Last active
July 4, 2017 10:25
-
-
Save yogabonito/b4eda41044c7655542279cc96d5b459e to your computer and use it in GitHub Desktop.
Regionalization using exact optimization model called "Flow" in Duque et al. (2011)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import libpysal as ps" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Making the lattice" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We are generating a 3x3 lattice: " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{0: [3, 1],\n", | |
" 1: [0, 4, 2],\n", | |
" 2: [1, 5],\n", | |
" 3: [0, 6, 4],\n", | |
" 4: [1, 3, 7, 5],\n", | |
" 5: [2, 4, 8],\n", | |
" 6: [3, 7],\n", | |
" 7: [4, 6, 8],\n", | |
" 8: [5, 7]}" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"lat_w = ps.weights.util.lat2W(nrows=3, ncols=3, rook=True, id_type=\"int\")\n", | |
"neighbor_dict = lat_w.neighbors\n", | |
"neighbor_dict" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Defining the data (_hardcoded_)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{0: 726.7,\n", | |
" 1: 623.6,\n", | |
" 2: 487.3,\n", | |
" 3: 200.4,\n", | |
" 4: 245.0,\n", | |
" 5: 481.0,\n", | |
" 6: 170.9,\n", | |
" 7: 225.9,\n", | |
" 8: 226.9}" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"value_list = [726.7, 623.6, 487.3, 200.4, 245.0, 481.0, 170.9, 225.9, 226.9]\n", | |
"value_dict = {area: value for area, value in zip(neighbor_dict.keys(), value_list)}\n", | |
"value_dict" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Defining the optimization model from Duque et al. (2011): \"The p-Regions Problem\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from pyomo.environ import RangeSet, Param, Var, \\\n", | |
" ConcreteModel, Binary, \\\n", | |
" PositiveIntegers, \\\n", | |
" NonNegativeIntegers, \\\n", | |
" Objective, minimize, \\\n", | |
" Constraint, \\\n", | |
" Set, value" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model = ConcreteModel()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Parameters" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.n = Param(initialize=len(value_dict)) # number of areas\n", | |
"model.p = Param(initialize=2) # number of regions\n", | |
"# use value(model.n) to get the value of parameter n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.I = RangeSet(0, model.n-1,\n", | |
" doc=\"index for areas\")\n", | |
"\n", | |
"model.II = model.I * model.I\n", | |
"\n", | |
"II_upper_triangle = [(i, j) for i, j in model.II if i < j]\n", | |
"model.II_upper_triangle = Set(initialize=II_upper_triangle,\n", | |
" ordered=True,\n", | |
" doc=\"2-dimensional index (i, j)\"\n", | |
" \"for areas where i < j\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.K = RangeSet(0, model.p-1,\n", | |
" doc=\"index for regions\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[1, 5]" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"def N_init(model, i):\n", | |
" \"\"\"\\\n", | |
" Returns list of areas that are adjacent to \n", | |
" area i.\n", | |
" \"\"\"\n", | |
" return neighbor_dict[i]\n", | |
"\n", | |
"model.N = Param(model.I, initialize=N_init)\n", | |
"\n", | |
"N_init(None, 2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def I_with_neighbors_init(model):\n", | |
" return ((i, ni) for i in model.I \n", | |
" for ni in model.N[i]) \n", | |
"\n", | |
"model.I_with_neighbors = Set(dimen=2,\n", | |
" initialize=I_with_neighbors_init,\n", | |
" doc=\"2-dimensional index cointaining\"\n", | |
" \" area indices i along with \"\n", | |
" \"their neighborhoods N(i).\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def dissim_measure(v1, v2):\n", | |
" \"\"\"\\\n", | |
" Returns the dissimilarity between the values v1 and\n", | |
" v2.\n", | |
" \"\"\"\n", | |
" return abs(v1 - v2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def d_init(model, i, j):\n", | |
" \"\"\"\\\n", | |
" Returns the dissimilarity between areas i and\n", | |
" j.\n", | |
" \"\"\"\n", | |
" return dissim_measure(value_dict[i], \n", | |
" value_dict[j])\n", | |
"\n", | |
"model.d = Param(model.II_upper_triangle, initialize=d_init)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Decision variables" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.t = Var(model.II_upper_triangle, domain=Binary,\n", | |
" doc=\"1 if areas i and j with i < j \"\n", | |
" \"belong to the same region.\\n\"\n", | |
" \"0 otherwise.\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"model.f = Var(model.II, model.K, domain=NonNegativeIntegers,\n", | |
" doc=\"The amount of flow from area i to j \"\n", | |
" \"in region k.\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.y = Var(model.I, model.K, domain=Binary,\n", | |
" doc=\"1 if area i is assigned to region k.\\n\"\n", | |
" \"0 otherwise.\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"model.w = Var(model.I, model.K, domain=Binary,\n", | |
" doc=\"1 if area i is chosen as a sink.\\n\"\n", | |
" \"0 otherwise.\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Objective function" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (20) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def obj_rule(model):\n", | |
" return sum(model.d[i,j] * model.t[i,j]\n", | |
" for i, j in model.II_upper_triangle)\n", | |
"\n", | |
"model.Obj = Objective(rule=obj_rule, sense=minimize)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Constraints" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (21) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _21(model, i):\n", | |
" return sum(model.y[i, k] for k in model.K) == 1\n", | |
"\n", | |
"model._21_constr = Constraint(model.I, rule=_21)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (22) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _22(model, i, k):\n", | |
" return model.w[i, k] <= model.y[i, k]\n", | |
"\n", | |
"model._22_constr = Constraint(model.I, model.K, rule=_22)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (23) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _23(model, k):\n", | |
" return sum(model.w[i, k] for i in model.I) == 1\n", | |
"\n", | |
"model._23_constr = Constraint(model.K, rule=_23)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (24) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _24(model, i, j, k):\n", | |
" n, p = model.n, model.p\n", | |
" return model.f[i, j, k] <= model.y[i, k] * (n-p)\n", | |
"\n", | |
"model._24_constr = Constraint(model.I_with_neighbors,\n", | |
" model.K, rule=_24)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (25) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _25(model, i, j, k):\n", | |
" n, p = model.n, model.p\n", | |
" return model.f[i, j, k] <= model.y[j, k] * (n-p)\n", | |
"\n", | |
"model._25_constr = Constraint(model.I_with_neighbors,\n", | |
" model.K, rule=_25)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (26) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _26(model, i, k):\n", | |
" n, p = model.n, model.p\n", | |
" lhs = sum(model.f[i, j, k] - model.f[j, i, k]\n", | |
" for j in model.N[i])\n", | |
" rhs = model.y[i, k] - (n-p) * model.w[i, k]\n", | |
" return lhs >= rhs\n", | |
"\n", | |
"model._26_constr = Constraint(model.I, model.K, rule=_26)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# (27) in Duque et al. (2011): \"The p-Regions Problem\"\n", | |
"def _27(model, i, j, k):\n", | |
" return model.t[i, j] >= model.y[i, k] + model.y[j, k] - 1\n", | |
"\n", | |
"model._27_constr = Constraint(model.II_upper_triangle,\n", | |
" model.K, rule=_27)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Solve the optimization problem" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from pyomo.opt import SolverFactory\n", | |
"opt = SolverFactory(\"cbc\")\n", | |
"results = opt.solve(model)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"area 0 is in region 1\n", | |
"area 1 is in region 1\n", | |
"area 2 is in region 1\n", | |
"area 3 is in region 0\n", | |
"area 4 is in region 0\n", | |
"area 5 is in region 1\n", | |
"area 6 is in region 0\n", | |
"area 7 is in region 0\n", | |
"area 8 is in region 0\n" | |
] | |
} | |
], | |
"source": [ | |
"for i, k in model.y.index_set():\n", | |
" if model.y[i, k].value == 1:\n", | |
" print(\"area\", i, \"is in region\", k)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"1222.8" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"value(model.Obj)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment