Created
August 27, 2021 18:47
-
-
Save 123epsilon/5a2c882786f08042036cae51e86c9d70 to your computer and use it in GitHub Desktop.
training loop for segmenter, brain mri dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def run_experiment(model_name, model, optimizer, criterion, train_loader, val_loader, device='cuda', num_epochs=50, clear_mem=True): | |
####################### | |
#Train model # | |
####################### | |
print('Model sent to ' + str(device)) | |
model.to(device) | |
losses = [] | |
train_scores = [] # hold IoU scores | |
iters = 0 | |
for epoch in range(num_epochs): | |
if epoch % 10 == 0: | |
print(f'Epoch {epoch+1}/{num_epochs}') | |
for i,batch in enumerate(train_loader): | |
img = batch[0].to(device) | |
msk = batch[1].to(device) | |
optimizer.zero_grad() | |
output = model(img) | |
loss = criterion(output, msk) | |
loss.backward() | |
optimizer.step() | |
losses.append(loss.item()) | |
train_scores.append(iou_pytorch(output.detach(), msk)) | |
iters += 1 | |
#if iters % 500 == 0: | |
#print(f'Loss: [{loss}]') | |
#for i in range(len(train_scores)): | |
# train_scores[i] = train_scores[i].mean() | |
####################### | |
#Validate model # | |
####################### | |
model.eval() | |
val_losses = [] | |
val_scores = [] | |
for i,batch in enumerate(val_loader): | |
img = batch[0].to(device) | |
msk = batch[1].to(device) | |
output = model(img) | |
loss = criterion(output, msk) | |
val_scores.append(iou_pytorch(output.detach(), msk)) | |
val_losses.append(loss.item()) | |
results = { | |
'model_name': model_name, | |
'train_losses': losses, | |
'train_scores': train_scores, | |
'val_losses': val_losses, | |
'val_scores': val_scores | |
} | |
if clear_mem: | |
del model | |
del optimizer | |
del criterion | |
torch.cuda.empty_cache() | |
return results |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment