Skip to content

Instantly share code, notes, and snippets.

@zoecarver
zoecarver / main.cpp
Last active June 7, 2019 23:57
Uses allocator construction forward_as_tuple issue
using namespace std;
template<class A, class... Args>
auto add_and_forward(A a, Args&&... args)
{
return forward_as_tuple(a, forward<Args>(args)...); // <--- here is our issue
}
template<class A, class T1, class T2>
auto join(A a, T1 t1, T2 t2)
@zoecarver
zoecarver / test.cpp
Created May 13, 2019 23:47
Speed comparison of unordered_multiset
#include<chrono>
#include<unordered_set>
#include<iostream>
#include<cassert>
using namespace std;
using namespace std::chrono;
template <class _Value, class _Hash, class _Pred, class _Alloc>
bool
@zoecarver
zoecarver / 40124.cpp
Last active May 3, 2019 03:33
array<T, 0>
template<class T>
struct Container
{
union wrapper {
constexpr wrapper(): b() {}
~wrapper() = default;
bool b;
T t;
} w;
@zoecarver
zoecarver / memory.cpp
Created February 4, 2019 16:38
Highlighting a question I have
template<class _Tp>
struct __shared_if
{
typedef shared_ptr<_Tp> __shared_single;
};
template<class _Tp>
struct __shared_if<_Tp[]>
{
typedef shared_ptr<typename remove_extent<_Tp>::type> __shared_array_unknown_bound;
# theme
POWERLEVEL9K_MODE='nerdfont-complete'
POWERLEVEL9K_PROMPT_ON_NEWLINE=true
POWERLEVEL9K_LEFT_SEGMENT_SEPARATOR=''
POWERLEVEL9K_RIGHT_SEGMENT_SEPARATOR=''
POWERLEVEL9K_LEFT_SUBSEGMENT_SEPARATOR=''
POWERLEVEL9K_RIGHT_SUBSEGMENT_SEPARATOR=''
POWERLEVEL9K_MULTILINE_FIRST_PROMPT_PREFIX="%F{blue}\u256D\u2500%F{white}"
POWERLEVEL9K_MULTILINE_LAST_PROMPT_PREFIX="%F{blue}\u2570\uf460%F{white} "
POWERLEVEL9K_LEFT_PROMPT_ELEMENTS=(root_indicator dir dir_writable_joined)
@zoecarver
zoecarver / building_the_model.py
Created January 1, 2019 00:38
Snippets used in yolo article
input_layer = blocks[0]
input_shape = (int(input_layer['shape']),
int(input_layer['shape']),
int(input_layer['channels']))
true_boxes = Input(shape=(1, 1, 1, TRUE_BOX_BUFFER , 4))
model_input = Input(input_shape)
x = model_input
skip_connection = None
import cv2
from cv2 import COLOR_RGB2GRAY
from skimage.feature import hog
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
import matplotlib.pyplot as plt
from glob import glob
test_image = cv2.imread('test.jpg', COLOR_RGB2GRAY) # load test image
test_image = cv2.resize(test_image, (200, 400)) # resize
# get all sliding windows we want
search_windows = \
sliding_window(test_image, y_stop=200, window=(64, 64), overlap=(.7, .7)) + \
sliding_window(test_image, y_stop=250, window=(80, 80), overlap=(.6, .6)) + \
sliding_window(test_image, y_stop=300, window=(96, 96), overlap=(.5, .5)) + \
sliding_window(test_image, y_stop=350, window=(128, 128), overlap=(.4, .4))
def randcolorvalue():
return float(randint(0, 255)) / 255
def randcolor():
return randcolorvalue(), randcolorvalue(), randcolorvalue()
def draw_boxes(image, boxes):
image = np.copy(image)
X = np.vstack([people_features, not_people_features])
y = np.concatenate([np.ones(people_len), np.zeros(not_people_len)])
train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.2, shuffle=True)
classifier = LinearSVC(verbose=1)
classifier.fit(train_x, train_y)
print('Accuracy: %s' % classifier.score(test_x, test_y))