I hereby claim:
- I am yinleon on github.
- I am leonleon (https://keybase.io/leonleon) on keybase.
- I have a public key ASD5y56XsVBxKct1HzreWZgFR0TuM59fIbcWfreau0am_Ao
To claim this, I am signing this object:
| [ | |
| { | |
| "index": "0", | |
| "lon": "31.4", | |
| "lat": "81.27", | |
| "month": "7", | |
| "year": "1987", | |
| "depth": "3.0", | |
| "temp": "-1.66", | |
| "sal": "34.09", |
| [ | |
| { | |
| "lat": -89, | |
| "lon": -180, | |
| "d18o": -1.0000000150474662e+30 | |
| }, | |
| { | |
| "lat": -89, | |
| "lon": -179, | |
| "d18o": -1.0000000150474662e+30 |
| <!DOCTYPE html> | |
| <meta charset="utf-8"> | |
| <style> | |
| .links line { | |
| stroke: #999; | |
| stroke-opacity: 0.6; | |
| } | |
| .nodes circle { |
| {"contributors": null, | |
| "coordinates": null, | |
| "created_at": "Thu Jan 19 16:14:30 +0000 2017", | |
| "entities": {"hashtags": [{"indices": [66, 66], "text": "<OBFUSCATED>"}, | |
| {"indices": [66, 66], "text": "<OBFUSCATED>"}], | |
| "symbols": [], | |
| "urls": [], | |
| "user_mentions": [{"id": 666, | |
| "id_str": "<OBFUSCATED>", | |
| "indices": [66, 66], |
| { | |
| "entities": { | |
| "symbols": [], | |
| "hashtags": [ | |
| { | |
| "indices": [ | |
| 66, | |
| 66 | |
| ], | |
| "text": "<OBFUSCATED>" |
| { | |
| "favorite_count": 666, | |
| "lang": "en", | |
| "coordinates": null, | |
| "quoted_status": { | |
| "favorite_count": 666, | |
| "lang": "en", | |
| "coordinates": null, | |
| "extended_tweet": { | |
| "display_text_range": [ |
I hereby claim:
To claim this, I am signing this object:
| def get_all_keys(d, key=[]): | |
| ''' | |
| A recursive function that traverses json keys in a dict `d`, | |
| and prints the path to all keys | |
| ''' | |
| if not isinstance(d, dict): | |
| print(''.join(['["' + k + '"]' for k in key])) | |
| return | |
| for k, v in d.items(): |
| from multiprocessing import Pool | |
| from tqdm import tqdm | |
| import pandas as pd | |
| # def file_parser_func(fn : str): | |
| # return pd.read_csv(fn).to_dict('records') | |
| # files = ['a.csv', 'b.csv'] | |
| data = [] | |
| with Pool(processes=8) as pool: |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| img_width, img_height = 400, 300 | |
| def resize_img_to_array(img, img_shape=(244, 244)): | |
| img_array = np.array( | |
| img.resize( | |
| img_shape, |