Created
April 27, 2014 15:57
-
-
Save 314maro/11349108 to your computer and use it in GitHub Desktop.
完備
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Section SupInf. | |
| Variable S : Type. | |
| Variable R : S -> S -> Prop. | |
| Infix ">=" := R. | |
| Infix "<=" := (fun x y => y >= x). | |
| Definition subset : Type := S -> Prop. | |
| Definition element (X : subset) (x : S) : Prop := X x. | |
| Definition upper_bound (X : subset) (u : S) : Prop := | |
| forall x, element X x -> u >= x. | |
| Definition lower_bound (X : subset) (u : S) : Prop := | |
| forall x, element X x -> u <= x. | |
| Definition supremum (X : subset) (s : S) : Prop := | |
| (upper_bound X s) /¥ (forall u, upper_bound X u -> u >= s). | |
| Definition infimum (X : subset) (s : S) : Prop := | |
| (lower_bound X s) /¥ (forall u, lower_bound X u -> u <= s). | |
| Definition not_empty (X : subset) := exists x, element X x. | |
| Variable upper_bound__sup : forall X, not_empty X | |
| -> (exists u, upper_bound X u) -> (exists s, supremum X s). | |
| Theorem lower_bound__inf : forall X, not_empty X | |
| -> (exists u, lower_bound X u) -> (exists s, infimum X s). | |
| Proof. | |
| intros X [x Hnempty] [u Hlb]. | |
| pose (L := (fun u => lower_bound X u) : subset). simpl in L. | |
| assert (Hsup : exists s, supremum L s). | |
| apply upper_bound__sup. | |
| exists u. assumption. | |
| exists x. intros u' HLu'. unfold element, L in HLu'. apply HLu'. assumption. | |
| destruct Hsup as [s [Hub Hmin]]. | |
| exists s. split. | |
| - intros x' HXx'. apply Hmin. intros u' HLu'. unfold element, L in HLu'. | |
| apply HLu'. assumption. | |
| - intros l' Hlbl'. apply Hub. unfold element, L. assumption. | |
| Qed. | |
| End SupInf. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment