD8HV0wAFhpvmCBWHbddfkfF0mWznFQbN3/rNn\nh5EKZ50VnMmhh4YmnGOOgYcfrv3agw7adhZkNlq2rN1J5zrSIhNnnJE9zxtv1HzuuefCu1efKbxi\nRe3O8zvwfwWeAAAWG0lEQVTfCfsLLwzXp8cygFCopZbjfeGFsIojhOAZAKedFvbphcEee4R9aux4\nJnr0CGP+KyrCtTvvHJze4MHBCc6fHwq7q64KU/FXrw4djW+8Aa+8EtZm2bwZ5sxJCpDqLFsWljiQ\ngp5f+UrYrrii7k1LlZW5LUxWHyorw5o5u+2WVEqefz40uaWa0Lp3D+dT8y6WLct8L6e4afbOf/r0\n4Gi+9CUYOjQ4qu99L6zRcc89NV932GHwpz/V/XktW2au3R9/fPjnfOaZut9z/fptnXOmQik1vC9T\nAXPHHUmNfZddEvmaNWGI6l57BSeYorw8dNSmt9enVjMcOhRGjw5O2SzYd+jQ4HQHD05qnE8+GZxv\n9cICkhFCF19c83vvvXf4AnvzzWQZ3nnzwpo0EL6onn0W/vKXsOT2nnuGEURHHBH02GOP0M7dt2/o\na/jd78Lfw9NPJ45z1qykwPzKV8KwyOHDg71POSUpyHLhuuu2/drJJ2+8AX//e/i67Ngx7CdOhL/+\nNZy/9NKq+VOFV0MuNujswNTUHlRoG9vZ5n/55VWnnaeYO9fswANrvu6ww8zefLPuz9t9d7NVq6rK\nDjjA7MknzSZONDv//MzXrVpl9swzyXFZWWir/clPknbbdu3M7rjDrLLSbL/9MrezjxsXdK/OwIFV\n886eHeTvvltV/oUvhDZ4MDvzzLDVd1mJDz6oOgkodb8WLcw+/rjm66ZPD/n22cfsN78xu+ACs333\nNXvllW3zPvqo2SmnBH1vvtnskUfCtS1bmp1zTtV37NLF7MtfDnZ8/vnwd7BhQ9X7bd0afqvevc3W\nrcv+jimbVZ+sVl+eecbs+OPNfve75P7f+pbZ2rUhnep/GT5822tT/StO8UItbf5N7tRz3bbX+Q8f\nbvbAA9vKKyqCM33iibA2yV//avbUU+H4scfMunUze/vtuj+v+mzgZcvsk87eBx7I/E9qZnbuuck/\n6qpVwSGl/tlvusnss581Ky1NHEumTlczs0WLQsFQnQMOCHnSZ+T+4x+hgAOzqVPNZs4069vXbKed\nzK66Kszm3H13s7vuMtu0qe62qImjjkp02LKl5nypNX++/e3g0MHs7LNze0ZlZdVZxGVlZtOmhdnE\nL74Y7jV4cChUTj458z02bkz0XL++9uel/w5r1uSmY4r1683mz08qDStXhv2WLaFAS7/3E08k10nJ\n7/m1r21737fecudf7BS18z/mmG2no6f4wQ/CFPQTTzQ76SSzIUPCP9sXvxhqhh98UPfnde1q9t57\nIb11q9nQocHKH35o9vLLIV1RUfWaTAubjRgRCouaHNN991XNn/qKWbEiLLg1fnwYKbNqldnttwdH\nl1rQq0uX5LoXXgj7lMP5+tdDLfPDD81uuy2R55MNG5LnV1bWnvfee83efz/UwsFs3rz86PD668Fm\ngwaZPfdczflSheNhh5ldcknY5s9Pzq9dG95h2DCziy5K8qZYsyb5e6iJSy4x23NPs06dzBYvTn6X\nww4zO+igMFrsiitCwZUJMPvVr7aVV1SEvxOneClK519REd6udWuzf/2rTpfWi27dwnDI73zHbNKk\noMNFF4VzlZXheMmScPzPfwbnfOGFYfVDMDvtNLPrrgvOqTZSXxSnnhoKmFRBVVFh9tOfhkIvvXD4\n9rfNFiwIefbcs+q5r361YWxRG2VloYDJlalTLe9NKrmyebPZ5MlhOOqXvlTV2UL4nS+4IDTJPfhg\nkK1YkZxP/8K5+upQyQCzAQPMjjsupJ95ZtsKQK7v26VL1a8cx0lRlM7/qaeSf6C1a+t0ab1I/8cd\nPTr8s1c/P3nytnknTgyOO1tNOMX771utn/R//GPV+6czd26Q/f73tbe5O5mp7qhHjQrNdpMmhfPH\nHGP2t79VnZOQag7K5OBTTj69Db++/SyOY1a789+hRvtMm5Y9T4opU8K+Y8fclrBtCK6/ftulDgAm\nTao643fIkBDGrmXL3CME7b57cA81Udvyyr17h2svuigEonHqRvV5DhMmhL+3gQPD8bJlYS2d1NyH\nn/0s7FPr3FQfRfbxx8laUM8/3zA6O051dijnP3RoCEP38suJc0/HDEpKwvDB+++HuXPDujCNzZ13\nwtoYkaD6mjaPPhrGwv/wh+F4yJAwJDLfC8Ft2JCkaxrj7mwf1QvocePgJz9J5iz06FH1/E9/WnUS\n29lnJ5PVysuTAnjGjDDsNsVVV+VXb8epQk2fBKkNWAK8BcwGZkRZP+DlKH+MuOZ/PDcaWAi8A5yU\nJh9AiNq1EBifJm8DPBDlrwA9atDDxo7d9nM5fXjk4YcHWe/eZrfc0rCfU7mwYcO2bbZPP11V//Ly\nhnn2unXedNCQQOjXycSHH5otXRr6cZ59NsiuuCJcc8YZ2e/dr1/ox3Gc+kJ92vyBf1MtrCIwExgc\n0+cDP4vp3oRQjzsB+xFCMqZWDp1BiAIG2wZzmRDTZ1NLMJdUh2mmIY5myXEu47KbilTgEkjG2jcE\nqQ7vPn0a7hnFDISO9VwZPjz3gnjLltqHwDpOrtTm/HNtbKjeEt3LzF6M6WeBM2P6dOB+M9tiZkui\n8x8kaZ/4dRDnoHIPMCymTwPujumHgBNqVCJqceKJYaXCFO+/XzVfhw45vVOTsNNOYb9qFXz60w3/\nvIZebqBYWbWqbrEGJkxIwlVmo1WrhlkS3HHSycX5G/CspNckfSvK5ko6PabPArrF9L4ksXmJ6S4Z\n5GVRTtwvBTCzCqBcUqealHnnndDxO3x4WLNFKqzIVtlILZfQuXPjPM/XdWkYOnfOPWZxKv+BBzac\nPo5TV3Jx/p81syOAocB3JA0GLgBGSXoN2JUYtL0xOPjg5J/usMO2DSlX6LRv39QaOI7jkDWGL2a2\nIu5XS3qY0G7/a+BkAEkHAV+M2ctIvgIAuhJq/GUxXV2euqY7sFxSK6CDma3NpMuYMWM+SZeUlFBS\nUsJ774VFxvr2zfYmhcGAAXVbLGx7adkyLPjVVMNcHcdpfEpLSyktLc0pb61hHCXtArQ0sw8ltQOe\nAcYCs2Nh0IIQlP15M5ssqTdwHzCQ0JzzLHCgmZmkV4HLCR2/TwK3mNm0GAj+cDO7RNIIYJiZbRPE\nvaYwjql+gLFjw3K+n/88jCi4EPCO4ziNz3bH8JXUE0itet8KuNfMrpd0BWGUDsBDZnZV2jVXEZqF\nKoArzOzpKB9AKCjaAk+Z2eVR3gaYAhwBrAFGxM7i6rrU6vxrm/DkOI5TjDTrAO633grnntuw66g7\njuPsiDRr5+84juNkpjbnv0Mt7+A4juPkB3f+juM4RYg7f8dxnCLEnb/jOE4R4s7fcRynCHHn7ziO\nU4S483ccxylC3Pk7juMUIe78HcdxihB3/o7jOEWIO3/HcZwixJ2/4zhOEeLO33EcpwjJ6vwlLZH0\nlqTZkmZE2UBJM6JspqQjo3w/SRujfLakCWn3GSBpjqSFksanydtIeiDKX5HUoyFetD7kGhmnoSkE\nPQpBBygMPQpBB3A9Ck0HKAw9sumQawD3EjM7wswGRtmNwE9jbN9r4nGKRTHvEWY2Kk1+OzDSzHoB\nvSQNifKRwJooHwfckINOjUoh/JBQGHoUgg5QGHoUgg7gehSaDlAYeuTD+QNUXw96BdAhpjsS4vDW\nfLG0D9DezGZE0T3AsJg+Dbg7ph8CTshRJ8dxHGc7ybXm/6yk1yR9K8quBH4t6T3gJmB0Wv6escmn\nVNLnoqwLScB2CIVFl7RzSwHMrAIol9Rp+17HcRzHyQkzq3UD9on7zsAbwGBCYPYzovwsYHpMtwZ2\ni+n+wHtAe+AzqTzx3GDg8ZieA+ybdm4R0CmDHuabb7755lvdtpp8eyuyYGYr4n61pIeBgcBAMzsx\nZpkK3BnzbAY2x/QsSYuBXoSafte023Yl+RIoA7oDyyW1AjqY2doMemQMReY4juPUnVqbfSTtIql9\nTLcDTgLeBhZJOi5mOx5YEPPsIallTO9PcPzvxgJkvaRBkgScCzwar38MOC+mhwPP5evlHMdxnMxk\nq/nvBTwc/DWtgHvN7GlJa4DfSmoDbAQuivmPBX4maQtQCVxsZuviuVHAZKAt8JSZTYvyicAUSQuB\nNcCIvLyZ4ziOUyOK7elORFILM6tsaj0KAbdFgtsiwW2RsCPbwmf4ApJ2lXSZpAOAnaOs0fsYJLVu\n7Gdm0MFtkejgtkh0cFskOjQLWxR9zV/S8YQJaG8D7wObzeyyJtDju8A3CX0hM83sCUmyRvyB3BZV\ndHBbJDq4LRIdmo8tsg31bO4b8HVgTEzvCcwizEQGaNFIOpwAvAocAZwDvA4Makwd3BZuC7dFcdmi\n6Jp9JHWX1D9NdAiwAcDMVgE/Bv5fPG6wtjxJO6Ud7kHoBJ9tZvcRZkD/rhF0cFskOrgtEh3cFokO\nzdcWjVViFsIGXEeYTTydMDO5I/BZwnDU9HyPEdYuaggddgJ+A9wMnBBlZwJ/q5bvbeD8mJbbwm3h\ntnBb5NMWRVPzl7QHcBBwIPAVoAK41sxeAuZL+kVa9knAXtVK23zo0AL4LaHkngWMlnSxmT0E7Cnp\na2nZf0KY94DFXzSPergtEj3cFokebotEj2Zvi6Jx/sAW4Cigs5l9ADwIIOlcwjyFr0k6NuY9GCgz\nsy151qED0Jcw/+Ee4NfAp+OEue8Av4hzJwCWE/7IWsY/gnzitkhwWyS4LRKavS2arfNPDb2KxpCZ\nlRN+wFRpOQd4GTga+C8wFjhH0gsxz8x8PD/tuEX8I/oPcH4UvwS8Bowws1LgGeAWSWcR2hJ3NbOt\nVs+2RLfFtrq4LdwWmXQpKls0RDtVU27At4FPA5/KcO50woziw+PxZ4BHgI7xuC3wxTzp0TIt3SK1\nJ/TOTwT2jLIjgVuBnsBuwKnAX4CfuS3cFm4Lt0VD2aLeShfKBvQhrDr6BKHne3LauSnRaF2Aq4CJ\naedeBA7Jox6poVc3A2enyU8ljBToDvwK+HHauZeBo9KOd3JbuC3cFm6LhrRFXl6gEDbg88DtMb1r\n/FFvisf7pOXbC3gB+ANhrOyDhJVE86HDofGHPC7+eH8Hzonnzo3nWwElhE+4MwgdSs8Bn3FbuC3c\nFm6LxrJFXgzZFBth2NVAYqlH+Hy7Je18T2Ad0CUet0g71xn4AvCNPOiRft+SajoMJXQEZbruNOAu\n4F/AJW4Lt4Xbwm3RGLb45J75uEljb4Te9lXAk4QQkF3jthLYPS3fOODutOMLga551ONaYAJwVjwe\nAMyulmca8MtMfwBAG+o5K9Bt4bZwW7gttmfb4Ub7SGpL6HEfbGZfJEQLGw18CNxH+DxLMQVoKalj\nPN5EGMKVDz1+AhxD+LEuk/RDM3udEJTmurSs/wccK6lDvO6XxGWrzWyT1WOUgtuiig5ui0QHt0Wi\ng9uiJvJVijTmBrxD+DEhTMT4GSGucCtCGMhUyXoWcGsDPL8V8DTQNx4fR5iF9zVCB80aYo2B0Gn0\nO2I7IRlGFbgt3BZuC7dFY9gifSvomn/aBAYktUqbvDCJMAwLM1sA/BPYD9gduAw4QdKzhDU3Xq2n\nDtXH37ayEGh+LvDVKH4p6nAC8AGh5/5Xks4Brib8oB9Hfddvpx5ui+S5bovkuW6L5Llui7rQUKVK\nHkrLbxE+0bbpZCF8Pt0JnBiP9yeMdT0kHu8EnAy0y4MebdPS6Z01JxEWVOoTjw8mDMk6BmgJDCFE\nLrutvnq4LdwWbgu3Rb63gqv5Szpe0nPAlwnjWbdEuSRdH2ezzQVmAxfGkvVdQlCFfQHMbIuZPW1m\nG+qhxxdibeAmSak2t0pJR0sqibq9C3wjnvsXIWbxfhZm2U0DvmVml26vHm4Lt4Xbwm3RUBSM81eY\nVr0roYf9VjMbCiwGPgefLFZ0o5n92cLU6/sAA/4k6a+EsboL8qTLgYQV/W4lfDKeKumqeLoDYdW8\nDwljgw+T9H1JuxFqEOWp+9h2rvXhtqjyfLdF8ny3RfJ8t0V9aYzPi9o2wifPrwifO5+tdm4w8Aph\nzYpM17YmBI2/KA96tCAZUvV1YELauZGEH2mvDNd9mvC59hbw/9wWbgu3hduiMWxR73do0ocHA94O\n3BsN+Cxhtbp28fxAQknao9p1w4iRa/KkxwXACuAX8bgvoSOmZzy+mDAT755q130q7Y+qbT11cFu4\nLdwWbotG25q62ac9oST8tpn9kVCiH0QIVgBhRbvjSIIkp+ubl17w+Ol4OnADMFTSIWb2FmEyyPWS\nXiLUFr4J7CFp73jdKMIfHma22cw21lMVt0WC2yLBbZHgtsgnTV36APcDl8f0roTlSycA3aJsIvCT\nBtahe9z/EnggplsShoKlxgd3J3yutYnHeS+53RZuC7eF26Kxtqau+UMYcvVpSfuY2UeEtrBNQOdY\ncq8Btkhq3VAKmNl7MXkzsL+kk81sK7DOzF6M5y4GNgJb4zUNUXK7LRLcFgluiwS3Rb5o6tIH2Ae4\nERidJnuJpAQtATo1oj4XAy+kHQ8kxOh8irTV/twWbgu3hduiKW1R301R4SZF0jGENrRbCRFx7iR8\nur3cyHrIzEzSQ4SwaJsJnUoLzWxRI+ngtkh0cFskOrgtEh3cFvmgqUuftBLzFMKSpe8AlzahHrsQ\nAja8D1zhtnBbuC3cFoVsi+3dCqLmnyK202210H7WVDr8gNBZ8yMz29SEergtEj3cFokebotED7dF\nPSgo518IKAROzt+yqTswbosEt0WC2yJhR7aFO3/HcZwipBCGejqO4ziNjDt/x3GcIsSdv+M4ThHi\nzt9xHKcIcefvOI5ThLjzd4oWSWPiOO2azp8u6dAc7lMln6Sxkk7Il56O0xC483eKmWzjnM8Aeudw\nnyr5zOxaM3uuPoo5TkPjzt8pKiRdLelfkl4kBNFG0oWSZkh6Q9JUSW3j+jGnEmKyzpbUU9IBkv4q\n6TVJL0g6uFq+WZL2lzRZ0pnx3ksk/SLe4zVJ/SU9I2mRpIvT9Pq/qMObksY0vmWcYqNVUyvgOI2F\npAHA2UA/QvzUWcBrwF/M7M6Y5/8BI83sNkmPAY+b2V/iueeAi81skaRBhNB9J2TIZyRfFQb8x8yO\nkPQbwhrvRwNtgbeB30s6CTjQzAbGZYkflTTYkuWBHSfvuPN3ionBBEf/P+B/0WkLOFzSdYRg27sC\n09KuEXwSwelo4M+SUudaV89XA4/F/RxCyMENwAZJmyR1AE4CTpI0O+ZrBxxIWDDMcRoEd/5OMWFk\ndtJ3Aaeb2RxJ5xHWhE+/BkIT6TozO6KWe9dEasGvSsKyv6Qdp/4HrzezP9RyD8fJK97m7xQTLwDD\nJO0sqT2hrR5CbNiVknYiBAZPOfIPgU8BmNl64N+ShkNYy11S3+r5spCp4DHgaeACSe3ivbtI6lzn\nt3OcOuDO3ykazGw28ADwJiHS0gyC8/0p8CrwD2B+2iV/Av5P0uuSegJfA0ZKeoPQXn9ahnz716YC\nVb8QLOo1HbgPeFnSW8CDhOYnx2kwfFVPx3GcIsRr/o7jOEWIO3/HcZwixJ2/4zhOEeLO33Ecpwhx\n5+84jlOEuPN3HMcpQtz5O47jFCHu/B3HcYqQ/w888qES+d20VwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x112804080>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df[\"price\"].plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment