Skip to content

Instantly share code, notes, and snippets.

@yuu-ito
Last active December 7, 2016 01:29
Show Gist options
  • Save yuu-ito/721bb6400739b6666b71a26973ce3a57 to your computer and use it in GitHub Desktop.
Save yuu-ito/721bb6400739b6666b71a26973ce3a57 to your computer and use it in GitHub Desktop.
Python pandas.DataFrame.to_dict
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_dict.html\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>_mu</th>\n",
" <th>_sigma</th>\n",
" <th>normal</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1000</td>\n",
" <td>100</td>\n",
" <td>886.616167</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1000</td>\n",
" <td>100</td>\n",
" <td>1038.431919</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1000</td>\n",
" <td>100</td>\n",
" <td>1149.655378</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1000</td>\n",
" <td>100</td>\n",
" <td>964.461770</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1000</td>\n",
" <td>100</td>\n",
" <td>921.246646</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" _mu _sigma normal\n",
"0 1000 100 886.616167\n",
"1 1000 100 1038.431919\n",
"2 1000 100 1149.655378\n",
"3 1000 100 964.461770\n",
"4 1000 100 921.246646"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.random.seed(111)\n",
"mu, sigma, size = 1000, 100, 5\n",
"x = pd.DataFrame({\n",
" '_mu':mu,\n",
" '_sigma':sigma,\n",
" 'normal':np.random.normal(mu,sigma,size)\n",
" })\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'_mu': {0: 1000, 1: 1000, 2: 1000, 3: 1000, 4: 1000},\n",
" '_sigma': {0: 100, 1: 100, 2: 100, 3: 100, 4: 100},\n",
" 'normal': {0: 886.61616656909678,\n",
" 1: 1038.4319193399647,\n",
" 2: 1149.6553776370522,\n",
" 3: 964.46177028375462,\n",
" 4: 921.24664590713189}}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.to_dict(orient=\"dict\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'_mu': [1000, 1000, 1000, 1000, 1000],\n",
" '_sigma': [100, 100, 100, 100, 100],\n",
" 'normal': [886.6161665690968,\n",
" 1038.4319193399647,\n",
" 1149.6553776370522,\n",
" 964.4617702837546,\n",
" 921.2466459071319]}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.to_dict(orient=\"list\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'_mu': 0 1000\n",
" 1 1000\n",
" 2 1000\n",
" 3 1000\n",
" 4 1000\n",
" Name: _mu, dtype: int64, '_sigma': 0 100\n",
" 1 100\n",
" 2 100\n",
" 3 100\n",
" 4 100\n",
" Name: _sigma, dtype: int64, 'normal': 0 886.616167\n",
" 1 1038.431919\n",
" 2 1149.655378\n",
" 3 964.461770\n",
" 4 921.246646\n",
" Name: normal, dtype: float64}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.to_dict(orient=\"series\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'columns': ['_mu', '_sigma', 'normal'],\n",
" 'data': [[1000.0, 100.0, 886.6161665690968],\n",
" [1000.0, 100.0, 1038.4319193399647],\n",
" [1000.0, 100.0, 1149.6553776370522],\n",
" [1000.0, 100.0, 964.4617702837546],\n",
" [1000.0, 100.0, 921.2466459071319]],\n",
" 'index': [0, 1, 2, 3, 4]}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.to_dict(orient=\"split\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[{'_mu': 1000.0, '_sigma': 100.0, 'normal': 886.61616656909678},\n",
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1038.4319193399647},\n",
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1149.6553776370522},\n",
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 964.46177028375462},\n",
" {'_mu': 1000.0, '_sigma': 100.0, 'normal': 921.24664590713189}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.to_dict(orient=\"records\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{0: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 886.61616656909678},\n",
" 1: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1038.4319193399647},\n",
" 2: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 1149.6553776370522},\n",
" 3: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 964.46177028375462},\n",
" 4: {'_mu': 1000.0, '_sigma': 100.0, 'normal': 921.24664590713189}}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.to_dict(orient=\"index\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment