Created
November 19, 2016 11:59
-
-
Save 3h4/21a87386dbc1ee1fae7368832c05d6e3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
num_epochs = 100 | |
total_series_length = 50000 | |
truncated_backprop_length = 15 | |
state_size = 4 | |
num_classes = 2 | |
echo_step = 3 | |
batch_size = 5 | |
num_batches = total_series_length//batch_size//truncated_backprop_length | |
num_layers = 3 | |
def generateData(): | |
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) | |
y = np.roll(x, echo_step) | |
y[0:echo_step] = 0 | |
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows | |
y = y.reshape((batch_size, -1)) | |
return (x, y) | |
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) | |
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length]) | |
init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size]) | |
state_per_layer_list = tf.unpack(init_state, axis=0) | |
rnn_tuple_state = tuple( | |
[tf.nn.rnn_cell.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1]) | |
for idx in range(num_layers)] | |
) | |
W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32) | |
b = tf.Variable(np.zeros((1,state_size)), dtype=tf.float32) | |
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32) | |
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32) | |
# Forward passes | |
cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True) | |
cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=0.5) | |
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True) | |
states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state) | |
states_series = tf.reshape(states_series, [-1, state_size]) | |
logits = tf.matmul(states_series, W2) + b2 #Broadcasted addition | |
labels = tf.reshape(batchY_placeholder, [-1]) | |
logits_series = tf.unpack(tf.reshape(logits, [batch_size, truncated_backprop_length, 2]), axis=1) | |
predictions_series = [tf.nn.softmax(logit) for logit in logits_series] | |
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) | |
total_loss = tf.reduce_mean(losses) | |
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) | |
def plot(loss_list, predictions_series, batchX, batchY): | |
plt.subplot(2, 3, 1) | |
plt.cla() | |
plt.plot(loss_list) | |
for batch_series_idx in range(5): | |
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :] | |
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series]) | |
plt.subplot(2, 3, batch_series_idx + 2) | |
plt.cla() | |
plt.axis([0, truncated_backprop_length, 0, 2]) | |
left_offset = range(truncated_backprop_length) | |
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue") | |
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red") | |
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green") | |
plt.draw() | |
plt.pause(0.0001) | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
plt.ion() | |
plt.figure() | |
plt.show() | |
loss_list = [] | |
for epoch_idx in range(num_epochs): | |
x,y = generateData() | |
_current_state = np.zeros((num_layers, 2, batch_size, state_size)) | |
print("New data, epoch", epoch_idx) | |
for batch_idx in range(num_batches): | |
start_idx = batch_idx * truncated_backprop_length | |
end_idx = start_idx + truncated_backprop_length | |
batchX = x[:,start_idx:end_idx] | |
batchY = y[:,start_idx:end_idx] | |
_total_loss, _train_step, _current_state, _predictions_series = sess.run( | |
[total_loss, train_step, current_state, predictions_series], | |
feed_dict={ | |
batchX_placeholder: batchX, | |
batchY_placeholder: batchY, | |
init_state: _current_state | |
}) | |
loss_list.append(_total_loss) | |
if batch_idx%100 == 0: | |
print("Step",batch_idx, "Batch loss", _total_loss) | |
plot(loss_list, _predictions_series, batchX, batchY) | |
plt.ioff() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment