Last active
March 4, 2018 00:09
-
-
Save 0x0L/de41bcab16b07f55a42ac1ecfe0006a1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
public class LightGBMTree | |
{ | |
public int[] split_feature; | |
public double[] threshold; | |
public int[] left_child; | |
public int[] right_child; | |
public double[] leaf_value; | |
public double Predict(double[] features) | |
{ | |
var node = 0; | |
for (;;) { | |
var left = features[split_feature[node]] < threshold[node]; | |
node = left ? left_child[node] : right_child[node]; | |
if (node < 0) | |
return leaf_value[-node-1]; | |
} | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import re | |
_FIELDS = [ | |
('split_feature', int), | |
('threshold', float), | |
('decision_type', int), | |
('left_child', int), | |
('right_child', int), | |
('leaf_value', float), | |
('cat_boundaries', int), | |
('cat_threshold', int), | |
] | |
def read_model(filename): | |
with open('model.txt') as f: | |
content = f.read() | |
trees = [] | |
for i in [m.start() for m in re.finditer('Tree=', content)]: | |
c = content[i:].split('\n\n')[0] | |
t = {} | |
for field, ctor in _FIELDS: | |
q = re.search(field + '=([^\n]+)\n', c) | |
t[field] = [ctor(x) for x in q.group(1).split()] if q else None | |
trees.append(t) | |
return trees | |
def _predict(tree, features): | |
node = 0 | |
while True: | |
if tree['decision_type'][node] & 1: | |
int_fval = int(features[tree['split_feature'][node]]) | |
cat_idx = int(tree['threshold'][node]) | |
cat_boundaries = tree['cat_boundaries'] | |
cat_threshold = tree['cat_threshold'] | |
rhs = 32 * (cat_boundaries[cat_idx + 1] - cat_boundaries[cat_idx]) | |
left = int_fval < rhs | |
z = (cat_threshold[cat_boundaries[cat_idx] + int_fval // 32] >> (int_fval & 31)) & 1 | |
left &= z | |
else: | |
left = features[tree['split_feature'][node]] <= tree['threshold'][node] | |
node = tree['left_child' if left else 'right_child'][node] | |
if node < 0: | |
return tree['leaf_value'][-node-1] | |
def predict(trees, features): | |
return sum(_predict(t, features) for t in trees) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment