Created
April 27, 2021 01:50
-
-
Save 123epsilon/7e1e414504857e85feef0dd5fb6486bd to your computer and use it in GitHub Desktop.
Simple GAN Training
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
z_dim = 10 | |
num_epochs = 30000 | |
batch_size = 32 | |
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") | |
criterion = nn.BCELoss() | |
gen = Generator(z_dim=z_dim, hidden_dim=28, n_layers=3, out_dim=2).to(device) | |
disc = Discriminator(input_dim=2, hidden_dim=28, n_layers=3).to(device) | |
optimizerD = optim.Adam(disc.parameters()) | |
optimizerG = optim.Adam(gen.parameters()) | |
fixed_noise = torch.randn(128, z_dim, device=device) | |
real_label = 1 | |
fake_label = 0 | |
#Main Training Loop | |
print("Training...") | |
print(device) | |
for epoch in range(num_epochs): | |
#max log(D(x)) + log(1 - D(G(z))) | |
#train on real points | |
disc.zero_grad() | |
real_points = torch.tensor( sample_dist(n=batch_size, r=r, dist=distribution, mode=mode) ).float() | |
label = torch.full( (batch_size,), real_label, dtype=torch.float, device=device ).view(-1) | |
output = disc(real_points).view(-1) | |
errD_real = criterion(output, label) | |
errD_real.backward() | |
#train on fake points | |
noise = torch.randn(batch_size, z_dim, device=device) | |
fake_points = gen(noise) | |
label.fill_(fake_label) | |
output = disc(fake_points.detach()).view(-1) | |
errD_fake = criterion(output, label) | |
errD_fake.backward() | |
errD = errD_real + errD_fake | |
optimizerD.step() | |
#max log(D(G(z))) | |
#Train Generator Discriminator Outputs | |
gen.zero_grad() | |
label.fill_(real_label) | |
output = disc(fake_points).view(-1) | |
errG = criterion(output, label) | |
errG.backward() | |
optimizerG.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment