Created
July 20, 2024 03:47
-
-
Save zhchbin/f7ca974b3594befe59893241d6ad6374 to your computer and use it in GitHub Desktop.
PDF-Extract-Kit.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"gpuType": "T4", | |
"authorship_tag": "ABX9TyOwIAkvZd47AcEmyUqhJR7e", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"accelerator": "GPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/zhchbin/f7ca974b3594befe59893241d6ad6374/pdf-extract-kit.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "eyiZIAMqG6qN", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "5dc2fbec-ca21-484a-9f9f-ec58001463ce" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Sat Jul 20 00:20:03 2024 \n", | |
"+---------------------------------------------------------------------------------------+\n", | |
"| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", | |
"|-----------------------------------------+----------------------+----------------------+\n", | |
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", | |
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", | |
"| | | MIG M. |\n", | |
"|=========================================+======================+======================|\n", | |
"| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", | |
"| N/A 54C P8 10W / 70W | 0MiB / 15360MiB | 0% Default |\n", | |
"| | | N/A |\n", | |
"+-----------------------------------------+----------------------+----------------------+\n", | |
" \n", | |
"+---------------------------------------------------------------------------------------+\n", | |
"| Processes: |\n", | |
"| GPU GI CI PID Type Process name GPU Memory |\n", | |
"| ID ID Usage |\n", | |
"|=======================================================================================|\n", | |
"| No running processes found |\n", | |
"+---------------------------------------------------------------------------------------+\n" | |
] | |
} | |
], | |
"source": [ | |
"!nvidia-smi" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!git clone https://github.com/opendatalab/PDF-Extract-Kit.git /content/PDF-Extract-Kit" | |
], | |
"metadata": { | |
"id": "BBNZQX0jM573", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "4f26067c-6d4c-4f39-f4e0-827710203914" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Cloning into '/content/PDF-Extract-Kit'...\n", | |
"remote: Enumerating objects: 301, done.\u001b[K\n", | |
"remote: Counting objects: 100% (62/62), done.\u001b[K\n", | |
"remote: Compressing objects: 100% (29/29), done.\u001b[K\n", | |
"remote: Total 301 (delta 43), reused 37 (delta 32), pack-reused 239\u001b[K\n", | |
"Receiving objects: 100% (301/301), 16.00 MiB | 16.38 MiB/s, done.\n", | |
"Resolving deltas: 100% (130/130), done.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"%cd /content/PDF-Extract-Kit\n", | |
"\n", | |
"# To avoid the restart session warning in Colab, exclude the PIL and\n", | |
"# pydevd_plugins packages from being imported. This is fine because\n", | |
"# we didn't execute the code in the kernel session afterward.\n", | |
"import sys\n", | |
"sys.modules.pop('PIL', None)\n", | |
"sys.modules.pop('pydevd_plugins', None)\n", | |
"\n", | |
"!pip install -r requirements.txt\n", | |
"!pip install --extra-index-url https://miropsota.github.io/torch_packages_builder detectron2==0.6+pt2.3.1cu121\n", | |
"!pip install pillow==8.4.0" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "GtCxIcBTNJwh", | |
"outputId": "557234a7-a4d5-4f82-a933-0475740c09b0" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"/content/PDF-Extract-Kit\n", | |
"Collecting unimernet (from -r requirements.txt (line 1))\n", | |
" Downloading unimernet-0.1.1-py2.py3-none-any.whl (2.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 2)) (3.7.1)\n", | |
"Collecting PyMuPDF (from -r requirements.txt (line 3))\n", | |
" Downloading PyMuPDF-1.24.7-cp310-none-manylinux2014_x86_64.whl (3.5 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.5/3.5 MB\u001b[0m \u001b[31m25.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting ultralytics (from -r requirements.txt (line 4))\n", | |
" Downloading ultralytics-8.2.60-py3-none-any.whl (802 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m802.9/802.9 kB\u001b[0m \u001b[31m29.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting paddlepaddle-gpu (from -r requirements.txt (line 5))\n", | |
" Downloading paddlepaddle_gpu-2.6.1-cp310-cp310-manylinux1_x86_64.whl (758.9 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m758.9/758.9 MB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting paddleocr==2.7.3 (from -r requirements.txt (line 6))\n", | |
" Downloading paddleocr-2.7.3-py3-none-any.whl (780 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m780.0/780.0 kB\u001b[0m \u001b[31m59.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: shapely in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (2.0.5)\n", | |
"Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (0.19.3)\n", | |
"Requirement already satisfied: imgaug in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (0.4.0)\n", | |
"Collecting pyclipper (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading pyclipper-1.3.0.post5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (908 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m908.3/908.3 kB\u001b[0m \u001b[31m70.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting lmdb (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading lmdb-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (294 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m294.9/294.9 kB\u001b[0m \u001b[31m29.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (4.66.4)\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (1.25.2)\n", | |
"Collecting visualdl (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading visualdl-2.5.3-py3-none-any.whl (6.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m100.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting rapidfuzz (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading rapidfuzz-3.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m75.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting opencv-python<=4.6.0.66 (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading opencv_python-4.6.0.66-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.9 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.9/60.9 MB\u001b[0m \u001b[31m11.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting opencv-contrib-python<=4.6.0.66 (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading opencv_contrib_python-4.6.0.66-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (67.1 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.1/67.1 MB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: cython in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (3.0.10)\n", | |
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (4.9.4)\n", | |
"Collecting premailer (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading premailer-3.10.0-py2.py3-none-any.whl (19 kB)\n", | |
"Requirement already satisfied: openpyxl in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (3.1.5)\n", | |
"Collecting attrdict (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading attrdict-2.0.1-py2.py3-none-any.whl (9.9 kB)\n", | |
"Collecting Pillow>=10.0.0 (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl (4.5 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (6.0.1)\n", | |
"Collecting python-docx (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading python_docx-1.1.2-py3-none-any.whl (244 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.3/244.3 kB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (4.12.3)\n", | |
"Requirement already satisfied: fonttools>=4.24.0 in /usr/local/lib/python3.10/dist-packages (from paddleocr==2.7.3->-r requirements.txt (line 6)) (4.53.1)\n", | |
"Collecting fire>=0.3.0 (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading fire-0.6.0.tar.gz (88 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.4/88.4 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting pdf2docx (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading pdf2docx-0.5.8-py3-none-any.whl (132 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.0/132.0 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting albumentations<2.0.0,>=1.4.4 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading albumentations-1.4.11-py3-none-any.whl (165 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m165.3/165.3 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting eva-decord<0.7.0,>=0.6.1 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading eva_decord-0.6.1-py3-none-manylinux2010_x86_64.whl (13.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.6/13.6 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting evaluate<0.5.0,>=0.4.1 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading evaluate-0.4.2-py3-none-any.whl (84 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m10.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting fairscale<0.5.0,>=0.4.13 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading fairscale-0.4.13.tar.gz (266 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m266.3/266.3 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting ftfy<7.0.0,>=6.2.0 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading ftfy-6.2.0-py3-none-any.whl (54 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.4/54.4 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting iopath<0.2.0,>=0.1.9 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading iopath-0.1.10.tar.gz (42 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.2/42.2 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting jupyterlab<5.0.0,>=4.1.6 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyterlab-4.2.4-py3-none-any.whl (11.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.6/11.6 MB\u001b[0m \u001b[31m104.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting matplotlib (from -r requirements.txt (line 2))\n", | |
" Downloading matplotlib-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.3/8.3 MB\u001b[0m \u001b[31m51.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: nltk<4.0.0,>=3.8.1 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (3.8.1)\n", | |
"Collecting omegaconf<3.0.0,>=2.3.0 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting pandas<3.0.0,>=2.2.2 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.0/13.0 MB\u001b[0m \u001b[31m102.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting pdf2image<2.0.0,>=1.17.0 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading pdf2image-1.17.0-py3-none-any.whl (11 kB)\n", | |
"Collecting pypdfium2<5.0.0,>=4.29.0 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading pypdfium2-4.30.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.8/2.8 MB\u001b[0m \u001b[31m105.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: rich<14.0.0,>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (13.7.1)\n", | |
"Collecting streamlit<2.0.0,>=1.33.0 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading streamlit-1.36.0-py2.py3-none-any.whl (8.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.6/8.6 MB\u001b[0m \u001b[31m110.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting streamlit_drawable_canvas<0.10.0,>=0.9.3 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading streamlit_drawable_canvas-0.9.3-py3-none-any.whl (1.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m84.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (0.9.0)\n", | |
"Requirement already satisfied: termcolor<3.0.0,>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (2.4.0)\n", | |
"Collecting timm<0.10.0,>=0.9.16 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading timm-0.9.16-py3-none-any.whl (2.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m97.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: torch<3.0.0,>=2.2.2 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (2.3.1+cu121)\n", | |
"Requirement already satisfied: torchtext<0.19.0,>=0.18.0 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (0.18.0)\n", | |
"Requirement already satisfied: torchvision<0.19.0,>=0.18.1 in /usr/local/lib/python3.10/dist-packages (from unimernet->-r requirements.txt (line 1)) (0.18.1+cu121)\n", | |
"Collecting transformers==4.40.0 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading transformers-4.40.0-py3-none-any.whl (9.0 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.0/9.0 MB\u001b[0m \u001b[31m116.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting wand<0.7.0,>=0.6.13 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading Wand-0.6.13-py2.py3-none-any.whl (143 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m24.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting webdataset<0.3.0,>=0.2.86 (from unimernet->-r requirements.txt (line 1))\n", | |
" Downloading webdataset-0.2.86-py3-none-any.whl (70 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.4/70.4 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (3.15.4)\n", | |
"Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (0.23.5)\n", | |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (24.1)\n", | |
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (2024.5.15)\n", | |
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (2.31.0)\n", | |
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (0.19.1)\n", | |
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (0.4.3)\n", | |
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->-r requirements.txt (line 2)) (1.2.1)\n", | |
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->-r requirements.txt (line 2)) (0.12.1)\n", | |
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->-r requirements.txt (line 2)) (1.4.5)\n", | |
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->-r requirements.txt (line 2)) (3.1.2)\n", | |
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->-r requirements.txt (line 2)) (2.8.2)\n", | |
"Collecting PyMuPDFb==1.24.6 (from PyMuPDF->-r requirements.txt (line 3))\n", | |
" Downloading PyMuPDFb-1.24.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (15.7 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.7/15.7 MB\u001b[0m \u001b[31m89.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics->-r requirements.txt (line 4)) (1.11.4)\n", | |
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from ultralytics->-r requirements.txt (line 4)) (5.9.5)\n", | |
"Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from ultralytics->-r requirements.txt (line 4)) (9.0.0)\n", | |
"Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics->-r requirements.txt (line 4)) (0.13.1)\n", | |
"Collecting ultralytics-thop>=2.0.0 (from ultralytics->-r requirements.txt (line 4))\n", | |
" Downloading ultralytics_thop-2.0.0-py3-none-any.whl (25 kB)\n", | |
"Collecting httpx (from paddlepaddle-gpu->-r requirements.txt (line 5))\n", | |
" Downloading httpx-0.27.0-py3-none-any.whl (75 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from paddlepaddle-gpu->-r requirements.txt (line 5)) (4.4.2)\n", | |
"Collecting astor (from paddlepaddle-gpu->-r requirements.txt (line 5))\n", | |
" Downloading astor-0.8.1-py2.py3-none-any.whl (27 kB)\n", | |
"Requirement already satisfied: opt-einsum==3.3.0 in /usr/local/lib/python3.10/dist-packages (from paddlepaddle-gpu->-r requirements.txt (line 5)) (3.3.0)\n", | |
"Requirement already satisfied: protobuf>=3.20.2 in /usr/local/lib/python3.10/dist-packages (from paddlepaddle-gpu->-r requirements.txt (line 5)) (3.20.3)\n", | |
"Collecting scikit-image (from paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading scikit_image-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.9/14.9 MB\u001b[0m \u001b[31m32.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: typing-extensions>=4.9.0 in /usr/local/lib/python3.10/dist-packages (from albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1)) (4.12.2)\n", | |
"Collecting scikit-learn>=1.3.2 (from albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.4/13.4 MB\u001b[0m \u001b[31m109.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pydantic>=2.7.0 in /usr/local/lib/python3.10/dist-packages (from albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1)) (2.8.2)\n", | |
"Collecting albucore>=0.0.11 (from albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading albucore-0.0.12-py3-none-any.whl (8.4 kB)\n", | |
"Collecting eval-type-backport (from albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading eval_type_backport-0.2.0-py3-none-any.whl (5.9 kB)\n", | |
"Requirement already satisfied: opencv-python-headless>=4.9.0.80 in /usr/local/lib/python3.10/dist-packages (from albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1)) (4.10.0.84)\n", | |
"Collecting datasets>=2.0.0 (from evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading datasets-2.20.0-py3-none-any.whl (547 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m547.8/547.8 kB\u001b[0m \u001b[31m59.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting dill (from evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m19.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting xxhash (from evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m28.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting multiprocess (from evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m22.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.05.0 in /usr/local/lib/python3.10/dist-packages (from evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (2023.6.0)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from fire>=0.3.0->paddleocr==2.7.3->-r requirements.txt (line 6)) (1.16.0)\n", | |
"Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /usr/local/lib/python3.10/dist-packages (from ftfy<7.0.0,>=6.2.0->unimernet->-r requirements.txt (line 1)) (0.2.13)\n", | |
"Collecting portalocker (from iopath<0.2.0,>=0.1.9->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading portalocker-2.10.1-py3-none-any.whl (18 kB)\n", | |
"Collecting async-lru>=1.0.0 (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading async_lru-2.0.4-py3-none-any.whl (6.1 kB)\n", | |
"Collecting ipykernel>=6.5.0 (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading ipykernel-6.29.5-py3-none-any.whl (117 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.2/117.2 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: jinja2>=3.0.3 in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (3.1.4)\n", | |
"Requirement already satisfied: jupyter-core in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (5.7.2)\n", | |
"Collecting jupyter-lsp>=2.0.0 (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyter_lsp-2.2.5-py3-none-any.whl (69 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting jupyter-server<3,>=2.4.0 (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyter_server-2.14.2-py3-none-any.whl (383 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m383.6/383.6 kB\u001b[0m \u001b[31m42.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting jupyterlab-server<3,>=2.27.1 (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyterlab_server-2.27.3-py3-none-any.whl (59 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.7/59.7 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: notebook-shim>=0.2 in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.2.4)\n", | |
"Requirement already satisfied: setuptools>=40.1.0 in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (67.7.2)\n", | |
"Requirement already satisfied: tomli>=1.2.2 in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (2.0.1)\n", | |
"Requirement already satisfied: tornado>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (6.3.3)\n", | |
"Requirement already satisfied: traitlets in /usr/local/lib/python3.10/dist-packages (from jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (5.7.1)\n", | |
"Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx->paddlepaddle-gpu->-r requirements.txt (line 5)) (3.7.1)\n", | |
"Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->paddlepaddle-gpu->-r requirements.txt (line 5)) (2024.7.4)\n", | |
"Collecting httpcore==1.* (from httpx->paddlepaddle-gpu->-r requirements.txt (line 5))\n", | |
" Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->paddlepaddle-gpu->-r requirements.txt (line 5)) (3.7)\n", | |
"Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->paddlepaddle-gpu->-r requirements.txt (line 5)) (1.3.1)\n", | |
"Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx->paddlepaddle-gpu->-r requirements.txt (line 5))\n", | |
" Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->unimernet->-r requirements.txt (line 1)) (8.1.7)\n", | |
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk<4.0.0,>=3.8.1->unimernet->-r requirements.txt (line 1)) (1.4.2)\n", | |
"Collecting antlr4-python3-runtime==4.9.* (from omegaconf<3.0.0,>=2.3.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m19.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1)) (2023.4)\n", | |
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1)) (2024.1)\n", | |
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (3.3.2)\n", | |
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.40.0->unimernet->-r requirements.txt (line 1)) (2.0.7)\n", | |
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.7.1->unimernet->-r requirements.txt (line 1)) (3.0.0)\n", | |
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.7.1->unimernet->-r requirements.txt (line 1)) (2.16.1)\n", | |
"Requirement already satisfied: networkx>=2.8 in /usr/local/lib/python3.10/dist-packages (from scikit-image->paddleocr==2.7.3->-r requirements.txt (line 6)) (3.3)\n", | |
"Collecting imageio>=2.33 (from scikit-image->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading imageio-2.34.2-py3-none-any.whl (313 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m313.5/313.5 kB\u001b[0m \u001b[31m42.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.10/dist-packages (from scikit-image->paddleocr==2.7.3->-r requirements.txt (line 6)) (2024.7.2)\n", | |
"Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.10/dist-packages (from scikit-image->paddleocr==2.7.3->-r requirements.txt (line 6)) (0.4)\n", | |
"Requirement already satisfied: altair<6,>=4.0 in /usr/local/lib/python3.10/dist-packages (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (4.2.2)\n", | |
"Requirement already satisfied: blinker<2,>=1.0.0 in /usr/lib/python3/dist-packages (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (1.4)\n", | |
"Requirement already satisfied: cachetools<6,>=4.0 in /usr/local/lib/python3.10/dist-packages (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (5.4.0)\n", | |
"Requirement already satisfied: pyarrow>=7.0 in /usr/local/lib/python3.10/dist-packages (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (14.0.2)\n", | |
"Requirement already satisfied: tenacity<9,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (8.5.0)\n", | |
"Requirement already satisfied: toml<2,>=0.10.1 in /usr/local/lib/python3.10/dist-packages (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (0.10.2)\n", | |
"Collecting gitpython!=3.1.19,<4,>=3.0.7 (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading GitPython-3.1.43-py3-none-any.whl (207 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.3/207.3 kB\u001b[0m \u001b[31m28.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting pydeck<1,>=0.8.0b4 (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading pydeck-0.9.1-py2.py3-none-any.whl (6.9 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.9/6.9 MB\u001b[0m \u001b[31m84.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting watchdog<5,>=2.1.5 (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl (83 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m83.0/83.0 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1)) (1.13.0)\n", | |
"Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", | |
"Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", | |
"Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", | |
"Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", | |
"Collecting nvidia-cublas-cu12==12.1.3.1 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", | |
"Collecting nvidia-cufft-cu12==11.0.2.54 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", | |
"Collecting nvidia-curand-cu12==10.3.2.106 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", | |
"Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", | |
"Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", | |
"Collecting nvidia-nccl-cu12==2.20.5 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n", | |
"Collecting nvidia-nvtx-cu12==12.1.105 (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Using cached nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", | |
"Requirement already satisfied: triton==2.3.1 in /usr/local/lib/python3.10/dist-packages (from torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1)) (2.3.1)\n", | |
"Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl (21.3 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.3/21.3 MB\u001b[0m \u001b[31m63.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting braceexpand (from webdataset<0.3.0,>=0.2.86->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading braceexpand-0.1.7-py2.py3-none-any.whl (5.9 kB)\n", | |
"Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->paddleocr==2.7.3->-r requirements.txt (line 6)) (2.5)\n", | |
"Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.10/dist-packages (from openpyxl->paddleocr==2.7.3->-r requirements.txt (line 6)) (1.1.0)\n", | |
"Collecting cssselect (from premailer->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading cssselect-1.2.0-py2.py3-none-any.whl (18 kB)\n", | |
"Collecting cssutils (from premailer->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading cssutils-2.11.1-py3-none-any.whl (385 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m385.7/385.7 kB\u001b[0m \u001b[31m43.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting bce-python-sdk (from visualdl->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading bce_python_sdk-0.9.17-py3-none-any.whl (343 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m343.9/343.9 kB\u001b[0m \u001b[31m40.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: flask>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from visualdl->paddleocr==2.7.3->-r requirements.txt (line 6)) (2.2.5)\n", | |
"Collecting Flask-Babel>=3.0.0 (from visualdl->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading flask_babel-4.0.0-py3-none-any.whl (9.6 kB)\n", | |
"Collecting rarfile (from visualdl->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading rarfile-4.2-py3-none-any.whl (29 kB)\n", | |
"Requirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (0.4)\n", | |
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (4.19.2)\n", | |
"Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (0.12.1)\n", | |
"Collecting pyarrow>=7.0 (from streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (39.9 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.9/39.9 MB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (0.6)\n", | |
"Collecting requests (from transformers==4.40.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading requests-2.32.3-py3-none-any.whl (64 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.9/64.9 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (3.9.5)\n", | |
"Requirement already satisfied: Werkzeug>=2.2.2 in /usr/local/lib/python3.10/dist-packages (from flask>=1.1.1->visualdl->paddleocr==2.7.3->-r requirements.txt (line 6)) (3.0.3)\n", | |
"Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.10/dist-packages (from flask>=1.1.1->visualdl->paddleocr==2.7.3->-r requirements.txt (line 6)) (2.2.0)\n", | |
"Requirement already satisfied: Babel>=2.12 in /usr/local/lib/python3.10/dist-packages (from Flask-Babel>=3.0.0->visualdl->paddleocr==2.7.3->-r requirements.txt (line 6)) (2.15.0)\n", | |
"Collecting gitdb<5,>=4.0.1 (from gitpython!=3.1.19,<4,>=3.0.7->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading gitdb-4.0.11-py3-none-any.whl (62 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting comm>=0.1.1 (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading comm-0.2.2-py3-none-any.whl (7.2 kB)\n", | |
"Requirement already satisfied: debugpy>=1.6.5 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.6.6)\n", | |
"Requirement already satisfied: ipython>=7.23.1 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (7.34.0)\n", | |
"Requirement already satisfied: jupyter-client>=6.1.12 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (6.1.12)\n", | |
"Requirement already satisfied: matplotlib-inline>=0.1 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.1.7)\n", | |
"Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.10/dist-packages (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.6.0)\n", | |
"Requirement already satisfied: pyzmq>=24 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (24.0.1)\n", | |
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2>=3.0.3->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (2.1.5)\n", | |
"Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (4.2.2)\n", | |
"Requirement already satisfied: argon2-cffi>=21.1 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (23.1.0)\n", | |
"Collecting jupyter-client>=6.1.12 (from ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyter_client-8.6.2-py3-none-any.whl (105 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.9/105.9 kB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting jupyter-events>=0.9.0 (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyter_events-0.10.0-py3-none-any.whl (18 kB)\n", | |
"Collecting jupyter-server-terminals>=0.4.4 (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jupyter_server_terminals-0.5.3-py3-none-any.whl (13 kB)\n", | |
"Requirement already satisfied: nbconvert>=6.4.4 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (6.5.4)\n", | |
"Requirement already satisfied: nbformat>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (5.10.4)\n", | |
"Collecting overrides>=5.0 (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading overrides-7.7.0-py3-none-any.whl (17 kB)\n", | |
"Requirement already satisfied: prometheus-client>=0.9 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.20.0)\n", | |
"Requirement already satisfied: send2trash>=1.8.2 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.8.3)\n", | |
"Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.18.1)\n", | |
"Requirement already satisfied: websocket-client>=1.7 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.8.0)\n", | |
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx->paddlepaddle-gpu->-r requirements.txt (line 5)) (1.2.2)\n", | |
"Collecting json5>=0.9.0 (from jupyterlab-server<3,>=2.27.1->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading json5-0.9.25-py3-none-any.whl (30 kB)\n", | |
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.7.1->unimernet->-r requirements.txt (line 1)) (0.1.2)\n", | |
"Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.7.0->albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1)) (0.7.0)\n", | |
"Requirement already satisfied: pydantic-core==2.20.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.7.0->albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1)) (2.20.1)\n", | |
"Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.3.2->albumentations<2.0.0,>=1.4.4->unimernet->-r requirements.txt (line 1)) (3.5.0)\n", | |
"Collecting pycryptodome>=3.8.0 (from bce-python-sdk->visualdl->paddleocr==2.7.3->-r requirements.txt (line 6))\n", | |
" Downloading pycryptodome-3.20.0-cp35-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m90.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: future>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from bce-python-sdk->visualdl->paddleocr==2.7.3->-r requirements.txt (line 6)) (0.18.3)\n", | |
"Requirement already satisfied: more-itertools in /usr/local/lib/python3.10/dist-packages (from cssutils->premailer->paddleocr==2.7.3->-r requirements.txt (line 6)) (10.1.0)\n", | |
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch<3.0.0,>=2.2.2->unimernet->-r requirements.txt (line 1)) (1.3.0)\n", | |
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (1.3.1)\n", | |
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (23.2.0)\n", | |
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (1.4.1)\n", | |
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (6.0.5)\n", | |
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (1.9.4)\n", | |
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate<0.5.0,>=0.4.1->unimernet->-r requirements.txt (line 1)) (4.0.3)\n", | |
"Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (21.2.0)\n", | |
"Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython!=3.1.19,<4,>=3.0.7->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading smmap-5.0.1-py3-none-any.whl (24 kB)\n", | |
"Collecting jedi>=0.16 (from ipython>=7.23.1->ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m82.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=7.23.1->ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.7.5)\n", | |
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.23.1->ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (3.0.47)\n", | |
"Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=7.23.1->ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.2.0)\n", | |
"Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.23.1->ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (4.9.0)\n", | |
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (2023.12.1)\n", | |
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (0.35.1)\n", | |
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (0.19.0)\n", | |
"Collecting python-json-logger>=2.0.4 (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading python_json_logger-2.0.7-py3-none-any.whl (8.1 kB)\n", | |
"Collecting rfc3339-validator (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading rfc3339_validator-0.1.4-py2.py3-none-any.whl (3.5 kB)\n", | |
"Collecting rfc3986-validator>=0.1.1 (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading rfc3986_validator-0.1.1-py2.py3-none-any.whl (4.2 kB)\n", | |
"Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (6.1.0)\n", | |
"Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.7.1)\n", | |
"Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.3.0)\n", | |
"Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.8.4)\n", | |
"Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.10.0)\n", | |
"Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.5.1)\n", | |
"Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.3.0)\n", | |
"Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (2.20.0)\n", | |
"Requirement already satisfied: ptyprocess in /usr/local/lib/python3.10/dist-packages (from terminado>=0.8.3->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.7.0)\n", | |
"Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel>=6.5.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.8.4)\n", | |
"Collecting fqdn (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading fqdn-1.5.1-py3-none-any.whl (9.1 kB)\n", | |
"Collecting isoduration (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading isoduration-20.11.0-py3-none-any.whl (11 kB)\n", | |
"Collecting jsonpointer>1.13 (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading jsonpointer-3.0.0-py2.py3-none-any.whl (7.6 kB)\n", | |
"Collecting uri-template (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading uri_template-1.3.0-py3-none-any.whl (11 kB)\n", | |
"Requirement already satisfied: webcolors>=1.11 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1)) (24.6.0)\n", | |
"Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (1.16.0)\n", | |
"Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (0.5.1)\n", | |
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab<5.0.0,>=4.1.6->unimernet->-r requirements.txt (line 1)) (2.22)\n", | |
"Collecting arrow>=0.15.0 (from isoduration->jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading arrow-1.3.0-py3-none-any.whl (66 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.4/66.4 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting types-python-dateutil>=2.8.10 (from arrow>=0.15.0->isoduration->jsonschema>=3.0->altair<6,>=4.0->streamlit<2.0.0,>=1.33.0->unimernet->-r requirements.txt (line 1))\n", | |
" Downloading types_python_dateutil-2.9.0.20240316-py3-none-any.whl (9.7 kB)\n", | |
"Building wheels for collected packages: fairscale, fire, iopath, antlr4-python3-runtime\n", | |
" Building wheel for fairscale (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for fairscale: filename=fairscale-0.4.13-py3-none-any.whl size=332105 sha256=78a39af8c35958f9dc70123f1c1503187ad43c48f8a168254f5125aa3663fdb4\n", | |
" Stored in directory: /root/.cache/pip/wheels/78/a4/c0/fb0a7ef03cff161611c3fa40c6cf898f76e58ec421b88e8cb3\n", | |
" Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for fire: filename=fire-0.6.0-py2.py3-none-any.whl size=117029 sha256=8dd90d4446250239fc7f833cbbf4a3667814827803a51e7025c4791c854f9e8b\n", | |
" Stored in directory: /root/.cache/pip/wheels/d6/6d/5d/5b73fa0f46d01a793713f8859201361e9e581ced8c75e5c6a3\n", | |
" Building wheel for iopath (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for iopath: filename=iopath-0.1.10-py3-none-any.whl size=31532 sha256=f5072d923c30443c9cb4bb01f868977044487a17311433eacfa16d25cd34a459\n", | |
" Stored in directory: /root/.cache/pip/wheels/9a/a3/b6/ac0fcd1b4ed5cfeb3db92e6a0e476cfd48ed0df92b91080c1d\n", | |
" Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=8c5284f594571c6b868822dea80de5ef3be0fc9e125539f1264c03dd40735ed0\n", | |
" Stored in directory: /root/.cache/pip/wheels/12/93/dd/1f6a127edc45659556564c5730f6d4e300888f4bca2d4c5a88\n", | |
"Successfully built fairscale fire iopath antlr4-python3-runtime\n", | |
"Installing collected packages: wand, pyclipper, lmdb, braceexpand, antlr4-python3-runtime, xxhash, webdataset, watchdog, uri-template, types-python-dateutil, smmap, rfc3986-validator, rfc3339-validator, requests, rarfile, rapidfuzz, python-json-logger, python-docx, pypdfium2, PyMuPDFb, pycryptodome, pyarrow, portalocker, Pillow, overrides, opencv-python, opencv-contrib-python, omegaconf, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, jsonpointer, json5, jedi, h11, ftfy, fqdn, fire, eval-type-backport, eva-decord, dill, cssutils, cssselect, comm, attrdict, async-lru, astor, scikit-learn, PyMuPDF, pydeck, premailer, pdf2image, pandas, nvidia-cusparse-cu12, nvidia-cudnn-cu12, multiprocess, matplotlib, jupyter-server-terminals, jupyter-client, iopath, imageio, httpcore, gitdb, bce-python-sdk, arrow, albucore, scikit-image, pdf2docx, nvidia-cusolver-cu12, isoduration, ipykernel, httpx, gitpython, Flask-Babel, visualdl, transformers, paddlepaddle-gpu, datasets, albumentations, ultralytics-thop, streamlit, paddleocr, jupyter-events, fairscale, evaluate, ultralytics, timm, streamlit_drawable_canvas, jupyter-server, jupyterlab-server, jupyter-lsp, jupyterlab, unimernet\n", | |
" Attempting uninstall: requests\n", | |
" Found existing installation: requests 2.31.0\n", | |
" Uninstalling requests-2.31.0:\n", | |
" Successfully uninstalled requests-2.31.0\n", | |
" Attempting uninstall: pyarrow\n", | |
" Found existing installation: pyarrow 14.0.2\n", | |
" Uninstalling pyarrow-14.0.2:\n", | |
" Successfully uninstalled pyarrow-14.0.2\n", | |
" Attempting uninstall: Pillow\n", | |
" Found existing installation: Pillow 9.4.0\n", | |
" Uninstalling Pillow-9.4.0:\n", | |
" Successfully uninstalled Pillow-9.4.0\n", | |
" Attempting uninstall: opencv-python\n", | |
" Found existing installation: opencv-python 4.8.0.76\n", | |
" Uninstalling opencv-python-4.8.0.76:\n", | |
" Successfully uninstalled opencv-python-4.8.0.76\n", | |
" Attempting uninstall: opencv-contrib-python\n", | |
" Found existing installation: opencv-contrib-python 4.8.0.76\n", | |
" Uninstalling opencv-contrib-python-4.8.0.76:\n", | |
" Successfully uninstalled opencv-contrib-python-4.8.0.76\n", | |
" Attempting uninstall: scikit-learn\n", | |
" Found existing installation: scikit-learn 1.2.2\n", | |
" Uninstalling scikit-learn-1.2.2:\n", | |
" Successfully uninstalled scikit-learn-1.2.2\n", | |
" Attempting uninstall: pandas\n", | |
" Found existing installation: pandas 2.0.3\n", | |
" Uninstalling pandas-2.0.3:\n", | |
" Successfully uninstalled pandas-2.0.3\n", | |
" Attempting uninstall: matplotlib\n", | |
" Found existing installation: matplotlib 3.7.1\n", | |
" Uninstalling matplotlib-3.7.1:\n", | |
" Successfully uninstalled matplotlib-3.7.1\n", | |
" Attempting uninstall: jupyter-client\n", | |
" Found existing installation: jupyter-client 6.1.12\n", | |
" Uninstalling jupyter-client-6.1.12:\n", | |
" Successfully uninstalled jupyter-client-6.1.12\n", | |
" Attempting uninstall: imageio\n", | |
" Found existing installation: imageio 2.31.6\n", | |
" Uninstalling imageio-2.31.6:\n", | |
" Successfully uninstalled imageio-2.31.6\n", | |
" Attempting uninstall: scikit-image\n", | |
" Found existing installation: scikit-image 0.19.3\n", | |
" Uninstalling scikit-image-0.19.3:\n", | |
" Successfully uninstalled scikit-image-0.19.3\n", | |
" Attempting uninstall: ipykernel\n", | |
" Found existing installation: ipykernel 5.5.6\n", | |
" Uninstalling ipykernel-5.5.6:\n", | |
" Successfully uninstalled ipykernel-5.5.6\n", | |
" Attempting uninstall: transformers\n", | |
" Found existing installation: transformers 4.42.4\n", | |
" Uninstalling transformers-4.42.4:\n", | |
" Successfully uninstalled transformers-4.42.4\n", | |
" Attempting uninstall: albumentations\n", | |
" Found existing installation: albumentations 1.3.1\n", | |
" Uninstalling albumentations-1.3.1:\n", | |
" Successfully uninstalled albumentations-1.3.1\n", | |
" Attempting uninstall: jupyter-server\n", | |
" Found existing installation: jupyter-server 1.24.0\n", | |
" Uninstalling jupyter-server-1.24.0:\n", | |
" Successfully uninstalled jupyter-server-1.24.0\n", | |
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", | |
"cudf-cu12 24.4.1 requires pandas<2.2.2dev0,>=2.0, but you have pandas 2.2.2 which is incompatible.\n", | |
"cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.\n", | |
"google-colab 1.0.0 requires ipykernel==5.5.6, but you have ipykernel 6.29.5 which is incompatible.\n", | |
"google-colab 1.0.0 requires pandas==2.0.3, but you have pandas 2.2.2 which is incompatible.\n", | |
"google-colab 1.0.0 requires requests==2.31.0, but you have requests 2.32.3 which is incompatible.\n", | |
"ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.\n", | |
"notebook 6.5.5 requires jupyter-client<8,>=5.3.4, but you have jupyter-client 8.6.2 which is incompatible.\u001b[0m\u001b[31m\n", | |
"\u001b[0mSuccessfully installed Flask-Babel-4.0.0 Pillow-10.4.0 PyMuPDF-1.24.7 PyMuPDFb-1.24.6 albucore-0.0.12 albumentations-1.4.11 antlr4-python3-runtime-4.9.3 arrow-1.3.0 astor-0.8.1 async-lru-2.0.4 attrdict-2.0.1 bce-python-sdk-0.9.17 braceexpand-0.1.7 comm-0.2.2 cssselect-1.2.0 cssutils-2.11.1 datasets-2.20.0 dill-0.3.8 eva-decord-0.6.1 eval-type-backport-0.2.0 evaluate-0.4.2 fairscale-0.4.13 fire-0.6.0 fqdn-1.5.1 ftfy-6.2.0 gitdb-4.0.11 gitpython-3.1.43 h11-0.14.0 httpcore-1.0.5 httpx-0.27.0 imageio-2.34.2 iopath-0.1.10 ipykernel-6.29.5 isoduration-20.11.0 jedi-0.19.1 json5-0.9.25 jsonpointer-3.0.0 jupyter-client-8.6.2 jupyter-events-0.10.0 jupyter-lsp-2.2.5 jupyter-server-2.14.2 jupyter-server-terminals-0.5.3 jupyterlab-4.2.4 jupyterlab-server-2.27.3 lmdb-1.5.1 matplotlib-3.9.1 multiprocess-0.70.16 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.5.82 nvidia-nvtx-cu12-12.1.105 omegaconf-2.3.0 opencv-contrib-python-4.6.0.66 opencv-python-4.6.0.66 overrides-7.7.0 paddleocr-2.7.3 paddlepaddle-gpu-2.6.1 pandas-2.2.2 pdf2docx-0.5.8 pdf2image-1.17.0 portalocker-2.10.1 premailer-3.10.0 pyarrow-17.0.0 pyclipper-1.3.0.post5 pycryptodome-3.20.0 pydeck-0.9.1 pypdfium2-4.30.0 python-docx-1.1.2 python-json-logger-2.0.7 rapidfuzz-3.9.4 rarfile-4.2 requests-2.32.3 rfc3339-validator-0.1.4 rfc3986-validator-0.1.1 scikit-image-0.24.0 scikit-learn-1.5.1 smmap-5.0.1 streamlit-1.36.0 streamlit_drawable_canvas-0.9.3 timm-0.9.16 transformers-4.40.0 types-python-dateutil-2.9.0.20240316 ultralytics-8.2.60 ultralytics-thop-2.0.0 unimernet-0.1.1 uri-template-1.3.0 visualdl-2.5.3 wand-0.6.13 watchdog-4.0.1 webdataset-0.2.86 xxhash-3.4.1\n", | |
"Looking in indexes: https://pypi.org/simple, https://miropsota.github.io/torch_packages_builder\n", | |
"Collecting detectron2==0.6+pt2.3.1cu121\n", | |
" Downloading https://github.com/MiroPsota/torch_packages_builder/releases/download/detectron2-0.6/detectron2-0.6%2Bpt2.3.1cu121-cp310-cp310-linux_x86_64.whl (8.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.8/8.8 MB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: Pillow>=7.1 in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (10.4.0)\n", | |
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (3.9.1)\n", | |
"Requirement already satisfied: pycocotools>=2.0.2 in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (2.0.8)\n", | |
"Requirement already satisfied: termcolor>=1.1 in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (2.4.0)\n", | |
"Collecting yacs>=0.1.8 (from detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\n", | |
"Requirement already satisfied: tabulate in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (0.9.0)\n", | |
"Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (2.2.1)\n", | |
"Requirement already satisfied: tqdm>4.29.0 in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (4.66.4)\n", | |
"Requirement already satisfied: tensorboard in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (2.15.2)\n", | |
"Collecting fvcore<0.1.6,>=0.1.5 (from detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading fvcore-0.1.5.post20221221.tar.gz (50 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting iopath<0.1.10,>=0.1.7 (from detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading iopath-0.1.9-py3-none-any.whl (27 kB)\n", | |
"Requirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (0.18.3)\n", | |
"Requirement already satisfied: pydot in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (1.4.2)\n", | |
"Requirement already satisfied: omegaconf>=2.1 in /usr/local/lib/python3.10/dist-packages (from detectron2==0.6+pt2.3.1cu121) (2.3.0)\n", | |
"Collecting hydra-core>=1.1 (from detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading hydra_core-1.3.2-py3-none-any.whl (154 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.5/154.5 kB\u001b[0m \u001b[31m11.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting black==21.4b2 (from detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading black-21.4b2-py3-none-any.whl (130 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m131.0/131.0 kB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: click>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from black==21.4b2->detectron2==0.6+pt2.3.1cu121) (8.1.7)\n", | |
"Collecting appdirs (from black==21.4b2->detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)\n", | |
"Requirement already satisfied: toml>=0.10.1 in /usr/local/lib/python3.10/dist-packages (from black==21.4b2->detectron2==0.6+pt2.3.1cu121) (0.10.2)\n", | |
"Requirement already satisfied: regex>=2020.1.8 in /usr/local/lib/python3.10/dist-packages (from black==21.4b2->detectron2==0.6+pt2.3.1cu121) (2024.5.15)\n", | |
"Collecting pathspec<1,>=0.8.1 (from black==21.4b2->detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)\n", | |
"Collecting mypy-extensions>=0.4.3 (from black==21.4b2->detectron2==0.6+pt2.3.1cu121)\n", | |
" Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from fvcore<0.1.6,>=0.1.5->detectron2==0.6+pt2.3.1cu121) (1.25.2)\n", | |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from fvcore<0.1.6,>=0.1.5->detectron2==0.6+pt2.3.1cu121) (6.0.1)\n", | |
"Requirement already satisfied: antlr4-python3-runtime==4.9.* in /usr/local/lib/python3.10/dist-packages (from hydra-core>=1.1->detectron2==0.6+pt2.3.1cu121) (4.9.3)\n", | |
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hydra-core>=1.1->detectron2==0.6+pt2.3.1cu121) (24.1)\n", | |
"Requirement already satisfied: portalocker in /usr/local/lib/python3.10/dist-packages (from iopath<0.1.10,>=0.1.7->detectron2==0.6+pt2.3.1cu121) (2.10.1)\n", | |
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->detectron2==0.6+pt2.3.1cu121) (1.2.1)\n", | |
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->detectron2==0.6+pt2.3.1cu121) (0.12.1)\n", | |
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->detectron2==0.6+pt2.3.1cu121) (4.53.1)\n", | |
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->detectron2==0.6+pt2.3.1cu121) (1.4.5)\n", | |
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->detectron2==0.6+pt2.3.1cu121) (3.1.2)\n", | |
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->detectron2==0.6+pt2.3.1cu121) (2.8.2)\n", | |
"Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (1.4.0)\n", | |
"Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (1.64.1)\n", | |
"Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (2.27.0)\n", | |
"Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (1.2.1)\n", | |
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (3.6)\n", | |
"Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (3.20.3)\n", | |
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (2.32.3)\n", | |
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (67.7.2)\n", | |
"Requirement already satisfied: six>1.9 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (1.16.0)\n", | |
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (0.7.2)\n", | |
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard->detectron2==0.6+pt2.3.1cu121) (3.0.3)\n", | |
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6+pt2.3.1cu121) (5.4.0)\n", | |
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6+pt2.3.1cu121) (0.4.0)\n", | |
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard->detectron2==0.6+pt2.3.1cu121) (4.9)\n", | |
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<2,>=0.5->tensorboard->detectron2==0.6+pt2.3.1cu121) (1.3.1)\n", | |
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6+pt2.3.1cu121) (3.3.2)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6+pt2.3.1cu121) (3.7)\n", | |
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6+pt2.3.1cu121) (2.0.7)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard->detectron2==0.6+pt2.3.1cu121) (2024.7.4)\n", | |
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard->detectron2==0.6+pt2.3.1cu121) (2.1.5)\n", | |
"Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->detectron2==0.6+pt2.3.1cu121) (0.6.0)\n", | |
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard->detectron2==0.6+pt2.3.1cu121) (3.2.2)\n", | |
"Building wheels for collected packages: fvcore\n", | |
" Building wheel for fvcore (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for fvcore: filename=fvcore-0.1.5.post20221221-py3-none-any.whl size=61400 sha256=72e108eb37089f87d7d5643170ebe19f10bebb99b956821f0a951daf1fc67c71\n", | |
" Stored in directory: /root/.cache/pip/wheels/01/c0/af/77c1cf53a1be9e42a52b48e5af2169d40ec2e89f7362489dd0\n", | |
"Successfully built fvcore\n", | |
"Installing collected packages: appdirs, yacs, pathspec, mypy-extensions, iopath, hydra-core, fvcore, black, detectron2\n", | |
" Attempting uninstall: iopath\n", | |
" Found existing installation: iopath 0.1.10\n", | |
" Uninstalling iopath-0.1.10:\n", | |
" Successfully uninstalled iopath-0.1.10\n", | |
"Successfully installed appdirs-1.4.4 black-21.4b2 detectron2-0.6+pt2.3.1cu121 fvcore-0.1.5.post20221221 hydra-core-1.3.2 iopath-0.1.9 mypy-extensions-1.0.0 pathspec-0.12.1 yacs-0.1.8\n", | |
"Collecting pillow==8.4.0\n", | |
" Downloading Pillow-8.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hInstalling collected packages: pillow\n", | |
" Attempting uninstall: pillow\n", | |
" Found existing installation: pillow 10.4.0\n", | |
" Uninstalling pillow-10.4.0:\n", | |
" Successfully uninstalled pillow-10.4.0\n", | |
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", | |
"fastai 2.7.15 requires pillow>=9.0.0, but you have pillow 8.4.0 which is incompatible.\n", | |
"paddleocr 2.7.3 requires Pillow>=10.0.0, but you have pillow 8.4.0 which is incompatible.\n", | |
"scikit-image 0.24.0 requires pillow>=9.1, but you have pillow 8.4.0 which is incompatible.\u001b[0m\u001b[31m\n", | |
"\u001b[0mSuccessfully installed pillow-8.4.0\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!git lfs install\n", | |
"!rm -rf /content/HF-PDF-Extract-Kit && git clone https://huggingface.co/wanderkid/PDF-Extract-Kit /content/HF-PDF-Extract-Kit\n", | |
"!rm -rf models/ && mv /content/HF-PDF-Extract-Kit/models /content/PDF-Extract-Kit/" | |
], | |
"metadata": { | |
"id": "yCCfUDljO7ss", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "6d9bdec2-616f-467a-e838-5ee02e703945" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Updated git hooks.\n", | |
"Git LFS initialized.\n", | |
"Cloning into '/content/HF-PDF-Extract-Kit'...\n", | |
"remote: Enumerating objects: 21, done.\u001b[K\n", | |
"remote: Counting objects: 100% (17/17), done.\u001b[K\n", | |
"remote: Compressing objects: 100% (15/15), done.\u001b[K\n", | |
"remote: Total 21 (delta 0), reused 0 (delta 0), pack-reused 4 (from 1)\u001b[K\n", | |
"Unpacking objects: 100% (21/21), 597.09 KiB | 2.52 MiB/s, done.\n", | |
"Filtering content: 100% (3/3), 4.34 GiB | 47.16 MiB/s, done.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!wget https://arxiv.org/pdf/1706.03762 -O 1706.03762.pdf\n", | |
"!ls -lh" | |
], | |
"metadata": { | |
"id": "u76_yKerSjtX", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "fa805db9-a3a6-471a-a310-15b2548d8c8f" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"--2024-07-20 00:25:50-- https://arxiv.org/pdf/1706.03762\n", | |
"Resolving arxiv.org (arxiv.org)... 151.101.67.42, 151.101.3.42, 151.101.195.42, ...\n", | |
"Connecting to arxiv.org (arxiv.org)|151.101.67.42|:443... connected.\n", | |
"HTTP request sent, awaiting response... 200 OK\n", | |
"Length: 2215244 (2.1M) [application/pdf]\n", | |
"Saving to: ‘1706.03762.pdf’\n", | |
"\n", | |
"1706.03762.pdf 100%[===================>] 2.11M --.-KB/s in 0.05s \n", | |
"\n", | |
"2024-07-20 00:25:50 (44.8 MB/s) - ‘1706.03762.pdf’ saved [2215244/2215244]\n", | |
"\n", | |
"total 2.2M\n", | |
"-rw-r--r-- 1 root root 2.2M Apr 12 23:47 1706.03762.pdf\n", | |
"drwxr-xr-x 8 root root 4.0K Jul 20 00:20 assets\n", | |
"drwxr-xr-x 2 root root 4.0K Jul 20 00:20 configs\n", | |
"drwxr-xr-x 2 root root 4.0K Jul 20 00:20 docs\n", | |
"-rw-r--r-- 1 root root 12K Jul 20 00:20 LICENSE.md\n", | |
"drwxr-xr-x 5 root root 4.0K Jul 20 00:24 models\n", | |
"drwxr-xr-x 5 root root 4.0K Jul 20 00:20 modules\n", | |
"-rw-r--r-- 1 root root 12K Jul 20 00:20 pdf_extract.py\n", | |
"-rw-r--r-- 1 root root 13K Jul 20 00:20 README.md\n", | |
"-rw-r--r-- 1 root root 12K Jul 20 00:20 README-zh_CN.md\n", | |
"-rw-r--r-- 1 root root 70 Jul 20 00:20 requirements+cpu.txt\n", | |
"-rw-r--r-- 1 root root 74 Jul 20 00:20 requirements.txt\n", | |
"-rw-r--r-- 1 root root 60 Jul 20 00:20 requirements-without-unimernet+cpu.txt\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!python pdf_extract.py --pdf 1706.03762.pdf" | |
], | |
"metadata": { | |
"id": "1Jv1ytQ8kFgF", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "9bd432c0-1434-44ca-f4ab-b103ac7b717b" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Namespace(pdf='1706.03762.pdf', output='output', vis=False, render=False)\n", | |
"2024-07-20 08:26:16\n", | |
"Started!\n", | |
"CustomVisionEncoderDecoderModel init\n", | |
"CustomMBartForCausalLM init\n", | |
"CustomMBartDecoder init\n", | |
"\u001b[32m[07/20 00:26:54 detectron2]: \u001b[0mRank of current process: 0. World size: 1\n", | |
"\u001b[32m[07/20 00:26:55 detectron2]: \u001b[0mEnvironment info:\n", | |
"---------------------- -----------------------------------------------------------------\n", | |
"sys.platform linux\n", | |
"Python 3.10.12 (main, Mar 22 2024, 16:50:05) [GCC 11.4.0]\n", | |
"numpy 1.25.2\n", | |
"detectron2 0.6 @/usr/local/lib/python3.10/dist-packages/detectron2\n", | |
"Compiler GCC 9.4\n", | |
"CUDA compiler CUDA 12.1\n", | |
"detectron2 arch flags 5.0, 6.0, 7.0, 7.5, 8.0, 8.6, 9.0\n", | |
"DETECTRON2_ENV_MODULE <not set>\n", | |
"PyTorch 2.3.1+cu121 @/usr/local/lib/python3.10/dist-packages/torch\n", | |
"PyTorch debug build False\n", | |
"GPU available Yes\n", | |
"GPU 0 Tesla T4 (arch=7.5)\n", | |
"Driver version 535.104.05\n", | |
"CUDA_HOME /usr/local/cuda\n", | |
"Pillow 8.4.0\n", | |
"torchvision 0.18.1+cu121 @/usr/local/lib/python3.10/dist-packages/torchvision\n", | |
"torchvision arch flags 5.0, 6.0, 7.0, 7.5, 8.0, 8.6, 9.0\n", | |
"fvcore 0.1.5.post20221221\n", | |
"iopath 0.1.9\n", | |
"cv2 4.6.0\n", | |
"---------------------- -----------------------------------------------------------------\n", | |
"PyTorch built with:\n", | |
" - GCC 9.3\n", | |
" - C++ Version: 201703\n", | |
" - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications\n", | |
" - Intel(R) MKL-DNN v3.3.6 (Git Hash 86e6af5974177e513fd3fee58425e1063e7f1361)\n", | |
" - OpenMP 201511 (a.k.a. OpenMP 4.5)\n", | |
" - LAPACK is enabled (usually provided by MKL)\n", | |
" - NNPACK is enabled\n", | |
" - CPU capability usage: AVX2\n", | |
" - CUDA Runtime 12.1\n", | |
" - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n", | |
" - CuDNN 8.9.2\n", | |
" - Magma 2.6.1\n", | |
" - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n", | |
"\n", | |
"\u001b[32m[07/20 00:26:55 detectron2]: \u001b[0mCommand line arguments: {'config_file': 'modules/layoutlmv3/layoutlmv3_base_inference.yaml', 'resume': False, 'eval_only': False, 'num_gpus': 1, 'num_machines': 1, 'machine_rank': 0, 'dist_url': 'tcp://127.0.0.1:57823', 'opts': ['MODEL.WEIGHTS', 'models/Layout/model_final.pth']}\n", | |
"\u001b[32m[07/20 00:26:55 detectron2]: \u001b[0mContents of args.config_file=modules/layoutlmv3/layoutlmv3_base_inference.yaml:\n", | |
"\u001b[38;5;204mAUG\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDETR\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;204mCACHE_DIR\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m~/cache/huggingface\u001b[39m\n", | |
"\u001b[38;5;204mCUDNN_BENCHMARK\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;204mDATALOADER\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mASPECT_RATIO_GROUPING\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFILTER_EMPTY_ANNOTATIONS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_WORKERS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mREPEAT_THRESHOLD\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSAMPLER_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mTrainingSampler\u001b[39m\n", | |
"\u001b[38;5;204mDATASETS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPRECOMPUTED_PROPOSAL_TOPK_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPRECOMPUTED_PROPOSAL_TOPK_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPROPOSAL_FILES_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m[\u001b[39m\u001b[38;5;15m]\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPROPOSAL_FILES_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m[\u001b[39m\u001b[38;5;15m]\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mTEST\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mscihub_train\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mTRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mscihub_train\u001b[39m\n", | |
"\u001b[38;5;204mGLOBAL\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mHACK\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;204mICDAR_DATA_DIR_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;204mICDAR_DATA_DIR_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;204mINPUT\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCROP\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mENABLED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSIZE\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m384\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m600\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mTYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mabsolute_range\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFORMAT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mRGB\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMASK_FORMAT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mpolygon\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMAX_SIZE_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1333\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMAX_SIZE_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1333\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMIN_SIZE_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m800\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMIN_SIZE_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m480\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m544\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m576\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m608\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m640\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m672\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m704\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m736\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m768\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m800\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMIN_SIZE_TRAIN_SAMPLING\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mchoice\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mRANDOM_FLIP\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mhorizontal\u001b[39m\n", | |
"\u001b[38;5;204mMODEL\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mANCHOR_GENERATOR\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mANGLES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m-90\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m90\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mASPECT_RATIOS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mDefaultAnchorGenerator\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mOFFSET\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSIZES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m32\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m64\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m128\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m256\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBACKBONE\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFREEZE_AT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mbuild_vit_fpn_backbone\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCONFIG_PATH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDEVICE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mcuda\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFPN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFUSE_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141msum\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIN_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer11\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mOUT_CHANNELS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m256\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIMAGE_ONLY\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mKEYPOINT_ON\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mLOAD_PROPOSALS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMASK_ON\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMETA_ARCHITECTURE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mVLGeneralizedRCNN\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPANOPTIC_FPN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCOMBINE\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mENABLED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mINSTANCES_CONFIDENCE_THRESH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mOVERLAP_THRESH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSTUFF_AREA_LIMIT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m4096\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mINSTANCE_LOSS_WEIGHT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPIXEL_MEAN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m127.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m127.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m127.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPIXEL_STD\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m127.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m127.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m127.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPROPOSAL_GENERATOR\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMIN_SIZE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mRPN\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mRESNETS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDEFORM_MODULATED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDEFORM_NUM_GROUPS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDEFORM_ON_PER_STAGE\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDEPTH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m50\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mFrozenBN\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_GROUPS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mOUT_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mres4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mRES2_OUT_CHANNELS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m256\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mRES5_DILATION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSTEM_OUT_CHANNELS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m64\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSTRIDE_IN_1X1\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWIDTH_PER_GROUP\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m64\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mRETINANET\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_LOSS_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141msmooth_l1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_WEIGHTS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFOCAL_LOSS_ALPHA\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.25\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFOCAL_LOSS_GAMMA\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIN_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp6\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOU_LABELS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m-1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOU_THRESHOLDS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNMS_THRESH_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_CLASSES\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_CONVS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPRIOR_PROB\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.01\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSCORE_THRESH_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.05\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSMOOTH_L1_LOSS_BETA\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mTOPK_CANDIDATES_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mROI_BOX_CASCADE_HEAD\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_WEIGHTS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m5.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m5.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m20.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m20.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m30.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m30.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m15.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m15.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOUS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.6\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mROI_BOX_HEAD\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_LOSS_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141msmooth_l1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_LOSS_WEIGHT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_WEIGHTS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m5.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m5.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCLS_AGNOSTIC_BBOX_REG\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCONV_DIM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m256\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFC_DIM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1024\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mFastRCNNConvFCHead\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_CONV\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_FC\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_RESOLUTION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_SAMPLING_RATIO\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mROIAlignV2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSMOOTH_L1_BETA\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mTRAIN_ON_PRED_BOXES\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mROI_HEADS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBATCH_SIZE_PER_IMAGE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIN_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOU_LABELS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOU_THRESHOLDS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mCascadeROIHeads\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNMS_THRESH_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_CLASSES\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOSITIVE_FRACTION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.25\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPROPOSAL_APPEND_GT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSCORE_THRESH_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.05\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mROI_KEYPOINT_HEAD\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCONV_DIMS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m512\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mLOSS_WEIGHT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMIN_KEYPOINTS_PER_IMAGE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mKRCNNConvDeconvUpsampleHead\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_KEYPOINTS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m17\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_RESOLUTION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m14\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_SAMPLING_RATIO\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mROIAlignV2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mROI_MASK_HEAD\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCLS_AGNOSTIC_MASK\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCONV_DIM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m256\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mMaskRCNNConvUpsampleHead\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;186m'\u001b[39m\u001b[38;5;186m'\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_CONV\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_RESOLUTION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m14\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_SAMPLING_RATIO\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOOLER_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mROIAlignV2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mRPN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBATCH_SIZE_PER_IMAGE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m256\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_LOSS_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141msmooth_l1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_LOSS_WEIGHT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBBOX_REG_WEIGHTS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBOUNDARY_THRESH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m-1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCONV_DIMS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m-1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mHEAD_NAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mStandardRPNHead\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIN_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp6\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOU_LABELS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m-1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIOU_THRESHOLDS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mLOSS_WEIGHT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNMS_THRESH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOSITIVE_FRACTION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOST_NMS_TOPK_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOST_NMS_TOPK_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPRE_NMS_TOPK_TEST\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPRE_NMS_TOPK_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSMOOTH_L1_BETA\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSEM_SEG_HEAD\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCOMMON_STRIDE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCONVS_DIM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m128\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIGNORE_VALUE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m255\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIN_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp2\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp4\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mp5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mLOSS_WEIGHT\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mSemSegFPNHead\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mGN\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_CLASSES\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mVIT\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDROP_PATH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIMG_SIZE\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m224\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m224\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayoutlmv3_base\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mOUT_FEATURES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer3\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer5\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer7\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlayer11\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPOS_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mabs\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWEIGHTS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\n", | |
"\u001b[38;5;204mOUTPUT_DIR\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\n", | |
"\u001b[38;5;204mSCIHUB_DATA_DIR_TRAIN\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m~/publaynet/layout_scihub/train\u001b[39m\n", | |
"\u001b[38;5;204mSEED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m42\u001b[39m\n", | |
"\u001b[38;5;204mSOLVER\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mAMP\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mENABLED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBACKBONE_MULTIPLIER\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBASE_LR\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.0002\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mBIAS_LR_FACTOR\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCHECKPOINT_PERIOD\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCLIP_GRADIENTS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCLIP_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfull_model\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mCLIP_VALUE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mENABLED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNORM_TYPE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2.0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mGAMMA\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mGRADIENT_ACCUMULATION_STEPS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mIMS_PER_BATCH\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m32\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mLR_SCHEDULER_NAME\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mWarmupCosineLR\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMAX_ITER\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m20000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMOMENTUM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.9\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNESTEROV\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mOPTIMIZER\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mADAMW\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mREFERENCE_WORLD_SIZE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mSTEPS\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m10000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWARMUP_FACTOR\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.01\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWARMUP_ITERS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m333\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWARMUP_METHOD\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mlinear\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWEIGHT_DECAY\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.05\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWEIGHT_DECAY_BIAS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mnull\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mWEIGHT_DECAY_NORM\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0.0\u001b[39m\n", | |
"\u001b[38;5;204mTEST\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mAUG\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mENABLED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mFLIP\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mtrue\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMAX_SIZE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m4000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mMIN_SIZES\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m400\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m500\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m600\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m700\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m800\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m900\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1100\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;15m-\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1200\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mDETECTIONS_PER_IMAGE\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m100\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mEVAL_PERIOD\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m1000\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mEXPECTED_RESULTS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m[\u001b[39m\u001b[38;5;15m]\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mKEYPOINT_OKS_SIGMAS\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;15m[\u001b[39m\u001b[38;5;15m]\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mPRECISE_BN\u001b[39m\u001b[38;5;15m:\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mENABLED\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141mfalse\u001b[39m\n", | |
"\u001b[38;5;15m \u001b[39m\u001b[38;5;204mNUM_ITER\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m200\u001b[39m\n", | |
"\u001b[38;5;204mVERSION\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m2\u001b[39m\n", | |
"\u001b[38;5;204mVIS_PERIOD\u001b[39m\u001b[38;5;15m:\u001b[39m\u001b[38;5;15m \u001b[39m\u001b[38;5;141m0\u001b[39m\n", | |
"\n", | |
"\u001b[32m[07/20 00:26:57 fvcore.common.checkpoint]: \u001b[0m[Checkpointer] Loading from models/Layout/model_final.pth ...\n", | |
"download https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar to /root/.paddleocr/whl/det/ch/ch_PP-OCRv4_det_infer/ch_PP-OCRv4_det_infer.tar\n", | |
"100% 4.89M/4.89M [00:01<00:00, 3.27MiB/s]\n", | |
"download https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar to /root/.paddleocr/whl/rec/ch/ch_PP-OCRv4_rec_infer/ch_PP-OCRv4_rec_infer.tar\n", | |
"100% 11.0M/11.0M [00:01<00:00, 6.07MiB/s]\n", | |
"download https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar to /root/.paddleocr/whl/cls/ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.tar\n", | |
"100% 2.19M/2.19M [00:01<00:00, 1.61MiB/s]\n", | |
"[2024/07/20 00:27:07] ppocr DEBUG: Namespace(help='==SUPPRESS==', use_gpu=True, use_xpu=False, use_npu=False, ir_optim=True, use_tensorrt=False, min_subgraph_size=15, precision='fp32', gpu_mem=500, gpu_id=0, image_dir=None, page_num=0, det_algorithm='DB', det_model_dir='/root/.paddleocr/whl/det/ch/ch_PP-OCRv4_det_infer', det_limit_side_len=960, det_limit_type='max', det_box_type='quad', det_db_thresh=0.3, det_db_box_thresh=0.6, det_db_unclip_ratio=1.5, max_batch_size=10, use_dilation=False, det_db_score_mode='fast', det_east_score_thresh=0.8, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_sast_score_thresh=0.5, det_sast_nms_thresh=0.2, det_pse_thresh=0, det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, scales=[8, 16, 32], alpha=1.0, beta=1.0, fourier_degree=5, rec_algorithm='SVTR_LCNet', rec_model_dir='/root/.paddleocr/whl/rec/ch/ch_PP-OCRv4_rec_infer', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_batch_num=6, max_text_length=25, rec_char_dict_path='/usr/local/lib/python3.10/dist-packages/paddleocr/ppocr/utils/ppocr_keys_v1.txt', use_space_char=True, vis_font_path='./doc/fonts/simfang.ttf', drop_score=0.5, e2e_algorithm='PGNet', e2e_model_dir=None, e2e_limit_side_len=768, e2e_limit_type='max', e2e_pgnet_score_thresh=0.5, e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_pgnet_valid_set='totaltext', e2e_pgnet_mode='fast', use_angle_cls=False, cls_model_dir='/root/.paddleocr/whl/cls/ch_ppocr_mobile_v2.0_cls_infer', cls_image_shape='3, 48, 192', label_list=['0', '180'], cls_batch_num=6, cls_thresh=0.9, enable_mkldnn=False, cpu_threads=10, use_pdserving=False, warmup=False, sr_model_dir=None, sr_image_shape='3, 32, 128', sr_batch_num=1, draw_img_save_dir='./inference_results', save_crop_res=False, crop_res_save_dir='./output', use_mp=False, total_process_num=1, process_id=0, benchmark=False, save_log_path='./log_output/', show_log=True, use_onnx=False, output='./output', table_max_len=488, table_algorithm='TableAttn', table_model_dir=None, merge_no_span_structure=True, table_char_dict_path=None, layout_model_dir=None, layout_dict_path=None, layout_score_threshold=0.5, layout_nms_threshold=0.5, kie_algorithm='LayoutXLM', ser_model_dir=None, re_model_dir=None, use_visual_backbone=True, ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ocr_order_method=None, mode='structure', image_orientation=False, layout=True, table=True, ocr=True, recovery=False, use_pdf2docx_api=False, invert=False, binarize=False, alphacolor=(255, 255, 255), lang='ch', det=True, rec=True, type='ocr', ocr_version='PP-OCRv4', structure_version='PP-StructureV2')\n", | |
"2024-07-20 08:26:16\n", | |
"Model init done!\n", | |
"total files: 1\n", | |
"pdf index: 0 pages: 15\n", | |
"\n", | |
"0: 1888x1472 (no detections), 235.2ms\n", | |
"Speed: 106.5ms preprocess, 235.2ms inference, 1.1ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 7 embeddings, 231.4ms\n", | |
"Speed: 86.7ms preprocess, 231.4ms inference, 2.5ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 7 embeddings, 231.1ms\n", | |
"Speed: 94.8ms preprocess, 231.1ms inference, 2.2ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 21 embeddings, 1 isolated, 230.8ms\n", | |
"Speed: 99.4ms preprocess, 230.8ms inference, 2.1ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 9 embeddings, 2 isolateds, 233.3ms\n", | |
"Speed: 47.5ms preprocess, 233.3ms inference, 1.6ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 17 embeddings, 1 isolated, 234.4ms\n", | |
"Speed: 45.8ms preprocess, 234.4ms inference, 1.7ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 15 embeddings, 1 isolated, 235.7ms\n", | |
"Speed: 46.1ms preprocess, 235.7ms inference, 1.7ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 7 embeddings, 235.9ms\n", | |
"Speed: 46.1ms preprocess, 235.9ms inference, 1.5ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 2 embeddings, 235.7ms\n", | |
"Speed: 45.6ms preprocess, 235.7ms inference, 1.5ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 2 embeddings, 219.0ms\n", | |
"Speed: 79.5ms preprocess, 219.0ms inference, 1.8ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 (no detections), 236.4ms\n", | |
"Speed: 77.8ms preprocess, 236.4ms inference, 1.1ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 (no detections), 237.8ms\n", | |
"Speed: 80.1ms preprocess, 237.8ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 (no detections), 232.1ms\n", | |
"Speed: 45.7ms preprocess, 232.1ms inference, 0.7ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 (no detections), 233.0ms\n", | |
"Speed: 46.1ms preprocess, 233.0ms inference, 1.1ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"\n", | |
"0: 1888x1472 (no detections), 235.0ms\n", | |
"Speed: 46.0ms preprocess, 235.0ms inference, 0.8ms postprocess per image at shape (1, 3, 1888, 1472)\n", | |
"formula nums: 92 mfr time: 11.42\n", | |
"[2024/07/20 00:27:49] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:50] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.6886489391326904\n", | |
"[2024/07/20 00:27:50] ppocr DEBUG: rec_res num : 1, elapsed : 0.31787776947021484\n", | |
"[2024/07/20 00:27:50] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 11, elapsed : 0.04679274559020996\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 11, elapsed : 0.2149956226348877\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 15, elapsed : 0.04105782508850098\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 15, elapsed : 0.1793370246887207\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.033731937408447266\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 1, elapsed : 0.015530586242675781\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.034737586975097656\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 2, elapsed : 0.017348289489746094\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03237199783325195\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 1, elapsed : 0.021178483963012695\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03599810600280762\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 1, elapsed : 0.016339540481567383\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03621554374694824\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 3, elapsed : 0.016422510147094727\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03742837905883789\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: rec_res num : 3, elapsed : 0.03574824333190918\n", | |
"[2024/07/20 00:27:51] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:51] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03510880470275879\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 1, elapsed : 0.0119781494140625\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03547024726867676\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 2, elapsed : 0.01784968376159668\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.036279916763305664\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 2, elapsed : 0.015757322311401367\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.036431312561035156\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 1, elapsed : 0.009898900985717773\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03972482681274414\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 3, elapsed : 0.010043859481811523\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03755927085876465\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 3, elapsed : 0.0167386531829834\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03792929649353027\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 2, elapsed : 0.01598072052001953\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03656411170959473\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 3, elapsed : 0.03429675102233887\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 8, elapsed : 0.03699493408203125\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: split text box by formula, new dt_boxes num : 11, elapsed : 0.0003745555877685547\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 11, elapsed : 0.13858556747436523\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03347921371459961\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.747245788574219e-05\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 1, elapsed : 0.009405374526977539\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03281402587890625\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.4849853515625e-05\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 1, elapsed : 0.009015798568725586\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.03377246856689453\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: split text box by formula, new dt_boxes num : 5, elapsed : 0.00019049644470214844\n", | |
"[2024/07/20 00:27:52] ppocr DEBUG: rec_res num : 5, elapsed : 0.06599164009094238\n", | |
"[2024/07/20 00:27:52] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 9, elapsed : 0.03802084922790527\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 9, elapsed : 0.0003159046173095703\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 9, elapsed : 0.12869024276733398\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03362727165222168\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.771087646484375e-05\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 1, elapsed : 0.016121625900268555\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.033840179443359375\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.0001506805419921875\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 4, elapsed : 0.0594782829284668\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.04150962829589844\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.00015592575073242188\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 4, elapsed : 0.05220532417297363\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.0362849235534668\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 0.0001251697540283203\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 3, elapsed : 0.042356252670288086\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.038727521896362305\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.00015473365783691406\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 4, elapsed : 0.056485891342163086\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.0379183292388916\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.00017333030700683594\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 4, elapsed : 0.05253314971923828\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.04181313514709473\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: split text box by formula, new dt_boxes num : 9, elapsed : 0.00031304359436035156\n", | |
"[2024/07/20 00:27:53] ppocr DEBUG: rec_res num : 9, elapsed : 0.0982353687286377\n", | |
"[2024/07/20 00:27:53] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03357362747192383\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.651878356933594e-05\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 1, elapsed : 0.008728981018066406\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 7, elapsed : 0.038582801818847656\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 10, elapsed : 0.00035119056701660156\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 10, elapsed : 0.1339890956878662\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 7, elapsed : 0.035588979721069336\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 11, elapsed : 0.00037789344787597656\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 11, elapsed : 0.10326218605041504\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.033617496490478516\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 0.00012087821960449219\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 3, elapsed : 0.04197216033935547\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.033457279205322266\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.914138793945312e-05\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 1, elapsed : 0.008784294128417969\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03416323661804199\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.985664367675781e-05\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 1, elapsed : 0.015686988830566406\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03509354591369629\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 6.723403930664062e-05\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 1, elapsed : 0.0204925537109375\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03754425048828125\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 9.179115295410156e-05\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 2, elapsed : 0.030130863189697266\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 0, elapsed : 0.03513765335083008\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 0, elapsed : 7.152557373046875e-06\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: rec_res num : 0, elapsed : 1.430511474609375e-06\n", | |
"[2024/07/20 00:27:54] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.036917686462402344\n", | |
"[2024/07/20 00:27:54] ppocr DEBUG: split text box by formula, new dt_boxes num : 5, elapsed : 0.0005562305450439453\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 5, elapsed : 0.07488656044006348\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.03416609764099121\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0007326602935791016\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 7, elapsed : 0.06356453895568848\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.037143707275390625\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 6, elapsed : 0.0004763603210449219\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 6, elapsed : 0.08454012870788574\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.034415483474731445\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.0001556873321533203\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 1, elapsed : 0.01611185073852539\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03411102294921875\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 5, elapsed : 0.0004901885986328125\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 5, elapsed : 0.06376171112060547\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03574037551879883\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00015401840209960938\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 1, elapsed : 0.014920234680175781\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.0370326042175293\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.00025463104248046875\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 2, elapsed : 0.02799844741821289\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.035537004470825195\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.00028252601623535156\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 2, elapsed : 0.026353120803833008\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.0365595817565918\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 10, elapsed : 0.0007927417755126953\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 10, elapsed : 0.06915044784545898\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.035466909408569336\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 6, elapsed : 0.0004889965057373047\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 6, elapsed : 0.043642520904541016\n", | |
"[2024/07/20 00:27:55] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: dt_boxes num : 0, elapsed : 0.03210926055908203\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: split text box by formula, new dt_boxes num : 0, elapsed : 1.33514404296875e-05\n", | |
"[2024/07/20 00:27:55] ppocr DEBUG: rec_res num : 0, elapsed : 1.6689300537109375e-06\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03240513801574707\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.0001533031463623047\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 1, elapsed : 0.008905649185180664\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.0318603515625\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.000156402587890625\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 1, elapsed : 0.018364429473876953\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03273463249206543\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00015163421630859375\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 1, elapsed : 0.009668827056884766\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.033704280853271484\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00012373924255371094\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 1, elapsed : 0.017003774642944336\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03477931022644043\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.0002586841583251953\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 4, elapsed : 0.03783869743347168\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.033306121826171875\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 6, elapsed : 0.0004458427429199219\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 6, elapsed : 0.07577776908874512\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 14, elapsed : 0.03806352615356445\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 15, elapsed : 0.0008728504180908203\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 15, elapsed : 0.17278647422790527\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03369712829589844\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 0.00017786026000976562\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 3, elapsed : 0.037874698638916016\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.032628774642944336\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.703636169433594e-05\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 1, elapsed : 0.016394376754760742\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03405570983886719\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.584426879882812e-05\n", | |
"[2024/07/20 00:27:56] ppocr DEBUG: rec_res num : 1, elapsed : 0.015895366668701172\n", | |
"[2024/07/20 00:27:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.034531593322753906\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.00023818016052246094\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 4, elapsed : 0.022657394409179688\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.03469204902648926\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0003857612609863281\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 7, elapsed : 0.09567666053771973\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03473258018493652\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.00013899803161621094\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 2, elapsed : 0.02733135223388672\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03502511978149414\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.000209808349609375\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 2, elapsed : 0.026715993881225586\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03368043899536133\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.417533874511719e-05\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 1, elapsed : 0.00916433334350586\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.033206939697265625\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.298324584960938e-05\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 1, elapsed : 0.020969390869140625\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 7, elapsed : 0.03523850440979004\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0006976127624511719\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 7, elapsed : 0.10099458694458008\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03599190711975098\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.0001342296600341797\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 1, elapsed : 0.0162811279296875\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03272247314453125\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00012922286987304688\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 1, elapsed : 0.01585078239440918\n", | |
"[2024/07/20 00:27:57] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: dt_boxes num : 6, elapsed : 0.03428149223327637\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0005993843078613281\n", | |
"[2024/07/20 00:27:57] ppocr DEBUG: rec_res num : 7, elapsed : 0.10913681983947754\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.034644365310668945\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 8, elapsed : 0.0007565021514892578\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 8, elapsed : 0.08912920951843262\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.03446459770202637\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 11, elapsed : 0.0007398128509521484\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 11, elapsed : 0.09170651435852051\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03377366065979004\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.0003981590270996094\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 4, elapsed : 0.05372309684753418\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.03418684005737305\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.0004038810729980469\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 4, elapsed : 0.05798912048339844\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03683328628540039\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00012803077697753906\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 1, elapsed : 0.016309022903442383\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03313899040222168\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.0002124309539794922\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 2, elapsed : 0.027819395065307617\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.0340728759765625\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00012803077697753906\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 1, elapsed : 0.011030912399291992\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03411412239074707\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0004756450653076172\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 7, elapsed : 0.06456375122070312\n", | |
"[2024/07/20 00:27:58] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.040071964263916016\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0005221366882324219\n", | |
"[2024/07/20 00:27:58] ppocr DEBUG: rec_res num : 7, elapsed : 0.06046581268310547\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03690481185913086\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00012111663818359375\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 1, elapsed : 0.009134531021118164\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03383612632751465\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.0001220703125\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 1, elapsed : 0.011139869689941406\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 8, elapsed : 0.03600883483886719\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 14, elapsed : 0.0008988380432128906\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 14, elapsed : 0.12496709823608398\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.032965898513793945\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00012302398681640625\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 1, elapsed : 0.012622356414794922\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 6, elapsed : 0.03993654251098633\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 10, elapsed : 0.0006256103515625\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 10, elapsed : 0.10077095031738281\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03324413299560547\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.0003204345703125\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 4, elapsed : 0.04879045486450195\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.034291982650756836\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.00036406517028808594\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 4, elapsed : 0.05551886558532715\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03275775909423828\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.0001201629638671875\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 1, elapsed : 0.008803367614746094\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.03363752365112305\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: split text box by formula, new dt_boxes num : 5, elapsed : 0.00039505958557128906\n", | |
"[2024/07/20 00:27:59] ppocr DEBUG: rec_res num : 5, elapsed : 0.06827259063720703\n", | |
"[2024/07/20 00:27:59] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 7, elapsed : 0.03578066825866699\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0005919933319091797\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 7, elapsed : 0.09263181686401367\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03706192970275879\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00018978118896484375\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 1, elapsed : 0.01826620101928711\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.050570011138916016\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 5, elapsed : 0.0006728172302246094\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 5, elapsed : 0.044870615005493164\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.04643893241882324\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00017952919006347656\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 1, elapsed : 0.025259017944335938\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.04906320571899414\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.00022459030151367188\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 1, elapsed : 0.012358665466308594\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 0, elapsed : 0.04505038261413574\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 0, elapsed : 1.1205673217773438e-05\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 0, elapsed : 1.1920928955078125e-06\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.04305768013000488\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.012222290039062e-05\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 1, elapsed : 0.021360397338867188\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.050688982009887695\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 0.0001609325408935547\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 1, elapsed : 0.01152801513671875\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.04992818832397461\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.489059448242188e-05\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: rec_res num : 1, elapsed : 0.01132512092590332\n", | |
"[2024/07/20 00:28:00] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.05540037155151367\n", | |
"[2024/07/20 00:28:00] ppocr DEBUG: split text box by formula, new dt_boxes num : 6, elapsed : 0.0004420280456542969\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 6, elapsed : 0.08986854553222656\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.04713582992553711\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.00041985511779785156\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 7, elapsed : 0.10426950454711914\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.04650688171386719\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.00013685226440429688\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 2, elapsed : 0.030082225799560547\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 6, elapsed : 0.05080008506774902\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 6, elapsed : 0.00037980079650878906\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 6, elapsed : 0.08928298950195312\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.05149340629577637\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 0.0002579689025878906\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 4, elapsed : 0.06486797332763672\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.04919624328613281\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 0.00026535987854003906\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 3, elapsed : 0.041513681411743164\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.04974722862243652\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 0.0001266002655029297\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 2, elapsed : 0.03141283988952637\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.05594444274902344\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 8.916854858398438e-05\n", | |
"[2024/07/20 00:28:01] ppocr DEBUG: rec_res num : 1, elapsed : 0.01165628433227539\n", | |
"[2024/07/20 00:28:01] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.05136728286743164\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 9.1552734375e-05\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: rec_res num : 1, elapsed : 0.030551433563232422\n", | |
"[2024/07/20 00:28:02] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.05163836479187012\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 5, elapsed : 0.0003886222839355469\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: rec_res num : 5, elapsed : 0.07572054862976074\n", | |
"[2024/07/20 00:28:02] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 5, elapsed : 0.05169224739074707\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 6, elapsed : 0.00012540817260742188\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: rec_res num : 6, elapsed : 0.09568023681640625\n", | |
"[2024/07/20 00:28:02] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.04686427116394043\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 7.176399230957031e-05\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: rec_res num : 3, elapsed : 0.04561781883239746\n", | |
"[2024/07/20 00:28:02] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.0679774284362793\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 4.1484832763671875e-05\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: rec_res num : 1, elapsed : 0.017281293869018555\n", | |
"[2024/07/20 00:28:02] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.0584256649017334\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 8.96453857421875e-05\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: rec_res num : 4, elapsed : 0.057817697525024414\n", | |
"[2024/07/20 00:28:02] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: dt_boxes num : 6, elapsed : 0.04940366744995117\n", | |
"[2024/07/20 00:28:02] ppocr DEBUG: split text box by formula, new dt_boxes num : 7, elapsed : 0.0001354217529296875\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 7, elapsed : 0.09465599060058594\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.04787158966064453\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 8.940696716308594e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 3, elapsed : 0.041669607162475586\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.04927492141723633\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 6.794929504394531e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 2, elapsed : 0.03150606155395508\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 0, elapsed : 0.046782493591308594\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 0, elapsed : 4.5299530029296875e-06\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 0, elapsed : 1.6689300537109375e-06\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.04818224906921387\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 8.416175842285156e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 4, elapsed : 0.05487227439880371\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.055108070373535156\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 8.702278137207031e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 4, elapsed : 0.05075860023498535\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03341984748840332\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 4.076957702636719e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 1, elapsed : 0.009138345718383789\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.04524350166320801\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 5.412101745605469e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 4, elapsed : 0.05499839782714844\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.034276723861694336\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 3.647804260253906e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 1, elapsed : 0.009320735931396484\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.033444881439208984\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 5.1975250244140625e-05\n", | |
"[2024/07/20 00:28:03] ppocr DEBUG: rec_res num : 4, elapsed : 0.05424380302429199\n", | |
"[2024/07/20 00:28:03] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03390669822692871\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 4.8160552978515625e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 3, elapsed : 0.03862357139587402\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.03405284881591797\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 3, elapsed : 4.7206878662109375e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 3, elapsed : 0.03846859931945801\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03620624542236328\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 4, elapsed : 9.822845458984375e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 4, elapsed : 0.028438806533813477\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03293347358703613\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 3.8623809814453125e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 2, elapsed : 0.02664637565612793\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.032338857650756836\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 1, elapsed : 4.124641418457031e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 1, elapsed : 0.008580684661865234\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03325653076171875\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 3.8623809814453125e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 2, elapsed : 0.023735523223876953\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.05236458778381348\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 4.792213439941406e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 2, elapsed : 0.027198076248168945\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: dt_boxes num : 8, elapsed : 0.0358123779296875\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: split text box by formula, new dt_boxes num : 8, elapsed : 8.845329284667969e-05\n", | |
"[2024/07/20 00:28:04] ppocr DEBUG: rec_res num : 8, elapsed : 0.09078335762023926\n", | |
"[2024/07/20 00:28:04] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03885531425476074\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 3.504753112792969e-05\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: rec_res num : 2, elapsed : 0.024284839630126953\n", | |
"[2024/07/20 00:28:05] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: dt_boxes num : 2, elapsed : 0.03499245643615723\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: split text box by formula, new dt_boxes num : 2, elapsed : 4.0531158447265625e-05\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: rec_res num : 2, elapsed : 0.02273249626159668\n", | |
"[2024/07/20 00:28:05] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: dt_boxes num : 44, elapsed : 0.04947543144226074\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: rec_res num : 44, elapsed : 0.4720602035522461\n", | |
"[2024/07/20 00:28:05] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03661847114562988\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: rec_res num : 1, elapsed : 0.013053178787231445\n", | |
"[2024/07/20 00:28:05] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:05] ppocr DEBUG: dt_boxes num : 42, elapsed : 0.04538989067077637\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 42, elapsed : 0.4852759838104248\n", | |
"[2024/07/20 00:28:06] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.033173322677612305\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 1, elapsed : 0.010773658752441406\n", | |
"[2024/07/20 00:28:06] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: dt_boxes num : 4, elapsed : 0.03728437423706055\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 4, elapsed : 0.05772829055786133\n", | |
"[2024/07/20 00:28:06] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03715801239013672\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 1, elapsed : 0.01767563819885254\n", | |
"[2024/07/20 00:28:06] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03367137908935547\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 1, elapsed : 0.009009361267089844\n", | |
"[2024/07/20 00:28:06] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.03370094299316406\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 1, elapsed : 0.009177923202514648\n", | |
"[2024/07/20 00:28:06] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.032739877700805664\n", | |
"[2024/07/20 00:28:06] ppocr DEBUG: rec_res num : 3, elapsed : 0.04270029067993164\n", | |
"[2024/07/20 00:28:07] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:07] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.036184072494506836\n", | |
"[2024/07/20 00:28:07] ppocr DEBUG: rec_res num : 1, elapsed : 0.009016752243041992\n", | |
"[2024/07/20 00:28:07] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n", | |
"[2024/07/20 00:28:07] ppocr DEBUG: dt_boxes num : 3, elapsed : 0.0338132381439209\n", | |
"[2024/07/20 00:28:07] ppocr DEBUG: rec_res num : 3, elapsed : 0.04403042793273926\n", | |
"2024-07-20 08:28:07\n", | |
"Finished! time cost: 57 s\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!python3 -m json.tool \"output/1706.03762.json\" | head -n 1000" | |
], | |
"metadata": { | |
"id": "EtbyuhTXoYWd", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "591c2215-c435-4088-d911-6bf433e6493c" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"[\n", | |
" {\n", | |
" \"layout_dets\": [\n", | |
" {\n", | |
" \"category_id\": 0,\n", | |
" \"poly\": [\n", | |
" 589.76513671875,\n", | |
" 411.72589111328125,\n", | |
" 1109.37890625,\n", | |
" 411.72589111328125,\n", | |
" 1109.37890625,\n", | |
" 461.00128173828125,\n", | |
" 589.76513671875,\n", | |
" 461.00128173828125\n", | |
" ],\n", | |
" \"score\": 0.9999903440475464\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 2,\n", | |
" \"poly\": [\n", | |
" 295.54949951171875,\n", | |
" 1656.5322265625,\n", | |
" 1407.4970703125,\n", | |
" 1656.5322265625,\n", | |
" 1407.4970703125,\n", | |
" 1977.7939453125,\n", | |
" 295.54949951171875,\n", | |
" 1977.7939453125\n", | |
" ],\n", | |
" \"score\": 0.9999884366989136\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 393.592529296875,\n", | |
" 1143.921142578125,\n", | |
" 1306.564453125,\n", | |
" 1143.921142578125,\n", | |
" 1306.564453125,\n", | |
" 1605.7745361328125,\n", | |
" 393.592529296875,\n", | |
" 1605.7745361328125\n", | |
" ],\n", | |
" \"score\": 0.9999861717224121\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 0,\n", | |
" \"poly\": [\n", | |
" 788.3076782226562,\n", | |
" 1070.0506591796875,\n", | |
" 913.214111328125,\n", | |
" 1070.0506591796875,\n", | |
" 913.214111328125,\n", | |
" 1101.0897216796875,\n", | |
" 788.3076782226562,\n", | |
" 1101.0897216796875\n", | |
" ],\n", | |
" \"score\": 0.9999022483825684\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 660.2273559570312,\n", | |
" 926.5983276367188,\n", | |
" 1043.8760986328125,\n", | |
" 926.5983276367188,\n", | |
" 1043.8760986328125,\n", | |
" 991.110107421875,\n", | |
" 660.2273559570312,\n", | |
" 991.110107421875\n", | |
" ],\n", | |
" \"score\": 0.999889075756073\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 2,\n", | |
" \"poly\": [\n", | |
" 295.3117980957031,\n", | |
" 2031.213134765625,\n", | |
" 1279.5380859375,\n", | |
" 2031.213134765625,\n", | |
" 1279.5380859375,\n", | |
" 2064.5712890625,\n", | |
" 295.3117980957031,\n", | |
" 2064.5712890625\n", | |
" ],\n", | |
" \"score\": 0.9998644590377808\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 2,\n", | |
" \"poly\": [\n", | |
" 40.48727798461914,\n", | |
" 595.5494995117188,\n", | |
" 103.37639617919922,\n", | |
" 595.5494995117188,\n", | |
" 103.37639617919922,\n", | |
" 1549.1280517578125,\n", | |
" 40.48727798461914,\n", | |
" 1549.1280517578125\n", | |
" ],\n", | |
" \"score\": 0.9997856616973877\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 906.0487670898438,\n", | |
" 650.39208984375,\n", | |
" 1135.136474609375,\n", | |
" 650.39208984375,\n", | |
" 1135.136474609375,\n", | |
" 743.1967163085938,\n", | |
" 906.0487670898438,\n", | |
" 743.1967163085938\n", | |
" ],\n", | |
" \"score\": 0.9800860285758972\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 2,\n", | |
" \"poly\": [\n", | |
" 338.49151611328125,\n", | |
" 202.28268432617188,\n", | |
" 1360.87646484375,\n", | |
" 202.28268432617188,\n", | |
" 1360.87646484375,\n", | |
" 316.3932189941406,\n", | |
" 338.49151611328125,\n", | |
" 316.3932189941406\n", | |
" ],\n", | |
" \"score\": 0.9685455560684204\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 0,\n", | |
" \"poly\": [\n", | |
" 399.1218566894531,\n", | |
" 791.2745971679688,\n", | |
" 547.5457153320312,\n", | |
" 791.2745971679688,\n", | |
" 547.5457153320312,\n", | |
" 816.9730834960938,\n", | |
" 399.1218566894531,\n", | |
" 816.9730834960938\n", | |
" ],\n", | |
" \"score\": 0.9528466463088989\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 321.1386413574219,\n", | |
" 680.42236328125,\n", | |
" 605.1478271484375,\n", | |
" 680.42236328125,\n", | |
" 605.1478271484375,\n", | |
" 741.96240234375,\n", | |
" 321.1386413574219,\n", | |
" 741.96240234375\n", | |
" ],\n", | |
" \"score\": 0.9483227729797363\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 352.5563049316406,\n", | |
" 820.2278442382812,\n", | |
" 587.3734130859375,\n", | |
" 820.2278442382812,\n", | |
" 587.3734130859375,\n", | |
" 880.0785522460938,\n", | |
" 352.5563049316406,\n", | |
" 880.0785522460938\n", | |
" ],\n", | |
" \"score\": 0.7982475161552429\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 0,\n", | |
" \"poly\": [\n", | |
" 367.80621337890625,\n", | |
" 651.6394653320312,\n", | |
" 562.9653930664062,\n", | |
" 651.6394653320312,\n", | |
" 562.9653930664062,\n", | |
" 677.9104614257812,\n", | |
" 367.80621337890625,\n", | |
" 677.9104614257812\n", | |
" ],\n", | |
" \"score\": 0.7373687624931335\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 3,\n", | |
" \"poly\": [\n", | |
" 306.29559326171875,\n", | |
" 624.265380859375,\n", | |
" 1391.830322265625,\n", | |
" 624.265380859375,\n", | |
" 1391.830322265625,\n", | |
" 892.6495971679688,\n", | |
" 306.29559326171875,\n", | |
" 892.6495971679688\n", | |
" ],\n", | |
" \"score\": 0.6610698699951172\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 1176.23583984375,\n", | |
" 647.485595703125,\n", | |
" 1381.0460205078125,\n", | |
" 647.485595703125,\n", | |
" 1381.0460205078125,\n", | |
" 745.7754516601562,\n", | |
" 1176.23583984375,\n", | |
" 745.7754516601562\n", | |
" ],\n", | |
" \"score\": 0.4211224913597107\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 641.1298828125,\n", | |
" 651.47119140625,\n", | |
" 863.7298583984375,\n", | |
" 651.47119140625,\n", | |
" 863.7298583984375,\n", | |
" 743.1318969726562,\n", | |
" 641.1298828125,\n", | |
" 743.1318969726562\n", | |
" ],\n", | |
" \"score\": 0.30335021018981934\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 1,\n", | |
" \"poly\": [\n", | |
" 1015.2967529296875,\n", | |
" 811.31689453125,\n", | |
" 1358.0555419921875,\n", | |
" 811.31689453125,\n", | |
" 1358.0555419921875,\n", | |
" 880.59326171875,\n", | |
" 1015.2967529296875,\n", | |
" 880.59326171875\n", | |
" ],\n", | |
" \"score\": 0.2852528691291809\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 0,\n", | |
" \"poly\": [\n", | |
" 338.8187561035156,\n", | |
" 202.72048950195312,\n", | |
" 1360.9423828125,\n", | |
" 202.72048950195312,\n", | |
" 1360.9423828125,\n", | |
" 316.3504638671875,\n", | |
" 338.8187561035156,\n", | |
" 316.3504638671875\n", | |
" ],\n", | |
" \"score\": 0.2566956877708435\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 589.0,\n", | |
" 415.0,\n", | |
" 1111.0,\n", | |
" 415.0,\n", | |
" 1111.0,\n", | |
" 461.0,\n", | |
" 589.0,\n", | |
" 461.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \"Attention Is All You Need\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 335.0,\n", | |
" 1661.0,\n", | |
" 1404.0,\n", | |
" 1661.0,\n", | |
" 1404.0,\n", | |
" 1694.0,\n", | |
" 335.0,\n", | |
" 1694.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 296.0,\n", | |
" 1689.0,\n", | |
" 1404.0,\n", | |
" 1689.0,\n", | |
" 1404.0,\n", | |
" 1721.0,\n", | |
" 296.0,\n", | |
" 1721.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \"the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 296.0,\n", | |
" 1719.0,\n", | |
" 1404.0,\n", | |
" 1719.0,\n", | |
" 1404.0,\n", | |
" 1751.0,\n", | |
" 296.0,\n", | |
" 1751.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 296.0,\n", | |
" 1746.0,\n", | |
" 1402.0,\n", | |
" 1746.0,\n", | |
" 1402.0,\n", | |
" 1778.0,\n", | |
" 296.0,\n", | |
" 1778.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"attention and the parameter-free position representation and became the other person involved in nearly every\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 298.0,\n", | |
" 1774.0,\n", | |
" 1402.0,\n", | |
" 1774.0,\n", | |
" 1402.0,\n", | |
" 1804.0,\n", | |
" 298.0,\n", | |
" 1804.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 296.0,\n", | |
" 1801.0,\n", | |
" 1404.0,\n", | |
" 1801.0,\n", | |
" 1404.0,\n", | |
" 1833.0,\n", | |
" 296.0,\n", | |
" 1833.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 296.0,\n", | |
" 1829.0,\n", | |
" 1402.0,\n", | |
" 1829.0,\n", | |
" 1402.0,\n", | |
" 1861.0,\n", | |
" 296.0,\n", | |
" 1861.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 296.0,\n", | |
" 1859.0,\n", | |
" 1404.0,\n", | |
" 1859.0,\n", | |
" 1404.0,\n", | |
" 1891.0,\n", | |
" 296.0,\n", | |
" 1891.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 293.0,\n", | |
" 1884.0,\n", | |
" 433.0,\n", | |
" 1879.0,\n", | |
" 435.0,\n", | |
" 1911.0,\n", | |
" 294.0,\n", | |
" 1916.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"ourresearch.\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 326.0,\n", | |
" 1907.0,\n", | |
" 749.0,\n", | |
" 1911.0,\n", | |
" 748.0,\n", | |
" 1950.0,\n", | |
" 326.0,\n", | |
" 1945.0\n", | |
" ],\n", | |
" \"score\": 0.96,\n", | |
" \"text\": \"tWork performed while at Google Brain.\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 330.0,\n", | |
" 1941.0,\n", | |
" 778.0,\n", | |
" 1943.0,\n", | |
" 778.0,\n", | |
" 1975.0,\n", | |
" 330.0,\n", | |
" 1973.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Work performed while at Google Research.\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1146.0,\n", | |
" 1303.0,\n", | |
" 1146.0,\n", | |
" 1303.0,\n", | |
" 1178.0,\n", | |
" 397.0,\n", | |
" 1178.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"The dominant sequence transduction models are based on complex recurrent or\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1178.0,\n", | |
" 1305.0,\n", | |
" 1178.0,\n", | |
" 1305.0,\n", | |
" 1208.0,\n", | |
" 397.0,\n", | |
" 1208.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"convolutional neural networks that include an encoder and a decoder. The best\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1208.0,\n", | |
" 1305.0,\n", | |
" 1208.0,\n", | |
" 1305.0,\n", | |
" 1240.0,\n", | |
" 397.0,\n", | |
" 1240.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"performing models also connect the encoder and decoder through an attention\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1238.0,\n", | |
" 1307.0,\n", | |
" 1238.0,\n", | |
" 1307.0,\n", | |
" 1270.0,\n", | |
" 397.0,\n", | |
" 1270.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"mechanism. We propose a new simple network architecture, the Transformer,\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 393.0,\n", | |
" 1263.0,\n", | |
" 1307.0,\n", | |
" 1265.0,\n", | |
" 1307.0,\n", | |
" 1304.0,\n", | |
" 393.0,\n", | |
" 1302.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \" based solely on attention mechanisms, dispensing with recurrence and convolutions \"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1299.0,\n", | |
" 1305.0,\n", | |
" 1299.0,\n", | |
" 1305.0,\n", | |
" 1331.0,\n", | |
" 397.0,\n", | |
" 1331.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"entirely. Experiments on two machine translation tasks show these models to\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 395.0,\n", | |
" 1327.0,\n", | |
" 1300.0,\n", | |
" 1327.0,\n", | |
" 1300.0,\n", | |
" 1359.0,\n", | |
" 395.0,\n", | |
" 1359.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \"be superior in quality while being more parallelizable and requiring significantly\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1359.0,\n", | |
" 1305.0,\n", | |
" 1359.0,\n", | |
" 1305.0,\n", | |
" 1391.0,\n", | |
" 397.0,\n", | |
" 1391.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 393.0,\n", | |
" 1384.0,\n", | |
" 1303.0,\n", | |
" 1386.0,\n", | |
" 1303.0,\n", | |
" 1425.0,\n", | |
" 393.0,\n", | |
" 1423.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \"to-German translation task, improving over the existing best results, including\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 395.0,\n", | |
" 1419.0,\n", | |
" 1305.0,\n", | |
" 1419.0,\n", | |
" 1305.0,\n", | |
" 1451.0,\n", | |
" 395.0,\n", | |
" 1451.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1448.0,\n", | |
" 1305.0,\n", | |
" 1448.0,\n", | |
" 1305.0,\n", | |
" 1480.0,\n", | |
" 397.0,\n", | |
" 1480.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"our model establishes a new single-model state-of-the-art BLEU score of 41.8 after\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 393.0,\n", | |
" 1478.0,\n", | |
" 1300.0,\n", | |
" 1478.0,\n", | |
" 1300.0,\n", | |
" 1510.0,\n", | |
" 393.0,\n", | |
" 1510.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"training for 3.5 days on eight GPUs, a small fraction of the training costs of the\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 395.0,\n", | |
" 1508.0,\n", | |
" 1300.0,\n", | |
" 1508.0,\n", | |
" 1300.0,\n", | |
" 1540.0,\n", | |
" 395.0,\n", | |
" 1540.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"best models from the literature. We show that the Transformer generalizes well to\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 395.0,\n", | |
" 1540.0,\n", | |
" 1303.0,\n", | |
" 1540.0,\n", | |
" 1303.0,\n", | |
" 1572.0,\n", | |
" 395.0,\n", | |
" 1572.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \" other tasks by applying it successfully to English constituency parsing both with\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 397.0,\n", | |
" 1572.0,\n", | |
" 739.0,\n", | |
" 1572.0,\n", | |
" 739.0,\n", | |
" 1604.0,\n", | |
" 397.0,\n", | |
" 1604.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"large and limited training data.\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 785.0,\n", | |
" 1070.0,\n", | |
" 915.0,\n", | |
" 1070.0,\n", | |
" 915.0,\n", | |
" 1111.0,\n", | |
" 785.0,\n", | |
" 1111.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Abstract\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 737.0,\n", | |
" 926.0,\n", | |
" 972.0,\n", | |
" 921.0,\n", | |
" 973.0,\n", | |
" 960.0,\n", | |
" 737.0,\n", | |
" 965.0\n", | |
" ],\n", | |
" \"score\": 0.96,\n", | |
" \"text\": \"Illia Polosukhin* \"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 656.0,\n", | |
" 956.0,\n", | |
" 1044.0,\n", | |
" 958.0,\n", | |
" 1044.0,\n", | |
" 997.0,\n", | |
" 656.0,\n", | |
" 995.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"[email protected]\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 300.0,\n", | |
" 2035.0,\n", | |
" 1275.0,\n", | |
" 2035.0,\n", | |
" 1275.0,\n", | |
" 2067.0,\n", | |
" 300.0,\n", | |
" 2067.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 935.0,\n", | |
" 651.0,\n", | |
" 1099.0,\n", | |
" 651.0,\n", | |
" 1099.0,\n", | |
" 683.0,\n", | |
" 935.0,\n", | |
" 683.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Niki Parmar*\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 917.0,\n", | |
" 683.0,\n", | |
" 1116.0,\n", | |
" 683.0,\n", | |
" 1116.0,\n", | |
" 715.0,\n", | |
" 917.0,\n", | |
" 715.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Google Research\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 901.0,\n", | |
" 708.0,\n", | |
" 1137.0,\n", | |
" 713.0,\n", | |
" 1136.0,\n", | |
" 752.0,\n", | |
" 901.0,\n", | |
" 747.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \"[email protected]\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 344.0,\n", | |
" 204.0,\n", | |
" 1356.0,\n", | |
" 204.0,\n", | |
" 1356.0,\n", | |
" 236.0,\n", | |
" 344.0,\n", | |
" 236.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"Provided proper attribution is provided, Google hereby grants permission to\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 344.0,\n", | |
" 243.0,\n", | |
" 1358.0,\n", | |
" 243.0,\n", | |
" 1358.0,\n", | |
" 275.0,\n", | |
" 344.0,\n", | |
" 275.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"reproduce the tables and figures in this paper solely for use in journalistic or\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 739.0,\n", | |
" 277.0,\n", | |
" 963.0,\n", | |
" 277.0,\n", | |
" 963.0,\n", | |
" 316.0,\n", | |
" 739.0,\n", | |
" 316.0\n", | |
" ],\n", | |
" \"score\": 0.98,\n", | |
" \"text\": \"scholarly works.\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 395.0,\n", | |
" 786.0,\n", | |
" 543.0,\n", | |
" 786.0,\n", | |
" 543.0,\n", | |
" 825.0,\n", | |
" 395.0,\n", | |
" 825.0\n", | |
" ],\n", | |
" \"score\": 0.97,\n", | |
" \"text\": \"Llion Jones\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 379.0,\n", | |
" 678.0,\n", | |
" 545.0,\n", | |
" 678.0,\n", | |
" 545.0,\n", | |
" 717.0,\n", | |
" 379.0,\n", | |
" 717.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Google Brain\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 321.0,\n", | |
" 713.0,\n", | |
" 601.0,\n", | |
" 713.0,\n", | |
" 601.0,\n", | |
" 745.0,\n", | |
" 321.0,\n", | |
" 745.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"[email protected]\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 366.0,\n", | |
" 813.0,\n", | |
" 571.0,\n", | |
" 818.0,\n", | |
" 570.0,\n", | |
" 857.0,\n", | |
" 365.0,\n", | |
" 852.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Google Research\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 347.0,\n", | |
" 848.0,\n", | |
" 592.0,\n", | |
" 853.0,\n", | |
" 591.0,\n", | |
" 892.0,\n", | |
" 346.0,\n", | |
" 887.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"[email protected]\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 367.0,\n", | |
" 649.0,\n", | |
" 561.0,\n", | |
" 649.0,\n", | |
" 561.0,\n", | |
" 688.0,\n", | |
" 367.0,\n", | |
" 688.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Ashish Vaswani\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 1176.0,\n", | |
" 651.0,\n", | |
" 1379.0,\n", | |
" 651.0,\n", | |
" 1379.0,\n", | |
" 683.0,\n", | |
" 1176.0,\n", | |
" 683.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Jakob Uszkoreit*\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 1176.0,\n", | |
" 683.0,\n", | |
" 1374.0,\n", | |
" 683.0,\n", | |
" 1374.0,\n", | |
" 713.0,\n", | |
" 1176.0,\n", | |
" 713.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"Google Research\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 1173.0,\n", | |
" 715.0,\n", | |
" 1381.0,\n", | |
" 715.0,\n", | |
" 1381.0,\n", | |
" 747.0,\n", | |
" 1173.0,\n", | |
" 747.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"[email protected]\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 661.0,\n", | |
" 651.0,\n", | |
" 843.0,\n", | |
" 651.0,\n", | |
" 843.0,\n", | |
" 683.0,\n", | |
" 661.0,\n", | |
" 683.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"Noam Shazeer*\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 668.0,\n", | |
" 683.0,\n", | |
" 834.0,\n", | |
" 683.0,\n", | |
" 834.0,\n", | |
" 715.0,\n", | |
" 668.0,\n", | |
" 715.0\n", | |
" ],\n", | |
" \"score\": 0.99,\n", | |
" \"text\": \"Google Brain\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 638.0,\n", | |
" 715.0,\n", | |
" 862.0,\n", | |
" 715.0,\n", | |
" 862.0,\n", | |
" 747.0,\n", | |
" 638.0,\n", | |
" 747.0\n", | |
" ],\n", | |
" \"score\": 1.0,\n", | |
" \"text\": \"[email protected]\"\n", | |
" },\n", | |
" {\n", | |
" \"category_id\": 15,\n", | |
" \"poly\": [\n", | |
" 1096.0,\n", | |
" 813.0,\n", | |
" 1266.0,\n", | |
" 819.0,\n", | |
" 1265.0,\n", | |
" 857.0,\n", | |
" 1094.0,\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!pip install magic-pdf" | |
], | |
"metadata": { | |
"id": "FX-GCpROdxCM", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "62dd8df2-cc4b-4249-e965-6f263e395a43" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Collecting magic-pdf\n", | |
" Downloading magic_pdf-0.6.1-py3-none-any.whl (330 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m330.3/330.3 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting boto3>=1.28.43 (from magic-pdf)\n", | |
" Downloading boto3-1.34.145-py3-none-any.whl (139 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m139.2/139.2 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting Brotli>=1.1.0 (from magic-pdf)\n", | |
" Downloading Brotli-1.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.0 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m14.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: click>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from magic-pdf) (8.1.7)\n", | |
"Requirement already satisfied: PyMuPDF>=1.24.7 in /usr/local/lib/python3.10/dist-packages (from magic-pdf) (1.24.7)\n", | |
"Collecting loguru>=0.6.0 (from magic-pdf)\n", | |
" Downloading loguru-0.7.2-py3-none-any.whl (62 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.5/62.5 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: numpy>=1.21.6 in /usr/local/lib/python3.10/dist-packages (from magic-pdf) (1.25.2)\n", | |
"Collecting fast-langdetect>=0.2.1 (from magic-pdf)\n", | |
" Downloading fast_langdetect-0.2.1-py3-none-any.whl (6.5 kB)\n", | |
"Collecting wordninja>=2.0.0 (from magic-pdf)\n", | |
" Downloading wordninja-2.0.0.tar.gz (541 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m541.6/541.6 kB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from magic-pdf) (1.5.1)\n", | |
"Collecting pdfminer.six>=20231228 (from magic-pdf)\n", | |
" Downloading pdfminer.six-20240706-py3-none-any.whl (5.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m39.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting botocore<1.35.0,>=1.34.145 (from boto3>=1.28.43->magic-pdf)\n", | |
" Downloading botocore-1.34.145-py3-none-any.whl (12.4 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m69.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting jmespath<2.0.0,>=0.7.1 (from boto3>=1.28.43->magic-pdf)\n", | |
" Downloading jmespath-1.0.1-py3-none-any.whl (20 kB)\n", | |
"Collecting s3transfer<0.11.0,>=0.10.0 (from boto3>=1.28.43->magic-pdf)\n", | |
" Downloading s3transfer-0.10.2-py3-none-any.whl (82 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m82.7/82.7 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting fasttext-wheel>=0.9.2 (from fast-langdetect>=0.2.1->magic-pdf)\n", | |
" Downloading fasttext_wheel-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.4/4.4 MB\u001b[0m \u001b[31m86.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting robust-downloader>=0.0.2 (from fast-langdetect>=0.2.1->magic-pdf)\n", | |
" Downloading robust_downloader-0.0.2-py3-none-any.whl (15 kB)\n", | |
"Collecting numpy>=1.21.6 (from magic-pdf)\n", | |
" Downloading numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m72.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: requests>=2.30.0 in /usr/local/lib/python3.10/dist-packages (from fast-langdetect>=0.2.1->magic-pdf) (2.32.3)\n", | |
"Requirement already satisfied: charset-normalizer>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from pdfminer.six>=20231228->magic-pdf) (3.3.2)\n", | |
"Requirement already satisfied: cryptography>=36.0.0 in /usr/local/lib/python3.10/dist-packages (from pdfminer.six>=20231228->magic-pdf) (42.0.8)\n", | |
"Requirement already satisfied: PyMuPDFb==1.24.6 in /usr/local/lib/python3.10/dist-packages (from PyMuPDF>=1.24.7->magic-pdf) (1.24.6)\n", | |
"Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->magic-pdf) (1.11.4)\n", | |
"Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->magic-pdf) (1.4.2)\n", | |
"Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.2->magic-pdf) (3.5.0)\n", | |
"Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.10/dist-packages (from botocore<1.35.0,>=1.34.145->boto3>=1.28.43->magic-pdf) (2.8.2)\n", | |
"Requirement already satisfied: urllib3!=2.2.0,<3,>=1.25.4 in /usr/local/lib/python3.10/dist-packages (from botocore<1.35.0,>=1.34.145->boto3>=1.28.43->magic-pdf) (2.0.7)\n", | |
"Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.10/dist-packages (from cryptography>=36.0.0->pdfminer.six>=20231228->magic-pdf) (1.16.0)\n", | |
"Collecting pybind11>=2.2 (from fasttext-wheel>=0.9.2->fast-langdetect>=0.2.1->magic-pdf)\n", | |
" Downloading pybind11-2.13.1-py3-none-any.whl (238 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m238.8/238.8 kB\u001b[0m \u001b[31m31.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: setuptools>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from fasttext-wheel>=0.9.2->fast-langdetect>=0.2.1->magic-pdf) (67.7.2)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.30.0->fast-langdetect>=0.2.1->magic-pdf) (3.7)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.30.0->fast-langdetect>=0.2.1->magic-pdf) (2024.7.4)\n", | |
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from robust-downloader>=0.0.2->fast-langdetect>=0.2.1->magic-pdf) (4.66.4)\n", | |
"Collecting colorlog (from robust-downloader>=0.0.2->fast-langdetect>=0.2.1->magic-pdf)\n", | |
" Downloading colorlog-6.8.2-py3-none-any.whl (11 kB)\n", | |
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.12->cryptography>=36.0.0->pdfminer.six>=20231228->magic-pdf) (2.22)\n", | |
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.35.0,>=1.34.145->boto3>=1.28.43->magic-pdf) (1.16.0)\n", | |
"Building wheels for collected packages: wordninja\n", | |
" Building wheel for wordninja (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for wordninja: filename=wordninja-2.0.0-py3-none-any.whl size=541530 sha256=89b7c33b593d89594eaf4abd09bc18a6e01ec11cf5b4f61a40d979bbc3d5dee0\n", | |
" Stored in directory: /root/.cache/pip/wheels/aa/44/3a/f2a5c1859b8b541ded969b4cd12d0a58897f12408f4f51e084\n", | |
"Successfully built wordninja\n", | |
"Installing collected packages: wordninja, Brotli, pybind11, numpy, loguru, jmespath, colorlog, robust-downloader, fasttext-wheel, botocore, s3transfer, pdfminer.six, fast-langdetect, boto3, magic-pdf\n", | |
" Attempting uninstall: numpy\n", | |
" Found existing installation: numpy 1.25.2\n", | |
" Uninstalling numpy-1.25.2:\n", | |
" Successfully uninstalled numpy-1.25.2\n", | |
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", | |
"cudf-cu12 24.4.1 requires pandas<2.2.2dev0,>=2.0, but you have pandas 2.2.2 which is incompatible.\n", | |
"cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.\n", | |
"ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.\n", | |
"paddleocr 2.7.3 requires Pillow>=10.0.0, but you have pillow 8.4.0 which is incompatible.\n", | |
"scikit-image 0.24.0 requires pillow>=9.1, but you have pillow 8.4.0 which is incompatible.\u001b[0m\u001b[31m\n", | |
"\u001b[0mSuccessfully installed Brotli-1.1.0 boto3-1.34.145 botocore-1.34.145 colorlog-6.8.2 fast-langdetect-0.2.1 fasttext-wheel-0.9.2 jmespath-1.0.1 loguru-0.7.2 magic-pdf-0.6.1 numpy-1.26.4 pdfminer.six-20240706 pybind11-2.13.1 robust-downloader-0.0.2 s3transfer-0.10.2 wordninja-2.0.0\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# Fake configuration file. For information on magic-pdf,\n", | |
"# please see https://github.com/opendatalab/MinerU\n", | |
"!echo \"{}\" > ~/magic-pdf.json\n", | |
"\n", | |
"!magic-pdf pdf-command --pdf \"1706.03762.pdf\" --model \"output/1706.03762.json\"" | |
], | |
"metadata": { | |
"id": "okzjl1QReUXh", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "59174c5f-5a4f-47a7-8596-ba0d2a8dd48b" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"\u001b[32m2024-07-20 00:28:36.541\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.cli.magicpdf\u001b[0m:\u001b[36mdo_parse\u001b[0m:\u001b[36m91\u001b[0m - \u001b[1mlocal output dir is /tmp/magic-pdf/1706.03762/auto\u001b[0m\n", | |
"[\u001b[36m2024-07-20 00:28:37,737\u001b[0m][\u001b[32mINFO\u001b[0m] - Downloading https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.ftz to lid.176.ftz (916.0K)\u001b[0m\n", | |
"100% 916k/916k [00:00<00:00, 11.7MB/s]\n", | |
"\u001b[32m2024-07-20 00:28:40.585\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.libs.pdf_check\u001b[0m:\u001b[36mdetect_invalid_chars\u001b[0m:\u001b[36m57\u001b[0m - \u001b[1mcid_count: 1, text_len: 27980, cid_chars_radio: 3.574875773066886e-05\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.098\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 0, last_page_cost_time: 0.0\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.192\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 1, last_page_cost_time: 0.09\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.360\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 2, last_page_cost_time: 0.17\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.484\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 3, last_page_cost_time: 0.12\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.578\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 4, last_page_cost_time: 0.09\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.622\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 5, last_page_cost_time: 0.04\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.709\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 6, last_page_cost_time: 0.09\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.755\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 7, last_page_cost_time: 0.05\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:41.908\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 8, last_page_cost_time: 0.15\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:42.054\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 9, last_page_cost_time: 0.15\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:42.135\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 10, last_page_cost_time: 0.08\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:42.168\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 11, last_page_cost_time: 0.03\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:42.194\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 12, last_page_cost_time: 0.03\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:42.303\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 13, last_page_cost_time: 0.11\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:42.611\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pdf_parse_union_core\u001b[0m:\u001b[36mpdf_parse_union\u001b[0m:\u001b[36m219\u001b[0m - \u001b[1mpage_id: 14, last_page_cost_time: 0.31\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.080\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36m__detect_list_lines\u001b[0m:\u001b[36m140\u001b[0m - \u001b[1m发现了列表,列表行数:[(22, 29)], [[22, 24, 26, 28]]\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.080\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36m__detect_list_lines\u001b[0m:\u001b[36m153\u001b[0m - \u001b[1m列表行的第22到第29行是列表\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.087\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36m__detect_list_lines\u001b[0m:\u001b[36m140\u001b[0m - \u001b[1m发现了列表,列表行数:[(0, 43)], [[0, 3, 5, 7, 9, 11, 13, 16, 18, 20, 23, 25, 27, 29, 32, 34, 35, 37, 40, 42]]\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.087\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36m__detect_list_lines\u001b[0m:\u001b[36m153\u001b[0m - \u001b[1m列表行的第0到第43行是列表\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.098\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36m__detect_list_lines\u001b[0m:\u001b[36m140\u001b[0m - \u001b[1m发现了列表,列表行数:[(0, 41)], [[0, 2, 5, 7, 9, 13, 15, 17, 20, 23, 27, 29, 31, 33, 37, 39]]\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.098\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36m__detect_list_lines\u001b[0m:\u001b[36m153\u001b[0m - \u001b[1m列表行的第0到第41行是列表\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.150\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36mpara_split\u001b[0m:\u001b[36m764\u001b[0m - \u001b[1m连接了第3页和第4页的段落\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.150\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36mpara_split\u001b[0m:\u001b[36m764\u001b[0m - \u001b[1m连接了第5页和第6页的段落\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:43.150\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.para.para_split_v2\u001b[0m:\u001b[36mpara_split\u001b[0m:\u001b[36m764\u001b[0m - \u001b[1m连接了第7页和第8页的段落\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:44.961\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pipe.UNIPipe\u001b[0m:\u001b[36mpipe_mk_markdown\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1muni_pipe mk mm_markdown finished\u001b[0m\n", | |
"\u001b[32m2024-07-20 00:28:45.226\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmagic_pdf.pipe.UNIPipe\u001b[0m:\u001b[36mpipe_mk_uni_format\u001b[0m:\u001b[36m43\u001b[0m - \u001b[1muni_pipe mk content list finished\u001b[0m\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!ls /tmp/magic-pdf/1706.03762/auto/" | |
], | |
"metadata": { | |
"id": "dYD5ADK4fOnn", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "f43d598b-b371-4088-d584-3c5f72065014" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"1706.03762_content_list.json 1706.03762_middle.json 1706.03762_origin.pdf layout.pdf\n", | |
"1706.03762.md\t\t 1706.03762_model.json images\t\t spans.pdf\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!cat /tmp/magic-pdf/1706.03762/auto/1706.03762.md" | |
], | |
"metadata": { | |
"id": "GdsrW-z0fU7C", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "99f70852-1a6e-46fd-fec2-2113852f7bb9" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"# Attention Is All You Need \n", | |
"\n", | |
"![](images/1d0d7ef882c4a8fe774993e9e1e24fb4ab89a99ebe3a9fc68ed4db2ad36ea375.jpg) \n", | |
"\n", | |
"Illia Polosukhin ∗‡ [email protected] \n", | |
"\n", | |
"# Abstract \n", | |
"\n", | |
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English- to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. \n", | |
"\n", | |
"# 1 Introduction \n", | |
"\n", | |
"Recurrent neural networks, long short-term memory [ 13 ] and gated recurrent [ 7 ] neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation [ 35 , 2 , 5 ]. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures [38, 24, 15]. \n", | |
"\n", | |
"Recurrent models typically factor computation along the symbol positions of the input and output sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden states $h_{t}$ , as a function of the previous hidden state $h_{t-1}$ and the input for position $t$ . This inherently sequential nature precludes parallelization within training examples, which becomes critical at longer sequence lengths, as memory constraints limit batching across examples. Recent work has achieved significant improvements in computational efficiency through factorization tricks [ 21 ] and conditional computation [ 32 ], while also improving model performance in case of the latter. The fundamental constraint of sequential computation, however, remains. \n", | |
"\n", | |
"Attention mechanisms have become an integral part of compelling sequence modeling and transduc- tion models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences [ 2 , 19 ]. In all but a few cases [ 27 ], however, such attention mechanisms are used in conjunction with a recurrent network. \n", | |
"\n", | |
"In this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs. \n", | |
"\n", | |
"# 2 Background \n", | |
"\n", | |
"The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU [ 16 ], ByteNet [ 18 ] and ConvS2S [ 9 ], all of which use convolutional neural networks as basic building block, computing hidden representations in parallel for all input and output positions. In these models, the number of operations required to relate signals from two arbitrary input or output positions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn dependencies between distant positions [ 12 ]. In the Transformer this is reduced to a constant number of operations, albeit at the cost of reduced effective resolution due to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as described in section 3.2. \n", | |
"\n", | |
"Self-attention, sometimes called intra-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence. Self-attention has been used successfully in a variety of tasks including reading comprehension, abstractive summarization, textual entailment and learning task-independent sentence representations [4, 27, 28, 22]. \n", | |
"\n", | |
"End-to-end memory networks are based on a recurrent attention mechanism instead of sequence- aligned recurrence and have been shown to perform well on simple-language question answering and language modeling tasks [34]. \n", | |
"\n", | |
"To the best of our knowledge, however, the Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence- aligned RNNs or convolution. In the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as [17, 18] and [9]. \n", | |
"\n", | |
"# 3 Model Architecture \n", | |
"\n", | |
"Most competitive neural sequence transduction models have an encoder-decoder structure [ 5 , 2 , 35 ]. Here, the encoder maps an input sequence of symbol representations $(x_{1},...,x_{n})$ to a sequence of continuous representations $\\mathbf{z}~=~(z_{1},...,z_{n})$ . Given $\\mathbf{z}$ , the decoder then generates an output sequence $(y_{1},...,y_{m})$ of symbols one element at a time. At each step the model is auto-regressive [10], consuming the previously generated symbols as additional input when generating the next. \n", | |
"\n", | |
"![](images/dbb15a0efc3386da7673495b143510cfa05373a53007837ee2a37c180286747b.jpg) \n", | |
"Figure 1: The Transformer - model architecture. \n", | |
"\n", | |
"The Transformer follows this overall architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1, respectively. \n", | |
"\n", | |
"# 3.1 Encoder and Decoder Stacks \n", | |
"\n", | |
"Encoder: The encoder is composed of a stack of $N=6$ identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position- wise fully connected feed-forward network. We employ a residual connection [ 11 ] around each of the two sub-layers, followed by layer normalization [ 1 ]. That is, the output of each sub-layer is LayerNorm $(x+{\\mathrm{Sublayer}}(x))$ , where Sublayer $(x)$ is the function implemented by the sub-layer itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding layers, produce outputs of dimension $d_{\\mathrm{model}}=512$ . \n", | |
"\n", | |
"Decoder: The decoder is also composed of a stack of $N=6$ identical layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to the encoder, we employ residual connections around each of the sub-layers, followed by layer normalization. We also modify the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output embeddings are offset by one position, ensures that the predictions for position $i$ can depend only on the known outputs at positions less than $i$ . \n", | |
"\n", | |
"# 3.2 Attention \n", | |
"\n", | |
"An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum \n", | |
"\n", | |
"![](images/e71827b5ff3cf81cca4dcf1f05bfb70fc120e337a619327d5b6e3f1d3bc1573d.jpg) \n", | |
"\n", | |
"Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel. \n", | |
"\n", | |
"of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key. \n", | |
"\n", | |
"# 3.2.1 Scaled Dot-Product Attention \n", | |
"\n", | |
"We call our particular attention \"Scaled Dot-Product Attention\" (Figure 2). The input consists of queries and keys of dimension $d_{k}$ , and values of dimension $d_{v}$ . We compute the dot products of the query with all keys, divide each by $\\sqrt{d_{k}}$ , and apply a softmax function to obtain the weights on the values. \n", | |
"\n", | |
"In practice, we compute the attention function on a set of queries simultaneously, packed together into a matrix $Q$ . The keys and values are also packed together into matrices $K$ and $V$ . We compute the matrix of outputs as: \n", | |
"\n", | |
"$$\n", | |
"\\mathrm{Attention}(Q,K,V)=\\mathrm{softmax}(\\frac{Q K^{T}}{\\sqrt{d_{k}}})V\n", | |
"$$ \n", | |
"\n", | |
"The two most commonly used attention functions are additive attention [ 2 ], and dot-product (multi- plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of $\\frac{1}{\\sqrt{d_{k}}}$ . Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code. \n", | |
"\n", | |
"While for small values of $d_{k}$ the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of $d_{k}$ [ 3 ]. We suspect that for large values of $d_{k}$ , the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients 4 . To counteract this effect, we scale the dot products by $\\frac{1}{\\sqrt{d_{k}}}$ . \n", | |
"\n", | |
"# 3.2.2 Multi-Head Attention \n", | |
"\n", | |
"Instead of performing a single attention function with $d_{\\mathrm{model}}$ -dimensional keys, values and queries, we found it beneficial to linearly project the queries, keys and values $h$ times with different, learned linear projections to $d_{k}$ , $d_{k}$ and $d_{v}$ dimensions, respectively. On each of these projected versions of queries, keys and values we then perform the attention function in parallel, yielding $d_{v}$ -dimensional output values. These are concatenated and once again projected, resulting in the final values, as depicted in Figure 2. \n", | |
"\n", | |
"Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this. \n", | |
"\n", | |
"$$\n", | |
"\\begin{array}{r}{\\begin{array}{r}{\\mathrm{MultiHead}(Q,K,V)=\\mathrm{Concat}(\\mathrm{head}_{1},...,\\mathrm{head}_{\\mathrm{h}})W^{O}\\qquad\\qquad}\\\\ {\\mathrm{where~head}_{\\mathrm{i}}=\\mathrm{Attention}(Q W_{i}^{Q},K W_{i}^{K},V W_{i}^{V})}\\end{array}}\\end{array}\n", | |
"$$ \n", | |
"\n", | |
"Where the projections are parameter matrices $W_{i}^{Q}\\in\\mathbb{R}^{d_{\\mathrm{model}}\\times d_{k}}$ ∈ , W K ∈ R d model × d k , W V ∈ R d model × d v i i and $W^{O}\\in\\mathbb{R}^{h d_{v}\\times d_{\\mathrm{model}}}$ . \n", | |
"\n", | |
"In this work we employ $h\\ =\\ 8$ parallel attention layers, or heads. For each of these we use $d_{k}=d_{v}=d_{\\mathrm{model}}/h\\stackrel{=}{=}\\dot{6}4$ . Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality. \n", | |
"\n", | |
"# 3.2.3 Applications of Attention in our Model \n", | |
"\n", | |
"The Transformer uses multi-head attention in three different ways: \n", | |
"\n", | |
"• In \"encoder-decoder attention\" layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models such as [38, 2, 9]. • The encoder contains self-attention layers. In a self-attention layer all of the keys, values and queries come from the same place, in this case, the output of the previous layer in the encoder. Each position in the encoder can attend to all positions in the previous layer of the encoder. • Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all positions in the decoder up to and including that position. We need to prevent leftward information flow in the decoder to preserve the auto-regressive property. We implement this inside of scaled dot-product attention by masking out (setting to $-\\infty)$ all values in the input of the softmax which correspond to illegal connections. See Figure 2. \n", | |
"\n", | |
"# 3.3 Position-wise Feed-Forward Networks \n", | |
"\n", | |
"In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically. This consists of two linear transformations with a ReLU activation in between. \n", | |
"\n", | |
"$$\n", | |
"\\mathrm{FFN}(x)=\\operatorname*{max}(0,x W_{1}+b_{1})W_{2}+b_{2}\n", | |
"$$ \n", | |
"\n", | |
"While the linear transformations are the same across different positions, they use different parameters from layer to layer. Another way of describing this is as two convolutions with kernel size 1. The dimensionality of input and output is $d_{\\mathrm{model}}\\,=\\,512$ , and the inner-layer has dimensionality $d_{f f}=2048$ . \n", | |
"\n", | |
"# 3.4 Embeddings and Softmax \n", | |
"\n", | |
"Similarly to other sequence transduction models, we use learned embeddings to convert the input tokens and output tokens to vectors of dimension $d_{\\mathrm{model}}$ . We also use the usual learned linear transfor- mation and softmax function to convert the decoder output to predicted next-token probabilities. In our model, we share the same weight matrix between the two embedding layers and the pre-softmax linear transformation, similar to [ 30 ]. In the embedding layers, we multiply those weights by $\\sqrt{d_{\\mathrm{model}}}$ . \n", | |
"\n", | |
"Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. $n$ is the sequence length, $d$ is the representation dimension, $k$ is the kernel size of convolutions and $r$ the size of the neighborhood in restricted self-attention. \n", | |
"![](images/47c0f37457ae110d9fc5703a5034ffdb876513b21c5e08b07a9eaa6999fa0fe2.jpg) \n", | |
"\n", | |
"# 3.5 Positional Encoding \n", | |
"\n", | |
"Since our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence, we must inject some information about the relative or absolute position of the tokens in the sequence. To this end, we add \"positional encodings\" to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d_{\\mathrm{model}}$ as the embeddings, so that the two can be summed. There are many choices of positional encodings, learned and fixed [9]. \n", | |
"\n", | |
"In this work, we use sine and cosine functions of different frequencies: \n", | |
"\n", | |
"$$\n", | |
"\\begin{array}{r}{P E_{(p o s,2i)}=s i n(p o s/10000^{2i/d_{\\mathrm{model}}})}\\\\ {P E_{(p o s,2i+1)}=c o s(p o s/10000^{2i/d_{\\mathrm{model}}})}\\end{array}\n", | |
"$$ \n", | |
"\n", | |
"where pos is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000\\cdot2\\pi$ . We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$ , $P E_{p o s+k}$ can be represented as a linear function of $P E_{p o s}$ . \n", | |
"\n", | |
"We also experimented with using learned positional embeddings [ 9 ] instead, and found that the two versions produced nearly identical results (see Table 3 row (E)). We chose the sinusoidal version because it may allow the model to extrapolate to sequence lengths longer than the ones encountered during training. \n", | |
"\n", | |
"# 4 Why Self-Attention \n", | |
"\n", | |
"In this section we compare various aspects of self-attention layers to the recurrent and convolu- tional layers commonly used for mapping one variable-length sequence of symbol representations $(x_{1},...,x_{n})$ to another sequence of equal length $\\left(z_{1},...,z_{n}\\right)$ , with $x_{i},z_{i}\\in\\dot{\\mathbb{R}^{d}}$ , such as a hidden layer in a typical sequence transduction encoder or decoder. Motivating our use of self-attention we consider three desiderata. \n", | |
"\n", | |
"One is the total computational complexity per layer. Another is the amount of computation that can be parallelized, as measured by the minimum number of sequential operations required. \n", | |
"\n", | |
"The third is the path length between long-range dependencies in the network. Learning long-range dependencies is a key challenge in many sequence transduction tasks. One key factor affecting the ability to learn such dependencies is the length of the paths forward and backward signals have to traverse in the network. The shorter these paths between any combination of positions in the input and output sequences, the easier it is to learn long-range dependencies [ 12 ]. Hence we also compare the maximum path length between any two input and output positions in networks composed of the different layer types. \n", | |
"\n", | |
"As noted in Table 1, a self-attention layer connects all positions with a constant number of sequentially executed operations, whereas a recurrent layer requires $O(n)$ sequential operations. In terms of computational complexity, self-attention layers are faster than recurrent layers when the sequence length $n$ is smaller than the representation dimensionality $d$ , which is most often the case with sentence representations used by state-of-the-art models in machine translations, such as word-piece [ 38 ] and byte-pair [ 31 ] representations. To improve computational performance for tasks involving very long sequences, self-attention could be restricted to considering only a neighborhood of size $r$ in the input sequence centered around the respective output position. This would increase the maximum path length to $O(n/r)$ . We plan to investigate this approach further in future work. \n", | |
"\n", | |
"A single convolutional layer with kernel width $k<n$ does not connect all pairs of input and output positions. Doing so requires a stack of $O(n/k)$ convolutional layers in the case of contiguous kernels, or $O(l o g_{k}(n))$ in the case of dilated convolutions [ 18 ], increasing the length of the longest paths between any two positions in the network. Convolutional layers are generally more expensive than recurrent layers, by a factor of $k$ . Separable convolutions [ 6 ], however, decrease the complexity considerably, to $\\dot{O(k\\cdot n\\cdot d+n\\cdot d^{2})}$ . Even with $k=n$ , however, the complexity of a separable convolution is equal to the combination of a self-attention layer and a point-wise feed-forward layer, the approach we take in our model. \n", | |
"\n", | |
"As side benefit, self-attention could yield more interpretable models. We inspect attention distributions from our models and present and discuss examples in the appendix. Not only do individual attention heads clearly learn to perform different tasks, many appear to exhibit behavior related to the syntactic and semantic structure of the sentences. \n", | |
"\n", | |
"# 5 Training \n", | |
"\n", | |
"This section describes the training regime for our models. \n", | |
"\n", | |
"# 5.1 Training Data and Batching \n", | |
"\n", | |
"We trained on the standard WMT 2014 English-German dataset consisting of about 4.5 million sentence pairs. Sentences were encoded using byte-pair encoding [ 3 ], which has a shared source- target vocabulary of about 37000 tokens. For English-French, we used the significantly larger WMT 2014 English-French dataset consisting of 36M sentences and split tokens into a 32000 word-piece vocabulary [ 38 ]. Sentence pairs were batched together by approximate sequence length. Each training batch contained a set of sentence pairs containing approximately 25000 source tokens and 25000 target tokens. \n", | |
"\n", | |
"# 5.2 Hardware and Schedule \n", | |
"\n", | |
"We trained our models on one machine with 8 NVIDIA P100 GPUs. For our base models using the hyperparameters described throughout the paper, each training step took about 0.4 seconds. We trained the base models for a total of 100,000 steps or 12 hours. For our big models,(described on the bottom line of table 3), step time was 1.0 seconds. The big models were trained for 300,000 steps (3.5 days). \n", | |
"\n", | |
"# 5.3 Optimizer \n", | |
"\n", | |
"We used the Adam optimizer [ 20 ] with $\\beta_{1}=0.9$ , $\\beta_{2}=0.98$ and $\\epsilon=10^{-9}$ . We varied the learning rate over the course of training, according to the formula: \n", | |
"\n", | |
"$$\n", | |
"l r a t e=d_{\\mathrm{model}}^{-0.5}\\cdot\\mathrm{min}(s t e p\\_n u m^{-0.5},s t e p\\_n u m\\cdot w a r m u p\\_s t e p s^{-1.5})\n", | |
"$$ \n", | |
"\n", | |
"This corresponds to increasing the learning rate linearly for the first warmup _ steps training steps, and decreasing it thereafter proportionally to the inverse square root of the step number. We used $w a r m u p\\_s t e p s=4000$ . \n", | |
"\n", | |
"# 5.4 Regularization \n", | |
"\n", | |
"We employ three types of regularization during training: \n", | |
"\n", | |
"Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost. \n", | |
"![](images/ac54c7bd0f87883a9a2d07c305e12cb0c9b8b585d28cfca63da931238c1dc93b.jpg) \n", | |
"\n", | |
"Residual Dropout We apply dropout [ 33 ] to the output of each sub-layer, before it is added to the sub-layer input and normalized. In addition, we apply dropout to the sums of the embeddings and the positional encodings in both the encoder and decoder stacks. For the base model, we use a rate of $P_{d r o p}=0.1$ . \n", | |
"\n", | |
"Label Smoothing During training, we employed label smoothing of value $\\epsilon_{l s}=0.1$ [ 36 ]. This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score. \n", | |
"\n", | |
"# 6 Results \n", | |
"\n", | |
"# 6.1 Machine Translation \n", | |
"\n", | |
"On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big) in Table 2) outperforms the best previously reported models (including ensembles) by more than 2 . 0 BLEU, establishing a new state-of-the-art BLEU score of 28 . 4 . The configuration of this model is listed in the bottom line of Table 3. Training took 3 . 5 days on 8 P100 GPUs. Even our base model surpasses all previously published models and ensembles, at a fraction of the training cost of any of the competitive models. \n", | |
"\n", | |
"On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41 . 0 , outperforming all of the previously published single models, at less than $1/4$ the training cost of the previous state-of-the-art model. The Transformer (big) model trained for English-to-French used dropout rate $P_{d r o p}=0.1$ , instead of 0 . 3 . \n", | |
"\n", | |
"For the base models, we used a single model obtained by averaging the last 5 checkpoints, which were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We used beam search with a beam size of 4 and length penalty $\\alpha=0.6$ [ 38 ]. These hyperparameters were chosen after experimentation on the development set. We set the maximum output length during inference to input length $+~50$ , but terminate early when possible [38]. \n", | |
"\n", | |
"Table 2 summarizes our results and compares our translation quality and training costs to other model architectures from the literature. We estimate the number of floating point operations used to train a model by multiplying the training time, the number of GPUs used, and an estimate of the sustained single-precision floating-point capacity of each GPU 5 . \n", | |
"\n", | |
"# 6.2 Model Variations \n", | |
"\n", | |
"To evaluate the importance of different components of the Transformer, we varied our base model in different ways, measuring the change in performance on English-to-German translation on the Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base model. All metrics are on the English-to-German translation development set, newstest2013. Listed perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to per-word perplexities. \n", | |
"\n", | |
"![](images/ea1b8ce500899c2abe866b5a6ff2eacb5beff81e2c3133759b9e1b96c9cbd4c9.jpg) \n", | |
"\n", | |
"development set, newstest2013. We used beam search as described in the previous section, but no checkpoint averaging. We present these results in Table 3. \n", | |
"\n", | |
"In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions, keeping the amount of computation constant, as described in Section 3.2.2. While single-head attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads. \n", | |
"\n", | |
"In Table 3 rows (B), we observe that reducing the attention key size $d_{k}$ hurts model quality. This suggests that determining compatibility is not easy and that a more sophisticated compatibility function than dot product may be beneficial. We further observe in rows (C) and (D) that, as expected, bigger models are better, and dropout is very helpful in avoiding over-fitting. In row (E) we replace our sinusoidal positional encoding with learned positional embeddings [ 9 ], and observe nearly identical results to the base model. \n", | |
"\n", | |
"# 6.3 English Constituency Parsing \n", | |
"\n", | |
"To evaluate if the Transformer can generalize to other tasks we performed experiments on English constituency parsing. This task presents specific challenges: the output is subject to strong structural constraints and is significantly longer than the input. Furthermore, RNN sequence-to-sequence models have not been able to attain state-of-the-art results in small-data regimes [37]. \n", | |
"\n", | |
"We trained a 4-layer transformer with $d_{m o d e l}=1024$ on the Wall Street Journal (WSJ) portion of the Penn Treebank [ 25 ], about 40K training sentences. We also trained it in a semi-supervised setting, using the larger high-confidence and BerkleyParser corpora from with approximately 17M sentences [ 37 ]. We used a vocabulary of 16K tokens for the WSJ only setting and a vocabulary of 32K tokens for the semi-supervised setting. \n", | |
"\n", | |
"We performed only a small number of experiments to select the dropout, both attention and residual (section 5.4), learning rates and beam size on the Section 22 development set, all other parameters remained unchanged from the English-to-German base translation model. During inference, we \n", | |
"\n", | |
"Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23 of WSJ) \n", | |
"![](images/7c26984ba2fb3158653a896bb5ee68854795862a37feaa7198f5855f9bd326af.jpg) \n", | |
"\n", | |
"increased the maximum output length to input length $+\\,300$ . We used a beam size of 21 and $\\alpha=0.3$ for both WSJ only and the semi-supervised setting. \n", | |
"\n", | |
"Our results in Table 4 show that despite the lack of task-specific tuning our model performs sur- prisingly well, yielding better results than all previously reported models with the exception of the Recurrent Neural Network Grammar [8]. \n", | |
"\n", | |
"In contrast to RNN sequence-to-sequence models [ 37 ], the Transformer outperforms the Berkeley- Parser [29] even when training only on the WSJ training set of 40K sentences. \n", | |
"\n", | |
"# 7 Conclusion \n", | |
"\n", | |
"In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. \n", | |
"\n", | |
"For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles. \n", | |
"\n", | |
"We are excited about the future of attention-based models and plan to apply them to other tasks. We plan to extend the Transformer to problems involving input and output modalities other than text and to investigate local, restricted attention mechanisms to efficiently handle large inputs and outputs such as images, audio and video. Making generation less sequential is another research goals of ours. \n", | |
"\n", | |
"The code we used to train and evaluate our models is available at https://github.com/ tensorflow/tensor2tensor . \n", | |
"\n", | |
"Acknowledgements We are grateful to Nal Kalchbrenner and Stephan Gouws for their fruitful comments, corrections and inspiration. \n", | |
"\n", | |
"# References \n", | |
"\n", | |
"[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450 , 2016.\n", | |
"\n", | |
" [2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. CoRR , abs/1409.0473, 2014.\n", | |
"\n", | |
" [3] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration of neural machine translation architectures. CoRR , abs/1703.03906, 2017.\n", | |
"\n", | |
" [4] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine reading. arXiv preprint arXiv:1601.06733 , 2016. \n", | |
"\n", | |
"[5] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. CoRR , abs/1406.1078, 2014.\n", | |
"\n", | |
" [6] Francois Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357 , 2016.\n", | |
"\n", | |
" [7] Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR , abs/1412.3555, 2014.\n", | |
"\n", | |
" [8] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network grammars. In Proc. of NAACL , 2016.\n", | |
"\n", | |
" [9] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolu- tional sequence to sequence learning. arXiv preprint arXiv:1705.03122v2 , 2017.\n", | |
"\n", | |
" [10] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 , 2013.\n", | |
"\n", | |
" [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im- age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , pages 770–778, 2016.\n", | |
"\n", | |
" [12] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.\n", | |
"\n", | |
" [13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation , 9(8):1735–1780, 1997.\n", | |
"\n", | |
" [14] Zhongqiang Huang and Mary Harper. Self-training PCFG grammars with latent annotations across languages. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing , pages 832–841. ACL, August 2009.\n", | |
"\n", | |
" [15] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410 , 2016.\n", | |
"\n", | |
" [16] Łukasz Kaiser and Samy Bengio. Can active memory replace attention? In Advances in Neural Information Processing Systems, (NIPS) , 2016.\n", | |
"\n", | |
" [17] Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In International Conference on Learning Representations (ICLR) , 2016.\n", | |
"\n", | |
" [18] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Ko- ray Kavukcuoglu. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099v2 , 2017.\n", | |
"\n", | |
" [19] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention networks. In International Conference on Learning Representations , 2017.\n", | |
"\n", | |
" [20] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR , 2015.\n", | |
"\n", | |
" [21] Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for LSTM networks. arXiv preprint arXiv:1703.10722 , 2017.\n", | |
"\n", | |
" [22] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 , 2017.\n", | |
"\n", | |
" [23] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task sequence to sequence learning. arXiv preprint arXiv:1511.06114 , 2015.\n", | |
"\n", | |
" [24] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention- based neural machine translation. arXiv preprint arXiv:1508.04025 , 2015. \n", | |
"\n", | |
"[25] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated corpus of english: The penn treebank. Computational linguistics , 19(2):313–330, 1993.\n", | |
"\n", | |
" [26] David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for parsing. In Proceedings of the Human Language Technology Conference of the NAACL, Main Conference , pages 152–159. ACL, June 2006.\n", | |
"\n", | |
" [27] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention model. In Empirical Methods in Natural Language Processing , 2016.\n", | |
"\n", | |
" [28] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. arXiv preprint arXiv:1705.04304 , 2017.\n", | |
"\n", | |
" [29] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and interpretable tree annotation. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL , pages 433–440. ACL, July 2006.\n", | |
"\n", | |
" [30] Ofir Press and Lior Wolf. Using the output embedding to improve language models. arXiv preprint arXiv:1608.05859 , 2016.\n", | |
"\n", | |
" [31] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909 , 2015.\n", | |
"\n", | |
" [32] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 , 2017.\n", | |
"\n", | |
" [33] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi- nov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research , 15(1):1929–1958, 2014.\n", | |
"\n", | |
" [34] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28 , pages 2440–2448. Curran Associates, Inc., 2015.\n", | |
"\n", | |
" [35] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems , pages 3104–3112, 2014.\n", | |
"\n", | |
" [36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. CoRR , abs/1512.00567, 2015.\n", | |
"\n", | |
" [37] Vinyals & Kaiser, Koo, Petrov, Sutskever, and Hinton. Grammar as a foreign language. In Advances in Neural Information Processing Systems , 2015.\n", | |
"\n", | |
" [38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 , 2016.\n", | |
"\n", | |
" [39] Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei Xu. Deep recurrent models with fast-forward connections for neural machine translation. CoRR , abs/1606.04199, 2016.\n", | |
"\n", | |
" [40] Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and accurate shift-reduce constituent parsing. In Proceedings of the 51st Annual Meeting of the ACL (Volume 1: Long Papers) , pages 434–443. ACL, August 2013. \n", | |
"\n", | |
"# \n", | |
"\n", | |
"![](images/37cc48c33d89f66a4921b350c3914b2af2e910d695ee93b90cb682e6b70afcdf.jpg) \n", | |
"\n", | |
"Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for the word ‘making’. Different colors represent different heads. Best viewed in color. \n", | |
"\n", | |
"![](images/a283307984e10878fe66c865d5ff857dad5430fa1ea226dfce51c3245a316a7f.jpg) \n", | |
"\n", | |
"Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top: Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5 and 6. Note that the attentions are very sharp for this word. \n", | |
"\n", | |
"![](images/f942ae7cd01d20463a06e5c38f78ea3891140c1cfd830dc480c4daf6c2dff29d.jpg) \n", | |
"Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the sentence. We give two such examples above, from two different heads from the encoder self-attention at layer 5 of 6. The heads clearly learned to perform different tasks. " | |
] | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment