Created
May 25, 2021 08:47
-
-
Save 18182324/fd8d8751ed3d0874fc3aaf95a09c76fa to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import statsmodels.api as sm | |
data = pd.read_csv("http://web.pdx.edu/~crkl/ceR/data/usyc87.txt",index_col='YEAR',sep='\s+',nrows=66) | |
y = data['Y'] | |
c = data['C'] | |
from statsmodels.tsa.vector_ar.vecm import coint_johansen | |
""" | |
Johansen cointegration test of the cointegration rank of a VECM | |
Parameters | |
---------- | |
endog : array_like (nobs_tot x neqs) | |
Data to test | |
det_order : int | |
* -1 - no deterministic terms - model1 | |
* 0 - constant term - model3 | |
* 1 - linear trend | |
k_ar_diff : int, nonnegative | |
Number of lagged differences in the model. | |
""" | |
def joh_output(res): | |
output = pd.DataFrame([res.lr2,res.lr1], | |
index=['max_eig_stat',"trace_stat"]) | |
print(output.T,'\n') | |
print("Critical values(90%, 95%, 99%) of max_eig_stat\n",res.cvm,'\n') | |
print("Critical values(90%, 95%, 99%) of trace_stat\n",res.cvt,'\n') | |
# Model 3 (2 lag-difference used = 3 lags VAR or VAR(3) model) | |
# with constant/trend (deterministc) term | |
joh_model3 = coint_johansen(data,0,2) # k_ar_diff +1 = K | |
joh_output(joh_model3) | |
# Model 2: with linear trend only | |
joh_model2 = coint_johansen(data,1,2) # k_ar_diff +1 = K | |
joh_output(joh_model2) | |
# Model 1: no constant/trend (deterministc) term | |
joh_model1 = coint_johansen(data,-1,2) # k_ar_diff +1 = K | |
joh_output(joh_model1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment