Skip to content

Instantly share code, notes, and snippets.

View yohm's full-sized avatar

Yohsuke Murase yohm

View GitHub Profile
@yohm
yohm / strongly_connected_components.rb
Created May 10, 2017 09:24
Finding strongly connected components for a directed graph using Tarjan's algorithm
require 'pp'
class DirectedGraph
attr_reader :n, :links
def initialize(size)
@n = size
@links = Hash.new {|hsh,key| hsh[key] = Array.new }
end
@yohm
yohm / pipe_sample.cpp
Last active August 27, 2017 12:44
communication between cpp process and python process using pipe
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <unistd.h>
#define READ (0)
#define WRITE (1)
/**
@yohm
yohm / MyCpp.cpp
Last active August 28, 2017 09:17
x10 version of pipe_sample
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <unistd.h>
#include <x10/lang/Rail.h>
#include <x10/lang/String.h>
int popen2(char*const* argv, int *fd_r, int *fd_w) {
import sys
import os.path
import caravan_dump
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
@yohm
yohm / async_await_fiber.py
Created March 15, 2018 07:26
fiber_sample
import fibers
import time
root_fiber = None
sub_fibers = []
t = 0.1
def async(func, *args, **kwargs):
global root_fiber, sub_fibers
def _f():
from keras.datasets import boston_housing
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
(x_train, y_train), (x_test, y_test) = boston_housing.load_data(test_split=0.0)
def scale_input(data):
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
@yohm
yohm / file0.html
Created July 24, 2018 02:46
chart.jsでぐりぐり動くグラフを作る ref: https://qiita.com/yohm/items/586690bf36efa0838e37
<div class="slidecontainer" id="sliders">
<input type="range" min="-1" max="1" value="0" step="0.1" class="slider" id="slider_a">a : <span id="val_a">0</span><br/>
<input type="range" min="-1" max="1" value="0" step="0.1" class="slider" id="slider_b">b : <span id="val_b">0</span><br />
<input type="range" min="-1" max="1" value="0" step="0.1" class="slider" id="slider_c">c : <span id="val_c">0</span><br />
</div>
@yohm
yohm / index.html
Created July 26, 2018 12:54
Kerasの学習結果をchart.jsでインタラクティブに表示する
<html>
<head>
</head>
<body>
<div class="slidecontainer" id="sliders">
X軸 :
<select name="myRange" id="myRange">
<option value="0"> X0</option>
<option value="1"> X1</option>
@yohm
yohm / index.html
Last active January 7, 2019 03:25
d3.jsでforce directed layout
<!DOCTYPE html>
<style>
div.tooltip {
position: absolute;
text-align: center;
width: 80px;
height: 18px;
padding: 2px;
font: 14px sans-serif;
(async () => {
const db = inkdrop.main.dataStore.getLocalDB()
inkdrop.commands.add(document.body, "custom:new-note", async () => {
const { queryContext } = inkdrop.store.getState()
if( queryContext.mode === "book" ) {
const template_tag = (await db.tags.all()).find(t => t.name === "template")
const template_notes = await db.notes.findWithTag(template_tag._id)
const template = template_notes.docs.find(d => queryContext.bookId === d.bookId)