Created
November 18, 2016 14:51
-
-
Save 3h4/0b7e91487dcf10c0b8e8711eb6d73bc5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
num_epochs = 100 | |
total_series_length = 50000 | |
truncated_backprop_length = 15 | |
state_size = 4 | |
num_classes = 2 | |
echo_step = 3 | |
batch_size = 5 | |
num_batches = total_series_length//batch_size//truncated_backprop_length | |
def generateData(): | |
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) | |
y = np.roll(x, echo_step) | |
y[0:echo_step] = 0 | |
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows | |
y = y.reshape((batch_size, -1)) | |
return (x, y) | |
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) | |
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length]) | |
init_state = tf.placeholder(tf.float32, [batch_size, state_size]) | |
W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32) | |
b = tf.Variable(np.zeros((1,state_size)), dtype=tf.float32) | |
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32) | |
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32) | |
# Unpack columns | |
inputs_series = tf.unpack(batchX_placeholder, axis=1) | |
labels_series = tf.unpack(batchY_placeholder, axis=1) | |
# Forward pass | |
current_state = init_state | |
states_series = [] | |
for current_input in inputs_series: | |
current_input = tf.reshape(current_input, [batch_size, 1]) | |
input_and_state_concatenated = tf.concat(1, [current_input, current_state]) # Increasing number of columns | |
next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) # Broadcasted addition | |
states_series.append(next_state) | |
current_state = next_state | |
logits_series = [tf.matmul(state, W2) + b2 for state in states_series] #Broadcasted addition | |
predictions_series = [tf.nn.softmax(logits) for logits in logits_series] | |
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) for logits, labels in zip(logits_series,labels_series)] | |
total_loss = tf.reduce_mean(losses) | |
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) | |
def plot(loss_list, predictions_series, batchX, batchY): | |
plt.subplot(2, 3, 1) | |
plt.cla() | |
plt.plot(loss_list) | |
for batch_series_idx in range(5): | |
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :] | |
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series]) | |
plt.subplot(2, 3, batch_series_idx + 2) | |
plt.cla() | |
plt.axis([0, truncated_backprop_length, 0, 2]) | |
left_offset = range(truncated_backprop_length) | |
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue") | |
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red") | |
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green") | |
plt.draw() | |
plt.pause(0.0001) | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
plt.ion() | |
plt.figure() | |
plt.show() | |
loss_list = [] | |
for epoch_idx in range(num_epochs): | |
x,y = generateData() | |
_current_state = np.zeros((batch_size, state_size)) | |
print("New data, epoch", epoch_idx) | |
for batch_idx in range(num_batches): | |
start_idx = batch_idx * truncated_backprop_length | |
end_idx = start_idx + truncated_backprop_length | |
batchX = x[:,start_idx:end_idx] | |
batchY = y[:,start_idx:end_idx] | |
_total_loss, _train_step, _current_state, _predictions_series = sess.run( | |
[total_loss, train_step, current_state, predictions_series], | |
feed_dict={ | |
batchX_placeholder:batchX, | |
batchY_placeholder:batchY, | |
init_state:_current_state | |
}) | |
loss_list.append(_total_loss) | |
if batch_idx%100 == 0: | |
print("Step",batch_idx, "Loss", _total_loss) | |
plot(loss_list, _predictions_series, batchX, batchY) | |
plt.ioff() | |
plt.show() |
@pjere I see similar performance as you with the TensorFlow version. Loss hits 0.14 after a few epochs and never improves past that point.
@pjere I found my bug! I'd accidentally broken the code so that line 100 didn't pass _current_state to the next batch. If I fix that, loss drops to 0.00.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I've had similar problems to these that djmarcus1 had, but managed to overcome them by changing lines 37, 38:
inputs_series = tf.unpack(batchX_placeholder, axis=1)
labels_series = tf.unpack(batchY_placeholder, axis=1)
to:
inputs_series = tf.unstack(batchX_placeholder, axis=1)
labels_series = tf.unstack(batchY_placeholder, axis=1)
,line 45:
input_and_state_concatenated = tf.concat(1, [current_input, current_state]) # Increasing number of columns
to
input_and_state_concatenated = tf.concat([current_input, current_state], 1) # Increasing number of columns
,and finally line 54:
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) for logits, labels in zip(logits_series,labels_series)]
to
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels) for logits, labels in zip(logits_series,labels_series)]
.Probably there are better haxes, but at least these are working for me (Python 3.6 and TensorFlow 1.3.0).
Cheers