Skip to content

Instantly share code, notes, and snippets.

View yassersouri's full-sized avatar

Yasser Souri yassersouri

View GitHub Profile
@npinto
npinto / labels_to_integers.py
Created September 4, 2012 21:36
String labels to sorted 0-based integers.
In [12]: l = ['a', 'a', 'c', 'c', 'c', 'b']
In [13]: u = np.unique(l)
In [14]: u
Out[14]:
array(['a', 'b', 'c'],
dtype='|S1')
In [15]: np.searchsorted(u, l)
@vnorby
vnorby / gist:4116565
Created November 20, 2012 07:25
Bookmarklet to show Paul Graham's essay footnotes inline on hover
javascript:(function(e,t,n,r,i,s,o,u){if(!(i=e.jQuery)||n>i.fn.jquery||r(i)){s=t.createElement("script");s.type="text/javascript";s.src="http://ajax.googleapis.com/ajax/libs/jquery/"+n+"/jquery.min.js";s.onload=s.onreadystatechange=function(){if(!o&&(!(u=this.readyState)||u=="loaded"||u=="complete")){r((i=e.jQuery).noConflict(1),o=1);i(s).remove()}};t.documentElement.childNodes[0].appendChild(s)}})(window,document,"1.8.3",function(e,t){var n=e("font[color]").filter(function(){if(parseInt(e(this).text(),10)>0){return true}return false}).parent();var r=e("body").html();n.each(function(){var t=e(this).attr("href").replace("#","");var n=parseInt(t.replace("f",""),10);var i=new RegExp('<a name="'+t+'">([^]*?)[[]');var s=r.match(i);if(s&&s[0]){var o=e(s[0].replace("<br>","\n")).text().replace(n+"]","");o=o.replace("csell_env = 'mud';","").replace("// Begin Y! Store Generated Code","");var u=e('<div class="note" style="background:#FFFFFF;border:3px solid #000;left:0px;top:15px;width:300px;position:absolute;padding:1
@tkdave
tkdave / gist:4150916
Created November 26, 2012 21:58
Installing OpenCV python libs on mac to work with virtualenv and brew
# Installing OpenCV python libs on mac to work with virtualenv
# OpenCV 2.4.3
# Python 2.7.3 installed with brew
# assuming you have virtualenv, pip, and python installed via brew
# assuming $WORKON_HOME is set to something like ~/.virtualenvs
# using homebrew - make sure we're current
brew update

Build your own private, encrypted, open-source Dropbox-esque sync folder

Prerequisites:

  • One or more clients running a UNIX-like OS. Examples are given for Ubuntu 12.04 LTS, although all software components are available for other platforms as well (e.g. OS X). YMMV
  • A cheap Ubuntu 12.04 VPS with storage. I recommend Backupsy, they offer 250GB storage for $5/month. Ask Google for coupon codes.

Software components used:

  • Unison for file synchronization
  • EncFS for folder encryption
@mblondel
mblondel / kernel_kmeans.py
Last active September 29, 2025 16:00
Kernel K-means.
"""Kernel K-means"""
# Author: Mathieu Blondel <[email protected]>
# License: BSD 3 clause
import numpy as np
from sklearn.base import BaseEstimator, ClusterMixin
from sklearn.metrics.pairwise import pairwise_kernels
from sklearn.utils import check_random_state
@yassersouri
yassersouri / Assignments Latex Template.md
Last active August 29, 2025 04:28
Assignments Latex template.

##Assignments Latex Template

###V 0.1

I always wanted some latex template that I could use for assignments. But none of the templates I found online had all the features I wanted. So the natural next step for me was to create one.

###Notes:

  • Use with XeLaTeX
@staltz
staltz / introrx.md
Last active October 26, 2025 03:06
The introduction to Reactive Programming you've been missing
@yassersouri
yassersouri / How to visualize the ILSVRC mean image.md
Last active September 6, 2016 20:57
How to visualize the ILSVRC mean image

I had an issue with how to visualize the ILSVRC mean image. I just wanted to look at it and see how much does it differ from using pixel-wise mean subtraction instead of image-wise mean subtraction.

I assume that you have already downloaded the CaffeNet pretrained and model definition files.

The trick is to initialize two networks, one with mean file set (called net_mean) and the other one without mean file (called net). Then create a fake all 1 image. Use the net_mean to preprocess the fake image for data layer and save the result as fake_pre. Then use the net to deprocess fake_pre for data layer and save it as fake_re. If the two networks net and net_mean were the same then fake_re would be equal to fake, but since we have not set any mean file for net then we can visualize the mean image using 1 - fake_re. Take a look at the code.

The result looks like this:

![ILSVRC mean image](https://gist.github.com/yassersouri/f617bf7eff9172290b4f/raw/863971c47470204234017b91196b5e94a6fe

@imjasonh
imjasonh / markdown.css
Last active September 3, 2025 22:12
Render Markdown as unrendered Markdown (see http://jsbin.com/huwosomawo)
* {
font-size: 12pt;
font-family: monospace;
font-weight: normal;
font-style: normal;
text-decoration: none;
color: black;
cursor: default;
}
@vsoch
vsoch / joblib_vs_pickle.py
Created April 24, 2015 03:44
Joblib vs Pickle
from sklearn.externals import joblib
import time
import numpy
import pickle
bigarray = numpy.zeros([190,91,190])
bigarray = bigarray.flatten()
### Saving