Skip to content

Instantly share code, notes, and snippets.

@314maro
Created May 11, 2014 14:17
Show Gist options
  • Select an option

  • Save 314maro/cf4f285c88b6d81db8d5 to your computer and use it in GitHub Desktop.

Select an option

Save 314maro/cf4f285c88b6d81db8d5 to your computer and use it in GitHub Desktop.
課題24, 25 がわからなさすぎるのでとりあえずここまで
Module Q21.
Require Import Classical.
Lemma ABC_iff_iff : forall A B C : Prop, ((A <-> B) <-> C) <-> (A <-> (B <-> C)).
Proof.
intros.
pose (HA := classic A). pose (HB := classic B). pose (HC := classic C).
destruct HA; destruct HB; destruct HC; tauto.
Qed.
Goal
forall P Q R : Prop,
(IF P then Q else R) ->
exists b : bool,
(if b then Q else R).
Proof.
intros.
destruct H as [H|H]; destruct H as [H1 H2].
- exists true. assumption.
- exists false. assumption.
Qed.
Require Import ClassicalDescription.
Definition func : forall P : nat -> Prop, nat -> bool := fun P n =>
if excluded_middle_informative (P n) then true else false.
Goal
forall P Q R : nat -> Prop,
(forall n, IF P n then Q n else R n) ->
exists f : nat -> bool,
(forall n, if f n then Q n else R n).
Proof.
intros. exists (func P).
intro n. unfold func. specialize (H n).
destruct (excluded_middle_informative (P n));
destruct H as [H|H]; destruct H; try contradiction; assumption.
Qed.
End Q21.
Module Q22.
Require Import ClassicalDescription FunctionalExtensionality.
Record isomorphism{A B : Type} (f : A -> B) : Prop := {
inverse : B -> A;
is_retraction b : f (inverse b) = b;
is_section a : inverse (f a) = a
}.
Notation isomorphic A B :=
(exists f, @isomorphism A B f).
Lemma neg_unique :
forall A,
{ isomorphic (A -> Empty_set) Empty_set } +
{ isomorphic (A -> Empty_set) unit }.
Proof.
intro.
pose (H := excluded_middle_informative (exists _:A, True)).
destruct H.
- left. destruct e as [a _].
exists (fun f => f a). exists (fun e _ => e).
+ intros. reflexivity.
+ intros f. pose (fa := f a). inversion fa.
- right.
exists (fun _ => tt).
exists (fun _ a => match n (ex_intro (fun _ => True) a I) return Empty_set
with end).
+ intro. destruct b. reflexivity.
+ intros. apply functional_extensionality. intro. contradiction.
Qed.
End Q22.
Module Q23.
Definition compose {A B C} (f : A -> B) (g : B -> C) :=
fun x => g (f x).
Parameter X Y : Type.
Parameter f : X -> Y.
Axiom epi : forall Z (g h : Y -> Z), compose f g = compose f h -> g = h.
Require Import ClassicalDescription FunctionalExtensionality.
Lemma surj : forall y, exists x, f x = y.
Proof.
intro y. apply NNPP. intro H.
pose (g := fun x => if excluded_middle_informative (x = y) then true else false).
pose (h := fun _:Y => false).
assert (Heqgh : g = h).
apply epi. apply functional_extensionality. intro.
unfold compose, g, h. destruct (excluded_middle_informative (f x = y)).
contradict H. exists x. assumption. reflexivity.
assert (Heq : g y = h y) by (rewrite Heqgh; reflexivity).
unfold g, h in *. destruct (excluded_middle_informative (y = y)).
inversion Heq. apply n. reflexivity.
Qed.
Require Import IndefiniteDescription.
Lemma split_epi : exists g, compose g f = id.
Proof.
pose (Hg := fun y => constructive_indefinite_description _ (surj y)). simpl in Hg.
pose (g := fun y => let (x,_) := Hg y in x). exists g.
apply functional_extensionality. intro y. unfold compose, id, g.
clear g. destruct (Hg y). assumption.
Qed.
End Q23.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment