Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
""" | |
Adapted from https://github.com/Vetal1977/tf_serving_example/blob/master/svnh_semi_supervised_client.py | |
""" | |
# -*- coding: utf-8 -*- | |
import time | |
from argparse import ArgumentParser | |
import numpy as np |
import os | |
import tensorflow as tf | |
trained_checkpoint_prefix = 'checkpoints/dev' | |
export_dir = os.path.join('models', '0') # IMPORTANT: each model folder must be named '0', '1', ... Otherwise it will fail! | |
loaded_graph = tf.Graph() | |
with tf.Session(graph=loaded_graph) as sess: | |
# Restore from checkpoint | |
loader = tf.train.import_meta_graph(trained_checkpoint_prefix + '.meta') |
'use strict'; | |
////////////////////////////////// | |
// How to use? | |
// 1. Create `sequelize-schema-file-generator.js` in your app root | |
// 2. Make sure you've ran the `sequelize init` before (It should create `config`,`seeders`,`migrations` folders). | |
// 3. Update `DATABASE_DSN` below to match your connection string (works with any database adapter that Sequelize supports) | |
// 4. Run it with `node sequelize-schema-file-generator.js` | |
// 5. Review the generated migrations inside of the `migrations` folder. | |
////////////////////////////////// |
Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.