Skip to content

Instantly share code, notes, and snippets.

@yatszhash
Last active January 27, 2018 10:32
Show Gist options
  • Save yatszhash/57aa9529bb80ae7d6f75f44c9eac4748 to your computer and use it in GitHub Desktop.
Save yatszhash/57aa9529bb80ae7d6f75f44c9eac4748 to your computer and use it in GitHub Desktop.
implementation for kaggle tensorflow speech recognition challenge, O'Malley's model

kaggle tensorflow speech recognition challenge O'Malley's model (2nd Place Solution)

This model architecutre was designed by Thomas O'Malley. Please read his solution

Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# kaggle tensorflow speech recognition challenge O'Malley's model (2nd Place Solution)\n",
"\n",
"This model architecutre was designed by Thomas O'Malley.\n",
"Please read [his solution](https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/discussion/47715)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
}
],
"source": [
"from keras.layers import Conv2D, MaxPool2D, Input, GlobalMaxPooling2D, Dropout, Dense "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from keras.models import Model"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from keras.utils import plot_model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"LOG_MEL_FILTERBANK_DIM = 120"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"n_frames = 16000"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"input_ = Input(shape=(n_frames, LOG_MEL_FILTERBANK_DIM, 1))\n",
"x = Conv2D(64, kernel_size=(7, 3), padding=\"Same\", use_bias=False)(input_)\n",
"x = MaxPool2D(pool_size=(1, 3))(x)\n",
"x = Conv2D(128, kernel_size=(1, 7), padding=\"same\", use_bias=False)(x)\n",
"x = MaxPool2D(pool_size=(1, 4))(x)\n",
"x = Conv2D(256, kernel_size=(1, 10), padding=\"valid\", use_bias=False)(x)\n",
"x = Conv2D(512, kernel_size=(7, 1), padding=\"same\", use_bias=False)(x)\n",
"x = GlobalMaxPooling2D()(x)\n",
"x = Dropout(0.3)(x)\n",
"x = Dense(256)(x)\n",
"output_ = Dense(12, activation=\"softmax\")(x)\n",
"model = Model(inputs=input_, outputs=output_)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"input_1 (InputLayer) (None, 16000, 120, 1) 0 \n",
"_________________________________________________________________\n",
"conv2d_1 (Conv2D) (None, 16000, 120, 64) 1344 \n",
"_________________________________________________________________\n",
"max_pooling2d_1 (MaxPooling2 (None, 16000, 40, 64) 0 \n",
"_________________________________________________________________\n",
"conv2d_2 (Conv2D) (None, 16000, 40, 128) 57344 \n",
"_________________________________________________________________\n",
"max_pooling2d_2 (MaxPooling2 (None, 16000, 10, 128) 0 \n",
"_________________________________________________________________\n",
"conv2d_3 (Conv2D) (None, 16000, 1, 256) 327680 \n",
"_________________________________________________________________\n",
"conv2d_4 (Conv2D) (None, 16000, 1, 512) 917504 \n",
"_________________________________________________________________\n",
"global_max_pooling2d_1 (Glob (None, 512) 0 \n",
"_________________________________________________________________\n",
"dropout_1 (Dropout) (None, 512) 0 \n",
"_________________________________________________________________\n",
"dense_1 (Dense) (None, 256) 131328 \n",
"_________________________________________________________________\n",
"dense_2 (Dense) (None, 12) 3084 \n",
"=================================================================\n",
"Total params: 1,438,284\n",
"Trainable params: 1,438,284\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"plot_model(model, \"2nd_omalley_model.png\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "aind-vui",
"language": "python",
"name": "aind-vui"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment