Last active
December 7, 2016 01:29
-
-
Save yuu-ito/721bb6400739b6666b71a26973ce3a57 to your computer and use it in GitHub Desktop.
Python pandas.DataFrame.to_dict
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"- http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_dict.html\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>_mu</th>\n", | |
" <th>_sigma</th>\n", | |
" <th>normal</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1000</td>\n", | |
" <td>100</td>\n", | |
" <td>886.616167</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>1000</td>\n", | |
" <td>100</td>\n", | |
" <td>1038.431919</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1000</td>\n", | |
" <td>100</td>\n", | |
" <td>1149.655378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1000</td>\n", | |
" <td>100</td>\n", | |
" <td>964.461770</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1000</td>\n", | |
" <td>100</td>\n", | |
" <td>921.246646</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" _mu _sigma normal\n", | |
"0 1000 100 886.616167\n", | |
"1 1000 100 1038.431919\n", | |
"2 1000 100 1149.655378\n", | |
"3 1000 100 964.461770\n", | |
"4 1000 100 921.246646" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.random.seed(111)\n", | |
"mu, sigma, size = 1000, 100, 5\n", | |
"x = pd.DataFrame({\n", | |
" '_mu':mu,\n", | |
" '_sigma':sigma,\n", | |
" 'normal':np.random.normal(mu,sigma,size)\n", | |
" })\n", | |
"x" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{'_mu': {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000},\n", | |
" '_sigma': {0: 100, 1: 100, 2: 100, 3: 100, 4: 100},\n", | |
" 'normal': {0: 886.61616656909678,\n", | |
" 1: 1038.4319193399647,\n", | |
" 2: 1149.6553776370522,\n", | |
" 3: 964.46177028375462,\n", | |
" 4: 921.24664590713189}}" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"x.to_dict(orient=\"dict\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{'_mu': [1000, 1000, 1000, 1000, 1000],\n", | |
" '_sigma': [100, 100, 100, 100, 100],\n", | |
" 'normal': [886.6161665690968,\n", | |
" 1038.4319193399647,\n", | |
" 1149.6553776370522,\n", | |
" 964.4617702837546,\n", | |
" 921.2466459071319]}" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"x.to_dict(orient=\"list\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{'_mu': 0 1000\n", | |
" 1 1000\n", | |
" 2 1000\n", | |
" 3 1000\n", | |
" 4 1000\n", | |
" Name: _mu, dtype: int64, '_sigma': 0 100\n", | |
" 1 100\n", | |
" 2 100\n", | |
" 3 100\n", | |
" 4 100\n", | |
" Name: _sigma, dtype: int64, 'normal': 0 886.616167\n", | |
" 1 1038.431919\n", | |
" 2 1149.655378\n", | |
" 3 964.461770\n", | |
" 4 921.246646\n", | |
" Name: normal, dtype: float64}" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"x.to_dict(orient=\"series\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{'columns': ['_mu', '_sigma', 'normal'],\n", | |
" 'data': [[1000.0, 100.0, 886.6161665690968],\n", | |
" [1000.0, 100.0, 1038.4319193399647],\n", | |
" [1000.0, 100.0, 1149.6553776370522],\n", | |
" [1000.0, 100.0, 964.4617702837546],\n", | |
" [1000.0, 100.0, 921.2466459071319]],\n", | |
" 'index': [0, 1, 2, 3, 4]}" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"x.to_dict(orient=\"split\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[{'_mu': 1000.0, '_sigma': 100.0, 'normal': 886.61616656909678},\n", | |
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1038.4319193399647},\n", | |
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1149.6553776370522},\n", | |
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 964.46177028375462},\n", | |
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 921.24664590713189}]" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"x.to_dict(orient=\"records\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{0: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 886.61616656909678},\n", | |
" 1: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1038.4319193399647},\n", | |
" 2: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1149.6553776370522},\n", | |
" 3: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 964.46177028375462},\n", | |
" 4: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 921.24664590713189}}" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"x.to_dict(orient=\"index\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment