Skip to content

Instantly share code, notes, and snippets.

@10p-freddo
Created June 28, 2023 02:21
Show Gist options
  • Save 10p-freddo/1c443a02c67af61436bbbf52ccb804f3 to your computer and use it in GitHub Desktop.
Save 10p-freddo/1c443a02c67af61436bbbf52ccb804f3 to your computer and use it in GitHub Desktop.
UniXcoder in Python
import torch
from torch.nn.functional import normalize
from .unixcoder import UniXcoder
class UniXcoderEmbeddings:
def __init__(self, model_name="microsoft/unixcoder-base"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = UniXcoder(model_name).to(self.device)
def get_embedding(self, text):
tokens_ids = self.model.tokenize(text, max_length=512, mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(self.device)
_, embedding = self.model(source_ids)
return embedding
def similarity(self, nl_embedding, code_embedding):
norm_code_embedding = normalize(code_embedding, p=2, dim=1)
norm_nl_embedding = normalize(nl_embedding, p=2, dim=1)
similarity = torch.einsum("ac,bc->ab", norm_nl_embedding, norm_code_embedding)
return similarity.item()
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import torch
import torch.nn as nn
from transformers import RobertaTokenizer, RobertaModel, RobertaConfig
class UniXcoder(nn.Module):
def __init__(self, model_name):
"""
Build UniXcoder.
Parameters:
* `model_name`- huggingface model card name. e.g. microsoft/unixcoder-base
"""
super(UniXcoder, self).__init__()
self.tokenizer = RobertaTokenizer.from_pretrained(model_name)
self.config = RobertaConfig.from_pretrained(model_name)
self.config.is_decoder = True
self.model = RobertaModel.from_pretrained(model_name, config=self.config)
self.register_buffer("bias", torch.tril(torch.ones((1024, 1024), dtype=torch.uint8)).view(1,1024, 1024))
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.lm_head.weight = self.model.embeddings.word_embeddings.weight
self.lsm = nn.LogSoftmax(dim=-1)
self.tokenizer.add_tokens(["<mask0>"],special_tokens=True)
def tokenize(self, inputs, mode="<encoder-only>", max_length=512, padding=False):
"""
Convert string to token ids
Parameters:
* `inputs`- list of input strings.
* `max_length`- The maximum total source sequence length after tokenization.
* `padding`- whether to pad source sequence length to max_length.
* `mode`- which mode the sequence will use. i.e. <encoder-only>, <decoder-only>, <encoder-decoder>
"""
assert mode in ["<encoder-only>", "<decoder-only>", "<encoder-decoder>"]
assert max_length < 1024
tokenizer = self.tokenizer
tokens_ids = []
for x in inputs:
tokens = tokenizer.tokenize(x)
if mode == "<encoder-only>":
tokens = tokens[:max_length-4]
tokens = [tokenizer.cls_token,mode,tokenizer.sep_token] + tokens + [tokenizer.sep_token]
elif mode == "<decoder-only>":
tokens = tokens[-(max_length-3):]
tokens = [tokenizer.cls_token,mode,tokenizer.sep_token] + tokens
else:
tokens = tokens[:max_length-5]
tokens = [tokenizer.cls_token,mode,tokenizer.sep_token] + tokens + [tokenizer.sep_token]
tokens_id = tokenizer.convert_tokens_to_ids(tokens)
if padding:
tokens_id = tokens_id + [self.config.pad_token_id] * (max_length-len(tokens_id))
tokens_ids.append(tokens_id)
return tokens_ids
def decode(self, source_ids):
""" Convert token ids to string """
predictions = []
for x in source_ids:
prediction = []
for y in x:
t = y.cpu().numpy()
t = list(t)
if 0 in t:
t = t[:t.index(0)]
text = self.tokenizer.decode(t,clean_up_tokenization_spaces=False)
prediction.append(text)
predictions.append(prediction)
return predictions
def forward(self, source_ids):
""" Obtain token embeddings and sentence embeddings """
mask = source_ids.ne(self.config.pad_token_id)
token_embeddings = self.model(source_ids,attention_mask = mask.unsqueeze(1) * mask.unsqueeze(2))[0]
sentence_embeddings = (token_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1)
return token_embeddings, sentence_embeddings
def generate(self, source_ids, decoder_only = True, eos_id = None, beam_size = 5, max_length = 64):
""" Generate sequence given context (source_ids) """
# Set encoder mask attention matrix: bidirectional for <encoder-decoder>, unirectional for <decoder-only>
if decoder_only:
mask = self.bias[:,:source_ids.size(-1),:source_ids.size(-1)]
else:
mask = source_ids.ne(self.config.pad_token_id)
mask = mask.unsqueeze(1) * mask.unsqueeze(2)
if eos_id is None:
eos_id = self.config.eos_token_id
device = source_ids.device
# Decoding using beam search
preds = []
zero = torch.LongTensor(1).fill_(0).to(device)
source_len = list(source_ids.ne(1).sum(-1).cpu().numpy())
length = source_ids.size(-1)
encoder_output = self.model(source_ids,attention_mask=mask)
for i in range(source_ids.shape[0]):
context = [[x[i:i+1,:,:source_len[i]].repeat(beam_size,1,1,1) for x in y]
for y in encoder_output.past_key_values]
beam = Beam(beam_size,eos_id,device)
input_ids = beam.getCurrentState().clone()
context_ids = source_ids[i:i+1,:source_len[i]].repeat(beam_size,1)
out = encoder_output.last_hidden_state[i:i+1,:source_len[i]].repeat(beam_size,1,1)
for _ in range(max_length):
if beam.done():
break
if _ == 0:
hidden_states = out[:,-1,:]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids = beam.getCurrentState().clone()
else:
length = context_ids.size(-1)+input_ids.size(-1)
out = self.model(input_ids,attention_mask=self.bias[:,context_ids.size(-1):length,:length],
past_key_values=context).last_hidden_state
hidden_states = out[:,-1,:]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids = torch.cat((input_ids,beam.getCurrentState().clone()),-1)
hyp = beam.getHyp(beam.getFinal())
pred = beam.buildTargetTokens(hyp)[:beam_size]
pred = [torch.cat([x.view(-1) for x in p]+[zero]*(max_length-len(p))).view(1,-1) for p in pred]
preds.append(torch.cat(pred,0).unsqueeze(0))
preds = torch.cat(preds,0)
return preds
class Beam(object):
def __init__(self, size, eos, device):
self.size = size
self.device = device
# The score for each translation on the beam.
self.scores = torch.FloatTensor(size).zero_().to(device)
# The backpointers at each time-step.
self.prevKs = []
# The outputs at each time-step.
self.nextYs = [torch.LongTensor(size).fill_(0).to(device)]
# Has EOS topped the beam yet.
self._eos = eos
self.eosTop = False
# Time and k pair for finished.
self.finished = []
def getCurrentState(self):
"Get the outputs for the current timestep."
batch = self.nextYs[-1].view(-1, 1)
return batch
def getCurrentOrigin(self):
"Get the backpointers for the current timestep."
return self.prevKs[-1]
def advance(self, wordLk):
"""
Given prob over words for every last beam `wordLk` and attention
`attnOut`: Compute and update the beam search.
Parameters:
* `wordLk`- probs of advancing from the last step (K x words)
* `attnOut`- attention at the last step
Returns: True if beam search is complete.
"""
numWords = wordLk.size(1)
# Sum the previous scores.
if len(self.prevKs) > 0:
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
# Don't let EOS have children.
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
beamLk[i] = -1e20
else:
beamLk = wordLk[0]
flatBeamLk = beamLk.view(-1)
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
self.scores = bestScores
# bestScoresId is flattened beam x word array, so calculate which
# word and beam each score came from
prevK = torch.div(bestScoresId, numWords, rounding_mode="floor")
self.prevKs.append(prevK)
self.nextYs.append((bestScoresId - prevK * numWords))
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
s = self.scores[i]
self.finished.append((s, len(self.nextYs) - 1, i))
# End condition is when top-of-beam is EOS and no global score.
if self.nextYs[-1][0] == self._eos:
self.eosTop = True
def done(self):
return self.eosTop and len(self.finished) >= self.size
def getFinal(self):
if len(self.finished) == 0:
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
self.finished.sort(key=lambda a: -a[0])
if len(self.finished) != self.size:
unfinished=[]
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] != self._eos:
s = self.scores[i]
unfinished.append((s, len(self.nextYs) - 1, i))
unfinished.sort(key=lambda a: -a[0])
self.finished+=unfinished[:self.size-len(self.finished)]
return self.finished[:self.size]
def getHyp(self, beam_res):
"""
Walk back to construct the full hypothesis.
"""
hyps=[]
for _,timestep, k in beam_res:
hyp = []
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
hyp.append(self.nextYs[j+1][k])
k = self.prevKs[j][k]
hyps.append(hyp[::-1])
return hyps
def buildTargetTokens(self, preds):
sentence=[]
for pred in preds:
tokens = []
for tok in pred:
if tok==self._eos:
break
tokens.append(tok)
sentence.append(tokens)
return sentence
from .unixcoder import UniXcoderEmbeddings
provider = UniXcoderEmbeddings()
# Encode maximum function
max_func = "def f(a,b): if a>b: return a else return b"
max_func_embedding = provider.get_embedding([max_func])
# Encode minimum function
min_func = "def f(a,b): if a<b: return a else return b"
min_func_embedding = provider.get_embedding([min_func])
# Encode natural language
nl = "return maximum value"
nl_embedding = provider.get_embedding([nl])
# Calculate cosine similarity between NL and two functions
max_func_nl_similarity = provider.similarity(nl_embedding, max_func_embedding)
min_func_nl_similarity = provider.similarity(nl_embedding, min_func_embedding)
print(max_func_nl_similarity)
print(min_func_nl_similarity)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment