Created
February 1, 2022 00:36
-
-
Save yazdipour/13a5163951e0bea52411c21ad3a2fec5 to your computer and use it in GitHub Desktop.
bleu.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "bleu.ipynb", | |
"provenance": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"390304a873bf45bb9b6673db91c9f9ad": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "HBoxView", | |
"_dom_classes": [], | |
"_model_name": "HBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_1fb6841bfbf045d9ab8d0ee00396fd66", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_0e11898938604b0c9d9f8041135289ed", | |
"IPY_MODEL_dc9e50389c564a0a933c382e715d29d6", | |
"IPY_MODEL_b2fb3e7601e34c82950aeaf5e58d32bc" | |
] | |
} | |
}, | |
"1fb6841bfbf045d9ab8d0ee00396fd66": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"0e11898938604b0c9d9f8041135289ed": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_2f943945c98543708c5b810002ea239e", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": "Downloading: 100%", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_1194cdd9e0c14cc4a9695a379ca383a6" | |
} | |
}, | |
"dc9e50389c564a0a933c382e715d29d6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_5be4a682d84f47779a44029cea46ed77", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "success", | |
"max": 482, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 482, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_89b3f677e32c4a1db278b2fedea964dc" | |
} | |
}, | |
"b2fb3e7601e34c82950aeaf5e58d32bc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_371c5337fc3d4278935730be683e76a6", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 482/482 [00:00<00:00, 12.7kB/s]", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_0e7b49c8eaaa4fe8ab88270a7b81c1dc" | |
} | |
}, | |
"2f943945c98543708c5b810002ea239e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"1194cdd9e0c14cc4a9695a379ca383a6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"5be4a682d84f47779a44029cea46ed77": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"89b3f677e32c4a1db278b2fedea964dc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"371c5337fc3d4278935730be683e76a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"0e7b49c8eaaa4fe8ab88270a7b81c1dc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
} | |
} | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/yazdipour/13a5163951e0bea52411c21ad3a2fec5/bleu.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "U8ZiflDQijqf", | |
"outputId": "d35e284f-bc5d-4f3c-a777-9f0c2798c61b" | |
}, | |
"source": [ | |
"! pip install datasets transformers sacrebleu -qqq" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"\u001b[K |████████████████████████████████| 270 kB 12.1 MB/s \n", | |
"\u001b[K |████████████████████████████████| 125 kB 56.2 MB/s \n", | |
"\u001b[K |████████████████████████████████| 1.3 MB 53.2 MB/s \n", | |
"\u001b[K |████████████████████████████████| 243 kB 77.6 MB/s \n", | |
"\u001b[K |████████████████████████████████| 160 kB 51.8 MB/s \n", | |
"\u001b[K |████████████████████████████████| 271 kB 76.0 MB/s \n", | |
"\u001b[?25h" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 49, | |
"referenced_widgets": [ | |
"d57c8498de714ffba31f94f7857584f2" | |
] | |
}, | |
"id": "u0JrLKVKirdc", | |
"outputId": "c0842e9f-bad0-428b-8d8a-1c26149f5d73" | |
}, | |
"source": [ | |
"from datasets import load_metric\n", | |
"metric = load_metric(\"sacrebleu\")" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "d57c8498de714ffba31f94f7857584f2", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"Downloading: 0%| | 0.00/2.37k [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "dCnU6SoFjBES", | |
"outputId": "a535c576-8467-44ea-9e50-d8bcc12e52ba" | |
}, | |
"source": [ | |
"metric" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"Metric(name: \"sacrebleu\", features: {'predictions': Value(dtype='string', id='sequence'), 'references': Sequence(feature=Value(dtype='string', id='sequence'), length=-1, id='references')}, usage: \"\"\"\n", | |
"Produces BLEU scores along with its sufficient statistics\n", | |
"from a source against one or more references.\n", | |
"\n", | |
"Args:\n", | |
" predictions: The system stream (a sequence of segments).\n", | |
" references: A list of one or more reference streams (each a sequence of segments).\n", | |
" smooth_method: The smoothing method to use. (Default: 'exp').\n", | |
" smooth_value: The smoothing value. Only valid for 'floor' and 'add-k'. (Defaults: floor: 0.1, add-k: 1).\n", | |
" tokenize: Tokenization method to use for BLEU. If not provided, defaults to 'zh' for Chinese, 'ja-mecab' for\n", | |
" Japanese and '13a' (mteval) otherwise.\n", | |
" lowercase: Lowercase the data. If True, enables case-insensitivity. (Default: False).\n", | |
" force: Insist that your tokenized input is actually detokenized.\n", | |
"\n", | |
"Returns:\n", | |
" 'score': BLEU score,\n", | |
" 'counts': Counts,\n", | |
" 'totals': Totals,\n", | |
" 'precisions': Precisions,\n", | |
" 'bp': Brevity penalty,\n", | |
" 'sys_len': predictions length,\n", | |
" 'ref_len': reference length,\n", | |
"\n", | |
"Examples:\n", | |
"\n", | |
" >>> predictions = [\"hello there general kenobi\", \"foo bar foobar\"]\n", | |
" >>> references = [[\"hello there general kenobi\", \"hello there !\"], [\"foo bar foobar\", \"foo bar foobar\"]]\n", | |
" >>> sacrebleu = datasets.load_metric(\"sacrebleu\")\n", | |
" >>> results = sacrebleu.compute(predictions=predictions, references=references)\n", | |
" >>> print(list(results.keys()))\n", | |
" ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']\n", | |
" >>> print(round(results[\"score\"], 1))\n", | |
" 100.0\n", | |
"\"\"\", stored examples: 0)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 7 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "8Z0bqRHRjIhr", | |
"outputId": "f6629eea-c4b0-4538-ff5f-02515da45466" | |
}, | |
"source": [ | |
"\n", | |
"fake_preds = [\"hello there\", \"general kenobi\"]\n", | |
"fake_labels = [[\"hello there\"], [\"general kenobi\"]]\n", | |
"metric.compute(predictions=fake_preds, references=fake_labels)" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"{'bp': 1.0,\n", | |
" 'counts': [4, 2, 0, 0],\n", | |
" 'precisions': [100.0, 100.0, 0.0, 0.0],\n", | |
" 'ref_len': 4,\n", | |
" 'score': 0.0,\n", | |
" 'sys_len': 4,\n", | |
" 'totals': [4, 2, 0, 0]}" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 8 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "h1bvxTJMj6rF" | |
}, | |
"source": [ | |
"!pip install bert-score -qqq" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "_S_ZsMTOj5vs" | |
}, | |
"source": [ | |
"from bert_score import BERTScorer" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 247, | |
"referenced_widgets": [ | |
"390304a873bf45bb9b6673db91c9f9ad", | |
"1fb6841bfbf045d9ab8d0ee00396fd66", | |
"0e11898938604b0c9d9f8041135289ed", | |
"dc9e50389c564a0a933c382e715d29d6", | |
"b2fb3e7601e34c82950aeaf5e58d32bc", | |
"2f943945c98543708c5b810002ea239e", | |
"1194cdd9e0c14cc4a9695a379ca383a6", | |
"5be4a682d84f47779a44029cea46ed77", | |
"89b3f677e32c4a1db278b2fedea964dc", | |
"371c5337fc3d4278935730be683e76a6", | |
"0e7b49c8eaaa4fe8ab88270a7b81c1dc", | |
"b379ff12ac094b5dbd1621ec55170bc5", | |
"7bfab52284804128ad35d0849ef5cefc", | |
"2ed5f2524710496796859b7d554d26d6", | |
"052ac94dbb974784a500c30c30b0f397" | |
] | |
}, | |
"id": "jgSEPd0vkDMX", | |
"outputId": "a84ac9fa-770f-4c29-ec8f-e4a743d98f46" | |
}, | |
"source": [ | |
"refs = [['The dog bit the guy.', 'The dog had bit the man.'], ['It was not unexpected.', 'No one was surprised.'], ['The man bit him first.', 'The man had bitten the dog.']]\n", | |
"hyps = ['The dog bit the man.', \"It wasn't surprising.\", 'The man had just bitten him.']\n", | |
"scorer = BERTScorer(lang=\"en\", rescale_with_baseline=True)" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "390304a873bf45bb9b6673db91c9f9ad", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"Downloading: 0%| | 0.00/482 [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "b379ff12ac094b5dbd1621ec55170bc5", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"Downloading: 0%| | 0.00/878k [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "7bfab52284804128ad35d0849ef5cefc", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"Downloading: 0%| | 0.00/446k [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "2ed5f2524710496796859b7d554d26d6", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"Downloading: 0%| | 0.00/1.29M [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "052ac94dbb974784a500c30c30b0f397", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"Downloading: 0%| | 0.00/1.33G [00:00<?, ?B/s]" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Some weights of the model checkpoint at roberta-large were not used when initializing RobertaModel: ['lm_head.dense.bias', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight', 'lm_head.bias', 'lm_head.dense.weight']\n", | |
"- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", | |
"- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "KbBvDBDQkQz1" | |
}, | |
"source": [ | |
"P, R, F1 = scorer.score(hyps, refs)" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "abzXU2UYkZup", | |
"outputId": "7e1edcc6-ff28-449c-f8a8-69c30abf93d7" | |
}, | |
"source": [ | |
"print(F1.mean())\n", | |
"print(R.mean())\n", | |
"print(P.mean())" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"tensor(0.7998)\n", | |
"tensor(0.8056)\n", | |
"tensor(0.8044)\n" | |
] | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment